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Abstract. Parsing video content is an important first step in the video indexing process. This paper presents 
algorithms to automate the video parsing task, including partitioning a source video into clips and classifying those 
clips according to camera operations, using compressed video data. We have developed two algorithms and a 
hybrid approach to partitioning video data compressed according to the JPEG and MPEG standards. The algorithms 
utilize both the video content encoded in DCT (Discrete Cosine Transform) coefficients and the motion vectors 
between frames. The hybrid approach integrates the two algorithms and incorporates multi-pass strategies and 
motion analyses to improve both accuracy and processing speed. Also, we present content-based video browsing 
tools which utilize the information, particularly about the shot boundaries and key frames, obtained from parsing. 
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1. Introduct ion 

Currently, the practical use of  video as an information resource is seriously limited by a 
lack of  viable indexing and retrieval systems to enable easy and effective organization and 
retrieval. The current state of the art requires a process known as logging, which basically 
reduces a video source to some form of  structured text which may then be entered into a 
database. Unfortunately, text descriptions can be both inadequate and inaccurate; and, in 
the absence of  any effective tools, logging is an extremely tedious operation. Overcoming 
these difficulties requires tools which support at least three tasks [8, 15]. First, we have 
to parse the video into an appropriate set of units for indexing, which we shall call clips. 
Second, we need to identify both low-level image properties and semantic properties of 
individual clips, using these properties as a representation of  content from which we can 
construct an index. Third, but not the least important, we need a set of  retrieval and browsing 
tools to select video material resulting from a query. The last task is especially important 
in light of the high volume of  video dataJ  

Up to now, a variety of algorithms and systems have been developed to successfully sup- 
port the first task [5, 13]. However, they have been based on uncompressed video, usually 
digit ized from analog sources. On the other hand, different schemes of  video compression 
have been studied and proposed to reduce the data volume of  video for storage and trans- 
mission, among which MPEG [2], JPEG [12] and H.261 [7] have become standards. As a 
result, more and more video data have been and will continue to be stored and distributed 
in compressed digital formats. It would therefore be advantageous for the tools we envis- 
age to operate directly on compressed representations, saving on the computational cost of  
decompression and lowering the overall magnitude of  the data which must be processed. 
This paper reports our work which contributes to developing tools to support video parsing, 
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retrieval and browsing based on such compressed data, especially on video compressed 
using MPEG. 

In Section 2 we first review previous work related to video parsing systems. Section 
3 presents a novel approach to parsing MPEG video data, along with an experimental 
evaluation. Section4discussesasetofcontent-basedvideobrowsingtools. Ourconclusions 
are given in Section 5. 

2. Video parsing: principles and previous work 

The first task in video parsing is to partition a given video stream into basic units to be 
identified and indexed. By way of analogy to sentences in a body of text, these elements will 
take the form of continuous segments from the time-line of the source video. Appropriate 
index terms (which need not be restricted to text and may include, for example, one or more 
representative frames) may then be assigned to each such segment, based on a variety of 
approaches to content analysis. We consider a camera shot (also called a clip), consisting 
of a sequence of contiguous frames representing a continuous action in time and space, 
as the basic indexing unit for video. Parsing thus begins with the process of detecting the 
boundaries between consecutive camera shots. 

Consecutive frames on either side of a camera break generally display a significant change 
in content. Therefore, what is required is a quantitative measure which captures the qual- 
itative difference between such a pair of frames. Then, if that measure exceeds a given 
threshold, it may be interpreted as indicating a segment boundary. Hence, establishing suit- 
able metrics is the key issue in automatic partitioning. The most commonly used metrics can 
be divided into two types: those based on comparing corresponding pixels or block regions, 
and those based on derived features, such as a histogram of intensity values. Experiments 
have shown that pixel histograms, based on either color or gray-level intensities, provide a 
very robust metric [5, 13]. 

