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ABSTRACZ By producing 2 a L convergent Neumann series, we prove the invertibility of  the elastostatics 

and hydrostatics boundary layer potentials on arbitrary Lipschitz domains with small Lipschitz character and 

3D polyhedra with large dihedral angles. 

1. Introduct ion 

Much progress has been made in the last two decades in the direction of employing the classical 
method of layer potentials in the treatment of elliptic boundary value problems in non-smooth 
domains in the Euclidean setting. 

The essence of the method resides in reducing the whole problem to solving a system of integral 
equations over the boundary of the domain. In the case of domains with smooth boundaries, one 
is typically able to reduce matters to inverting operators of the form "identity § weakly singular" 
which are readily treatable via Fredholm theory. As non-smooth domains no longer yield boundary 
integral operators of compact type, new tools had to be developed and new approaches had to be 
designed to handle this case. 

Following the breakthrough in [1], which settled the sensible issue of the boundedness of 
such layer operators in L p spaces (1 < p < ec) on arbitrary Lipschitz surfaces, there have been 
spectacular applications to many classical PDEs of mathematical physics in Lipschitz domains. For 
instance, the Laplace equation has been treated via layer potentials in [3, 25] (following the work 
in [2, 8, 13]), the Lam6 system of elastostatics in [4], the Stokes system of hydrodynamics in [9] 
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and Maxwell's system of electromagnetism in [22]. For a more detailed account of developments 
in this active area of research see, e.g., the excellent survey in [16]. There is also a rich literature 
for non-smooth domains with isolated singularities and we refer the reader to the expositions in [21] 
and [17], as well as to the references therein. 

The aim of this paper is to investigate conditions under which the inverses of such boundary 
layer potentials can be expanded in a (L 2 norm convexgent) Neumann series. Since, as alluded to 
before, our operators have the form I + K, this is equivalent to showing that p (K), the spectral 
radius of K on L 2, is < 1. For arbitrary Lipschitz domains, this issue is occasionally referred to 
as "the spectral radius conjecture". Of course, if the domain is smooth, then matters come down 
to understanding the point spectrum of K, which is a much simpler task. For work on the spectral 
radius for the harmonic layer potential in non-smooth domains, see [10]. 

Our primary interest lies with the (appropriately defined) elastostatics and hydrostatics layer 
potentials in non-smooth domains. For these operators, call them KLame, KStokes, we produce partial 
results to the aforementioned question, to the effect that p (KLame) < 1, p (l~Stokes) < 1 in arbitrary 
Lipschitz domains with small Lipschitz constant (cf. Theorem 1) and three-dimensional polyhedra 
satisfying certain size restrictions for their dihedral angles. More specifically, in the case of the Lam6 
system in 3D polyhedra, we ask that 

( 3/z +)~ cos( ) (1.1) 

where )~ and # are the usual Lam6 coefficients. Whereas in the case of Stokes's system, we require 

< 1  
c o s ( 2  ) ~ .  (1.2) 

See Theorem 4 for a complete statement. The tools employed to prove these results are those of 
harmonic analysis and Mellin transform. 

Another perspective from which Theorem 4 can be understood comes from regarding the 
Lain6 system as a perturbation of the vector Laplacian. This way, for any 3D polyhedron, there 
exists e > 0 such that KLame associated to the system LX~ + e V div ~ = 0 has p (I(Lame) < 1. This 
work is an extension to the case of 3D systems of PDEs of results in [6] (cf. also [7, 20, 24] for the 
two-dimensional case) where it has been shown that ,O(KLaplace) < 1 for arbitrary 3D polyhedra. 
In fact, we are able to recover this particular result in the present setting. This occurs for the choice 
)~ = - / x  for which the Lam6 system reduces to the vector Laplacian. The point is that, in this case, 
(1.1) is automatically satisfied. However, the extent to which the restrictions (1.1) and (1.2) can be 
improved remains an open problem for the moment. Another interesting open problem is to extend 
these results to the higher dimensional setting. 

The conditions (1.1) and (1.2) can be regarded as constraints on the size of the Lipschitz 
character of the domain so that the spectral radius conjecture holds for the operators under discussion. 
For practical purposes, it is important that they are explicit and easy to check. Indeed, we believe that 
our results may also prove useful for the numerical treatment of such systems of PDEs in nonsmooth 
domains, an issue to which we shall, hopefully, return soon. 

The layout of this paper is as follows. In Section 2 we review some basic definitions con- 
cerning the elastostatics and hydrostatics layer potential operators corresponding, respectively, to 
the pseudostress and the stress conormal derivatives. In Section 3 we discuss spectral properties of 
these operators in the context of Lipschitz domains with small Lipschitz constant. Finally, Section 4 
deals with 3D polyhedra, a setting in which we produce the results outlined above. 
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2.  T h e  E l a s t o s t a t i c s  a n d  H y d r o s t a t i c s  L a y e r  P o t e n t i a l s  

We start by reviewing elastostatics layer potentials. Concretely, consider the system of linear 
elastostatics L~ = 0 in an open subset of IR n, where 

L f  := /z  A f + (~ +/x)  v d i v f .  

The displacement f has n components and/z and X are the Lam6 moduli which are assumed to satisfy 
/x > 0 and - / z  < X. The operator L can be represented in the following notation: 

L =  A(D)= (aklOioj)kj , (2.1) 

where 

a~( = a~J(O) := lzSijS~l + (# + X - O)SikSjl Jr- O~il(~jk �9 

Above, 0 E R is arbitrary, ~ij is the Kronecker symbol, and i, j ,  k, l 6 {1 . . . . .  n}. Hereafter we 
shall use Einstein's convention for summation, i.e., an index repeating in the same expression means 
that we are summing with respect to that index. 

Let ~2 C Nn be a Lipschitz domain and let N be the outward unit normal vector to f2 which 
kl exists almost everywhere on O f2. Corresponding to A : =  (ai j) i , j ,k , l ,  the conormal derivative for the 

operator L in (2.1) is given by 

Off "] j := NiaF(O)OkU t OuJ 3NA ,] = IZ-3--N + ([z + X -- O)Njdivf + ONiOju  i , 

where j = 1, n. The special choice 0 := t~0z+z) gives rise to the so-called pseudostress 
" "  " ' 3 # + X  

conormal derivative which has the form 

3-~ :=p ,  9 ' f ' N +  ~--~)~ (Vu) . N +  (2/z + X)(/x + )~) (div f ) N ,  
3/z +)~ 

where the superscript t indicates transposition of matrices. 
Let G = ( G i j ) i , j  be the Kelvin matrix valued fundamental solution for the system of elasto- 

statics (see, e.g., [18]), 

1 [ 3it + )~ (~ij X i X j  "] ]i~n 
Gij(X):=21x(21z+X)COn n---2 IxI~-2+(~+)01-K~-J' s ~  \{0}, 

where i, j = 1, 2 . . . . .  n and COn is the surface area of the unit sphere in ]R n. Also, denote by Ks 
the double layer elastostatics operator corresponding to the pseudostress conormal derivative on the 
boundary of f2. Specifically, if we denote by G j the j th column in the fundamental matrix G, then 

a \  Ov ( P -  ") (Q)fJ(Q)da(Q),  P E0s (2.2) 

f :  ]~n where 0 f2 --+ and i = 1 . . . . .  n. Also, da  stands for the canonical surface measure on 0 ~2. 

A careful computation gives that the/th component of 2-~Lj (x) ,  denoted by k~,p (X), is 

k~,p(X) 
--4P.3ij {X, N(X)> 

o~n(3u + z) Ix I n 
2n(# + X) XiXj <X, N(X)) 

- con(3/z + X) IXI ~+2 
, x e ~n \{o}. 
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Next, we briefly discuss hydrostatics layer potentials. To this end, consider the linearized, 
homogeneous, time independent Navier-Stokes equations, i.e., the Stokes system 

{ A ~ = V p ,  (2.3) 
div ~ = 0 ,  

in an open set in ]t{ n, where ~ is the velocity field and p is the pressure function. If  we define the 
kl matrix A = A(O) : =  (aij (O))i,j,k,1 by 

for 0 6 R, then ak(Oi OjU l .: Au k q-- 00g(div ~). Hence, any solution ~, p of the Stokes system (2.3) 
satisfies 

aklOiOju I = Okp �9 

As before, let f2 C IR n be a Lipschitz domain and denote by N the outward unit normal vector a.e. 
kl 

on 0f2. The conormal derivative that corresponds to the matrix A : - -  (aij)i,j,k,1 is 

( O~t ] j jl l (2.4) 
ONA] : =  Niaik(O)OkU -- N jp ,  

where j ---- 1, 2 . . . . .  n. The special choice 0 := 1 gives the so-called stress conormal derivative (see 
also, e.g., [4, 19]). This derivative has a physical interpretation and it is known as the slip condition. 

Going further, denote by G = (Gij)i,j the Kelvin matrix valued fundamental solution for the 
system of hydrostatics (see, e.g., [19]), 

1 ( 1 6ij X i X j ~  ]{n 
Gi j (X) := ~wn n - 2 1 X [  " - ~  + IX]" ] '  X E  \ { 0 } .  

