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ABSTRACT. We are interested in finding necessary and sufficient conditions for irregular sampling to hold. 
We shall show that the inverse spectral problem can be used to construct sampling type theorems from the 

knowledge of  the sampling points only. This improves Kramer' s theorem as it reveals all possible distributions 

of  the sampling points together with a construction of  the sampling functions. 

1. Introduct ion 

We are concerned with sampling type theorems in Paley-Wiener spaces and are particularly 
interested in unifying the different existing approaches, see [2, 4, 8, 13]. In this paper we would like 
to show that irregular sampling formulae can be viewed as an interpolation generated by an inverse 
transform, whenever a certain inverse spectral problem can be solved. In general, we are given the set 
{/-tn, Sn(/Z)} and the issue is to recover a unique function F from its values {F(/zn)} by a sampling 
expansion formula 

f ( /z)  = E f (/Xn) Sn (/z) �9 
n>0 

the Sinc functions, the set In, sinzr(tx--n) Jr(g--n) } defines a well-known example of regular sampling Using 

for band limited functions. Kramer pointed out (see [4]) that Sturm-Liouville systems with discrete 
spectra generate sampling type theorems where the sampling points /Xn are precisely the eigenvalues 
of a self-adjoint operator defined by 

- (p(x)y ' (x ,  IZ))' + q(x)y(x ,  IZ) = I~W(x)y(x, IX) where 0 < x < b (1.1) 

together with appropriate boundary conditions. The main drawback of this interesting result lies in 
the fact that the sampling points, that is the eigenvalues, are not explicitly known. Given (1.1) one 
could approximate few eigenvalues and their eigenfnnctions, but that is not very practical. A similar 
problem described in [12] questions whether the set { - a n  + b, an + d}n>_O, where a, b, and d are 
positive real numbers, can be a sampling sequence. 
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It is clear that in practice one is given a sequence of values {F(txn)}n>_O, where the tZn can 
be randomly distributed, and is asked to recover uniquely the original function. Indeed one can- 
not always choose the sampling points tzn while an experiment is in progress and in general data 
processing involves the rejection or loss of some of  the values before the recovery process can take 
place. In other words, t~n are not necessarily uniformly spaced or integers. This leads us to address 
the following problem: 

Statement of the problem 
Given a sequence of real numbers {/xn }n_>0, can we find a space containing a sequence { Sn (/x)}n>_0 
such that the values {F(/zn)}n> 0 define a unique function by the following sampling expansion 
formula, 

V(tz) = Z F (tZn) Sn(l~) ? 
n>_O 

Thus, as stated, we are dealing with an inverse problem where we need to construct {Sn (/z)}~>0 from 
the given sequence {tZn}n_>0. The main tool shall be the inverse spectral problem which has been 
pioneered by Gelfand and Levitan, and Krein. For the sake of  simplicity, we shall restrict ourselves 
to the Gelfand-Levitan theory, see [3, 6, 7]. 

2. The Inverse Spectral Problem 

Let {/xn}n>_0 and {an}n_>0 be two given sequences such that/~2 are distinct and an > O. We 

are then asked to find a real function q 6 LI(0,  Jr) and two real constants h and H such that the 
self-adjoint operator 

{ - S ( x ,  IZ) + q(x)y(x ,  It) = IzZy(x,/z) 0 < x < Jr (2.1) 

j (O,  #) - hy(O, tz) = O, y(Jr, #) § Hy(Jr, Iz) = 0 

has a discrete spectrum defined by { tz 2 }, and the corresponding eigenfunctions satisfy 

f0 [ly (x, lzn)t 12 :=  [y (x, lzn)12 dx = a n  . 

For each x E [0, Jr], the solution y(x,  .) satisfying the initial conditions 

y ( 0 , / z ) =  1 and y ' ( 0 , / ~ ) = h ,  

is an entire function in/z, and the eigenvalues of (2.1) are then the simple zeroes of 

y'(zr, tx) + Hy(Jr, tz) = O . 

