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ABSTRACT. By producing a L2 convergent Neumann series, we prove the invertibility of the elastostatics
and hydrostatics boundary layer potentials on arbitrary Lipschitz domains with small Lipschitz character and
3D polyhedra with large dihedral angles.

1. Introduction

Much progress has been made in the last two decades in the direction of employing the classical
method of layer potentials in the treatment of elliptic boundary value problems in non-smooth
domains in the Euclidean setting.

The essence of the method resides in reducing the whole problem to solving a system of integral
equations over the boundary of the domain. In the case of domains with smooth boundaries, one
is typically able to reduce matters to inverting operators of the form “identity + weakly singular”
which are readily treatable via Fredholm theory. As non-smooth domains no longer yield boundary
integral operators of compact type, new tools had to be developed and new approaches had to be
designed to handle this case.

Following the breakthrough in [1], which settled the sensible issue of the boundedness of
such layer operators in L? spaces (1 < p < o0) on arbitrary Lipschitz surfaces, there have been
spectacular applications to many classical PDEs of mathematical physics in Lipschitz domains. For
instance, the Laplace equation has been treated via layer potentials in [3, 25] (following the work
in [2, 8, 13]), the Lamé system of elastostatics in [4], the Stokes system of hydrodynamics in [9]
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and Maxwell’s system of electromagnetism in [22]. For a more detailed account of developments
in this active area of research see, e.g., the excellent survey in [16]. There is also a rich literature
for non-smooth domains with isolated singularities and we refer the reader to the expositions in [21]
and [171, as well as to the references therein.

The aim of this paper is to investigate conditions under which the inverses of such boundary
layer potentials can be expanded in a (L? norm convergent) Neumann series. Since, as alluded to
before, our operators have the form I + K, this is equivalent to showing that p(K), the spectral
radius of K on L?, is < 1. For arbitrary Lipschitz domains, this issue is occasionally referred to
as “the spectral radius conjecture”. Of course, if the domain is smooth, then matters come down
to understanding the point spectrum of K, which is a much simpler task. For work on the spectral
radius for the harmonic layer potential in non-smooth domains, see [10].

Our primary interest lies with the (appropriately defined) elastostatics and hydrostatics layer
potentials in non-smooth domains. For these operators, call them Ky gme, Kstokes, We produce partial
results to the aforementioned question, to the effect that p(Kr.ame) < 1, p(Ksokes) < 1 in arbitrary
Lipschitz domains with small Lipschitz constant (cf. Theorem 1) and three-dimensional polyhedra
satisfying certain size restrictions for their dihedral angles. More specifically, in the case of the Lamé
system in 3D polyhedra, we ask that

|cos (%)‘ < (%‘f—%) , (1.1)

where A and y are the usual Lamé coefficients. Whereas in the case of Stokes’s system, we require

]cos(—)‘ < é . 1.2)

See Theorem 4 for a complete statement. The tools employed to prove these results are those of
harmonic analysis and Mellin transform.

Another perspective from which Theorem 4 can be understood comes from regarding the
Lamé system as a perturbation of the vector Laplacian. This way, for any 3D polyhedron, there
exists & > 0 such that K7 4. associated to the system Aii + £ 7 divii = O has p (Krame) < 1. This
work is an extension to the case of 3D systems of PDEs of results in [6] (cf. also [7, 20, 24] for the
two-dimensional case) where it has been shown that p(Krapiace) < 1 for arbitrary 3D polyhedra.
In fact, we are able to recover this particular result in the present setting. This occurs for the choice
A = —pu for which the Lamé system reduces to the vector Laplacian. The point is that, in this case,
(1.1) is automatically satisfied. However, the extent to which the restrictions (1.1) and (1.2) can be
improved remains an open problem for the moment. Another interesting open problem is to extend
these results to the higher dimensional setting.

The conditions (1.1) and (1.2) can be regarded as constraints on the size of the Lipschitz
character of the domain so that the spectral radius conjecture holds for the operators under discussion.
For practical purposes, it is important that they are explicit and easy to check. Indeed, we believe that
our results may also prove useful for the numerical treatment of such systems of PDEs in nonsmooth
domains, an issue to which we shall, hopefully, return soon.

The layout of this paper is as follows. In Section 2 we review some basic definitions con-
cerning the elastostatics and hydrostatics layer potential operators corresponding, respectively, to
the pseudostress and the stress conormal derivatives. In Section 3 we discuss spectral properties of
these operators in the context of Lipschitz domains with small Lipschitz constant. Finally, Section 4
deals with 3D polyhedra, a setting in which we produce the results outlined above.
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2. The Elastostatics and Hydrostatics Layer Potentials

We start by reviewing elastostatics layer potentials. Concretely, consider the system of linear
elastostatics Li = 0 in an open subset of R*, where

Li=puli+O+p vdiva .

The displacement  has n components and 4 and X are the Lamé moduli which are assumed to satisfy
# > 0and —u < A. The operator L can be represented in the following notation:

L= A(D) = (afja,-a,-)kl : @.1)
where
af] = aff (0) = udi;du + (1 + A — 0)8ub 1 + 08:18 1 .

Above, 0 € R is arbitrary, §;; is the Kronecker symbol, and i, j, k,! € {1,...,n}. Hereafter we
shall use Einstein’s convention for summation, i.e., an index repeating in the same expression means
that we are summing with respect to that index.

Let © C R” be a Lipschitz domain and let N be the outward unit normal vector to €2 which
exists almost everywhere on d€2. Corresponding to A := (af‘jl )i, j.k,1, the conormal derivative for the
operator L in (2.1) is given by

ai \’ it , dud - ;
= N;a;, (0)3u ——-;Ag—ﬁ + U+ A —0)N;divii +6N;8;u’ ,

ONy
where j = 1,...,n. The special choice 6 := %f{f%}(\) gives rise to the so-called pseudostress
conormal derivative which has the form

du . p+r) CuA+NE+r), . .

—_ = N+ ——" N + ——————(diva)N ,

Gy S HVU-NA T (Vi) + A (div u)

where the superscript ¢ indicates transposition of matrices.
Let G = (Gjj);,; be the Kelvin matrix valued fundamental solution for the system of elasto-
statics (see, e.g., [18]),

1 3u+A &y Xini|
Gii(X) = : + @+ A , X eR"\ {0},
30 = i+ D [ no2 ixp2 T VO
where i, j = 1,2, ..., n and w, is the surface area of the unit sphere in R". Also, denote by K, »

the double layer elastostatics operator corresponding to the pseudostress conormal derivative on the
boundary of 2. Specifically, if we denote by G/ the jth column in the fundamental matrix G, then

AN 3G/ i .
(kco (F)) =2 ] (S-P-9) @f (@do), Peda, @2
aq \ v

where f 1902 > R%andi =1, ..., n. Also, do stands for the canonical surface measure on Q2.
A careful computation gives that the ith component of 233%] (X), denoted by kZ’p (X),is

—4udi; (X, N(X))
wn(Bu+2) X[
2n(pn +2) XiX;(X, N(X))

— , XeR"\{0}.
oGt h) X[ SR\ )

ij -
L0 =
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Next, we briefly discuss hydrostatics layer potentials. To this end, consider the linearized,
homogeneous, time independent Navier—Stokes equations, i.e., the Stokes system

Ai=vVp,
{ divii =0, 23)
in an open set in R”, where i is the velocity field and p is the pressure function. If we define the
matrix A = A(6) = (afjl @Ni,j.k0 by
aff = aff(0) = 8i;8u + 08ud i ,

for 6 € R, then al{ff 8;9;u' = AuF + 63 (div ). Hence, any solution i, p of the Stokes system (2.3)
satisfies

afjlaia,»ul = 0p .
As before, let @ C R” be a Lipschitz domain and denote by N the outward unit normal vector a.e.
on 9L2. The conormal derivative that corresponds to the matrix A 1= (afjl Vi, jk,l 18

3\’ il ,
m = Nia;, (0)oku’ — N;p, 2.4)
where j = 1, 2, ..., n. The special choice 6 := 1 gives the so-called stress conormal derivative (see

also, e.g., {4, 19]). This derivative has a physical interpretation and it is known as the slip condition.
Going further, denote by G = (Gy;);,; the Kelvin matrix valued fundamental solution for the
system of hydrostatics (see, e.g., {19]),

1 1 8ij X X;
Gij(X):Z———< T

S \n =2 1X|2 lXIn), X eR"\ {0}.