Let KS,s be the double layer hydrostatics operator corresponding to the stress conormal derivative 
on the boundary of f2. Also, set G j for the j th  column in the fundamental matrix. Then 

(++(s))i ), (P)  := 2 (P - .) (Q)fJ(Q)dcr(Q),  P c of  2 (2.5) 
a k  Ov 

where i -- 1 , . . .  , n and 0GJov "-- 0~AAU)'+GJ The ith component of 2 - ~  s (X), denoted by k~, s (X), is 

- 2 n  X i X j ( X ,  N(X))  Rn . 
k~s(X)' := COn ixln+2 X ~ \ {0} 

The operators Ks : (K~,p)+ j and KS,s : (K~,s)~ j, with i, j = 1, 2 . . . . .  n, acting from 

(LZ(Of2)) n to (LZ(Og2)) n are n • n matrices with entries K~  P E ~ ( L 2 ( O ~ ) )  and ,  respectively, 

K~, s E s For any f ~ (L2(Of2)) n, f = ( f l ,  f 2  . . . . .  in) ,  

,. . ]s  (KE, p f )  i (P) = K ~ , p f J ( P ) : =  ak~,p(P - Q) f J (Q)d~(Q) ,  P E 0 ~ .  

The operators K~  s' i, j = 1 . . . . .  n, are defined as above replacing the subscripts s  p by S, s. 

We regard (L2(0~2)) n as a Hilbert space endowed with the inner product given by If ,  g} := 

foa f J (Q)gJ (Q)d~(Q) fo r any f ,  g ~ (LZ(Oa)) n, f = ( f l ,  f 2  . . . . .  fn) ,  g = (g l , g2  . . . . .  gn). 
The corresponding norm on (L2(Of2)) n is given by 

2 . _ _ ~  f j 2  II fll(L~(O~))+ .-- II llL~<Oa) �9 
j=t 
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Occasionally, we may simply write [If I[ f o r  [[f[l(L2(Of2))n. Let T = (Zi j ) i , j ,  i, j ~ {1, 2 . . . . .  n}, 

be a genetic linear and continuous operator acting from (L2(Of2)) n to (L2(0f2)) n, CFf) i = 7)j f J  

for any f ~ (L2(Of2)) n , f = ( f l ,  f 2  . . . . .  fn ) .  Then its operator norm is 

[I[T[II := sup IITfll(zzoa))n. 
Ilfll_<l 

We end this section with a simple remark which we shall find useful in the sequel. 

R e m a r k  1. Let T c / 2  ,.- -/((L2(0a))n'}' T = . .(7~j)i, j ,  withi ,  j 6 { 1 , 2 , . . . , n } .  Then 

llITlll _< n max IlTij II, 
t,J 

where II Zij II is the norm of the operator Z/j in/2(L2(0g2)). 

3. The Case of Lipschitz Domains 

Call a bounded domain f2 C IR n Lipschitz with Lipschitz constant < M if for any P 6 0f2 
there exists r, h > 0 and a coordinate system {yl . . . . .  Yn} in IR n (isometric to the canonical one) 
with origin at P and a Lipschitz function ~0 : IR n-1 --+ ]R with IIV~0llL~ _ M so that, if C(r, h) 
denotes the cylinder {(Yl . . . . .  Yn-1); lYj[ < r all j} x (0, h) C N n, then 

(3 C(r,  h )  = {Y = (Yl . . . . .  Yn) ; [Yj] < r all j a n d  Yn > q) (Yl . . . . .  Y n - 1 ) }  , 

O~2AC(r,h)  = { Y = ( y l  . . . . .  Yn) ; ]YJl < r a l l j a n d y n = ~ ~  . . . . .  Yn-1)} �9 

The best constant M satisfying the conditions above is denoted by char(f2), the Lipschitz character 
of f2. 

The goal of  this section is to establish spectral radius estimates for the operators Ks and 

K&s on (L2(0 f2)) n for Lipschitz domains with small Lipschitz character. 
To state the main result of  this section, consider 

Also, let tp denote the space of vector valued functions ~p on N n satisfying the n(n + 1)/2 equations 

Oi~.eJ-'~Oj~[ri=O, l <_i, j  < n ,  

and define 

Note that L 2 (0 f2) is a subspace of codimension n (n + 1)/2 of  (L2(0 f2)) n. 
We have the following theorem. 

Theorem 1. 
There exists CO = Co (n, #, )~) > 0 such that for any bounded Lipschitz domain f2 with 

char(~2) < CO the following holds. For any fl ~ C, ]fi] > 1 and fl 7~ 1, the operator 

2 n 2 n 
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is invertible, where I is the identity operator. 

Moreover, the    re  o,mwi, i  exze oa   
/ K 

, 12,p 
N /  

> is inver ibte. 

Also, there exists a constant C1 = C1 (n) > 0 such that for any bounded Lipschitz domain f2 
with char(f2) < C1 the following holds. For any fi ~ C, Ifl l > 1 and f l r  1 the operator 

f l I -  KS,s : (L2(OS2))n -+ (L2(Of2)) n (3.2) 

is invertible. 
Furthermore, the operator I - KS,s E E ((L2(0f2))  n) is Fredholm with index zero and 

\ /  

I - K*s,s : L2(Of2) > L2~(Of2) is invertible. 

The Fredholmness (with index zero) of the operators fiI - Ks and flI - Ks,s is obtained by 
estimating the operator norm of Ks and KS,s, whereas the surjectivity of these operators is dealt 
with separately, appealing to the equation itself. 

Before presenting the proof of Theorem 1 let us discuss certain corollaries of  it. First, we 
need some more notation. Let X be a Banach space and s  be the space of linear and continuous 
operators T : X .... > X. For T ~ s  denote by ry(T; X) the spectrum of the operator T and by 
rye(T; X) its essential spectrum, i.e., 

a ( T ;  X) := (fl ~ C ; f l l  - T is not invertible on X} , 

and 
rye(T; X) := {fl c C ;  fiI - T is notFredholm on X} . 

Also, let p(T; X) := sup{lfil ; fi c ry(T; X)) be the spectral radius of the operator T (i.e., the 
radius of  the smallest closed circular disc centered at the origin which contains ry(T; X)). Denote 
by T* c s  the adjoint operator of  T 6 s  Finally, for D C C let [D] := C \ D ~ ,  where 
D ~  is the unbounded connected component of C \ D. 

The following is well known (cf., e.g, [14, p. 102]). 

Proposition 1. 

Let X be a Banach space and T c E(X). Then the following hold. 
(1) The spectrum and the essential spectrum of the operator T are compact sets in X. Moreover 

rye(T; X) C ry(T; X). 

(2) The set O{r ( T ; X) \ rye ( T ; X) contains only isolated points. Moreover any such point is an 
eigenvalue of the operator T. 

(3) I fY  C X is a closed subspace invariantunder T, then ry(T; Y) C [ry(T; X)]. 

(4) The spectra of the operator T and its adjoint T* satisfy ry(T*; X*) = ry(T; X) and 
rye(T*; X*) = rye(T; X). Here the bar denotes the usual complex conjugation. 

Several immediate consequences of Theorem 1 and Proposition 1 are as follows. I f  g2 is a 
bounded Lipschitz domain in IR n with Lipschitz character sufficiently small, then 

(i) We have r7 e (Ks  (L2(Of2)) n) C Dr(O) for some 0 < r < l, where Dr(O) stands for the 
N / 

closed disc of radius r centered at the origin. 
/ 

(KS,s; (L2(Of2)) n) C Dr(O)for some 0 < r  < 1, Also, rye 

(ii) Since 3a (Kz;,p; (L2(Of2)) n) \rye (Ks  (L2(Of2)) n) contains only isolated points it 

follows that 

( ( ry KE,p; L2(O~) c_ {1}UDr(O), 
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for some 0 < r < 1. 
Also, 

cr Ks,s; L (0f2) _c {1} U Or(O), 

for s o m e 0 < r  < 1. 

( ,  ) (iii) We have ~ Ks p, (L~(OS2)) n C Dr(O) for some 0 < r < 1 and, hence, the spectral 

radius of  K~,p on (L~(O~2)) n is strictly less than one. In particular 

j=o 

where the series converges absolutely in the operator norm on (L~(Of~)) n. 

Furthermore, o- (K* �9 ) 8,s, L2 (Of2) C Dr (0) for some 0 < r < 1 and, hence, the spectral radius 

of  K~, s on L 2 (0f2) is strictly less than one. In particular 

OO 

( I - K ~ , s ) - I = Z ( K ~ , s ) j  , 
j=O 

where the series converges absolutely in the operator norm on L 2 (Of2). 

(iv) By passing to the dual we get that cr (Ks (LZ(Of2)/IR) ") C Dr (0) for some 0 < r < 1. 

Hence, the spectral radius of Ks on (L2(OQ)/~) n is strictly less than one. In particular 

OO 

( I -  KZ2,p)-I = Z ( K s  j , 
j=O 

where the series converges absolutely in the operator norm on (L2(O~)/R) n. This is relevant for 
the Dirichlet problem for the Lain6 system. 