The Gelfand-Levitan theory is based on the fact that solutions y (x,/x) can be expressed in terms of 
cos(/zx), see [7], 

fox y(x, /x)  = cos(/zx) + K(x,  t) cos(t~t)dt 0 < x < zr (2.2) 

and conversely 

L 
X 

cos(/zx) = y(x,  lz) + H(x ,  t)y(t,  tz)dt 0 < x < Jr (2.3) 

where the smoothness of  the kernels K and H depends on the smoothness of  the potential q only. 
Let us agree to denote transforms 

L f; S c ( f ) ( t )  :=  f ( t ) cos ( I z t )d#  5ry(f)(/x) :=  f ( x ) y ( x ,  Ix)dx 
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where 5Cc and ~'y are the cosine transform and y-transform, respectively, and the Paley-Wiener space 
of even functions 

[ f ( / x )  entire: F ( - / x )  = FOx), p W  e 
t 

where 

LP(a, b) := { f  measurable and 

IF(/x)[ < M e  ~l lmgl  F E L2(R)} 

fab[f(x)lPdx < ~ }  �9 

Using the Gelfand-Levitan machinery, we first obtain the following. 

Proposition 1. 
Letq E Ll(0 ,  zr), then~y( f )  E p w e f o r f  E L2(0, zr). 

P r o o f .  Since q ~ L 1 (0, Jr), K has its first order derivatives locally integrable (see [6, p 22]) and 
so it follows from (2.3) that y(x, .) is entire with type rc and order 1. Obviously from (2.3) the two 
transforms are related by 

JCy(f)(IZ)=flrc(f)(Iz)+ f l rC( fxrCK(t ,x) f ( t )d t ) ( t z ) .  

Thus, if f E L2x(0, Jr), then yry(f) is entire of order one, type Jr, and even. Together Parseval 
equality 

f? I•c(f)(IZ)12 dlz -- -~ ]f(x)[2 dx < oo 

and 

imply that 

f o ~ 1 7 6  = -- K ( t , x ) f ( t ) d t  dx 
2 

 f/f/ < -- Ig(x,t)12dtdx [[fll 2 
- 2 

f _ ~  l~y(f)(tz)12dlz < 
O0 

and therefore we deduce that .f 'y ( f )  6 P W e. [ ]  

We now recall the main ingredients needed for the existence and construction of the function q. 
The Gelfand-Levitan-Gasymov theory is based on the solution of the following Fredholm integral 
equation (see [6]): 

fo x P(x,  t) + K(x,  t) + K(x, s)F(s,  t)ds = 0 

where 

1 ln~>l[cos ( I znX)  COS(t~nt ) I '(x,  t) = - -  cos (/x0x) cos (/z0t) - -- + - -- 
(3/0 Jr O/n 

0 < t < x (2.4) 

2 cos(nx) cos(nt)]  
Jr 

is given. 
once (2.4) is solved, 

h 

q(x) 

H 

The function q(x), and boundary conditions needed to form (2.1), are obtained from K 

- -  K(O, O) 

= 2 j ~ K ( x ,  x) 

= Jry - K(jr, Jr) 
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where the constant ), :--- lim n (/x~ - n) depends only on the behavior of #n at infinity. 
n ---~ o o  

Propos i t ion  2 ( G e l f a n d - L e v i t a n - G a s y m o v ) .  
The sequences { IZn , } and {an} are the spectral characteristic of(2.1) with q (m ) ~ LI(0,  rr) i f  

and only if  

[~2 n are distinct, otn > O, 
(1) 

lzn = n + g__ + o etn = + o as n --+ ec (2.5) 
n 

and the function [" has integrable derivatives up to the order m + 1. 

The strength of the above proposition lies in the fact that (2.5) is both a necessary and a 
sufficient condition for the existence of a potential q, with m > 0, to form the regular Sturm-Liouville 
problem (2.1). It is interesting to observe that the distribution of the sampling points is arbitrary 
except as/z ~ ec, which is totally different from the Kadec condition, namely I/zn - nl < 1, which 
ensures the completeness of sequence {exp(itznx)}, see [11]. A finite number of points/zn can be 
negative, as long as the eigenvalues/z 2 are all distinct. 

3. I n t e r p o l a t i o n  

Basically we shall be given two sequences {/Zn}n>_0 and {C~n}n_>0 satisfying (2.5), where 
#n represent the sampling points. Hence, we are guaranteed the existence of a certain regular 

/z 2 Sturm-Liouville problem on [0, 7r ], defined by (2.1), with spectrum { n } n >_0 and I I Y (x,/xn) 112 = c~n. 
We now briefly recall the main points used in Kramer's theorem (see [4]). Given a sequence 

{an}n_>0, such that 

lan 12 

n~>0 - < (x),  r 

we can construct, using the inverse y - t rans form associated with the Sturm-Liouville problem (2.1), 
an element f 6 L2(0, rr) 

f ( x )  := ~ a n y  (x, Izn) �9 
n>O Oln 

Now take the y - t r ans fo rm of f to obtain an even entire function of/x, 

~ Tr 

FOx) : - - -  f ( x ) y ( x ,  tz)dx . 