When techniques such as dissolve, wipe, fade-in, and fade-out are employed, the bound- 
ary between two shots no longer lies between two successive frames; instead, it is spread 
out across a sequence of frames. Our approach to partitioning requires identifying the 
start and end points of these transitions, since they should not receive the same subse- 
quent content analysis which we apply to "pure" clips. However, the quantitative dif- 
ference between any two consecutive frames in such a transition is much less than the 
difference value which indicates a camera break; so the simple difference metric and 
a single threshold which detect camera breaks cannot also detect these gradual transi- 
tions. Zhang et al. have developed a multi-pass, twin-comparison approach to solve 
this problem [13]. This technique performs a first pass to locate potential boundaries 
for both simple breaks and gradual transitions. This pass does not examine all consecu- 
tive frames but employs a skip factor which defines a constant interval of time between 
the frames which are compared. A second pass then performs two more refined com- 
parisons for gradual transition detection: the first uses a reduced threshold to detect the 
potential starting frame of a transition, and the second uses a higher threshold to detect 
the ending frame of the transition. Experiments have shown that this is a very effective 
approach [13]. 

A major problem in partitioning is that camera operations and fast object motion may 
introduce false positives, since they tend to exhibit quantitative differences of the same 
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order as those of gradual transitions. Thus, it is necessary to distinguish changes associated 
with those transitions from changes introduced by camera movement. This problem has 
been addressed by Zhang et al. [ 13] and Ueda et al. [ 11], using a camera operation detection 
algorithm based on motion vectors between consecutive frames. 

These approaches all require that each video frame be represented as an array of pixel 
intensities. If the input is a compressed digital video, then it must first be decompressed 
in its entirety. Since the algorithms are already compute-intensive, additional computation 
time is far from desirable. A more effective approach is to develop tools that can work 
directly on compressed representations. Arman et al. [ 1] have proposed partitioning JPEG 
video with a difference metric based on correlation between the Discrete Cosine Transform 
(DCT) coefficients of consecutive frames. The algorithm is based on the fact that the DCT 
coefficients of each frame are mathematically related to the spatial domain and represent the 
content of the frames; therefore, they can be used to detect qualitative differences between 
two video frames. In other words, the DCT coefficients can be used to detect shot boundaries 
if we can construct a suitable metric. 

To improve both accuracy and speed, Arman et al. also applied a similar multi-pass ap- 
proach. The first pass uses a skip factor and its own threshold value for isolating the regions 
of potential cut points. The frames which cannot be classified based on DCT coefficient 
comparison may be decompressed for further examination by color histogram comparison. 
However, while the approach is effective in detecting camera breaks, it fails to address the 
detection of gradual transitions, camera operations, and object motion, all of which signif- 
icantly affect partitioning accuracy. Also, the DCT comparison metric and the subsequent 
decompression are computationally expensive. 

Our own approach uses two fast yet effective algorithms: The first one applies a sim- 
pler difference metric to the comparison of DCT coefficients; the second utilizes motion 
information encoded in MPEG data. We have developed a novel hybrid approach, which 
exploits the advantages of both of our algorithms, as well as Arman's, while overcoming 
their respective shortcomings. This hybrid technique also incorporates robust motion anal- 
ysis. As will be discussed in Section 3, the result is a powerful parser with the ability to 
detect gradual transitions, camera operations, and object motion. 

We have also addressed the problem of providing content-based retrieval and browsing 
tools. Arman et al. [1] have proposed that key frames which represent the content of each 
shot can facilitate browsing; but they fail to address how such frames may be automatically 
selected. We shall briefly discuss a solution to this problem, again based on a compressed 
video source, along with a set of associated tools, in Section 4. 

3. Video parsing based on compressed data 

In this Section we begin with a brief review of the JPEG and MPEG video compres- 
sion standards. We then discuss three difference metrics for partitioning either JPEG 
or MPEG video: two employ the DCT coefficients used in both JPEG and MPEG rep- 
resentations, while the third uses MPEG motion vectors. After this, we discuss how 
to combine the power of the two approaches, incorporating multi-pass, twin-comparison 
strategies and motion analysis which enable the detection of gradual transitions and cam- 
era operations. 
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3.1. JPEG and MPEG: a brief introduction 

To provide some background, we briefly summarize the principles of JPEG and MPEG 
encoding before introducing our algorithms. Figure 1 illustrates the basic processes of 
JPEG, the major standard for still picture compression. The key idea is to reduce spatial 
redundancy. Compression begins by dividing an image into a set of 8 x 8-pixel blocks 
[2, 12, 7]. The intensity levels in each block are then transformed by the forward Discrete 
Cosine Transform (DCT) into 64 coefficients, which are then quantized and run-length, 
Huffman entropy encoded. The process can then be reversed for decompression. If we can 
encode and decode JPEG fast enough to manage video rates, we can apply it to individual 
video frames, achieving what is known as Motion JPEG. Because each frame is transformed 
independently, no process is performed to reduce temporal redundancy. 