Also, a Ks,s; (L,v(Of2) C Dr(O) for some 0 < r < 1. Hence, the spectral radius of  

2 * KS,s on (L,v(Of2)) is strictly less than one. In particular 

oO 

( I - K S , s ) - I = Z ( K S , s )  j , 
j=O 

2 * where the series converges absolutely in the operator norm on (L, v (0 f2)) . This is relevant for the 
Dirichlet problem for the Stokes system. 

Before we begin the actual proof of  Theorem 1, we pause to record a version of  Theorem 1.10 
in [12] which is well suited for our purposes, i.e., when it comes to estimating the operator norms of  
certain layer potentials on Lipschitz boundaries. To state it, recall that if X,Y are two metric spaces 
and 0 < c~ 5 1, then 

! 
Lipc, ( x ,  Y) :=  { f : X --+ Y; there is C > 0 such that s u p  

! x ,yEX 

"h 

If(x) - f(Y)l < C[ 
Ix - y l  ~ - ! i 
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Theorem 2 [12]. 
Let B E L i p l ( l R n - t , R )  and A ~ L ip~ (Sn -Z ,N)  for  some 0 < c~ < 1 and F ~ Ccc(IR, IR) 

with F and all its derivatives belonging to LI(N).  Here S n-2 stands for  the unit sphere in 1R n-1. 
Set 

[ (B(x)  - B(y)  - v B ( y ) .  ( x -  y ) ) .  T f ( x )  p.v. 
da n--1 

(B(x  - A ( x  - 

F \ Ix-Z-- ~ J Ix 7_-y-~ f ( y ) d y ,  

for  almost every x c IR n-1. Furthermore, assume that F and A are both odd or both even and that 
F( t )  <_ C(1 + ]tl) -1. Then there exists C(n, F, A) > 0 and v > 0 such that 

IITfIlr2(Rn-1 ) <_ C(n, F, A)II V Bllgo~(i~ -~) 1 + II V BIIL~(~-~) IlfllL=CR~-b, 

where C(n, F, A) > 0 depends solely on n, F and A. 

After these preparations, we are ready to present the 

P r o o f  o f  T h e o r e m  1. We proceed in two steps. 

Step I: Fredholmness with index zero outside the unit disk. Let us first note that matters regarding 
Fredholmness with index zero can be reduced to the graph case, (i.e., when g2 is the domain above 
the graph of a Lipschitz function �9 : R ~-1 > IR) by the following localization argument. 

Let ( " ~ i ) i = 1  ..... I be an open covering of 0~2 such that for any i = 1 . . . . .  I there exists a 

coordinate system in a neighborhood Ui c N n of T i and a Lipschitz function CI) i : IR n-1 > ]R 
such that Ti = graph ~i N Ui and Ui A f2 lies above the graph of ~ i .  Let K stand for either one 
of the operators Ks or Ks,s and denote by Ki, i = 1 . . . . .  I the corresponding layer potential on 
Fi := graph ~i .  

Lemma 1. 
Assume that for  each i : 1 . . . . .  I and any fi E C, I/~l >_ 1 the operator fi I - Ki is Fredholm 

2 n 
with index zero on (L (Fi)) . Then, for  all/3 ~ C, Ifl[ -> 1, the operator f i l  - K is Fredholm with 

index zero on (L2(012)) n. 

P r o o f .  Consider (q5 i ) 1<i < I, a family of Lipschitz functions on 0 ~2 which forms a partition of unity 
subordinated to the open covering ( T i ) l < i < I  of 0~ .  Also, for each i 6 {1 . . . . .  I}, let r]i be a 
Lipschitz function on 012, compactly supported and such that r/i -- 1 in a neighborhood of supp <Pi. 

For any f c (L2(D~2)) ~ we have r ~ (L2(Fi))  ~. By hypothesis, for fi ~ C, I/~l >- a, 
the operator f iI  - K i  is Fredholm with index zero o n  (L2(Fi))  n for each i = 1 . . . . .  I .  Thus (cf., 
e.g., [5, p. 31]), there exist C > 0, a family of  Banach spaces (Yi)l<i<1, and a family of compact 
operators T/ : (L2(I' i))  n > Yi, i = 1 . . . . .  I, such that 

i 

Itq~i f li (LZ(ri)) n 
i=l 

i I 

< C ~  II(/~I - gi)q~ifll(cz(Fi))" + ~ IIT~ (q~if)lty~ 
i=l i=-t 

i 

_< C ~  [ l~i(f i / - -  K)qSif[[(L2(Og~))n 
i=l 

1 

+ C ~ [I (1 - ~i) ( i l l  - Ki) Oi f II (L2(Fi)) n 
i=l 

I 

+ ~ IIT~4,ifllv~ �9 
i=1 

(3.3) 
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First ,  it  is obvious  that  for  each i = 1 . . . . .  1, the opera tor  Tic~) i " (L2(3~) )  n > Yi is compact .  
Next,  note that  1 - t l i  and q~i have mutua l ly  dis joint  supports .  Then, by  s tandard arguments  we m a y  
conc lude  that, for  each i = 1 . . . . .  1, the opera tor  (1 - Oi)(fil - Ki)(ai : ( L 2 ( a ~ ) )  n > ( L 2 ( F i ) )  n 
is H i lbe r t -Schmid t  and hence  compact .  Further,  since q~i is a Lipschi tz  function,  the commuta to r  
opera tor  

2 n [K,q~i] : =  K~)i - q ) i K  : (L  (3f2)) > (L2 (O~) )  n 

is weak ly  s ingular  and therefore  compac t  for  all i = 1 . . . . .  1. Now, (3.3) impl ies  

1 

<_ C Z 114)i(fi1 - K)fll(L2(Of2)) n -t-/IComp(f)ll  I l f l l (L20a) )  ~ 
i=1 

<_ C[[(fil - K)fl](z2(of~)). + H C o m p ( f ) l [ ,  

where  " C o m p "  stands for  a compac t  opera tor  on (L2(Of2)) n. This shows that  for  all fl 6 C, [fi] _ 1 

the opera tor  f l l  - K is s emi -F redho lm on (L2(Of2)) n. Now, since t31 - K is invert ible on (L2(Of2)) n 
for  [ill large,  the conclus ion  of  L e m m a  1 fol lows.  [ ]  

In the case when  0 f2 = graph do, where  do : R n -  1 __+ R is a Lipschi tz  function,  the elastostatics 
double  l ayer  potent ia l  in graph coordinates  can be ident if ied with 

where  

and 

with  

p i ( x )  = i i '  s ( x )  + s x) , 

I~J f ( x )  
-4 tx  

con (3/~ + X) 

p.v.  fNn_ 1 ~ i j  
do(x) - do(y) - Vdo(Y) �9 (x - y) f ( y )  

1 {'~(x)-q~(y) ] 2"~n/2 
~- k Ix--Yl ] J 

I x -  yl n 
m d y ,  

IiJr a '  ' : =  p.v.  [ Cij(x,  y)((do(x) - do(y) - Vdo(Y)" (x - y))  
JR n-I / . . 2", (n+2)/2 

( ~(x)-,~(y) ~ 
1+ k j7:7 ] j  

f (Y) dy 
lx - ~ + ~  ' 

-2n(~+X)(xi -- yi)(Xj -- yj)  i f  i, j < n con(3/x+X) 
-2n(/~+;~) 

C i j  ( X '  Y) "= Wn(3U+)O (Xi  - -  yi)(do(x) -- ~ ( y ) )  i f  i < n, j ---- n ,  

-2n (tz+L) COn(3~z+Z) (d0(X) -- do(y))2 i f  i = n, j = n . 

Next,  observe  that  for  any i, j ,  the operators  I~ J and I~ J are prec ise ly  of  the type descr ibed  in 

Theorem 2. Let  us show this for, e.g., the opera tor  I2 'J in the case i, j < n. Al l  the other cases 

fo l low f rom s imi lar  considerat ions .  Indeed,  the kernel  of  I2 J in the case under  d iscuss ion has the 
form 

- 2 n ( / z  + )Q 1 xi - -  Yi xj  - -  yj 
k(x,  y) : =  

con(3/z+~. )  I x -  yl n I x -  yl I x - y [  
do(x) - do(y) - vdo (y ) .  (x - y) 



394 Irina Mitrea 

Thus, we may take B := ~ ,  A(~) : =  ~i~j, ~ E S n-2,  and F(t)  := (1 + t2) - (n+2) /2 .  Note that both 
F and A are even and that the other hypothesis of Theorem 2 are satisfied. Therefore, there exists 
C(n, be, )~) > 0 depending only on n, be, and )v and v > 0 such that 

ItKs163 5_ C(n, be, )~)ll V *IIL~(Nn-1) (1 + tl V qbllL~(Nn-t)) v .  

