Volume 5, Issue 4, 1999

On the Sampling Theorem for Wavelet Subspaees

Xingwei Zhou and Wenchang Sun

Communicated by A.J.E.M. Janssen

ABSTRACT In [13], Walter extended the classical Shannon sampling theorem to some wavelet subspaces. For any closed subspace V_0 *of* $L^2(\mathbf{R})$ *, we present a necessary and sufficient condition under which there is a sampling expansion for every* $f \in V_0$ *. Several examples are given.*

1. Introduction and Main Results

The classical Shannon sampling theorem says that for each $f \in PW_\pi := \{f \in L^2(\mathbf{R}) :$ supp $\hat{f} \subset [-\pi, \pi]$,

$$
f(x) = \sum_{n = -\infty}^{+\infty} f(n) \frac{\sin \pi (x - n)}{\pi (x - n)},
$$
\n(1.1)

where the convergence is both in $L^2(\mathbf{R})$ and uniform on **R**.

In [13], Walter extended the Shannon sampling theorem to wavelet subspaces and proved the following result:

Proposition 1.

Suppose that $\varphi(t)$ is a real continuous scaling function such that $\varphi(t) = O(|t|^{-1-\epsilon})$ and

$$
\hat{\varphi^*}(\omega) = \sum_n \varphi(n) e^{-in\omega} \neq 0, \quad \omega \in \mathbf{R} \,. \tag{1.2}
$$

Let $V_0 = \sum_n c_n \varphi(t - n)$: $\{c_n\} \in \ell^2$. Then there is an $S \in V_0$ such that for any $f \in V_0$, $f(t) =$ $\sum_{n} f(n)S(t - n)$, where the convergence is both in $L^{2}(\mathbf{R})$ and uniform on **R**.

In [9], Janssen considered the shifted sampling and the corresponding aliasing error by means of Zak transform.

For convenience, we say that the sampling theorem holds on $V_0 \text{ }\subset L^2(\mathbf{R})$ if there exists ${g(-n) : n \in \mathbb{Z}} \subset V_0$ such that for any $f \in V_0$, $f(x) = \sum_k f(k)g(x-k)$, where the convergence

Math Subject Classifications. 42C 15.

Keywords and Phrases. sampling, wavelet, frames.

Acknowledgements and Notes. This work was supported by the National Natural Science Foundation of China (Grant No. 16971047).

^{9 1999} Birkhfiuser Boston. All rights reserved ISSN 1069-5869

is both in $L^2(\mathbf{R})$ and pointwise on **R**. In sampling theory, it is natural to add the condition $V_0 \subset C(\mathbf{R})$. For example, $PW_\pi \subset C(\mathbf{R})$ in Shannon sampling theorem and $V_0 \subset C(\mathbf{R})$ in Proposition 1. But Shannon wavelet $\varphi(t) = \frac{\sin t}{\pi t}$ does not decay as fast as $|t|^{-1-\epsilon}$, so Proposition 1 is not applicable to this wavelet subspace although (1.1) holds.

In this paper we characterize the closed subspace $V_0 \subset L^2(\mathbf{R})$ on which the sampling theorem holds.

Notations.

 $l^2 = \{c_k : \sum_{k=-\infty}^{+\infty} |c_k|^2 < \infty.\}.$ \sum_{n} stands for summation over all $n \in \mathbb{Z}$. $C(\mathbf{R})$ is the space of continuous function. $AC_{loc} = \{f \in C(\mathbf{R}) : f \text{ is locally absolutely continuous.}\}.$ $L^2[-\pi, \pi] = \{f : f \text{ is } 2\pi$ -periodic and square integrable on $[-\pi, \pi]\}.$ $G_f(\omega) = \sum_k |\hat{f}(\omega + 2k\pi)|^2$, where $\hat{f}(\omega) = \int_R f(x)e^{-ix\omega} dx$. It is easy to see that G_f is defined only a.e. $E_f = \{\omega \in \mathbf{R} : G_f(\omega) > 0\}, \forall f \in L^2(\mathbf{R}).$

 χ_E is the characteristic function of the set E. V_0 is a closed subspace of $L^2(\mathbf{R})$.

As we know, a family of functions $\{\varphi_i : j \in J\}$ in a Hilbert space H is called a frame if there exist $A > 0$, $B < \infty$ so that, for all $f \in \mathcal{H}$,

$$
A\|f\|^2 \leq \sum_{j\in J} |< f, \varphi_j >|^2 \leq B\|f\|^2.
$$

The constants A, B are called frame bounds. If $A = B$, then we call the frame a tight frame. For the details on frames and dual frames, see [7, p. 56-60].

Our main results are as follows.

Theorem 1.