MPEG, the standard for motion video compression proposed by the Moving Picture 
Experts Group, reduces spatial redundancy with the same technique as JPEG but also 
uses motion compensation coding to reduce temporal redundancy. However, this approach 
entails a tradeoff between efficient coding and fast random access. To facilitate random 
access, certain frames are encoded like still JPEG images without any motion compensation 
encoding; these frames are called intra-pictures (I) [2, 7]. Two types of frames are motion 
compensation encoded: predictively coded (P) frames and bi-directional predictively coded 
(B) frames. All three types are illustrated in Fig. 2. There are two sets of motion vectors 
(one for every 8 x 8 block), forward and backward, associated with each B frame and a 
single set for each P frame. The residual differences associated with motion compensation 
of each block in P and B frames are then DCT-coded in the same way as blocks in JPEG 
frames. Let us now turn to the use of DCT and motion compensation data for video parsing. 

3.2. Two algorithms based on DCT coefficients 

As stated before, the algorithm developed by Arman et al. [1] is based on the correlation 
between DCT coefficients of consecutive frames of JPEG compressed video. A vector 
representation for each frame is constructed by a subset of the DCT coefficients of a subset 
of the blocks in the frame: 

V I = {cl, c2, cs . . . . .  ck}. (1) 



VIDEO PARSING AND BROWSING USING COMPRESSED DATA 93 

Forward Prediction 

Bidirectional Prediction 

Figure 2. Three types of frames in MPEG: intra-pictures (I), predicted frames (P), and interpolated, bidirectional 
predicted frames (B). Here there are eleven frames between successive I frames, and the ratio of B frames to the 
union of I and P frames is three to one. These ratios are flexible and are controlled by parameters such as coding 
display. 

The difference metric between the frames is then defined in terms of a normalized inner 
product: 

�9 =1  IV/~ (2) 
IVsllVs+~l 

where cp is the number of frames between the two frames being compared. 
Following the approach of pair-wise comparison [13], we have developed a pair-wise 

block algorithm which compares the DCT coefficients of corresponding blocks of consec- 
utive video frames. More specifically, let ct,k(i) be a DCT coefficient of block I in frame i, 
where k ranges from 1 through 64 and I depends on the size of the frame; then the content 
difference of block I in two frames which are ~o frames apart can be measured as: 

1 ~ Icl,k(i) -- ct,~(i + 9)1 
Diff/ = ~ k=a max[ct,k(i), ct,k(i + ~0)] 100% (3) 

If this difference exceeds a given threshold t: 

Difft > t (4) 

then we can say that the block has changed across the two frames. If D(i, i + 9) is defined 
to be the percentage of blocks which have changed, then a segment boundary is declared if 

O(i, i + ~o) > Tb (5) 

where Th is the threshold for camera breaks. This difference metric is thus analogous to 
pair-wise pixel comparison [ 13], using DCT coefficients instead of pixel intensities. 

Selecting appropriate values for t and Tb may also employ the same techniques discussed 
in [13]. t tends not to vary across different video sources and can easily be determined 
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experimentally. Tb, on the other hand, is best computed in terms of the overall statistics for 
values of D(i, i + q~) as a value which exceeds the mean by about five standard deviations. 

For implementation purposes processing time can be reduced significantly by applying 
Arman's technique of using only a subset of coefficients and blocks. However, our algorithm 
requires far less computation than the difference metric defined by (2). Also, it is more 
sensitive to gradual changes, which makes it more useful than (2) for the hybrid approach 
to detecting transitions discussed in Section 3.4. 

The above two algorithms may be applied to every video frame compressed with Motion 
JPEG; but in an MPEG video it may only be applied to I frames, since those are the only 
frames encoded with DCT coefficients. Since only a small portion of all video frames are 
I frames, this significantly reduces the amount of processing which goes into computing 
differences. On the other hand, the loss of temporal resolution between I frames may 
introduce false positives which have to be handled with subsequent processing. 