We conclude that there exists Co = Co (n, be, ~.) > 0 such that, for any bounded Lipschitz domain 
~2 with char S2 < Co(n, be, ;~), we get 

Now, Remark 1 easily implies that 

KiJs < 1 / n .  
,p s 

iiKl2,pIl~2((L2(Ofa))n) < 1 

so that for any 13 c C, gill > 1, the operator f iI  - Ks is invertible and therefore Fredholm with 

index zero on (L2(OQ)) ". 
A similar argument works also for f i I  - Ks,s and this completes the proof of Step I. 

Step II: Surjectivity outside the unit disk. First note that as a consequence of the Fredholm property 
results obtained above, f i I  - Ks flI  - K&s : (L2(af2)) n > ( c 2 ( a e ) )  n have closed ranges. 
Therefore, in order to conclude their surjectivity it is enough to show that they have dense ranges in 
(L2(0fa)) n. Now, the dense range property of the operators is equivalent to the injectivity of their 
adjoints. We approach this problem as follows. 

More generally, let us consider A(D)  a m x m matrix of second order operators on IR n with 
real constant coefficients 

A(D)  =- (a~.~OiOj'~ \ y is ,  fl , aid E 

for any i, j = 1 . . . . .  n and oe, fi = 1 . . . . .  m . 

= symmetric if a = aji  . Also, we say that the matrix A satisfies the Call A a i,j,e~,fl 
Legendre-Hadamard ellipticity condition provided there exists c > 0 such that 

aC/jfi~i~jrlc~r] fl > C]~]2lrl] 2 for any ~ ~ IR n, tl ~ R m �9 

It is well known (cf., e.g., [23]) that if A is symmetric, satisfies the Legendre-Hadamard condition, 
and n _> 3, then A (D) has a fundamental solution G(X)  = (G ~ (X))  with the following properties: 

(1) G ~ ( X )  ~ C~ n \ {0}), G ~ ( X )  = G ~ ( X ) ,  G ~ ( X )  = G ~ ( - X )  and G ~ ( t X )  = 
tZ-nGC~(X) for any t > 0. 

(2) The rows and the columns of G(X)  satisfy the system A ( D ) u ( X )  = 0 for X • 0. That is, 

a~jfl aiajGFfi (X) = aC/f aiOjGflg (X) = O, for X • 0 .  

(3) I f u  = (ul, u2 . . . . .  urn) ~ (C~(Rn))  m, then 

u(X)  = - [  G ( X -  Y ) A ( D ) ( u ) ( Y ) d Y ,  
dR n 

i.e., 

u c* (X) = - ~ n  Gc~ (X - Y)a~ )/Oi 3j u r (Y) d Y .  
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(4) Let f2 be a Lipschitz domain in •n and N(P) = (NI(P) ,  N2(P) . . . . .  Nn(P)) be the 
outward unit normal vector (which exists at almost every P �9 0 f2). Set da for the surface measure 
on af2. Then 

~ r  if X � 9  f2, 
f a~j~Nj(Q)OiG~e(X-Q)dcr(Q)= �89 i f X E O f 2 ,  

0 i f X r  

Let us recall from Section 2 that, for a given vector function u, we define its conormal derivative 
at almost every P c 0 f2 by 

Ou ~a (P) := Ni(P)a~fOju~(p). 
ONA J 

We consider the following layer potentials: 

(i) The single layer potential operator S defined on  (L 2(O~) ) m 

S f ( X ) = 2 [  G(X-Y) f (Y )da(Y) ,  X � 9  Jo ~2 

and its boundary version S :  (L2(Of2)) m > (L2(0~2))  m 

Sf(P) = 2 [  G(P - Y)f(Y)dcr(Y), P e Of 2. 
Jo ~2 

(ii) The double layer potential operator 79A defined on (L2(Of2)) m, 

79Af (X)=2~ [ 0 G f ~  it -~A(X-- . )  (Q)f(Q)da(Q), x �9 f2 

where ~ is applied to the columns of G; i.e., 

O---~--G ( g -  Q ) :  ( g i ( a ) a ~ f l o j a  fly (X- a ) )  , 
3 NA c~,y 

and the superscript t stands for transposition of matrices. The boundary version of ~)d is KA : 
> 

Kaf (P)=2p .v .  a -~A(P-- . )  (Q)Z(Q)d~(Q), e e o a .  

The adjoint operator of KA is K~ : (LZ(0a)) '~ > (LZ(Oa)) m, 

K 1 f ( e )  = - 2 p . v .  P �9 o a .  
f2 

As a consequence of the results in [1], the operators KA and K~ are well defined and bounded on 
(L2(0a)) 

Let {T+(P)}pe0a and {T_(P)}eE0 a be two families of nontangential approach regions of 
conical type (as in, e.g., [25]), T+ (P) C S2 = ~2+ and T_ (P) C II~ n \ S2 = ~2_ for any P �9 0 f2. De- 
note by u*, the nontangential maximal function of u defined on ~2:k by u~: (P) := supxe-r• ) l u iX) l, 
P e Of2. 

A basic result which follows from [1] and standard techniques is the following. 
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Proposition 2. 
~fl Assume A = (aij )i,j,o~,fl is symmetric with real entries and satisfies the Legendre-Hadamard 

elIipticity condition. Then, 

(1) Forany f �9 (L2(Of2)) m, (DAf)* �9 (L2(Of2)) m. Moreover, there exists C > O depending 
only on the Lipschitz character of f2 such that 

I] (7)Af)*ll(L2<Oa))  C,If  II(z2oa)) m �9 

(2) For almost every P �9 O fa we have 

lim 7)Af (X  ) = (-4-I + KA) f ( P )  , 
X-+ P 

XET-k(P) 

(3) For any f �9 (L 2 (a a ) )  m, ( v S f ) *  �9 (L 2 (O f2))ran. Moreover, there exists C > 0 depending 
only on the Lipschitz character of f2 such that." 

11 ( v S f ) *  II (L2(afa)) ' '" <- C II f II (L2(aa)) ~ . 

(4) For almost every P �9 0 ~2 we have 

OS f Oa• 
ONA (P) :---- 

lim N i ( P ) a ~ O j S f ( X )  = (+I - K~) f ( P )  . 
X---~ P 

XeT=k(P) 

Proposition 3. 
Let u, v �9 (C1(~=)) m be so that (Vu)* ,  (Vv)*  �9 ( L 2 ( a a ) )  m'~ Then we have 

fn  A(D)u(X) .  v(X) dX 
4- 

where A V u �9 VV stands for a~f OiU~ 1) ft. 

Proof. Integrating by parts we obtain 

fa  A(D)u(X) .  v ( X ) d X  
4- 

= - f f a  A v u ( X ) . v v ( X ) d X  
+ 

fo o. 4- v (Q) .  (Q)da(Q)  ~ ' 

= f2+a~j~OiOjuC~v~(X)dX 

= - fa+ a~fOiu~(X)Ojv~(X) dX 

+ f a~aiu~(Q)N~(Q)v~(Q)dcr(Q) 

fa f au = -- A V u(X) .  v v ( X )  dX + v(Q).  - ~ a ( Q )  d a ( Q) .  
+ fa 

The other equality follows in a similar manner. [ ]  

Let f e (L2(Of2)) m and u = ~ = S f .  Since A ( D ) S f ( X )  =-- 0 for any X ~ Of 2 we get 

S f ( Q ) - ~ a ( Q  ) der(Q) = 4- (A V S f ( X ) ) .  ( v S f ( X ) )  d X .  
fa 4- 

o,5 f ofa4- - K A ) f " As a consequence of  Proposition 2 we have ~ ----- (-4-1 * This implies the following. 
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Corollary 1. 
For any f ( f  20 )) m, 

(3.4) 
f2 + 

To continue, we need one more definition. Specifically, we shall call the matrix A ----- 

(aij)i,j,~,fi strictly positive definite provided there exists c > 0 such that 

a~/3~/~ > cl~l 2 for any ~ 6 R nm 
i j  gi g j  --  

and we call the matrix A ----- (aij)i,j,~,fl semi-positive definite if 

a f f ~ .  ~ > 0 for any ~ 6 ~nrn 
t J  t J - -  

In this general framework, we are now ready to state the theorem which is needed in order to proceed 
with the proof of Step II. 

Theorem 3. 
Let A be symmetric with constant real entries and satisfy the Legendre-Hadamard ellipticity 

condition. Also, for fl 6 C consider the operator 

* : 2 m 2 m 

Then, if fl r JR, the above operator is injective. 
If  in addition, A is strictly positive definite, then the operator in (3.5) is injective for any 

/ 3 4 ( - 1 , 1 ] .  