Let K5 s be the double layer hydrostatics operator corresponding to the stress conormal derivative
on the boundary of Q. Also, set G/ for the jth column in the fundamental matrix. Then

AN aGI i .
(koo (7)) =2 [ (5o -9) @rl@do@. Peon. @)
ag \ ov

where{ = 1,...,nand %%i = B?VGAfl)' The ith component of 2%%1()(), denoted by kféj,s(X)’ is

—2n X; Xj(X, N(X))

Y oxy e
kd (X0 = X

X eR"\ {0}.

n

The operators K , = (KZ p)i’j and Ks s = (Kgs),-,j, withi, j = 1,2,...,n, acting from

(LZ(SQ))" to (LZ(E)Q))" are n x n matrices with entries Kicjp e L(L?(3%2)) and, respectively,
K¢ € L(L*(3Q)). Forany f € (LX), f = (L 2. 1,

(Kepf) (PY=KZ fI(P) = fm KL (P~ 0)f1(Qdo(0). Pedo.

The operators ngjs, i,j = 1,...,n, are defined as above replacing the subscripts £, p by S, s.
We regard (L2(asz))” as a Hilbert space endowed with the inner product given by {f, g} =

Jao (D87 (Q) do (D) forany f. g € (L*@W)", f= (" 2o /M g =88 ... 8"
The corresponding norm on (L?(92))" is given by

n
1 1Ta0ay = 2 17 122, -
j=l1
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Occasionally, we may simply write || f|| for HfH(Lz(m))n. Let T = (Ty)i,j, i, j € {1,2,...,n},
be a generic linear and continuous operator acting from (L2(3$2))" to (L2(3))", (Tf)' = T; f7
forany f € (LZ(BQ))n, f=(f, f2,..., f™. Then its operator norm is

NN == sup |Tf] "
1o (L2e)

We end this section with a simple remark which we shall find useful in the sequel.
Remark 1. LetT ¢ £((220®)"), T = (Tyj), ;, withi, j € (1,2, .., n). Then
TN <n max 7] .

where || T;; || is the norm of the operator 7;; in L(L2(3K)).

3. The Case of Lipschitz Domains

Call a bounded domain Q C R” Lipschitz with Lipschitz constant < M if for any P € 9§
there exists r, & > 0 and a coordinate system {y1, ..., y,} in R" (isometric to the canonical one)
with origin at P and a Lipschitz function ¢ : R*! - R with || Vol < M so that, if C(r, h)
denotes the cylinder {(y1, ..., yo—1); |y;| < rall j} x (0, ) C R”, then

QNCrh) = {Y=0n....y); |yj| <rall jand y, > 0 31, ..., ya=1}
QN C(rh) [Y=01....): |yj] <ralljand yo =0 01, .-, yn-1)} -

it

The best constant M satisfying the conditions above is denoted by char(2), the Lipschitz character
of €.
The goal of this section is to establish spectral radius estimates for the operators K , and

Ks s on (L2(8 Q))n for Lipschitz domains with small Lipschitz character.
To state the main result of this section, consider

L3(3Q) = {f e L*(Q); / fdo = 0} .
30
Also, let ¥ denote the space of vector valued functions ¥ on R” satisfying the n(n + 1)/2 equations
ayl +o;4' =0, 1<ij<n,

and define
L3069 = {f c (L2(as2))" : / fwdo =0, forall ¥ e w} .
Q2

Note that L%I, (9€2) is a subspace of codimension n(r 4 1)/2 of (L2(8 Q))n.
We have the following theorem.

Theorem 1.
There exists Cop = Co(n, u, A) > O such that for any bounded Lipschitz domain Q with
char () < Cq the following holds. For any 8 € C, |8] > 1 and 8 # 1, the operator

Bl —Kc.,: (Lz(asz))" N (L2(852))n 3.1
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is invertible, where I is the identity operator.

Moreover, the operator - K¢, , € L ((LZ(GQ))n) is Fredholm with index zevo and I — KZ =
(L3()" — (L2(30))" is inverrible.

Also, there exists a constant Cy = C1(n) > O such that for any bounded Lipschitz domain Q
with char (QQ) < Cy the following holds. For any B € C, || > 1 and B # 1 the operator

Bl —Ks,: (Lz(asz))" N (LZ(BQ))n 3.2)

is invertible.
Furthermore, the operator I — Ks s € L ((L2(asz))”) is Fredholm with index zero and

I—-K%, @ L3,(0Q) — L}, (39) is invertible.

The Fredholmness (with index zero) of the operators 8/ — K. , and I — Kg s is obtained by
estimating the operator norm of K. ; and K ¢, whereas the surjectivity of these operators is dealt
with separately, appealing to the equation itself.

Before presenting the proof of Theorem 1 let us discuss certain corollaries of it. First, we
need some more notation. Let X be a Banach space and £(X) be the space of linear and continuous
operators 7 : X — X. For T € L(X), denote by o (T'; X) the spectrum of the operator T and by
o.(T'; X) its essential spectrum, i.e.,

o(T; X):={BeC; BI — T isnotinvertible on X} ,

and
0.(T; X) ={e€C; B —T isnotFredholm on X} .

Also, let p(T; X) = sup{|B]; B € o(T; X)} be the spectral radius of the operator T (i.e., the
radius of the smallest closed circular disc centered at the origin which contains ¢ (7'; X)). Denote
by T* € L(X™*) the adjoint operator of T € £(X). Finally, for D C Clet [D] := C\ Do, where
D4 is the unbounded connected component of C \ D.

The following is well known (cf., e.g, [14, p. 102]).

Proposition 1.

Let X be a Banach space and T € L(X). Then the following hold.

(1) The spectrum and the essential spectrum of the operator T are compact sets in X. Moreover
0.(T; X) Co(T; X).

(2) The set 00 (T; X) \ 0.(T'; X) contains only isolated points. Moreover any such point is an
eigenvalue of the operator T.

(3)IfY C X is a closed subspace invariant under T, then o (T;Y) C [o(T; X)].

(4) The spectra of the operator T and its adjoint T* satisfy o(T*; X*) = o(T; X) and
0e(T*; X*) = 0.(T; X). Here the bar denotes the usual complex conjugation.