Let V_0 *be a closed subspace of* $L^2(\mathbf{R})$ *and* $\{\varphi(\cdot - n) : n \in \mathbf{Z}\}\)$ *is a frame for* V_0 *. Then the following two assertions are equivalent:*

(i) $\sum_{k} c_k \varphi(x - k)$ converges pointwise to a continuous function for any $\{c_k\} \in \ell^2$ and there *is a frame* $\{S(-n)\}$ *for* V_0 *such that*

$$
f(x) = \sum_{k} f(k)S(x - k), \quad \forall f \in V_0,
$$
\n(1.3)

where the convergence is both in $L^2(\mathbf{R})$ *and uniform on* **R**.

(ii) $\varphi \in C(\mathbf{R}), \sum_{k} |\varphi(x - k)|^2$ *is bounded on* **R** and

$$
A\chi_{E_{\varphi}}(\omega) \le |\Phi(\omega)| \le B\chi_{E_{\varphi}}(\omega), \text{ a.e.}
$$
\n(1.4)

for some constants A, B > O, where

$$
\Phi(\omega) = \sum_{k} \varphi(k) e^{-ik\omega} . \qquad (1.5)
$$

Theorem 2.

Let $\{\varphi(\cdot - k)\}\$ *be a frame for* V_0 . Suppose that $\varphi \in AC_{loc}$ and $\varphi' \in L^2(\mathbf{R})$. Let $\Phi(\omega)$ *be defined as in (1.5) and satisfy (1.4). Then the first item of Theorem 1 holds. Moreover; for any* $f \in V_0$,

$$
f'(t) = \sum_{k} f(k)S'(t - k), \quad \text{a.e.} \tag{1.6}
$$

2. Proof of Theorems

Lemma 1.

Suppose $\varphi \in L^2(\mathbf{R})$. *The following two assertions are equivalent.*

- (i) *For any* $\{c_k\} \in \ell^2$, $\sum_k c_k \varphi(x k)$ converges pointwise to a continuous function.
- (ii) $\varphi \in C(\mathbf{R})$ and sup $\sum_k |\varphi(x k)|^2 < +\infty$ x

Proof. (i) \Rightarrow (ii): It is easy to see that $\varphi \in C(\mathbf{R})$. For each $x \in \mathbf{R}$, since $\sum_{k} c_k \varphi(x - k)$ is convergent for each $\{c_k\} \in \ell^2$, it is easy to see that $\sum_k |\varphi(x - k)|^2 < +\infty$. For each $x \in [0, 1]$, define

$$
\Lambda_x c = \sum_k c_k \varphi(x - k), \qquad \forall c = \{c_k\} \in \ell^2.
$$

Then Λ_x is a bounded linear functional on l^2 with the norm $\|\Lambda_x\| = (\sum_k |\varphi(x-k)|^2)^{1/2}$. For any ${c_k} \in {\ell^2}$, define $f(t) = \sum_k c_k \varphi(t - k)$. Since $f(t)$ is continuous on **R**, we have

$$
\sup_{x \in [0,1]} |\Lambda_x c| = \sup_{x \in [0,1]} |f(x)| < +\infty.
$$

By the Banach-Steinhaus theorem [12], sup $\|\Lambda_x\| < +\infty$, i.e., $\sum_k |\varphi(x - k)|^2$ is bounded on **R**. $x \in [0,1]$

(ii) \Rightarrow (i): By the Cauchy inequality, $\sum_{k} c_k \varphi(x - k)$ is convergent uniformly on **R**, so the limit function is continuous.

For any ${c_k} \in \ell^2$, define its Fourier transform as $\sum_k c_k e^{-ik\omega}$. The following lemma is easy to prove.

Lemma 2.

Suppose that ${x_k}$, ${y_k} \in \ell^2$ and $X(\omega)$, $Y(\omega)$ are their Fourier transforms, respectively. Then

$$
\sum_{n}\left|\sum_{k}x_{k}y_{n-k}\right|^{2}=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(\omega)Y(\omega)|^{2}d\omega.
$$

When one side of the above equation is finite, the Fourier transform of $x * y(n) := \sum_k x_k y_{n-k}$ *is* $X(\omega)Y(\omega)$.

Proposition 2.

([4, Theorem 3.56], [2, Theorem 2.16], and [10, Lemma 4.4.8]). *Suppose* $\varphi \in L^2(\mathbf{R})$ and ${\varphi(\cdot - n)}$ *spans the closed subspace V*₀. Then ${\varphi(\cdot - n)}$ *constitutes a frame of V*₀ with *bounds A, B if and only if* $A \chi_{E_{\varphi}}(\omega) \leq G_{\varphi}(\omega) \leq B \chi_{E_{\varphi}}(\omega)$, a.e.

Lemma 3.