Proof .  The proof is an adaptation of an old argument of Kellogg [ 15]. Assume that there exists a 
function f 6 Ker (fiI - K~),  f ~ 0 and define 

I~: := f (A V S f (X ) )  �9 ( v S f ( X ) ) d X .  
.Ig2 

The first observation is that I+ and I_ are real numbers; this follows from the symmetry condition 
for A. Second, I+ and I_ cannot vanish simultaneously, for in that case, by Plancherel and the 
Legendre-Hadamard condition, 

0 = I + + I _  =dR f " ( A  V S f ( X ) ) ' ( V S f ( X ) ) d X  > cI,IR ]vSf(X)I2 dX" 
n 

Let us point out here that u : I~ n --~ ~n defined by u := S f  in f2 + and u := S f  in S2- is globally 
in the Sobolev space H 1,2 (~n) as the trace of S f  in H1/2,2(Og2) is the same when restricted to 0f2 
from either side. In turn, the above inequality implies v S f  ~ 0 in f2• and, further, in view of the 
jump-relations in Proposition 2, f -=- 0, which is a contradiction. 

Going further, note that 

[ s}(o).(• [ I(O)do-(O) 

so that, by (3.4), 

(1 - fi) f0~ S f ( Q ) .  f (Q)  da(Q) = I+ 

(1 + fi) f0~ S f ( Q ) .  f (Q)  da(Q) = I - .  (3.6) 
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Next, taking the quotient of the equalities (3.6) we get 

1 - , 3  I+ I_ - I+ 

1 + 7  - I_ = I 2 + I +  

This entails fi E IR, proving the first part of  the theorem. 
Assume next that A is strictly positive definite. Then I+ and I_ are positive numbers which 

forces fl 6 [ - 1 ,  1]. Moreover, there is no loss of generality to assume in the present situation that 
f is real-valued. Also, in the case under discussion, fi = - 1 if and only if I_  = 0 which, so we 
claim, cannot happen. Indeed, since A is strictly positive definite we have that 

(A V S f ( X ) )  �9 (v,S f ( X ) )  > c [ vS  f ( X ) I  2 . (3.7) 

The fact that I_  = 0 and the inequality (3.7) imply that v S f  =- 0 in ~2_. Therefore, 8 f  is constant 
on ~2_ and since the single layer decays at infinity, the constant must be zero. Taking the trace to 
the boundary in the Sobolev sense gives that S f  ~ 0 on 0f2 and by (3.6) I+ = 0. But, from above, 
1+ and I_  cannot vanish simultaneously. This concludes the proof of Theorem 3. [ ]  

Recall that the operator K*s is the adjoint double layer elastostatics operator corresponding 
to the pseudostress conormal derivative. This choice of the conormal is based on a strictly positive 
definite matrix A. Thus, Theorem 3 applies (in this case m = n) and gives the desired results for the 
operator in (3.1). 

2 n Concerning the action of the same operator on (L 0 (0 S2)) , we first note that, since Ks (e j)  = 
e j ,  where {e j }  is the standard orthonormal basis in IR n, 

�9 2 n 

is well defined. Consider now the following diagram 

(c2(~ . 
I"L 

(g02(0a)). >'P 

2 11 

(c2(oa))"  
rr $ (3.9) 

which, because of (3.8), is commutative; here t, 7r are the inclusion and the orthogonal projection 
operators, respectively. Since (L 2 (0 f2)) n is a closed subspace of (L 2 (0 f2)) n with finite codimension, 
it follows that t and zr are Fredholm operators of  opposite index. From the first part of the proof of 
Theorem 1 the operator I - K* is Fredholm with index zero o n  (L2(O~)) n . This, together with /2,p 

the commutative diagram (3.9), implies that I - K* is also a Fredholm operator on (LZ(Os2)) n L , p  
with index zero. 

There remains to prove that its kernel is trivial on this latter space. To this end, let f E 
Ker(I  - K~,p) M (L2(0~2)) n. The first equality in (3.6) with 3 = 1 yields I+ = 0 which, in view 

of (3.7), implies that ,.qf is constant in f2+. Now, taking the trace to the boundary in the Sobolev 
2 n sense gives that S f  is constant on 0f2. In turn, since f E (Lo(Of2)) , from (3.6) we have I_ = 0 and 

therefore 8 f  is constant in ~ _ .  Finally, the jump relations give f -- 0. This shows that I - K* E,p 
is injective; therefore, invertible on (L0 2 (0 S2)) n. 

This concludes the proof of the first part of Theorem 1 having to do with elastic potentials. 

In the case of the Stokes system, the matrix A corresponding to the choice of the conormal stress 
derivative is symmetric with real entries but only semi-positive definite. Nonetheless, Theorem 3 
applies and gives the desired conclusion for the operator in (3.2). The important remark is that, in 
this case, we have 

(a V s U ( X ) ) .  ( v S f ( X ) )  > C ~ (Oj ( ,S f (X) )  i + Oi ( sU(X) ) J )  2 . (3.10) 
N I 

i,j=l 
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Therefore, if I_  = 0, then Oi (S f )  j + Oj (S f )  i -~- 0 in f2_. Since the nontrivial solutions of 
Oiu ) + Oju i = 0, for i, j = 1 . . . . .  n, are affine functions and S f  decays at infinity, we get that 
S f  ~ 0 in f2_. Then, the rest of  the argument follows. 

At this point, there remains to show that the operator I - K*s,s : Lz(oE2) ~ LZ(Of2) is 

well defined and invertible. Another characterization of  L~  (0f2) useful for this purpose is 

2 n • (3.11) 

Let q; (0 S2) : = { ~ I0 a ,  7 t 6 ~P }, where ] ~ ~ denotes the trace to 0 f2 in the Sobolev sense. Clearly (3.11) 
will follow from 

2 n 

We postpone the proof of the above equality for the moment and continue the argument concluding 
the last part of  Theorem 1. To this end, let us first note that (3.11) and elementary functional analysis 
give 

I -  K~, s:  L (Oa) , L 2 ( O a ) .  

Based on this, proceeding as we did for (3.9), we can conclude that I - K~, s is Fredholm with 

index zero on Lz(oE2). Let us show that its kernel on this latter space is trivial. Consider f 

Ker(I  - K~,s) ('1 L~(Of2). The first equality in (3.6) together with (3.10) imply that S f  E ~(Of2). 

In turn, since f E L~,(Of2), the second part of  (3.6) together with the decay at the infinity of  the 
single layer imply that S f  =- 0 in f2_. Therefore, S f  = 0 on 0f2. Next, since S f  = 0 if and only 
if f = cN for some c 6 C and N r Ker(I  - K~, s) we get f -~ 0. This shows that I - K~, s is 

injective, therefore invertible on L 2 (0f2). 

We are left now with proving (3.12). It is easy to check that if t/r 6 qJ t h e n / ~  = 0, div ~p = 0 
in f2, II(v~)*llr2(0a) < o~ and ~ A  = 0 on 0f2, where p ~_ 0 [cf. (2.4)]. A simple application 

of  the divergence theorem gives that Lo(0f2) c (LZ(Of2)) n n LZ(Of~), where L~N(Of2) = { f  
(L2(O~)) n; far2 f "  Udcr = 0}. On the other hand, 

2 n 

is invertible (see [9, Theorem 4.15]). This implies that 7t = S f  for some f ~ LZ(Of2). Since 

~ = 0 on 0f2 we get f E Ker(l  - K~9,s ). Now, using that Ks , sS  = SK~,  s we ,obtain ~10~ ONA 
Ker(l  - Ks,s). This proves the inclusion q~(0f2) c Ker(I  - Ks,s) in (3.12). Next, since the 

operator I - Ks,s is Fredholm with index zero on (LZ(Of2)) n, we have that dim (Ker(I - Ks,s)) = 

dim (Ker(I  - K~9,s)). Therefore, (3.12) will follow from simple dimension considerations if we 
# 

show that 

S : Ker(I  * qJ(0f2) - KS,s) ~ (3.13) 

is well defined and invertible. It is easy to check that (3.4) together with (3.10) give that S is well 
* N defined. Next, s i n c e S f  = 0 if and only if f = c N f o r s o m e c  E C a n d N + K 8 ,  s( ) = 0, it 

follows that S is one-to-one. On the other hand, as above, for any !/t E Lo we have that 7t = S f  
with f ~ Ker(l  - K~5,s), and this concludes the surjectivity of the operator S in (3.13). Thus, (3.12) 
follows. 

This finishes the proof of  Theorem 1. [ ]  
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4. The Case of Three-Dimensional Polyhedra 

The aim of this section is to give explicit bounds for C0(3,/z, )~) and C1 (3) in Theorem 1 for 
polyhedra in the three-dimensional Euclidean space. In this regard, our main result is the following. 

Theorem 4. 
Consider a bounded, simply connected Lipschitz poIyhedron 79 C R 3 such that all its dihedral 

angles oL satisfy the condition 

c~ ( 2 )  < \8 /z  + 6X] (4.1) 

Then for any fi ~ C, till > 1 and fi # 1, the operator 131 - KC, p ~ s ((L2(379)) 3) is invertible. 

Moreover, theoperator I - K s  c s ((L2(379)) 3) is Fredholmwithindexzeroand I-K*s : 

(L2(379)) 3 ---+ (L2(379)) 3 is invertible. 
Also, assume all dihedral angles ot satisfy the condition 

1 (4.2) cos( ) 
any fi ~ C, till > l a n d  fi # l the operator f i I -  KS,s E s 3) Then, for is invertible. 