Several immediate consequences of Theorem 1 and Proposition 1 are as follows. If  is a
bounded Lipschitz domain in R” with Lipschitz character sufficiently small, then

(i) We have o, (Kg,p; (L@ Q))n> C D,(0) for some 0 < r < 1, where D, (0) stands for the

closed disc of radius r centered at the origin.
Also, o, (Ks,s; (LZ(BSZ))"> C D, (0) for some 0 < r < 1,

(i) Since 80 (K, p3 (L20S0)") \ 0% (Ke,p: (1%(d)") contains only isolated points it
follows that "
o (Keps (L209) ) € DU DO,
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forsome 0 <r < 1.
Also,

o (Ksq (120)") c (1)U D, 0,
forsome 0 <r < 1.

(iii) We have o (KZ » (Lg(asz))”) C D,(0) for some 0 < r < 1 and, hence, the spectral
radius of K7, on (L2(3))" is strictly less than one. In particular

-1 = .
(1 - K% p) =Y (&K:,) .
j=0
where the series converges absolutely in the operator norm on (L3(32))".
Furthermore, o (Kfsi o L?I, (89)) C D, (0) forsome O < r < 1 and, hence, the spectral radius
of K5 on L%,, (02) is strictly less than one. In particular

-1 X .
(I - Kjés) = Z(K;',S)J ’
i=0

where the series converges absolutely in the operator norm on L%p (852).

(iv) By passing to the dual we get that o (Kg,p; (LZ(BQ)/R)") C D;(0) forsome0 < r < 1.
Hence, the spectral radius of K¢ , on (L2(8 Q) /R)" is strictly less than one. In particular

o0

(I ~Kep) ' =Y (Kep)

j=0

where the series converges absolutely in the operator norm on (L2(8 2) /R)”. This is relevant for
the Dirichlet problem for the Lamé system.

Also, o (Kg,s; (L3, (352))*) C D,(0) for some 0 < r < 1. Hence, the spectral radius of
Ks s on (L\ZI, (BQ))* is strictly less than one. In particular

(I-Kss) ' =Y (Kss)
i=0

where the series converges absolutely in the operator norm on (L\zp (0 Q))*. This is relevant for the
Dirichlet problem for the Stokes system.

Before we begin the actual proof of Theorem 1, we pause to record a version of Theorem 1.10
in [12] which is well suited for our purposes, i.e., when it comes to estimating the operator norms of
certain layer potentials on Lipschitz boundaries. To state it, recall that if X,Y are two metric spaces
and 0 < o < 1, then

Lipy(X,Y) =1 f:X — 7, thereis C > 0 such that sup p
x,yeX |x — ¥l

If@ = FO _ C} |
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Theorem 2 [12].

Let B € Lipy(R™ 1, R) and A € Lipy (5" 2,R) for some 0 < o < 1 and F € C®°(R, R)
with F and all its derivatives belonging to L' (R). Here $"~? stands for the unit sphere in R
Set

Tfx) = pmlﬁwﬁB@)—BW)-vB@)%x—yD-

P (B(x) - B(y)> Alx —
lx — yl lx ~y

lyn) FOdy

for almost every x € R"™\. Furthermore, assume that F and A are both odd or both even and that
F(t) < C(1 + |t))~L. Then there exists C(n, F, A) > 0 and v > 0 such that

v
”Tf”Lz(Rn~l) <Cm F,Mlv B”Loo(Rn—l) (1 +1v B“Lw(R"—1)> ”f||L2(Rn—1) )
where C(n, F, A) > 0 depends solely on n, F and A.
After these preparations, we are ready to present the

Proof of Theorem 1. We proceed in two steps.

Step I: Fredholmness with index zero outside the unit disk. Let us first note that matters regarding
Fredholmness with index zero can be reduced to the graph case, (i.e., when € is the domain above
the graph of a Lipschitz function © : R""' — R) by the following localization argument.

Let (Y;);=1,..; be an open covering of 32 such that for any i = 1,..., I there exists a
coordinate system in a neighborhood U; € R”" of Y; and a Lipschitz function @; : R — R
such that Y; = graph ®; N U; and U; N 2 lies above the graph of ®;. Let K stand for either one
of the operators K, , or Ks s and denote by K;,i = 1,..., I the corresponding layer potential on
[; 1= graph ®;.

Lemma 1.
Assume that foreachi = 1, ..., I and any B € C, |B| = 1 the operator BI — K; is Fredholm
with index zero on (LX(T';))". Then, for all p € C, |B| = 1, the operator BI — K is Fredholm with

index zero on (L*(9 SZ))".

Proof. Consider (¢;)1<;<s. a family of Lipschitz functions on 9€2 which forms a partition of unity
subordinated to the open covering (Y;)1<;<7 of Q. Also, foreachi{ e {1,...,I}, letn; be a
Lipschitz function on 852, compactly supported and such that ; = 1 in a neighborhood of supp ¢;.

For any f € (L%(32))" we have ¢; f € (L%(T}))". By hypothesis, for 8 € C, |8] = 1,
the operator 81 — K; is Fredholm with index zero on (LZ(Fi))" foreachi = 1, ..., 1. Thus (cf,
e.g., [3, p- 311), there exist C > 0, a family of Banach spaces (¥;)1<i<s, and a family of compact
operators 7; : (L2(I'))" —> ¥;,i = 1,..., I, such that

I I 1
Yol fligaeyy < €D MBI =KD ¢ifll ey + 21T @Ol
i=1 i=1

i=1

IA

I
C Y ImiBI = K)éi fll 1250y

i=1

I
+C Y I —m) (BI = KD i fl aqry”

i=1

I
+ > 1T flly, - (3.3)

i=1
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First, it is obvious that for each i = 1, ..., I, the operator T;¢; : (LZ(BQ))n —> ¥; is compact.
Next, note that 1 — 7; and ¢; have mutually disjoint supports. Then, by standard arguments we may
conclude that, foreachi = 1, ..., I, the operator (1 — n;)(8I — K;)¢; : (Lz(EQ))n — (LZ(Fi))n
is Hilbert-Schmidt and hence compact. Further, since ¢; is a Lipschitz function, the commutator
operator

(K, ] = K — 6K : (Lz(asz))” — (Lz(asz))"

is weakly singular and therefore compact forall i = 1, ..., I. Now, (3.3) implies

A

/
C Y 6B = K) fll 1230y + IComp( )l
i=1

CIBI = K) fll(r2ae) + 1 Comp(H)Il ,

”f”(LZ(aQ))"

IA

where “Comp” stands for a compact operator on (L2(8 Q))n. This shows that forall 8 € C, |8] > 1
the operator 81 — K is semi-Fredholm on (L2(3<2))". Now, since 81 — K is invertible on (L2(3$2))"
for |B| large, the conclusion of Lemma 1 follows. ]

In the case when 0Q2 = graph @, where @ : R"! - Risa Lipschitz function, the elastostatics
double layer potential in graph coordinates can be identified with

Kl f@ =L f@+5 o,

where
g —4p
K = ———
A W Ty
Px) -@() —veO) - =y f)
p.v. el 5,']' N n/2 ] — nd R
R 1+(<I><x)*<1>(y>) el
[x=yl
and
ij Cij(, (P =2 —ve) - x—y)  fO)
2 — 4
I f@x) = P-U-fn_l N +2)/2 x—yp2
R 14 (d>(x)~<1><y)> Y
=l
with N
| ol (o — yi) (e —yy) i, j<n,
Cij(x,y) =] D (x; — y)(@(x) = DY) if i <n,j=n,
2D (0(x) — d()? ifi=n,j=n.