The sequences of differences between all successive I frames from an MPEG compressed 
documentary video, defined by both DCT correlation and pair-wise block comparison, are 
shown in two parts in Figs. 3 and Fig. 4, (a) and (b), respectively. This particular sequence 
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Figure 3. Video parsing result using three algorithms on the first half of a test video compressed in MPEG: (a) 
DCT coefficient correlation using difference value qJ, as computed by equation (2); (b) pair-wise block comparison 
of DCT coefficients based on difference value D(i, i + ~o), as used in (5); and (c) motion-based comparison based 
on M, the number of valid motion vectors, as used in (6). In (a) and (b) difference values are computed between 
successive I frames. There is 1 I frame, 1 P frame and 4 B frames in every 6 frames in the MPEG representation; 
and motion vectors for (c) are examined in both P and B frames. T~ is the threshold for detecting a camera break. 

is the lower threshold for the twin-comparison approach discussed in Section 3.4.1. 

contains sharp breaks, gradual transitions, camera operations, and object motion, making it 
an excellent test case. While it is only about 1.3 minutes long, there are 25 shots separated 

by 17 sharp breaks and 7 gradual transitions. Also 4 shots involve camera panning. The 17 
sharp breaks are labeled 1-17, and they can all be detected by exceeding an appropriately set 
break threshold Tb. Specific images from this sequence will be presented in the discussion 
in Section 3.4.1. 

However, neither of these two algorithms can handle gradual transitions or false positives 
introduced by camera operations and object motion. Both Fig. 3(b) and Fig. 4(b) illustrate 
examples of these problems, labeled T] through Tv; but we shall not discuss how they 
may be solved until Section 3.4. Instead, we now turn to motion vectors as a source of 
partitioning information. 

3.3. Parti t ioning based on motion vectors 

Apart from intensity values and distributions, motion of both objects and the camera are 
the major elements of video content. In general within a single camera shot, the field 
of motion vectors should show relatively continuous changes, while this continuity will be 
disrupted between frames across different shots. Thus, a continuity metric for a sequence of 
motion vector fields should be able to serve as an alternative criterion for detecting segment 
boundaries. 

In an MPEG data stream, as was illustrated in Fig. 2, there are two sets of motion vectors 
associated with each B frame, forward and backward, and a single set of motion vectors 
associated with each P frame. That is, each B frame is predicted and interpolated from its 
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Figure 4. Video parsing results using three algorithms on the second half of a test video compressed in MPEG: (a) 
DCT coefficient correlation using difference value qJ, as computed by equation (2); (b) pair-wise block comparison 
of DCT coefficients based on difference value D(i, i + ~p), as used in (5); and (c) motion-based comparison based 
on M, the number of valid motion vectors, as used in (6). TI, is the threshold for detecting a camera break. Tt is 
the lower threshold for the twin-comparison approach discussed in Section 3.4.1. 

preceding and succeeding I/P frames by motion compensation; and each P frame is simi- 
larly predicted from its preceding I/P frame. In both cases the residual error after motion 
compensation is then transformed into DCT coefficients and coded. However, if this residual 
error exceeds a given threshold for certain blocks, motion compensation prediction is aban- 
doned; and those blocks are represented by DCT coefficients, as in I frames. Subsequently, 
there will be no motion vectors associated with those blocks in the B/P frames. Such high 
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residual error values are likely to occur in many, if not all, blocks across a camera shot 
boundary; and we have developed an algorithm which uses this information. 

Let M be the number of valid motion vectors for each P frame and the smaller of the 
numbers of valid forward and backward motion vectors for each B frame, and let Th be a 
threshold value close to zero. Then 

M < Th (6) 

will be an effective indicator of a camera boundary before or after (depending on whether 
interpolation is forward or backward) the B/P frame. The difference sequences in Fig. 3(c) 
and Fig. 4(c) illustrate these values of M for the same video example used for data in 
the other graphs in these illustrations. In this case the camera breaks are all accurately 
represented as valleys below the threshold level, labeled 1 through 17. 