Let $\{\varphi(\cdot - n)\}$ *and* $\{S(\cdot - n)\}$ *be two frames for* V_0 *. Suppose* $\varphi \in C(\mathbf{R})$ *and* $\sum_k |\varphi(x + k)|^2 \leq$ $L < +\infty$, $\forall x$. Then there exists a constant $C > 0$ such that

$$
\sum_{k} |S(x+k)|^2 \leq C \sum_{k} |\varphi(x+k)|^2.
$$

Proof. By Lemma 1, $V_0 \subset C(\mathbf{R})$. Let $S(x) = \sum_k c_k \varphi(x-k)$ for some $\{c_k\} \in \ell^2$, where the convergence is both in $L^2(\mathbf{R})$ and pointwise on **R**. Put $C(\omega) = \sum_k c_k e^{-ik\omega}$. Then $\hat{S}(\omega) = C(\omega)\hat{\varphi}(\omega)$ and $G_S(\omega) = |C(\omega)|^2 G_{\varphi}(\omega)$. By Proposition 2, $C(\omega)$ is bounded on E_{φ} , so $\tilde{C}(\omega) := C(\omega) \chi_{E_{\varphi}}(\omega)$ is bounded on $[-\pi, \pi]$. Let $\tilde{C}(\omega) = \sum_k \tilde{c}_k e^{-ik\omega}$ for some $\{\tilde{c}_k\} \in \ell^2$. Since $C(\omega)\hat{\varphi}(\omega) = \tilde{C}(\omega)\hat{\varphi}(\omega)$, we also have $S(x) = \sum_k \tilde{c}_k \varphi(x - k)$. Hence

$$
\sum_{n} |S(x+n)|^{2} = \sum_{n} \left| \sum_{k} \tilde{c}_{k} \varphi(x+n-k) \right|^{2}
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} |\tilde{C}(\omega)|^{2} \left| \sum_{n} \varphi(x+n) e^{-in\omega} \right|^{2} d\omega
$$

$$
\leq \left\| \tilde{C}(\omega) \right\|_{\infty}^{2} \sum_{n} |\varphi(x+n)|^{2} .
$$

 \Box This completes the proof.

Lemma 4.

Suppose $\{\varphi(\cdot - n)\}\$ *is a frame for* V_0 *. Let*

$$
\hat{\tilde{\varphi}}(\omega) = \begin{cases} \hat{\varphi}(\omega) / G_{\varphi}(\omega), & \omega \in E_{\varphi} \\ 0, & \omega \notin E_{\varphi} \end{cases}
$$
\n(2.1)

Then $\{\tilde{\varphi}(\cdot - n)\}$ *is a dual frame of* $\{\varphi(\cdot - n)\}.$

Proof. Let T be the associated frame operator from V_0 to ℓ^2 defined by $(Tf)_n \leq \ell f$, $\varphi(\cdot - n) >$. By [7, Proposition 3.2.3], we need only to check that the function $\tilde{\varphi}$ defined by (2.1) satisfies $T^*T\tilde{\varphi} = \varphi$. Since G_{φ} is 2π -periodic and has a positive lower bound on E_{φ} , by (2.1), $\tilde{\varphi} \in V_0$ and

$$
\langle \tilde{\varphi}, \varphi(\cdot - n) \rangle = \frac{1}{2\pi} \int_{\mathbf{R}} \hat{\tilde{\varphi}}(\omega) \, \tilde{\varphi}(\omega) e^{in\omega} d\omega = \frac{1}{2\pi} \int_{E_{\varphi}} \frac{1}{G_{\varphi}(\omega)} |\hat{\varphi}(\omega)|^2 e^{in\omega} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{E_{\varphi}}(\omega) e^{in\omega} d\omega.
$$

It follows that $\sum_{n} < \tilde{\varphi}, \varphi(\cdot - n) > e^{-in\omega} \tilde{\varphi}(\omega) = \chi_{E_{\varphi}}(\omega) \tilde{\varphi}(\omega) = \tilde{\varphi}(\omega)$. Hence, $\sum_{n} < \tilde{\varphi}, \varphi(\cdot - n)$ $n) > \varphi(\cdot - n) = \varphi$. That is, $T^*T\tilde{\varphi} = \varphi$.

Now we are ready to prove the main results.

Proof of Theorem 1. (i) \Rightarrow (ii). By Lemma 1, it suffices to show that (1.4) holds. Take $f = \varphi$, then we have

$$
\varphi = \sum_{k} \varphi(k) S(\cdot - k) .
$$

So $G_{\varphi}(\omega) = |\Phi(\omega)|^2 G_S(\omega)$. Hence, $E_{\varphi} \subset E_S$. Since both $\{S(\cdot - n)\}\$ and $\{\varphi(\cdot - n)\}\$ are frames for V_0 , by Proposition 2, there exist two constants $A, B > 0$ such that $A \leq |\Phi(\omega)| \leq B$, a.e. on E_{φ} .