Next, observe that for any i, j, the operators Ifj and Izij are precisely of the type described in
Theorem 2. Let us show this for, e.g., the operator Ié’j in the case i, j < n. All the other cases
follow from similar considerations. Indeed, the kernel of Izij in the case under discussion has the
form

—2nu+2) 1 xi—y xj-y;

onGu+2) x =y w3l x|

) — @) —VRH) - (x—y)

2\ (n+2)/2
)P ()
(1+< chx—yly ) )

k(x,y)
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Thus, we may take B 1= ®, A(§) := &&;, £ € S"2, and F(t) 1= (1 -+ ¢%)~#+2/2 Note that both
F and A are even and that the other hypothesis of Theorem 2 are satisfied. Therefore, there exists
C(n, u, A) > 0 depending only on n, u, and A and v > O such that

v
H Kﬁ,p “ﬂ((L?’(aQ))") S C(l’l, 2 ')“)” V (I’HLOO(IR”’“I) (1 + H V CDHLOO(]R”—I)> .

We conclude that there exists Co = Co(n, i, A) > 0 such that, for any bounded Lipschitz domain
Q with char Q < Cp(n, u, 1), we get

1/n

1
Lopll o2 aay)

Now, Remark 1 easily implies that

[ Kﬁ,p”a(m(ag))") <1

so that for any g € C, |8] = 1, the operator BI — K, is invertible and therefore Fredholm with
index zero on (L2(3<2))".
A similar argument works also for 81 — K g ¢ and this completes the proof of Step I

Step II: Surjectivity outside the unit disk. First note that as a consequence of the Fredholm property
results obtained above, 81 — K ,, BI — K5 : (L*(32))" —> (L*(32))" have closed ranges.
Therefore, in order to conclude their surjectivity it is enough to show that they have dense ranges in
(L2(8 Q))n. Now, the dense range property of the operators is equivalent to the injectivity of their
adjoints. We approach this problem as follows.

More generally, let us consider A(D) a m x m matrix of second order operators on R"” with
real constant coefficients

( ) ij (] )
[Orany i,j_—l,...,n andot,ﬂ""wl,.--,m~

Call A = (af;p ) ~ symmetric if af}ﬂ = aflf”. Also, we say that the matrix A satisfies the
1],

Legendre-Hadamard ellipticity condition provided there exists ¢ > 0 such that

@l g n® > clgPin? forany £ €R", n e R™.

It is well known (cf,, e.g., [23]) that if A is symmetric, satisfies the Legendre~-Hadamard condition,
and n > 3, then A(D) has a fundamental solution G(X) = (G*f(X)) with the following properties:

(1) GB(X) € C®(R" \ {0}), G**(X) = GPY(X), G*¥(X) = G*(—X) and G (1X) =
277G (X) for any ¢ > 0.

(2) The rows and the columns of G(X) satisfy the system A(D)u(X) = 0 for X # 0. That s,
aif9,0,G7 (X) = aff 8,8;GPY (X) = 0, for X #0.
I u = (ur,uz, ..., um) € (CCMR")™, then
u(X) = — fR G(X — Y)AD)w)(Y)dY ,

ie.,
u*(X) = ——/ G (X — Y)agyaiajuV(Y)dY .
Rﬂ
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(4) Let 2 be a Lipschitz domain in R” and N(P) = (N1(P), N2(P),..., Ny,(P)) be the
outward unit normal vector (which exists at almost every P € 3€2). Set do for the surface measure
on 9Q2. Then

Say If X € Q,
/ a;‘;ﬁNj(Q)a,-Gﬂy(X ~ Q) do(Q) = { 18,y if X €0Q2,
9% 0ifXe¢q.

Letus recall from Section 2 that, for a given vector function u, we define its conormal derivative
at almost every P € 92 by

ou @ af
(m) (P) := Ni(P)a;! duf(P) .

We consider the following layer potentials:

(i) The single layer potential operator S defined on (L%(32))"
Sf(X) = 2/852 GX-Y)f(¥)do(¥Y), XeQ,
and its boundary version S : (L%(3))" — (L2(30))"
Sf(P) = 2/89 G(P-Y)f(XY)do(¥Y), Peif.

(i) The double layer potential operator D4 defined on (L2(8 Q))m,

3G !
Daf(X) = 2/39 [M(X - -)] (O f(Q)do(Q), XeQ

where % is applied to the columns of G; i.e.,

9G — (N0 GPY (X —
X~ 0= (Mef x - 0)

a.y

and the superscript ¢ stands for transposition of matrices. The boundary version of D4 is K4 :
(L2()" — (L2(w)",

3G !
Kaf(pP)= 2P-U-/ [-—(P - ')] (Qf(@)da(Q), Peo.
ae LONA
The adjoint operator of K 4 is K : (L2(3Q))" — (L2(32))",

oG
K, f(P)= -2P-v-/ —(—(P)f(Qdo (@), Peiq.
a0 IN4

As a consequence of the results in [1], the operators K 4 and K;’; are well defined and bounded on
(L2)™.

Let {Y4(P)}pegq and {Y_(P)}peyq be two families of nontangential approach regions of
conical type (asin, e.g., [25]), Y+ (P) C = Qi and Y_(P) C R*\Q = Q_forany P € 9Q. De-
note by u}} the nontangential maximal function of u defined on 24 by u} (P) := supyc, (p) [#(X)],
P e ot

A basic result which follows from [1] and standard techniques is the following.
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Proposition 2.
Assume A = (a?jﬂ )i, .o, B 15 Symmetric with real entries and satisfies the Legendre-Hadamard
ellipticity condition. Then,

(I)Forany f € (Lz(asz))’”, DafH* e (Lz(BQ))m, Moreover, there exists C > 0 depending
only on the Lipschiiz character of 2 such that

H (DAf)*|| (LZ(ag))m =< C“f”(LZ(aQ))m .
(2) For almost every P € 3Q we have

lim = DafX) = EI+Ka) f(P).
XEY4(P)

(3)Forany f € (L*3Q))", (vS)* € (L2(3)™". Moreover, there exists C > 0 depending
only on the Lipschitz character of Q such that:

(4) For almost every P € 3Q2 we have

ASF
IN4

(P):= lim  Ni(P)aif8;8f(X) = (£ — K}) £(P).

382 XEXL(P)

Proposition 3.
Letu,v € (Cl(Qi))m be so that (Vu)*, (Vuv)* € (LZ(BQ))mn. Then we have

f ADu(X) - v(X)dX = —-f Avu(X) vuvX)dX
Q4 Qa1
+ WL
fmv(Q (@@,

where A 7 u - v stands for afj’s u%d;vh.