However, this algorithm fails to detect gradual transitions because the number of motion 
vectors during such a transition sequence is often much higher than the threshold. The 
algorithm also yields false positives, indicated by the $1 and S2 valleys. These correspond 
to sequences of repeating static frames: When there is no motion, all the motion vectors will 
be zero, yielding a false detection. A simple resolution to this problem is to measure the 
width of the valley. For a camera break, the valley is usually very deep and narrow, since the 
small number of motion vectors will be confined to at most two successive frames; on the 
other hand, any static sequence which is longer than two frames will yield a wider valley. 
However, this may eliminate some gradual transitions with a long sequence of frames with 
very few motion vectors. The robust solution is to use difference metric (5) to examine 
the potential false positives, since D(i, i + ~o) will be close to zero between the stationary 
frames, 

3.4. A new hybrid approach 

We now present a new hybrid approach which integrates the approaches discussed in Sec- 
tions 3.2 and 3.3 and incorporates the multi-pass strategies and motion analyses proposed 
by Zhang et al. [14] to improve detection accuracy and processing speed; we shall base our 
discussion on video compressed with MPEG. 

3.4.1. Multiple passes and multiple comparisons. The first step is to apply a DCT com- 
parison, such as the one defined by (5), to the I frames with a large skip factor q) to detect 
regions of potential gradual transitions, breaks, camera operations, or object motion. The 
large skip factor reduces processing time by comparing fewer frames. Furthermore, gradual 
transitions are more likely to be detected as potential breaks, since the difference between 
two more "temporally distant" frames could be larger than the break threshold, Th. The 
drawbacks of using a large skip factor, false positives and low temporal resolution for shot 
boundaries, are then recovered by a second pass with a smaller skip factor (which may be 1, 
i.e. comparing consecutive I frames); but the second pass is only applied to the neigh- 
borhood of the potential breaks and transitions. Thus a high processing speed is achieved 
without losing either detection accuracy or temporal resolution of segment boundaries. 

However, it should be pointed out that choosing a proper skip factor depends on the 
dynamic features of the movie to be parsed. In our test example the rapid changes due to 
moving objects and camera motion make a large skip factor relatively inadequate. Since, 
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Figure 5. Transitions for breaks 2 and 3 as indicated in the graphs in Fig. 3. Break 2 is illustrated in the upper 
pair of images. Break 3 is illustrated in the lower. Break 3 was detected by DCT coefficient correlation, while 
break 2 was missed but was detected by motion vector comparison. 

in general, the frame interval between consecutive I frames in MPEG movies is larger than 
6 frames, an even larger skip factor will not increase the overall processing speed because 
of  the number of  false positives introduced. 

What makes this a hybrid approach is that the motion-based comparison metric is also 
applied as another pass, either on the entire video or only on the sequences containing po- 
tential breaks and transitions, to complement and verify the results from DCT comparison 
and to improve further the accuracy and confidence of  the detection results. More specifi- 
cally, difference metric (6) is applied to all the B and P frames of those selected sequences 
to confirm and refine the break points and transitions detected by the DCT comparison. 
Conversely, the DCT results provide information for distinguishing between sequences of  
static flames and transition frames which could be confused by motion-based detection 
as observed in Section 3.3. A good example of  an advantage of this combined approach 
is break 2 in Fig. 3(a), which is missed by the DCT correlation algorithm but is clearly 
recognized from motion vector comparison. The images compared across this break (as 
well as those across break 3 for control) are illustrated in Fig. 5. 

Gradual transitions may be detected by an adaptation of  our twin-comparison approach 
[ 13]. For example T4 in Fig. 4(b) can be correctly detected as a gradual transition (illustrated 
in Fig. 6), since the DCT differences between I frames exceed the lower threshold, Tt, 
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Figure 6. A gradual transition corresponding to segment I"4 in Fig. 4(b). 

introduced by the twin-comparison approach [13]. On the other hand T1 in Fig. 3(b) 
is a camera pan (illustrated in Fig. 7) whose difference values are higher than the break 
threshold, due to the large frame interval between I frames (6 in our case). However, 
because motion vector analysis is very robust in detecting sharp breaks, this false positive 
can be detected. Therefore, by fusion of the information gathered from different passes 
with different comparison metrics, the false positives and missing transitions, resulting from 
using any of the three metrics alone, may be resolved. 

3.4.2. Camera operation and object motion detection in the hybrid approach. Another 
video parsing problem consists in distinguishing sequences involving camera operations 
from those due to gradual transitions, since the former tend to induce temporal variations 
in frame content of the same order as do the latter. Camera operation information figures 
significantly in the analysis and classification of video shots, since camera operations often 
explicitly reflect the communication intentions of the director. Detecting camera operation 
is also very important in constructing images which effectively represent video content, 
such as salient stills [9]. 