From Proposition 1, we have that F E P W e, and 

F(I-~) := fOZr n~>O an y (x' lxn) y (x '  lx)dx 

The functions y (x,/z) being locally bounded 

ly(x, /z)[ < [1 + sup 
0<x<zr 

/o x 1 [K(x,  t)L dt sup lexp(x Ilzl)[ 
/x6D 

for / ~ D  

leads to a simple result. 
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Proposition 3 .  
an Assume that {tZn, an}n>_O satisfy (2.5) and let f (x) := ~n>_O ~ y(x, IZn) with ~n>_ O [an [ < 

and F be its y-transform. Then F is an entire function defined by 

F(#)  := E F (#n) Sn (/t) 
n_>O 

1 f o  y(x, IZn)y(x, Iz)dx. where F(#n)  = an and Sn(IZ) = ~-~ 

Proof. 

and so 

(3.1) 

The absolute convergence of the series ~ an implies the uniform convergence of the series 

n~>o~nY(X'IZn) y(x ' Iz)  

F(#)  = f ( x )  y(x, Ix)dx 

fo~>o an = - - y  (x, IZn) y(x, tz)dx 
Ol n 

= - -  y (x, IZn) y(x, t z )dx .  
Ol n 

The equality F(#k)  = ak is readily verified from the fact that eigenfunctions {y(x, #n)} are orthog- 
onal 

1 fo ~ (X, lXj)dx a(n , j )  - -  y ( x ,  t~n) y = 
Cln 

and so the result. 
The absolute convergence of the series ~ an is only a sufficient condition but not necessary. 

Using the fact that the mapping 

f? Iz --+ [y(x, /Z)l 2 dx 

is locally bounded, one can prove the sampling expansion [5], which leads us to the following result. 
[] 

Proposition 4. 
Let tZn and Oen satisfy (2.5), then for any F ~ P W e, we have 

g(Iz) = E F (lZn) ~s.(u) . 
n>O 

Proof .  We only need to show that the space [4] 

{ f0 } K := F entire : FOx) = f ( x ) y ( x ,  tx)dx where f ~ L2(0, re) 

coincides with P W e . We already have that K C P W e by Proposition 1. Conversely, if F 6 P W e, 
then by the classical Paley-Wiener theorem we can write 

f0 F(tz) = ~(x )  cos(xtx)dx where ~ 6 L2(0, re). 
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Using the transformation operator (2.3) we obtain 

F(Iz) = ~ ( x )  cos(xlz)dx 

,C = gr(x) [1 + H] y(x ,  # ) d x  

= [1 + H]* ~P(x) y(x,  # ) d x .  

Since [1 + H]* ~(x)  ~ L2(0, ~), it follows that F c K. The rest is a consequence of Proposition 3. 
[]  

Looking at {/~n}n>_0 as a perturbation of {n}n> 0, we can estimate the deviation of Sn from the 
well-known Shannon sampling sequence Sn by 

S. (1.) = - -  y(t,  # ) y  (t, #~)d t  
Ol n 

-- (1 + K) cos(/zt) (1 + K) cos (/Xnt) dt 
fin 

1 f; (1 § K*) (1 + K) cos(/zt) cos (lznt) dt  
0/n 
1 L ~ r  l L ~ r  

= - -  COS(/Zt) COS (IZnt) d t +  - -  [(K* + K + K ' K )  COS(/Zt)] cos (tXnt) dt  
Oln ~n 

1 f; 7r 
-- Sn(tz) + - -  [(K* + K + K * K )  cos(txt)]cos(IXnt)dt (3.2) 

2Otn ot n 

where K f ( x )  := fo v K(x ,  t ) f ( t ) d t ,  K ' f  (x) := J~x K( t ,  x ) f ( t ) d t  and 

sin [st (it + tZn)] sin [7r (/.t -b tn) ]  
Sn (lz) = + 

[re (~ +/xn)] [Jr (tz - tzn)] 