Proof. Integrating by parts we obtain

/ ADYu(X) - v(X)dX f aif 8;0;u"vP (X) dX
Q+ 5-2+

— —/ a’f g,u™ (X)8;vP (X) dX
Q. 7
+ /a @V, () do(0)
0
- -f Avu<X>~vv(X>dX+f UQ) 5= (0)da(Q)
Q4 E1o) A

The other equality follows in a similar manner. L]

Let f € (L2(8S2))m andu = v =5f. Since A(D)Sf(X) = 0 forany X ¢ Q2 we get

.38 .
/ Sf(Q)ﬁ]i(Q) do(Q) = i/ (AvSfX)-(vSf(X))dX .
a0 A Qs

aSf

As a consequence of Proposition 2 we have 3 Ny ’ o
902+

= (] — K}) f. This implies the following.
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Corollary 1.
Forany f € (L*(3%))",

/asz SFQEI - K f(Q)do(Q) = ifg AvSfX) - (vSf(X)NdX. (34
=

To continue, we need one more definition. Specifically, we shall call the matrix A =
(a;-)‘j’8 )i, j,a.p Strictly positive definite provided there exists ¢ > 0 such that

aPErer > clg | forany £ e R™,
and we call the matrix A = (af}ﬂ )i,j.,p S€mi-positive definite if

af‘j’séi‘”s]f.} >0 forany £ € R"™ .

In this general framework, we are now ready to state the theorem which is needed in order to proceed
with the proof of Step II.

Theorem 3.
Let A be symmetric with constant real entries and satisfy the Legendre-Hadamard ellipticity
condition. Also, for B € C consider the operator

p1- K5 (1209)" — (PPe)” . 3.5)

Then, if B ¢ R, the above operator is injective.
If, in addition, A is strictly positive definite, then the operator in (3.5) is injective for any

g ¢ (=111

Proof. The proof is an adaptation of an old argument of Kellogg [15]. Assume that there exists a
function f € Ker (81 — K}), f # 0 and define

L= [ (49 @SFEAX.
+
The first observation is that 7 and /_ are real numbers; this follows from the symmetry condition

for A. Second, I and /_ cannot vanish simultaneously, for in that case, by Plancherel and the
Legendre-Hadamard condition,

0= L+ 1= [ (4vSf)- TSFENAX = ¢ [ 1vSFC0P ax.
Let us point out here that u : R" — R" defined by u := Sf in Q" and u := Sf in Q™ is globally
in the Sobolev space H1'? (R") as the trace of S f in H'/22(3Q) is the same when restricted to 92
from either side. In turn, the above inequality implies S f = 0 in Q. and, further, in view of the

jump-relations in Proposition 2, f = 0, which is a contradiction.
Going further, note that

/m SFQ) - (I - K} F(Qdo(Q) = (£1—B) /m SF(Q)- f(Q)do(Q)

so that, by (3.4),
(1-p) fa /(@) £(@)do(@) = 1,

(1+ﬂ)fm SFQ) - f(@da(Q)=1I-. (3.6)
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Next, taking the quotient of the equalities (3.6) we get
L N R
I+ I I +1
This entails 8 € R, proving the first part of the theorem.

Assume next that A is strictly positive definite. Then / and /_ are positive numbers which
forces B € [—1, 1]. Moreover, there is no loss of generality to assume in the present situation that

=B

f is real-valued. Also, in the case under discussion, § = —1 if and only if I = O which, so we
claim, cannot happen. Indeed, since A is strictly positive definite we have that
(AVSFX) (VSf(X) = c|vSFX)I* . 3.7)

The fact that /_ = 0 and the inequality (3.7) imply that vS f = 0in Q_. Therefore, S f is constant
on 2_ and since the single layer decays at infinity, the constant must be zero. Taking the trace to
the boundary in the Sobolev sense gives that Sf = 0 on 992 and by (3.6) I+ = 0. But, from above,
I, and I_ cannot vanish simultaneously. This concludes the proof of Theorem 3. L]

Recall that the operator KZ » is the adjoint double layer elastostatics operator corresponding
to the pseudostress conormal derivative. This choice of the conormal is based on a strictly positive
definite matrix A. Thus, Theorem 3 applies (in this case m = n) and gives the desired results for the
operator in (3.1).

Concerning the action of the same operator on (L% (@ 52))", we first note that, since Kz ,(e;) =
ej, where {e;} is the standard orthonormal basis in R",

1K}, (Lz(asz))" s (Lg(asz))" (3.8)

is well defined. Consider now the following diagram
(L2 (3)" " (L))"
e Ty (3.9
) . K%, ) ;
(L5(0)) —= (LO(B Q)
which, because of (3.8), is commutative; here ¢, 7 are the inclusion and the orthogonal projection
operators, respectively. Since (L% (9 Q))n is aclosed subspace of (L2(8 SZ))" with finite codimension,
it follows that : and 7 are Fredholm operators of opposite index. From the first part of the proof of
Theorem 1 the operator I — KZP is Fredholm with index zero on (L2(8 Q))". This, together with

the commutative diagram (3.9), implies that 7 — K z,p is also a Fredholm operator on (L%(a Q))n
with index zero.

There remains to prove that its kernel is trivial on this latter space. To this end, let f <
Ker(I — K7 )N (L3(3$2))". The first equality in (3.6) with B = 1 yields I, = 0 which, in view
of (3.7), implies that S f is constant in Q. Now, taking the trace to the boundary in the Sobolev
sense gives that Sf is constant on 92, In tum, since f € (L%(B Q))n, from (3.6) we have I_ = 0 and
therefore S f is constant in ©2_. Finally, the jump relations give f = 0. This shows that / — Kz’p
is injective; therefore, invertible on (L%(B Q))n.

This concludes the proof of the first part of Theorem 1 having to do with elastic potentials.

In the case of the Stokes system, the matrix A corresponding to the choice of the conormal stress
derivative is symmetric with real entries but only semi-positive definite. Nonetheless, Theorem 3
applies and gives the desired conclusion for the operator in (3.2). The important remark is that, in
this case, we have

- . A2
(AVSFO0) - (vSFN 2 C Y (3, SFEO +0,SFY) . (3.10)

i,j=1
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Therefore, if I- = 0, then 8; (Sf)! + 8 i (Sf Y = 0in Q_. Since the nontrivial solutions of
a,-uf + d jui = 0,fori,j = 1,...,n, are affine functions and S f decays at infinity, we get that
Sf = 0in Q_. Then, the rest of the argument follows.

At this point, there remains to show that the operator I — K";’ s L%I, (082) — L\ZI, (082) is

well defined and invertible. Another characterization of L%I, (82) useful for this purpose is

12,39 = {f c (LZ(BSZ))H; Ks,f = f}L . 3.11)

LetW(8Q2) := {30 . ¥ € W}, where |3 denotes the trace to 62 in the Sobolev sense. Clearly (3.11)
will follow from

Y(HQ) = {f e (Lz(asz))"; Kssf = f} , (3.12)

‘We postpone the proof of the above equality for the moment and continue the argument concluding
the last part of Theorem 1. To this end, let us first note that (3.11) and elementary functional analysis
give

I—K3,: (L2(89)>n — 12,(59) .

Based on this, proceeding as we did for (3.9), we can conclude that I — K g is Fredholm with
index zero on L2 (3 Q). Let us show that its kernel on this latter space is trivial. Consider f €
Ker(I — K% S JnN L 2(0€2). The first equality in (3.6) together with (3.10) imply that Sf € W(3€2).
In turn, since f € L2 o (092), the second part of (3.6) together with the decay at the infinity of the
single layer imply that Sf =0in Q_. Therefore, Sf = 0 on 3Q2. Next, since Sf = 0 if and only
if f =cN forsomec € Cand N ¢ Ker(l - K;',s) we get f = 0. This shows that I — K5 _ is
injective, therefore invertible on L2 +(0€2).