Camera operations may be classified according to whether or not camera position changes. 
The camera is fixed for panning and tilting (horizontal or vertical rotation) and zooming 
(focal length change); the analogous operations in which the camera moves are tracking 
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Figure 7. A camera pan corresponding to segment T1 in Fig. 3(b). 

and booming (horizontal and vertical transverse movement) and dollying (horizontal lateral 
movement). These operations may also be applied in combinations. Each of these opera- 
tions induces a specific pattern in the field of motion vectors; so by detecting those different 
patterns, we can derive the corresponding camera operations. We have implemented two 
algorithms: motion vector pattern analysis for isolating camera operation sequences; and a 
regression algorithm to calculate panning and zooming parameters once the sequences are 
located, if these parameters are needed. 

Figure 8 shows the sorts of representative patterns which analysis must be able to detect 
[13]: these are MPEG B frames extracted from a tilting sequence and a zooming sequence. 
The motion vector field for any combination of panning and tilting will exhibit a single 
strong modal vector value which corresponds to the direction of the camera movement; so 
most of the motion vectors wilI be parallel to this modal vector. This may be expressed by 
the formula 

N 

Y~' 10k -0ml _< T~ 
k 

(7) 

where Ok is the direction of motion vector k, Om is the direction of the modal vector, and N 
is the total number of motion vectors in a frame. 10k - Om I is zero when the two vectors are 
exactly parallel. (7) thus counts the total variation in direction of all motion vectors from 
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the direction of the modal vector; and a camera pan/tilt is declared if this variation is less 
than Tp. 

On the other hand, the field of motion vectors resulting from zooming creates a focus 
center. As one can observe from Fig. 8(b), the vertical components of motion vectors 
in the top and bottom rows of a frame will have opposite signs if there is a zooming. 
Mathematically, this means that, in every column, the magnitude of the difference between 
these vertical components will always exceed the magnitude of both components. The 
horizontal components of the motion vectors for the leftmost and rightmost columns can 
then be analyzed the same way. Therefore, a zooming can be detected by comparing the 
components of motion vectors; and a zoom is detected if the number of positive comparisons 
exceeds a threshold Tz. However, if there is a combination of panning and zooming, the 
motion pattern will become much more complicated and difficult to detect. Fortunately, 
such combinations are not often used in movie making, and one operation is usually much 
more rapid than the other. Thus such sequences will be classified into one of the two 
operations, rather than the combination. 

A potential problem is that pan/tilt detection may yield false positives from video se- 
quences containing object motion rather than camera motion. This will happen when there 
is a large object or a group of small objects moving in the same direction, thus resulting 
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Figure 8. Typical motion vector field patterns resulting from (a) camera tilting and (b) zooming-out, plotted from 
motion vectors associated with three B frames. 

in the same pattern of a large group of motion vectors with the same direction. To be able 
to distinguish between these two types of sequences, we further divide the motion field of 
each frame into a number of macro blocks and then apply the motion analysis to each block. 
The sequence is only declared a panning sequence if the mode directions of  all of the blocks 
agree. Figure 9 shows an example of  a motion field pattern resulting from object motion. 
However, if the moving object(s) cover most of the frame, then the algorithm will falsely 
interpret the movement as a camera pan/tilt. 

Figures 10 and 11 show the detection of camera panning and zooming on the same video 
sequence shown in Figs. 3 and 4. No zooming has been detected by the algorithm which is 
consistent with the content of  this particular portion of the video. On the other hand, several 
panning sequences are detected, marked as P1 to P4. (P1 is the same as the T1 sequence 
from Fig. 3(b), illustrated in Fig. 7.) The camera operation information is added to our 
video parsing process to improve the capability of the hybrid approach in eliminating the 
false detection of transitions, as shown in Figs. 3 and 4. 