Using the nonlinear equation (see [1] and [7]), we have 

F = K* + K + K K *  (3.3) 

from which follows that (3.2) can be rewritten as 

,r l j ~  ~ 
Sn(/-t) - ~ n  Sn(/*) = --etn [(F + K * K  - K K * )  cos (b~nt)] c o s ( # t ) d t .  (3.4) 

If the kernel F e C (m), then it also follows that K, K* E C (m) (see [6, lemma 1.3.1]). Thus, we 
have [(I" + K * K  - K K * )  cos(#nt)] 6 C (m) and the Lebesgue-Riemann theorem we obtain the 
following. 

Propos i t ion  5. 
Assume that I~n and O~n satisfy (2.5) and I ~ e C (rn), then we have the following estimates: 

- T r S  2 _ [ i l f~ (sn ~ n)(~) d.<(~)21211KII+IIKIt2] 2, 
[ii] ~3~(1~) - ~ n(tz) = o as IX --+ -boo, and 

[ i i i ]  Sn( l~) -  " S ( l ~  as n--+ oo. .(~) =o -Z. 
\ 7  
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P r o o f .  [i] follows from Parseval equality applied to (3.2) 

oo Jr S Jr Jr f0 
~r I I . ~Jr ICOS(ixnt)[ 2 dt  

-< ~ K*+K+K*K 2 

< _ I I K * + K + K * K I I  2 
- 2 

-< ~ 7. (llK*rl+lIKll+llg*gll) 2 

1( )2 
< - ( 2 ] I K I I +  K*KII)  2 
- 2 ~ n  

[ii] is proved by applying the Riemann-Lebesgue theorem to (K* + K + K ' K )  cos(/znt), 
which is C (m) and similarly [iii] is proved by applying the Riemann-Lebesgue theorem to 
(K* + K § K ' K ) *  cos(/zt), which is also C (m). [] 

The upper bound which involves [[ K I I : =  ~ / f o  f o  [K (x, t) l 2 dxd t  can be estimated in terms 

of q only (see [10]), and we can also bring in the sampling points by using the function P as done 
in (3.4). 
We now show that Sn is independent of  {an} if the points {ixn}n>0 are fixed. To this end, denote by 
ql and q2 two potentials corresponding to two different choices of  an and let 

an (IX) = ,5(1) (IX) - -  S (2) (IX) 

1 where S(~ i) (IX) = ~ f o  yi (x, IX)yi (x, IXn)dx, i = 1, 2. Clearly an (IX) E P W e and 

an (l&) = 0 k = O, 1,2 .... 

so the inverse y(1)_transform of an is the zero function for t ~ (0, Jr). Thus, we deduce that 

an (IX) = 0 and so Sn (1) (IX) = S (2) (IX), i.e., the sampling functions are independent of the choice of  
O/n . 

Propos i t ion  6. 

The functions {Sn L_>0 depend on the sequence {IXn} only. 

We shall see that in the particular case where IXn = n, otn = -~, for n = 0, 1, .., then the 
inverse spectral method yields the classical Shannon sampling theorem. Indeed if 1" = 0, then we 
have from (2.4) K = 0, and it follows from (3.4) that 

IXn = n > Sn (#) _ sin[Jr(ix + n)] + sin[Jr(ix - n)] 
D(IX + n)] [Jr(IX - n)] 

4. F r a m e s  

} is a frame in P W e. We recall that We now ask whether the newly obtained system Sn n_>O 

Sn (IX) is a frame if 

I' ll2- Z 
n>_0 

VF ~ P W  e (4.1) 
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where - o c  < A < B < ~ and the inner product is defined by 

It is readily seen that from (2.2) follows 

.Ty ( f ) (tz ) f0 Jr = f(t)y(t,  Ix)dt 

fo = f(t)  (1 + K) cos(t/A)dt 

= f f  (a + K*) f(t) cos(t/A)dt 

= Sc ((1 + K*) i(t)) ( . ) .  

where 

gf (x )  --- K(x, t)f(t)dt and K ' f  (x) = K(t, x ) f ( t )d t .  