Moreover, the operator I - K S , s  ~ L; " - ( (L2(379))  3) is Fredholm with index zeroand I - K *  S,s : 
N / 

L~ (379) > L~ (379) is invertible. 

Another way to interpret the first part of Theorem 4 is the following. For any Lipschitz 
polyhedron 79 C N3 there exist Lain6 moduli /z, )~ E R, /z > 0 a n d - / z  < )~ such that the 
conclusions of Theorem 4 regarding the elastostatics layer potential hold. Note that in the limiting 
case/z + L = 0, which is the case of the vector Laplacian, the condition (4.1) reduces to Icos ~1 < 1 

and therefore it is automatically satisfied for any Lipschitz polyhedron in RI{ 3. This way we recover 
the result of [6] for the harmonic layer potential operator. 

We can also invoke Theorem 4 and Proposition 1 to conclude that the properties (i) through (iv) 
from Section 3 hold. 

The Fredholmness (with index zero) of the operators 131 - Ks and f i l  - KS,s is obtained 
via Mellin transform techniques whereas their surjectivity has been concluded already in Theorem 1 
and Theorem 2. We start with a couple of Mellin transform rudiments. 

Let f be a function defined on (0, ec). The Mellin transform of f ,  denoted by M f  is 

Jbt( f ) (z )  := fR t z f ( t )  dt 
+ t 

It is easy to see that the relationship between the Mellin and Fourier transforms (the latter 
denoted by 5 c) is Ad(f)( . )  = 5 ( f  o exp)(i.). This implies the following well-known version of 
Plancherel's Theorem. 

Proposition 4. 
For any L c IR and f ,  g ~ L2(IR+, t2Z-ldt) we have 

s fo 1 A/ l ( f ) (z)JM(g)(z)  dz = t2)~-l f( t)g(t)  dt . 
2zri ez=~ 

Therefore, the Mellin transform 224 is an isomorphism between L2(IR+, t2Z-l dt ) and L 2 (Re z --- )~). 
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With an eye toward proving Fredholmness for the operator f i l  - K on (L2(07")) 3, where 
K = K & p  or K = Ks,s ,  we first reduce matters, via the localization argument given in Section 3, 
to working on the boundary of infinite polyhedral Lipschitz cones. In this setting we look at the 
operator K on the Mellin transform side with respect to the radial variable. In this way K is replaced 
by a family of operators indexed by z ~ C, Re z = 1, all of  which are defined on a spherical polygon 
in the unit sphere in IR 3. In this context, for each fixed z, the corresponding operator is further 
decomposed near each comer  of the spherical polygon as a sum of an integral operator with operator 
norm strictly less than one and a compact operator, 

Let Vi, i = 1 . . . . .  I ,  be the vertices of  7'. Denote by Fi the boundary of the infinite tangent 
cone to 07" with vertex Vi, i = 1 . . . . .  I .  For each i = 1 . . . . .  I ,  consider the associated double 

layer potential K i E  12 " "( (L2(Fi))3) .  

In the light of  Lemma 1 it suffices to analyze the operator f i I  - Ki on Fi, the boundary of a 
simply connected infinite polyhedral Lipschitz cone with vertex at the origin and all ,dihedral angles 
ot satisfying the condition (4.1) or, respectively, (4.2). For convenience we will drop the subscript i. 

Denote by Fj ,  j = 1 . . . . .  M ,  the faces (open plane sectors) and by l j ,  j = 1 . . . . .  M ,  the 
edges of  the cone F. Consider the spherical polygon y obtained by intersecting F with the unit 
sphere S 2 C IR 3. The polygon y consists of  open arcs of great circles yj :=  S 2 n Fj and comer  
points e j- = lj  ('1 S 2, j = 1 . . . . .  M .  

Let us introduce spherical coordinates such that P = ra), Q = r ' c J  where r : = dist(P,  0), r p :=  
dist(Q, 0) and ~o, c d ~  S 2. The elastostatics double layer potential operator on F takes the form: 

(Ks  i (rco) = fR+xy kiJs176 -- r ' ~ 1 7 6  

fR  ( no), ' o)rr l 
_ 1 -2lZai j  [rco - rtcot] 3 2zr (3# + Z) +x• 

nco, " corr' (rcoi -- r' w~) (rcoj -- r' c@ ) ) 
- 3 ( ,  -t- Z) ~7 - - -  r-~q-g u j (r'm') dw'  dr '  

/ 

1 f R  ( no), �9 co r 
--21z3iJ r ---~tl3 

23r (3# + Z) +• 17o0 

09 r ( r  0)" -- O) 1~ t'r 09" -- 0 ) } )~  d r '  no),. 7~7 r ~ i~vTr ; 
- 30,  + ]rr7O; ) 7 , 

where do) J is the arc element on g. Now, let 

cS i jno) ,  �9 wt no), " COt(tWi -- O)~) ( tWj  -- W~) 
ij (t,  0), 6.0') := -I- D 

kE'P Itw - o0'13 Itco -- co'l 5 

= C (~ijrlo)~ �9 cot 
(t 2 - 2too. of  + l)3/2 

no),. O)t(tCoi -- co~) (tcoj -- 0)~) 
+ D  

(t 2 - 2 tw.  cd + 1)5/2 ' 
(4.3) 

with 
- 2 / ,  3/z + 3k 

C - - .  and D - .  
27r(3/z + Z) 2zr(3/z + Z) 

Similarly, the hydrostatics layer potential operator on F equals 

(KS,s(~)) i (rco)  = ~ k ~ , s ( r C ~  r/co')uJ(r 'co')r 'doJdr ' 
+xy 
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We let 

f ~  co ~-~'- co. - co~) (7ooj - co~) 3 nw, �9 r r ~r / t r 

2~r +• I ~ c o -  co'l 5 

u j (r'co') dco' dr--~1 
r t 

3 n ~ , .  cot(tcoi --  co;) ( t ~ j  - co~) 
k~, s (t, co, cJ) := 

2re (t 2 - 2tco. co' + 1) 5/2 

Let us also denote by L2(~+, t dt) | L2(y) the algebraic tensor product of the Hilbert spaces 
L2(R+, t dt) and L2(y) with 

II f | g IIL2(R.,t dt)~L2(r> := II f II L2(~+,t at)[[g [IL2(y) - (4.4) 

Now, set L2(~+, t d t )~L2(y )  for the topological completion of L2(/R+, t dt) | L2(y) in the norm 
given by (4.4). Similarly, L2(Rez = 1) | L2(y) is the algebraic tensor product of L2(Rez = 1) 
with L2(y) and L2(Rez = 1)~L2(v) is the topological completion of L2(Rez = 1) | L2(V) in 
the norm 

Ilf | gllz2(gez=l)| := I[fllz2(R~z=a)[Igllz2(y) . 

Now, as a consequence of Proposition 4 we have that AAr defined by 

M r  ( f  | g) :----- ./k4 ( f )  | g 

for any f ~ L2(/~+, t dt) and g c L2(y) (i.e., the Mellin transform with respect to the radial 
variable) is an isomorphism from L2(~+, t dt) | Lz(v) into LZ(Rez = 1) | L2(y). This uniquely 
extends to an isomorphism between the spaces L2(R+, t dt)-~L2(g) and LZ(Re z = 1)~LZ(y). 

For any complex number z such that Rez = 1, let ~z~ij(Z ) : LZ(y) ~ L2(y) be the ijth entry 

in the matrix operator A :  (L2(y)) 3 > (L2(y)) 3 defined by 

for any i, j = 1, 2, 3. Above k ij := k~,p o r  k ij := k~ s' and corresponding to that we have the 
operators r163 and As,s depending if we refer to the elastostatics or hydrostatics layer potential, 
respectively. 

Let 

Id|  A(z)" (L2(Rez -= 1)| L2(y)) 3 > (L2(Rez = 1)| Le(y ) )  3 

defined by Id | A ( z ) ( f  | g) := f | A(z)(g)  for any f ~ L2(Rez = 1) and g 6 L2(y). Denote 

by A(z) the unique extension of Id | A(z)  as an operator on the space (L2(Re z = 1)~L2(y)) 3. 

Proposition 5. 
Consider an infinite Lipschitz cone in R 3 and denote by I ~ its boundary. The following diagram 

is commutative: 

(L2(F)) 3 ~ (L2(~+, I d t ) ~ L 2 ( y ) )  3 

,~ Ks 

(LZ(F)) 3 _~ (L2(~+, t d t )~L2(y ) )  3 

~4~I> (L2(Re z _~ 1)~L2(y))3 

$ A(z) 
.AArI> (L2(Re z = 1)gL2(y))3 

where I is the 3 x 3 matrix with entries ~ij I and Y = F r S 2. 
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As a consequence, the diagram 

(L2(F)) 3 _~ (L2(tR+, t d t ) ~ L 2 ( } / ) )  3 

$ f iI  -- KL,p 
(L2(F)) 3 ~_ (L2(IR+, t dt)-@L2(y)) 3 

is also commutative. 