In case we need to describe the camera operation quantitatively, we use an algorithm 
developed for detecting global motion between frames [10]. This algorithm is derived by 
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Figure 9. An example of motion vector field patterns resulting from moving objects: note the different motion 
patterns in different regions of the frames. 

analyzing the relations between the camera coordinates and the image-space coordinates, 
and the changes of the pixel coordinates introduced by camera panning and zooming. A 
zoom can be represented by a zoom factor, fz; and a camera pan/tilt can be represented 
by a panning vector, p. Thus if we have a set of N designated points in a frame, if Ui 
represents the horizontal and vertical coordinates of the ith of these points in that frame, 
and U I represents the coordintates of the same point as displaced in the following frame, 
then the effect of combination of these operations can then be expressed by 

U'i = fzUi + p (6) 

fz and p can be calculated by an iterative algorithm based on the set of all N displaced 
points [10]: 

Z i  I Ui �9 U I [ -  11 Z i U i  �9 Z i V ~ ]  

fz : Y~i IVi �9 U~[ - 11 Z i V l .  }-~d V~[ (7.1) 

z) P = U i - f~ U i  (7.2) 
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Figure 10. (a) A sequence of differences in motion direction from the modal vector direction for the frames 
graphed in Fig. 3. Tp is the threshold for panning detection. (b) A sequence of numbers of blocks whose motion 
vectors satisfy the criterion for zooming detection for the frames graphed in Fig. 3. The threshold Tz is set at 15. 

Because this computation is very intensive, we restrict it to the sequences which have 
already been identified by the simple motion analysis algorithm. 

So far, we have not tried to distinguish panning/tilting from tracking/booming or zooming 
from dollying. This is because our primary interest has been in separating camera operation 
sequences from gradual transitions. A more thorough classification requires a more detailed 
analysis of variations in vector magnitudes which reflect the distances between different 
objects and the camera. This is a far more compute-intensive process, which may be further 
complicated by object motion. More sophisticated motion recovery algorithms are needed 
to tackle these problems [3]. Similarly, we have not yet undertaken a systematic study of 
combinations of gradual transitions, such as a fade out of one shot while the succeeding shot 
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Figure 11. (a) A sequence of differences in motion direction from the modal vector direction for the frames 
graphed in Fig. 4. Tp is the threshold for the panning detection. (b) A sequence of numbers Of blocks whose 
motion vectors satisfy the criterion for zooming detection for the frames graphed in Fig. 4. The threshold Tz is 
set at 15. 

wipes in. We anticipate that such combinations will be recognized as gradual transitions 
by our current techniques, but this hypothesis remains to be tested. 

3.5. Summary of results 

The results presented in Figs. 3 and 4 may now be summarized in tabular form. (Recall the 
summary of the test video at the end of Section 3.2.) First let us consider the detection of 
camera breaks: 

Detected Camera Undetected Camera Falsely Detected 
Breaks Breaks Camera Breaks 

DCT1 16 1 4 
DCT2 17 0 4 
motion vector 17 0 0 
hybrid 17 0 0 
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In this chart DCT1 refers to the DCT correlation comparison of [1], while DCT2 is our 
own pair-wise block comparison technique. We may summarize the detection of gradual 
transitions in a similar chart as follows: 

Detected Undetected Falsely Detected 
Transitions Transitions Transitions 

DCT1 3 5 1 
DCT2 4 4 1 
motion vector 0 0 0 
hybrid 7 0 0 

Finally, our technique for detecting camera movements, as illustrated in Figs. 10 and 11, 
detected all four of the camera pans in our test data. 

4. Content-based browsing tools for compressed video 

The results of our video parsing techniques can be utilized to support indexing and browsing. 
The segment boundaries serve as pointers to each basic indexing unit of video data. The 
descriptions of camera operations can be used for representative frame construction in shot 
content representation, and they also provide another level of indexing that can be used as a 
retrieval key. We now look at how we utilize the information obtained from video parsing 
in content-based video retrieval and fast browsing. 

An important function to facilitate video information retrieval is a tool for fast browsing 
of any video material retrieved from a query. Such browsing should take place at two levels 
of temporal granularity--overview and detail--and should be implemented in a way which 
facilitates movement between these two levels. Detailed browsing should be based on VCR- 
like functions, particularly fast forward and reverse scanning. This requires decompression 
of all frames of a compressed source, which is computationally intensive but not content- 
based. Overview browsing, on the other hand, can be based on content change information 
obtained from the algorithms discussed in Section 3. 