We are left now with provmg (3 12). Itis easy to check thatif ¢+ € W then Ay = 0,divyy =0
in , [(vy)* 2230y < o0 and m‘”— = 0 on 92, where p = O [cf. (2.4)]. A simple application
of the divergence theorem gives that W(3$2) C (L2(9))" N L2 (3Q), where L% (3Q) = {f €
(L2(3$2))"; [,o f - N do = 0}. On the other hand,

5: 1369 — (1362) n 14062

is invertible (see [9, Theorem 4.15]). This implies that v = S f for some f & L% v(9€2). Since
3%1’ = 0on dQ2 we get f € Ker(] — KS ). Now, using that Ks ;S = SKS we obtain Vg €
Ker(l — Ks ). This proves the 1nclu510n W (3Q2) € Ker(/ — Ks,5) in (3. 12) Next, since the

operator I — Kg ; is Fredholm with index zero on (L?(3 SZ)) , we have that dim (Ker( — Ks;)) =

dim (Ker(] — Kg S)). Therefore, (3.12) will follow from simple dimension considerations if we
show that

S :Ker(I — K% ) — V(39), (3.13)

is well defined and invertible. It is easy to check that (3.4) together with (3.10) give that S is well
defined. Next, since Sf = 0 if and only if f = ¢ N for some ¢ € C and N + KS N) =0,it
follows that S is one-to-one. On the other hand, as above, for any ¢ € ¥ we have that v=3S5f
with f € Ker(/ - K 875), and this concludes the surjectivity of the operator S in (3.13). Thus, (3.12)
follows.

This finishes the proof of Theorem 1. ]
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4. The Case of Three-Dimensional Polyhedra

The aim of this section is to give explicit bounds for Cp(3, w, A) and C1(3) in Theorem 1 for
polyhedra in the three-dimensional Euclidean space. In this regard, our main result is the following.

Theorem 4.
Consider a bounded, simply connected Lipschitz polyhedron P C R3 such that all its dihedral

angles o satisfy the condition
o 3u 4+ A
— . 4.1
\Cos(zﬂ = (8,u—|—6k) @b

Then forany 8 € C, |8| > 1 and B # 1, the operator I — K , € L ((LZ(BP))3) is invertible.

Moreover, the operator [ —Kp ,, € L ((L2 (873))3> is Fredholmwith index zeroand I — K z o

(L20P)) — (L2@P))’ is invertible.
Also, assume all dihedral angles « satisfy the condition

‘cos (%). < é . “4.2)

Then, forany B € C, |B| = 1 and B # 1 the operator BI — Kss € L ((LZ(B'P))3) is invertible.

Moreover, the operator | —Ks s € L ((LZ(SP))3> is Fredholm with index zeroand I — K%
L%, (@P) —> L%,(3P) is invertible.

Another way to interpret the first part of Theorem 4 is the following. For any Lipschitz
polyhedron P ¢ R? there exist Lamé moduli u,A € R, u > 0 and —p < A such that the
conclusions of Theorem 4 regarding the elastostatics layer potential hold. Note that in the limiting
case 1+ A = 0, which is the case of the vector Laplacian, the condition (4.1) reduces to ]cos 5 | <1
and therefore it is automatically satisfied for any Lipschitz polyhedron in R?. This way we recover
the result of [6] for the harmonic layer potential operator.

‘We can also invoke Theorem 4 and Proposition 1 to conclude that the properties (i) through (iv)
from Section 3 hold.

The Fredholmness (with index zero) of the operators 81 — K , and I — K5 ; is obtained
via Mellin transform techniques whereas their surjectivity has been concluded already in Theorem 1
and Theorem 2. We start with a couple of Mellin transform rudiments.

Let f be a function defined on (0, co). The Mellin transform of f, denoted by M f is

d
M@ = / SIS

Ry

It is easy to see that the relationship between the Mellin and Fourier transforms (the latter
denoted by F) is M(f)(-) = F(f o exp)(i-). This implies the following well-known version of
Plancherel’s Theorem.

Proposition 4.
Forany ) € Rand f, g € L*(Ry, t#~1dt) we have

1 - +00 o
P MF) @) Mg)(2) dz = f RN OTIOY
Tl JRez=» 4]

Therefore, the Mellin transform M is an isomorphism between L*(R,., t**~1dt) and L*(Re z = ).
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With an eye toward proving Fredholmness for the operator S/ — K on (LZ(BP))3, where
K = K ,or K = Kg , we first reduce matters, via the localization argument given in Section 3,
to working on the boundary of infinite polyhedral Lipschitz cones. In this setting we look at the
operator K on the Mellin transform side with respect to the radial variable. In this way K is replaced
by a family of operators indexed by z € C, Re z = 1, all of which are defined on a spherical polygon
in the unit sphere in R3. In this context, for each fixed z, the corresponding operator is further
decomposed near each corner of the spherical polygon as a sum of an integral operator with operator
norm strictly less than one and a compact operator.

LetV;,i = 1,..., I, be the vertices of P. Denote by I'; the boundary of the infinite tangent
cone to P with vertex V;,i = 1,...,I. Foreachi = 1, ..., I, consider the associated double
layer potential K; € £ ((Lz(l",'))3).

In the light of Lemma 1 it suffices to analyze the operator 8/ — K; on I';, the boundary of a
simply connected infinite polyhedral Lipschitz cone with vertex at the origin and all dihedral angles
« satisfying the condition (4.1) or, respectively, (4.2). For convenience we will drop the subscript i.

Denote by F;, j =1,..., M, the faces (open plane sectors) and by [;, j=1,..., M, the
edges of the cone I'. Consider the spherical polygon ¥ obtained by intersecting I" with the unit
sphere §% C R3. The polygon y consists of open arcs of great circles y; := SZNF ; and corner
points e; =ljﬂS2, j=1..., M.

Letus introduce spherical coordinates such that P = rew, Q = r'a/ wherer := dist(P, 0), v’ :=
dist(Q, 0) and w, ' € S2. The elastostatics double layer potential operator on I" takes the form:

(Kg,p(ﬁ))i (ro) = / kz (ro — ¥ ou! (F o' )r'de dr’
Ry xy P

_ 1 e R - WFTY
T 2r@Bu+ 1) Jroxy Heiy [rew —r'e)|?

Ry - orr (rw; —r'ew)) (ro; — o)\ .
— 3+ 1) — | l - & : L ul (r'w') do' dr’
rw—r'ow
]. Ry * w'r—/
_ —— _2M3..___L_
27 B+ 1) Jroxy ( YEw - o3
Ny - 05 (Fo — ) (Foj— o)\ | dr’
—3(M—|—k) w T r’rl Llsr ] J u}(r’w')dw/——;,
@ — | r
where do’ is the arc element on 3. Now, let
Vil (t ) 8ijnyy - wt Ry - L{tw; — @)) (tw; — w;.)
, W, W
L.p [t — o2 ltw — o3
8ijna)’ - wt

(12 = 2tw - ' + 1)3/2
Ne - 0t (tw; — o)) (twj — a)’j)

, 4.3
(2 = 2tw - o + 1)572 (43
with 2 3+ 34
—2u 7
C= ———— d D=t —xv-———.
20 (Bu+ A) an 2731 4+ A)

Similarly, the hydrostatics layer potential operator on I" equals

(Kss@) ro) = /R kL ro —r' )l ¢y do dr’
Xy
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/ Y /!
__3_ nw"w%/'(%wi—wi) (ij—a)j)
27 SRy xy Lw— o)
; dr’
w (r'e)ydw' —- .
r