MrI, (L2(Re z = 1)~L2(y))3 

$ fiI  - A(z) 
MrI> (L2(ge z = 1)-~L2(y))3  

Moreover, the above diagrams are commutative if we replace Ks by KS,s. 

Proof .  Let us drop the subscripts s p and S, s. If uJ(roo) = fJ(r)gJ(o9), j = 1, 2, 3, with 
f J  E Lz(]R+, t dt) and gJ ~ LZ(y), the equalities (2.2) and (2.5) become 

f fo d r ' ~ , ,  (K (~))i (rog) = k ij (r/r ' ,  o9, co')f j (r') -77-g a (o9) do) . (4.5) 
+ 

The inner integral above is the Mellin convolution in the radial variable of the kernel k i j  ( . ,  02, ogl) 

with f J  (.). Therefore, if one takes the Mellin transform with respect to the radial variable of both 
sides in (4.5) we get 

.A/lr((K(~t))i('og))(z) = J~/l ( f J )  (z) fg.Ad (kiJ(',og, ogt)) (z)gJ(oJ)do9 t . (4.6) 

The equality (4.6) reads 

M r  ((K (~))i (.o9))(z) = Ad ( f  J) (z)Aij (z)g j (o9). 

In other words, Air ((K(~)) i ('og))(z) = (A(z)(AdrI(u('Og))(z))) i. Now, a density argument com- 
pletes the proof. []  

The main technical result of this section is the following: 

Proposi t ion 6. 
For any z ~ (2, Re z = 1, we have 

.z~ij(Z) = ,AOj(s) "-}- ,A]j(Z), i, j E {1, 2, 3} 

where A]j (z) is a compact operator on L2(V) and 

,AOj(z) C(L2(y)) __< Uij 

with 

u i j  . - -  Ic~ (~)l [2tz3ij + 3 (l + aij) (tz + )v) +)v ~ intheelastostaticcase 

and 

uij := ~3( l+Si j )  c o s ( 2 )  inthe hydrostaticcase 

An immediate consequence of Proposition 6 is the following. 

Corollary 2. 
Let z ~ C with Rez  = 1. Consider ot satisfying the condition (4.1). Then for any fi c C, 

I/~l -> i the operator fiI  - AL,p(Z) is Fredholm with index zero on (L2(v)) 3. 
I f  or satisfies the condition (4.2), then for any fi E C, Ifil >- 1, the operator fiI  - AS,s(Z) is 

Fredholm with index zero on (L2(y)) 3. 
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Proo f .  Again we drop the subscripts 12, p and, respectively, S, s and we will point out when it 
matters which of the settings we consider. Let A m (z) = (A~j (z))ij for m = 0, 1 and i, j E {1,2, 3} 
be as in Proposition 6. Decompose 

f11- A(z) =13 (I  A~z) ) -,41(z) . 

By Proposition 6 we have 

ATj. ( < Uij , z) Z:(L2(X) ) _ 

for all i, j 6 {1, 2, 3}. This easily implies that [IA~215 <_ IlUllc(a3~, where U :=  (uij)i,j, 
i, j = 1, 2, 3. Note that 

( u l u 2 u 2 )  
U = u2 ul u2 , 

u2 u2 Ul 

Ul .--  

with 

( 9  + ~ 5#  + 3)~ cos and u2 .-- 
3/z +)~ 2 3/z + )~ 2 )  

in the elastostatic case and 

co (9 u1=3 cos(2 ) and u2:=  

in the hydrostatic case. Since the matrix U is real and symmetric, we have 

HUlls = rnax{l~l; ~ is an eigenvalue of  U }. 

This and an explicit calculation give 

< Ul + 2u2  < 1,  A~ L(L2(•  

where the last inequality holds if a satisfies condition (4.1) or, respectively, condition (4.2). 

This implies that the operator 13 (I - A@___2) is invertible. Going further, since .Al(z) is a 
N 

compact operator on (L 2 (y))3 we have that A(z) is a compact perturbation of an invertible operator, 

and therefore it is a Fredholm operator on (L2(y))  3 with index zero. D 

Now we are ready to present the proof of  Proposition 6. 

P r o o f  o f  P r o p o s i t i o n  6. Again, we shall drop the subscripts 12, p and S, s when no confusion is 
likely to occur. Let us denote by C~w(y) the space of all continuous functions on y which are C ~ 

on each closed arc gg of y,  k = 1 . . . .  , M. Whenever co and co~ belong to the same arc y~ of  y we 
have no), �9 co = 0. Also 

t Rez a s t - - + 0 ,  
k ij (t, co, co') ~ t Rez-3  as t --+ oo ,  

where k ij has been defined in (4.3). Consequently, for z 6 C, Rez  = 1 and v E C~w(y) the 
following operator 

,Aij(z)v(o))  :-~- fR+ f g t z - l k i J  (t, co, c o ' ) v ( o f )  dco' dt ,  co E y , 

is pointwise well defined. 
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Next, for each corner ek of g we choose q~k C C~w(y)  such that 0 < Ck < 1 and q~k is 
supported in a small neighborhood of ek which does not contain any other corner of y .  We set 

r (z) :~-" E dpk'Aij(Z)Ok and ~4~j(z) := ~tij(z) - ~A~ . 
l<k<M 

The effect of  the functions q~k reflects in the properties of  the ke rne l  kij (t, co, col) of the operator 
.A]j (co and co~ are far from each other). More specifically, 

.A~j(z)v(co)= s tz-lk ij (t, co, co')v(co') dco'dt 
+•  

where the kernel f u n c t i o n  kij E C([0 ,  CX~) • y )< y )  is C e~ on each set [0, co) x 7k x 71. That is 

A j(z)v(co) : K ij (z; co, co')v (co')dco, ,  

with tciJ(z; co, cM) :=  f o  tz-lkiJ(t, co, co') dr. For any z ~ C with Rez  = 1 we have 

^ . '  t 

tZ-lk 'j (t, co, co') <_ COz, X) (t + 1) 3 ' 

uniformly with respect to co and co~, where C(/z, X) is a positive constant depending only on the Lain6 
modul i /x  and X. This easily implies that [~c ij (z; co, cot)l < C for some C > 0 independent of co and 
co~ for all z 6 (2, Re z = 1. Since the polygon ?/ is  compact,  this in turn will imply that for Re z = 1 
the operator A~j (z) is Hi lber t -Schmidt  and therefore compact. 

Next, let us consider the operator ,4~  (z) in a neighborhood of  the corner el = Yi- n ~~. Let 

~b I : Xlq~l and r  = )~2~bl, where Xk is the characteristic function of ~-~-, k = 1, 2. Then the operator 

Bij (Z) :~- OttAij (Z)~' 

takes the form 

f0 f0 ~ij(S)U(S) = tz-IoH(S) kiJ (t, co, cot)r (s t )v(s t )  ds td t ,  s E (0, s0) . 

We can assume, without loss of  generality, that el is the north pole of  S 2 and that ?/1 lies in 
the x - z plane. If  we denote by o~ the interior angle of  the spherical polygon at el and we consider 
co 6 ?/2, co~ c gl parameterized by the arc lengths from el ,  then 

no), = (0, - 1, 0), co' = (sin s t, 0, cos s ' ) ,  co = (sin s cos o~, sin s sin a ,  cos s) . 

Let b :=  no), �9 co and a :=  co �9 cot. We have 

b = - sin a sin s and a = cos s cos s t + cos oe sin s sin s t . 

In the new notation we have in the elastostatic case 

~ij (Z) V (S) = 

2zr (t 2 - 2at + 1)3/2 + D (t 2 - 2at + 1)5/2 fY(s~)v(s~) dst d t ,  

where C a n d / 3  are given by 

. - -  - 2 / z  and / ) . - -  3 /z+3)~  
3/z +)~ 3/z +)~ 
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In the hydrostatic case 

]3ij(Z)V(s) -- 3qS"(s) ~ zb ( tw i  - col)(tw j - cJ.) , , , , 
2zr fo  fo  s~ t -~2 Z 2a-t-+-l) T/ff J O (s )v(s  ) ds dt  . 

Using that t w i --O) I and t toj --0)~ are the i th and j th components of the vector r oJ - w '  with magnitude 

(t 2 --  2at + 1) 1/2, we get (twi - cJi)(tw j - co~) < 1(1 + ~ i j ) ( t  2 - 2at  + 1). For z = 1 + i~, 

6 R, so sufficiently small and s c (0, so), we obtain 

1 foS~ fo~ t d t l v ( s ' ) [ d s ' ,  (4.7) 113ij(1 + i~)v(s)]  < ~ Ibl m i j  (/2 _ 2at  + 1) 3/2 

where m i j  : =  
case. Notice 

2tz6ij + 3 (1 +Sij) (tz+L) 
3/z+k in the elastostatic case and m i j  : =  3(1 + c~ij) in the hydrostatic 

f0 f0 c~ 1 1 
oc t dt  = 1 + a d t  = (4.8) 

(t 2 - 2at  + 1) 3/2 (t 2 - 2at + 1)3/2 1 - a 

For the last equality in (4.8) we have used that 

f0 ve -- , a < 

1 1 
dt  1 

(t 2 - 2at + 1) 3/2 1 - a ' 

(cf., e.g., [11, p. 296]). Using (4.8) in (4.7) gives 

1 fo s~ Ibh ]Bij (1 + i~)v(s) l  -< --2Jr m,j.. 1 - a Iv(s')l ds'  . 