Decompressing and displaying MPEG I frames is one of the simplest approaches to fast 
browsing. However, since the I frames are uniformly distributed in time, it is not content- 
based. A more content-based approach would decompress only the representative frames, 
or key frames, of each shot of the parsed video data. However, if we select only one key 
frame for every shot, regardless of the content or how it changes in the shot, the browsing 
may be too coarse; and, more importantly, the dynamic feature of the video may be lost. 
Thus, the problem is how to detect an appropriate set of key frames. 

Using key frames to represent video content has been proposed by many researchers, 
such as in [6]; but the problem of how to effectively extract key frames based on video 
content automatically has not really been addressed. We have developed a unique and 
robust content-based key frame extraction technique which utilizes the results of video 
parsing. 2 The number of key frames extracted for each shot depends on the shot content, 
its variations, and the camera operations involved. The technique is based on the use of a 
selected difference metric, similar to those used for detecting camera breaks. However, in 
this case all computation takes place within a single camera shot and differences between 
consecutive frames are not computed. Instead, the first frame is proposed as a key frame; 
and consecutive frames are compared against that candidate. A two-threshold technique, 
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Figure 12. A video browser based on extracted key frames. 

similar to the twin-comparison method in [13], is applied to identify a frame significantly 
different from the candidate; and that flame is proposed as another candidate, against which 
successive frames are compared. Users can specify the density of the detected key frames 
by adjusting the two threshold values. 

Once the key frames have been extracted, they may be viewed with two types of browsing 
tools: a sequential browser and a hierarchical browser. The sequential browser resembles a 
"virtual" VCR, supporting conventional play modes; but the fast forward and reverse play 
will decompress only the I frames of an MPEG video. However, as shown in Fig. 12, there 
is a special mode that plays only the key frames of each shot. This mode achieves a much 
faster play speed than normal fast forward or reverse play, while the content of the video 
is still preserved. A quantitative example is that a half-hour stock footage video may be 
represented by about 200 key frames, and the content of this video can be viewed within 
less than 7 seconds if we play at 30 frames per second. As one can see from Fig. 12, the 
key frames of each shot can also be viewed in detail, as they can be displayed in the bottom 
of the display window while the video is playing. 

The hierarchical browser is designed to provide random access to any point in a given 
video: a video sequence is spread in space and represented by frame icons which function 
rather like a light table of slides. In other words the display space is traded for time to 
provide a rapid view of the content of a long video. As shown in Fig. 13, at the top of 
the hierarchy, a whole video is represented by five key frames, each corresponding to an 
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Figure 13. A content-based hierarchical browser. 

equal number of camera shots. Unlike the Hierarchical Video Magnifier [4], which inspired 
our design, our browser is based on the results of video parsing and key frame extraction. 
As we descend through the hierarchy, our attention focuses on smaller groups of shots, 
single shots, the representative frames of a specific shot, and finally a sequence of frames 
represented by a key frame. Of course, we can always open the first type of video player to 
view sequentially any particular segment of video selected from this browser at any level 
of the hierarchy, provided that the (compressed) video is stored on line. 

Another advantage to incorporating key frames in such browsing tools, including the 
sequential browser presented above, is that we can browse the video content down to the 
key frame level without necessarily storing the entire video, either compressed or not. This 
is particularly advantageous if our storage space is limited. Such a feature is not only very 
useful in video databases and information systems, but also in video on demand systems 
to support previewing. Key frames can also be used for visual content based retrieval [15]: 
one can specify a visual query based on the key frames and retrieve the video sequences 
represented by those key frames. 

5. Concluding remarks 

We have presented two novel algorithms for parsing JPEG or MPEG compressed video: 
a DCT coefficient based pair-wise block comparison and a motion vector comparison. 
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We also presented a new hybrid approach which integrates the above two algorithms and 
incorporates a multi-pass strategy and motion analyses to improve accuracy and processing 
speed. With such an approach, we can effectively detect camera breaks, gradual transitions, 
camera operations, and object motion using compressed video data directly, all of which are 
the most important tasks of video parsing and provide necessary information for automatic 
content-based video browsing and retrieval. Finally, we have presented two content-based 
video browsing tools which utilize the information, particularly about shot boundaries and 
key frames, obtained from parsing. Such tools enable us to rapidly browse and locate video 
sequences from compressed video according to the content of the video. Experimental 
evaluation of these algorithms has shown that they are effective and able to achieve high 
accuracy in parsing compressed video. These algorithms are currently being integrated into 
our video parsing, indexing and retrieval system [15]. 
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