By Proposition 4 F ~ P W~ means that F = 5cy ( f )  and thus Parseval equality leads 

( ) f_~  1 F, S/7 = . ~ y ( f ( t ) ) ( / A ) - - ~ y  (y  ( t , /An)  ) (~)dtJ,  
oo ol/7 

f7 _ 2 .Tc ((1 + K*)  f(t)) (tz) 5c ((1 + K*)  y (t, /An)) ( /A)d# 
0/,/7 

_ 7r (1 + K*)  f(t) (1 + K*) y (t,/A/7) dt 
0In 

= - -  (1 + K) (1 + K*) f ( t )y  (t, ~An) dt 
~n 

= - -  [1 + F] f(t) y (t,/A/7) dt 
fi'n 
7~ 

-- f y  ([1 + F] f )  (/An) �9 
O/n 

Thus, we have 

E (F '  Sn) 2 
n->0 

= ~  E /TY([I+FIf)(/A/7) 
n>0 

We recall that Parseval equality associated with the y-transform yields 

1 15y ([1 + F] f )  (/An)] 2 H(1 + F) fll 2 = ~ oe--~ 
n_>O 

and so from (4.2) and (4.3) we have 

7r( inf~n)  I I ( I + F ) f H 2 < E  (F'~n) 2 ( ~n) _ _< rc sup [1(1 -1- F) fll 2 . 
n_>O 

On the other hand, if F 6 P W e, then we obtain from the nonlinear equation (3.3) 

IF(#)[2d/A = 2 IF(/A){2d/A 
o~ 

(4.2) 

(4.3) 

(4.4) 
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= 2 f0 o~ 15Cc [(1 + K*) f ( # ) ] l  2 d/z 

= - f0 I(1 + x*)  i ( , ) l  2 d, 

= zr f0 ~r (1 + K) (1 + K*) f(t) f(t)dt 

= 7r fo 3r [(1 + F) f ( t ) ]  f(t)dt. 

The Cauchy-Schwartz inequality then yields 

Recall that since K is a Volterra operator, the inverse of 1 -4- K exists 

1 + H = (1 + K)  -1 

where H is also a Volterra operator. Thus it follows that 

(1 + r )  -1 = [(1 + K) (1 + K*)] -1 

= (1 + K*) -1 (1 + K) -1 

= [(1 + K ) - I ] * ( 1  + K) -1 

= [ 1 +  H]* [1 + H] 

which implies that 

and so (4.7) reduces to 

(1 + r )  < -< 1111 -4- H]* [1 + H][I 

_< II1+ nil 2 

1 f ~ o  IF(/z)12d/z< II (1 + F) f[[ 2 
~r II1 + H I [  2 oo - " 

Similarly using (4.5) we obtain 

I[ (1 + F) fll 2 I1(1 + K)(1 + K*)/ /I  2 

_ I1(1 + K)il 21[(1 + K*) fl l  2 

' /L _< -I1(1 + g)l[ 2 [F(/z)12d/x 
7r 

Using (4.8) and (4.9), we can recast (4.4) into 

1 f~_~cx~lF(tz)12d# ( ) 2  1 f 2  
< Z F, Sn <Zrinfc~n I I ( l+g)l l  2 If(~)I2d/z J r sup% I [ ( l + g ) l l  2 - - - -  " 

n.>O 

If we further use the fact that F is even and assume that an = -}, then 

4 f o  [F(/x)]2 d/z ( ) 2  fo cr < Z F, Sn < 4 I1(1 + g)]l 2 IF(#)12d/z 
[l(1 + n)[I 2 - - n.>O 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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} will form an exact frame. To this end let us remove an element S j, It remains to show that Sn n>0 

say where j >_ O, and show that the remaining elements will not form a frame. If we consider f 
defined by 

f ( x )  := (1 + F)- ly  (x,/xj) 

and let FOx) := .Ty(f)(tz), then it follows 

yg 
-- --Yy((1 + F) f )  (ttn) 

an  

- -  7C T ' y ( y ( x ,  l z j ) ) ( iZn)  
an 
y( 

- -  - - 3 ( j , n )  . 
an 

Therefore, 

whereas 

E (F, Sn)  2 =  E a(j, n ) = 0  
n>_O,n•j n>O,n#j 

[[F]I 2 = (1 + F)- ly  (x,/xj) 2 }& 0 .  

} is not frame and have proved the following. Hence, the set Sn n#j a so we 

Proposition 7 .  

Assume that the sequences {tZn } and {an } satisfy condition (2.5), then Sn will form an exact 
frame in P W e. 
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