That is 

]/3ij (1 + i~)v(s)]  

< 1 [ s o  sin s[ sin o~1 

- 2 ~ m i j  Jo 1 - cos s cos s' - cos ~ sin s sin s' 
I v(s')l ds'  . (4.9) 

S ! Let us make the change of variables 0 = tan(~), 0' = tan(g) .  Then we have ds'  - -  2dO' 1+012, 

2o , 1-~ and similar identities for s' and 0'. Substituting this in (4.9) leads to s i n s =  0w ~ c o s s =  

[/3ij (1 + i~)v(O) I 1 ~0o 0[ sinai  ]v(0I)l dO' 
<_ -~mij  v ,  0 2 + 0  ' 2 - 2 0 0 ' c o s c ~  

1 fOo o[  sinai  dO' 
- J0 Iv(0 ' ) t  o-- 7 , = -~mij  ( 0 ) 2 +  1 -  2Ocoso~ 

(4.10) 

where 00 = t an(~)  and 0 ~ (0, 0o). The right-hand side of (4.10) is a Mellin convolution operator 
with kernel 

TciJ(x ) = 1 x] sinoe] 
-~mij  X2 -+- 2X cos(zr -- a)  + 1 " 

By Proposition 4 the norm of this operator on the space L2(0, 00) is equal to the absolute value of 
the Mellin transform of the kernel evaluated at Re z = 1/2. 
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For any function f defined on the interval (0, ~ )  we have that .Ad ( x f  (x)) (z) = 34 ( f )  (z + 1). 
Therefore, 

it4 -~ miJ l s in~[3d ( 1 ) ( z + l )  
(k i j )  (Z) = yg X 2 + 2x cos(zr - or) + 1 

[ ,sinai s i n [ ( 1 - . ) ( j r - o 0 ] ]  
= mij sin(jr -- t~) (1)('-2) sTn(~-~ (z + 1) 

I sinai (1)(z_l) sin(z(jr - or)) 
= mij sintz sin(rrz) ' 

(4.11) 

where the second equality in (4.11) holds for 0 < Re z < 2 and -Jr  < ot < Jr (see, e.g., [11, p. 297]). 
This implies 

[]Bij(l +i~)ns < m i j  c o s ( 2  ) = u i j  , 

and completes the proof. [] 

With all the ingredients in place, we are ready to present the argument which gives the Fredholm 
property for the operators/31 - Ks and/31 - Ks,s .  

T h e o r e m  5. 
Let I ~ be the boundary of  an infinite polyhedral Lipschitz cone with all its dihedral angles ot 

satisfying the condition (4.1). Then the operator/31 - K s p is Fredholm with index zero on ( L 2 (I'))3 

f o rany /3  c C, 1/31--- 1. 
Also, i f  all dihedral angles ot satisfy the condition (4.2), then the operator f l I  - KS,s is 

Fredholm with index zero on (L2(V))3 for any/3 6 C, 1/31 > 1. 

Proof.  Letz 6 C be such that Re z = 1. A s a c o n s e q u e n c e o f C o r o l l a r y 2 w e h a v e t h a t / 3 I - A ( z )  

Z; - - ( ( L 2 ( v ) )  3) is Fredholm with index zero. This easily implies that Id | (/31 - ,A(z)) is Fredholm 

with index zero on (L2(Rez = 1) | L2(V)) 3. 
A functional analysis argument (cf., e.g., [5]) guarantees the equivalence between the Fredholm 

property of the operator and the existence of a Banach space Y, a compact map T : (L2(Rez = 
1) | L2(y)) 3 -+ Y, and C > 0 such that 

I[f | 5 CllId@ ( / 3 I -  A ( z ) ) ( f  |  + IlZ(f |  (4.12) 

for any f | g c (L2(Rez = 1) | L2(V)) 3. 
A limiting argument based on (4.12), in the sense of (L 2 (Re z = 1)~L e (g))3, yields 

Ilhll ~ C11(/31 - A(z))hll + IIThll, 

uniformly for h ~ (L2(Re z = 1)~L2(v)) 3. This implies that f l l  - A(z)  is Fredholm on (L2(Re z = 
1)~LZ(v)) 3. By Proposition 4, since M r  I is an isomorphism, we get that/31 - Ks is Fredholm on 

(LZ(F)) 3 under the condition (4.1) and f i l  - Ks ,s  is Fredholm on (LZ(F)) 3 under the condition (4.2). 
Since the index is constant on connected components in the space of Fredholm operators and/31 - 
Ks and/31 - Ks,s  are invertible for Ifil large, the desired conclusion follows. [] 

Acknowledgments 

I am greatly indebted to Eugene Fabes and Carlos Kenig for suggesting this theme, for their 
support and many stimulating discussions. 



408 Irina Mitrea 

References 

[1] Coifman, R.R., McIntosh, A., and Meyer, Y. (1982). L'integrale de Cauchy d6finit un op6rateur born6 sur L 2 pour les 
courbes lipschitziennes, Annals Math., 116, 361-387. 

[2] Dahlberg, B. (1977). Estimates of harmonic measure, Arch. Rat. Mech. AnaL, 65,275-288. 

[3] Dahlberg, B. and Kenig, C. (1987). Hardy spaces and the LP-Neumann problem for Laplace's equation in a Lipschitz 
domain, Annals Math., 125, 437-465. 

[4] Dahlberg, B., Kenig, C., and Verchota, G. (1988). Boundary value problems for the system of elastostatics on Lipschitz 
domains, Duke Math. J., 57, 795-818. 

[5] Edmund, D.E. and Evans, W.D. (1987). Spectral Theory and Differential Operators, Clarendon Press, Oxford. 

[6] Elschner, J. (1992). The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev 
spaces, App. AnaL, 45, 117-134. 

[7] Elschner, J. and Hansen, O. (1997). A collocation method for the solution of the first boundary value problem of 
elasticity in a polygonal domain in IR 2, Weierstrafl-lnstitutfiir Angewandte Analysis und Stochastik, Preprint No. 354, 
Berlin. 

[8] Fabes, E., Jodeit, M., and Riviere, N. (1978). Potential techniques for boundary value problems in C 1 domains, Acta 
Math., 141, 165-186. 

[9] Fabes, E., Kenig, C., and Verchota, G. (1988). The Dirichlet problem for the Stokes system on Lipschitz domains, 
Duke Math. J., 57, 769-793. 

[10] Fabes, E., Sand, M., and Set, J.K. (1992). The spectral radius of the classical layer potential on convex domains, IMA 
Volumes in Mathematics and its Applications, 42, 129-138. 

[11] Gradshteyn, I.S. and Ryzhik, I.M. (1980). Tables of Integrals, Series and Products, Academic Press, New York. 

[12] Hofmann, S. (1994). On singular integrals of Caider6n-type in R n, and BMO, Revista Matemdtica Iberoamericana, 
10(3), 467-504. 

[13] Jerison, D. and Kenig, C. (1981). The Neumann problem on Lipsehitz domains, Bull. Amer. Math. Soc., 4, 203-207. 

[14] Jtrgens, K. (1982). Linear Integral Operators, Surveys and Reference Works in Mathematics, Boston. 

[15] Kellogg, O.D. (t929). Foundations of Potential Theory, Frederick Ungar, New York. 

[16] Kenig, C.E. (1994). Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional 
Conference Series in Mathematics, No. 83, AMS, Providence, RI. 

[17] Kozlov, V.A., Maz'ya, V.G., and Rossmann, J. (1997). Elliptic Boundary Value Problems in Domains with Point 
Singularities, Math. Surveys Monographs, 52. 

[t8] Kupradze, V.D. (1965). Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, 
Jerusalem. 

[19] Ladyzhenskaya, O.A. (1963). The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach. 

[20] Lewis, J. (1990). Layer Potentials for Elastostatics and Hydrostatics in Curvilinear Polygonal Domains, Trans. Amer. 
Math. Soc., 320(1), 53-76. 

[21] Maz'ya, V.G. (1991). Boundary integral equations, Encyclopaedia of Mathematical Sciences, Analysis, IV.. (English), 
27, Springer-Verlag, Berlin, 127-222. 

[22] Mitrea, M. (1995). The method of layer potentials in electromagnetic scattering theory on nonsmooth domains, Duke 
Math. J., 77, 111-133. 

[23] Morrey, C. (1954). Second order elliptic systems of differential equations, Annals of Math. Studies, No. 33. 

[24] Spencer, R.S. (1994). Series Solutions and SpectralProperties of Boundary Integral Equations, Ph. D. Thesis, University 
of Minnesota. 

[25] Verchota, G.C. (1984). Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz 
domains, J. Functional Anal., 69, 572-611. 

Received December 3, 1998 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455 
e-mail:imitrea @ math.umn.edu 