We let
3 Ry - wttw; — ) (tw; — w})

21 (122w o + )52

Let us also denote by L (R, t df) ® L?(y) the algebraic tensor product of the Hilbert spaces
L*(R,, 1 dt) and L%(y) with

kg’s(t, w,®) = —

If® g||L2(R+,¢d;)®L2(y) = ||fHL2(]R+,tdt) “g“LZ(y) . 4.4)

Now, set L2(Ry., 1 dt)&L*(y) for the topological completion of LZ(JR+, tdt) ® L?(y) in the norm
given by (4.4). Similarly, LZ(Rez = 1) ® L?(y) is the algebraic tensor product of L*Rez = 1)
with L2(y) and L2(Rez = 1)®L?(y) is the topological completion of LZ(Rez = 1) ® L3(y) in
the norm

I f ® gllr2Rez=nor2y) = IfllL2Re =1y 1811 22¢yy -

Now, as a consequence of Proposition 4 we have that M, defined by
M (fRe =M[®¢g

for any f € L*(Ry,tdt) and g € L*(y) (i.e., the Mellin transform with respect to the radial

variable) is an isomorphism from L2(R. , r df) ® L2(y) into L?(Re z = 1) ® L%(y). This uniquely

extends to an isomorphism between the spaces L*(Ry., t dt)®L%(y) and L2(Rez = DR L2(y).
For any complex number z such that Rez = 1, let A;;(2) : L%(y) — L*(y) be the ijth entry

in the matrix operator A : (Lz(y))3 —_— (Lz(y))3 defined by

Aiyanv) = [ [M(K (L o.0))] @ (@) do
Y

for any i, j = 1,2,3. Above k' := kl[{ or k= k , and corresponding to that we have the

operators Az , and Ag ; depending if We refer to the elastostatlcs or hydrostatics layer potential,

respectively.
Let

e A : (PRez=D® L) — (LRez =)@ L%})

defined by Id ® A()(f ® g) = f ® A(z)(g) forany f € L*?(Rez = 1) and g € L2(y). Denote
by A(z) the unique extension of Id ® A(z) as an operator on the space (LZ(Re z= 1)®L2(y))3.
Proposition 5.

Consider an infinite Lipschitz cone in R? and denote by T its boundary. The following diagram
is commutative:
— M,1 _
(L2D)) = (PR, tdDBLA(y)) 25 (L2(Rez = DBLA(y))’
v Kep VA@)
— M, I —
(L2(D)) = (LAR,, 1 dDBLA(p))’ 25 (L2(Rez = DBLA(y))’

where 1 is the 3 X 3 matrix with entries 8;;1 and y =T N 52,



Spectral Radius Properties for Layer Potentials 403

As a consequence, the diagram

(L) = (LR, 1dBL2) 25 (PRez = DBL2(0)’
VBl — K p " VBI— A(z)
A

(L2(D)) = (L2Rs, 1 dDBLA(y))’ (L2(Rez = DBLA())’

is also commutative.

Moreover, the above diagrams are commutative if we replace K. , by K.

Proof. Let us drop the subscripts £, p and S,s. If u/(rw) = f/(r)g/(»), j = 1,2,3, with
f! e L*(Ry,tdr) and g/ € L2(y), the equalities (2.2) and (2.5) become

(K@) (rw) = / / Kr/r o, ) F1() fl?gf'(w’)dw/. (4.5)
y YRy r

The inner integral above is the Mellin convolution in the radial variable of the kernel i, w, o)
with f7/(-). Therefore, if one takes the Mellin transform with respect to the radial variable of both
sides in (4.5) we get

MK @Y (@ =M (s7) @ [

M (k"f (,0,0)) @8’ (@) do (4.6)
Y

The equality (4.6) reads
My (K@) (0)@) = M (1) @Ay @ @) .

In other words, M, (K (i) (-w))(z) = (A(z)(/\/l,I(u(-w))(z)))i. Now, a density argument com-
pletes the proof. [
The main technical result of this section is the following:

Proposition 6.
Forany z € C, Rez = 1, we have

Aij@) = A(@) + Al @), i, j €(1,2,3)

where Al-lj (z) is a compact operator on Lz(y) and

0l 2
H i @) L(L2(y)) ~ “ij
with .
cos (% 3
Uij -= 13—12‘(_1:2‘)\)“’ [2#«5:';‘ + 3 (1+ Sij) (n+ )»):| in the elastostatic case ,
and

3
uij =3 (148;) 'cos (%)‘ in the hydrostatic case .

An immediate consequence of Proposition 6 is the following.

Corollary 2.

Let z € Cwith Rez = 1. Consider a satisfying the condition (4.1). Then for any B € C,
|B| = 1 the operator I — A, ,(z) is Fredholm with index zero on (L*(y)).

If a satisfies the condition (4.2), then for any 8 € C, |B| = 1, the operator BI — Ag s(z) is
Fredholm with index zero on (L*(y))3.
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Proof. Again we drop the subscripts £, p and, respectively, S, s and we will point out when it
matters which of the settings we consider. Let A™(z) = (Am (2))ij form =0,1and i, j € {1,2,3}
be as in Proposition 6. Decompose

4]
BI — A@z) =B (1 - A;”) —Aw).

By Proposition 6 we have

“A (@ )HL(LZ( ) = uijs
forall i, j € {1,2, 3}, This easily implies that ”AO(Z)||£(LZ(V)) ||U||£(R3), where U = (u;;)i,;,
i, j =1,2,3. Note that
uy Uy Uy
U=1 u u u |},
uy Uz uj

with

wr = P s (2)] and o= S BT oo ()
R YTy 2 2T 230 2

in the elastostatic case and

uyp =3 lcos ((—;—)’ and uy ;= % tcos (%)i )

in the hydrostatic case. Since the matrix U is real and symmetric, we have

||U||£(R3) = méax{|é|; & is an eigenvalue of U } .

This and an explicit calculation give

0
2 1,
H (¢ )HL(L2 st <
where the last inequality holds if « satisfies condition (4.1) or, respectively, condition (4.2).
This implies that the operator g (I - A%@) is invertible. Going further, since Al(z) is a

compact operator on (LZ(]/))3 we have that A(z) is a compact perturbation of an invertible operator,
and therefore it is a Fredholm operator on (Lz(y))3 with index zero. !

Now we are ready to present the proof of Proposition 6.

Proof of Proposition 6. Again, we shall drop the subscripts £, p and S, s when no confusion is
likely to occur. Let us denote by Cﬁow(y) the space of all continuous functions on y which are C*°
on each closed arc ¥, of y, k = 1,..., M. Whenever w and o’ belong to the same arc y; of ¥ we
have n, - @ = 0. Also

ij ; Rez a5r 50,
k (t, w,w) ~ tReZ—3

where &'/ has been defined in (4.3). Consequently, for z € C, Rez = 1 and v € C Sw(v) the
following operator

ast — oo,

Aij(@Dv(w) Z=/ /tz*lkij (o, )v (o) do'dt, wey,
¥

+

is pointwise well defined.
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Next, for each corner e; of y we choose ¢ € Cﬁow(y) such that 0 < ¢ < 1 and ¢y is
supported in a small neighborhood of e; which does not contain any other corner of . We set

A (2) = Z P Aij @ and Al (2) 1= Aij(x) — AN (@) .

1<k=M

The effect of the functions ¢y, reflects in the properties of the kernel 12,- it o, @) of the operator
Al.lj (w and o' are far from each other). More specifically,

Ailj (Dv(w) = / Y (tw, o) v (o) do' dt
Ryxy
where the kernel function &; i € C([0,00) x y x y)is C™ on each set [0, c0) x ¥ x ¥,;. That is
Ailj(z)v(w) = f K (z; 0, 0) v () do',
14

with €7 (z; w, ') := [ *71k (¢, w, ») dt. For any z € C with Rez = 1 we have
0

t
<C M—=

z—17ij ’
Y (1, o, o) T TR

uniformly with respect to @ and ', where C (i1, A) is a positive constant depending only on the Lamé
moduli . and A. This easily implies that [k (z; w, @')| < C for some C > 0 independent of @ and
o' forall z € C,Rez = 1. Since the polygon y is compact, this in turn will imply that for Rez = 1
the operator Ailj (z) is Hilbert—Schmidt and therefore compact.

Next, let us consider the operator A?j (z) in a neighborhood of the corner e; = 71 N ¥2. Let
¢’ = x1¢1 and ¢” = x2¢1, where yx; is the characteristic function of 3¢, £ = 1, 2. Then the operator

Bij(z) == ¢" Aij ()¢
takes the form

Bij (z)v(s) =/ 1" (5) /SO ki (t,w, &) ¢ (s)v (s') ds’dt, s €(0,50) .
0 0

We can assume, without loss of generality, that e; is the north pole of 52 and that y; lies in
the x — z plane. If we denote by « the interior angle of the spherical polygon at ¢; and we consider
w € y2, @ € y; parameterized by the arc lengths from eq, then

ny =(0,—1,0), o =(sins’,0,cos5’), w = (sinscosa,sinssina, coss) .
Letb:=n, -wanda = @ o'. We have
b= —sinasins and a = cosscoss’ + cosw sins sins’ .
In the new notation we have in the elastostatic case
B;ii(z)v(s) =

#"(s) /oo /SO - é(gij b N [)b(tw,- —o))(tw; — a);.)
2 Jo Jo (t2 = 2at + 1)3/2 (12 - 2at + 1)5/2

jl &' (Hv(syds dt

where C and D are given by

- -2 - 3
C = a and D:=—M+3}L.
3+ A 3u+ A
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In the hydrostatic case

)qb’(s/)v(s/) ds'dt .

" b tw; —
By (@(s) = 3¢ (s)/ /‘ (w o) (tw; —

— 2at + 1)3/2
Using that rw; — o} and rw; — a); are the ith and jth components of the vector tw — o’ with magnitude

(? = 2at + )2, we get |(twl- — o)) (tw, < L0 4802 = 2ar +1). Forz = 1 +1i¢,
£ € R, sp sufficiently small and s € (0, sp), we obtain

, 1 %0 * 4 / ’
}Bij(1+l§)v(S)‘ =< ‘2;/0 |b|/0 mij—~——-————(12_2at+l)3/2 dt |v(s")|ds", 4.7
where m;; 1= 21813 3(}1:2’ ) in the elastostatic case and m;; = %(1 + §;;) in the hydrostatic
case. Notice
/ [ A f JRR S 4.8)
= a = . .
0 (ZZ—ZGZ+1)3/2 0 (t2—2at+1)3/2 1—a

For the last equality in (4.8) we have used that

<

(cf., e.g., [11, p. 296]). Using (4.8) in (4.7) gives

|Bi; (1 +i&)v(s)| < m,]fo i lv(s))| ds’
0 1—a
That is

|Bij (1 +i&)v(s)|
1 5o sin s| sin o} , ,
< ——m,J/ lv(s)| ds" . 4.9)
0

- 2n 1 —cosscoss’ — cosu sin s sin s’

246’
14672’

Let us make the change of variables 6 = tan(3), §' = tan(%). Then we have ds’ =

sins = 9—52%, coss = é{—ﬁi, and similar identities for s’ and #’. Substituting this in (4.9) leads to
1By (1 +igw@)| < 1 /60 0| sin c| vy do’
y i&v < —my;
Y 7 o 62462206 cosa
: /90 g—,lSina' lv@©’ )! (4.10)
= __mij 5 .
T 0 (g;)z—}— 1-2% cosa 9/

where 6y = tan(fzg) and 6 € (0, 6p). The right-hand side of (4.10) is a Mellin convolution operator
with kernel
x| sine|

1
k” .
) = 7T Toy cos(m —a) + 1

By Proposition 4 the norm of this operator on the space L%(0, 6o) is equal to the absolute value of
the Mellin transform of the kernel evaluated at Re 7z = 1/2.



Spectral Radius Properties for Layer Potentials 407

For any function f defined on the interval (0, co) we have that M (xf(x))(z2) = M(f)(z+1).
Therefore,

~ ij, . 1
M(ktqj)(z) = —n;—flsmozl/\/l (x2+2xcos(rr—o¢)+l)(z+1)
_ - | sin ¢ (—zysin[(1 = )(r — a)]]
= [sin(n —) m sin(rr-) (+1)
_ ”| sin «| ~1) sin(z(wr — a))
= M M sin(mz) @11

where the second equality in (4.11)holds for0 < Rez < 2and —n < o < 7 (see,e.g., [11, p. 297]).
This implies

. (4
1B (1 + z&)Hﬁ(Lz(y)) < mij ‘cos (—2—)‘ = Uij ,
and completes the proof. U

With all the ingredients in place, we are ready to present the argument which gives the Fredholm
property for the operators 81 — K. , and 81 — Ks ;.
Theorem 5.

Let T be the boundary of an infinite polyhedral Lipschitz cone with all its dihedral angles o

satisfying the condition (4.1). Then the operator BI — K ,, is Fredholm with index zero on (Lz(l"))3
forany 8 €C, |B] = 1.
Also, if all dihedral angles a satisfy the condition (4.2), then the operator BI — Kg ; is

Fredholm with index zero on (LZ(F))3for any B e C, |8 = 1.

Proof. Letz € CbesuchthatRe z = 1. Asaconsequence of Corollary 2 we have that 87— A(z) €
c ((LZ(V))3) is Fredholm with index zero. This easily implies that Id ® (8 — A(z)) is Fredholm
with index zero on (LZ(Rez = 1) ® Lz(y))3.

A functional analysis argument (cf., e.g., [5]) guarantees the equivalence between the Fredholm

property of the operator and the existence of a Banach space ¥, a compact map T : (L?(Rez =
1) ® L%(y))® — Y, and C > 0 such that

If®gl =Clld® Bl — AN DI+ IT(f @), (4.12)

forany f ® g € (L2(Rez = 1) ® L())>.
A limiting argument based on (4.12), in the sense of (L2(Rez = D®L2(y))?, yields

2l = CIBI — A@)RIl + I TAIl,

uniformly for# € (L?(Rez = 1)®L2(y))>. This implies that 87 — A(z) is Fredholmon (L*(Re z =
D&L2(y))>. By Proposition 4, since M, I is an isomorphism, we get that 81 — K £, p is Fredholm on
(L2(I"))? under the condition (4.1) and 81 — K s, ; is Fredholm on (L2(I"))” under the condition (4.2).
Since the index is constant on connected components in the space of Fredholm operators and g7 —
K,pand BI — K ; are invertible for | 8| large, the desired conclusion follows. L]
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