Next we show that $\Phi(\omega)$ is equal to 0 almost everywhere on $[-\pi, \pi] \backslash E_{\varphi}$. Put $C(\omega) =$ $1 - \chi_{E_n}(\omega)$, then $C(\omega) \in L^2[-\pi, \pi]$. Let $C(\omega) = \sum_k c_k e^{-i k \omega}$ for some $\{c_k\} \in \ell^2$. Since $C(\omega)\hat{\varphi}(\omega) = 0, \sum_{k} c_k \varphi(x - k) = 0$ for any $x \in \mathbb{R}$. In particular, $\sum_{k} c_k \varphi(n - k) = 0$ for any $n \in \mathbb{Z}$. By Lemma 2,

$$
0 = \sum_{n} \left| \sum_{k} c_{k} \varphi(n-k) \right|^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |C(\omega)|^{2} \left| \sum_{n} \varphi(n) e^{-in\omega} \right|^{2} d\omega
$$

$$
= \frac{1}{2\pi} \int_{[-\pi,\pi] \setminus E_{\varphi}} \left| \sum_{n} \varphi(n) e^{-in\omega} \right|^{2} d\omega.
$$

Hence, $\Phi(\omega) = 0$, a.e. on $[-\pi, \pi]\backslash E_{\omega}$.

(ii)
$$
\Rightarrow
$$
(i) Let
\n
$$
\hat{S}(\omega) = \begin{cases}\n\frac{1}{\Phi(\omega)} \hat{\varphi}(\omega), & \omega \in E_{\varphi}, \\
0, & \omega \notin E_{\varphi},\n\end{cases} \qquad \hat{\hat{S}}(\omega) = \begin{cases}\n\frac{\bar{\varphi}(\omega)}{G_{\varphi}(\omega)} \hat{\varphi}(\omega), & \omega \in E_{\varphi}, \\
0, & \omega \notin E_{\varphi}.\n\end{cases}
$$
\n(2.2)

Since $G_S(\omega)$ is equal to $\frac{1}{|\Phi(\omega)|^2} G_{\varphi}(\omega)$ for $\omega \in E_{\varphi}$, and 0 for $\omega \notin E_{\varphi}$, by Proposition 2 and Lemma 4, $\{S(\cdot - n)\}\$ is a frame for some $\tilde{V}_0 \subset L^2(\mathbf{R})$ and $\{\tilde{S}(\cdot - n)\}\$ is the dual. By the definition of $S(x)$, it is easy to see that $S \in V_0$ and $\varphi \in V_0$. Hence, $V_0 = V_0$. For any $f \in V_0$, there exists $C(\omega) \in L^2[-\pi, \pi]$ such that $\hat{f}(\omega) = C(\omega)\hat{\varphi}(\omega)$. Suppose $C(\omega) = \sum_k c_k e^{-ik\omega}$, then

$$
\langle f, \tilde{S}(\cdot - n) \rangle = \frac{1}{2\pi} \int_{E_{\varphi}} C(\omega) \frac{\Phi(\omega)}{G_{\varphi}(\omega)} |\hat{\varphi}(\omega)|^2 e^{in\omega} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} C(\omega) \Phi(\omega) e^{in\omega} d\omega = \sum_{k} c_k \varphi(n - k)
$$

$$
= f(n) .
$$

Hence,

$$
f(x) = \sum_{k} < f, \, \tilde{S}(\cdot - k) > S(x - k) = \sum_{k} f(k) S(x - k) \, .
$$

By Lemma 3 and the Cauchy inequality, the above equation is also convergent uniformly on R. \Box

Proof of Theorem 2. Let S, \tilde{S} be defined as in (2.2).

To prove the first part of Theorem 2, by Theorem 1, we need only to show that $\sum_{k} |\varphi(x - k)|^2$ is bounded on **R**. Since $\varphi \in L^2(\mathbf{R}), \sum_k |\varphi(x-k)|^2 < +\infty$, a.e. Hence, $\sum_k c_k \varphi(x-k)$ is convergent a.e. on **R** for any $\{c_k\} \in \ell^2$. Suppose that $\sum_k c_k \varphi(x - k)$ is convergent for some x and $y \in (x, x + 1)$, then

$$
\int_{x}^{y} \left| \sum_{k=n}^{m} c_{k} \varphi'(t-k) \right| dt \leq \int_{x}^{y} \left(\sum_{k=n}^{m} |c_{k}|^{2} \right)^{1/2} \left(\sum_{k=n}^{m} |\varphi'(t-k)|^{2} \right)^{1/2} dt
$$

$$
\leq \left(\sum_{k=n}^{m} |c_{k}|^{2} \right)^{1/2} \sqrt{y-x} \left(\int_{x}^{y} \sum_{k=n}^{m} |\varphi'(t-k)|^{2} dt \right)^{1/2} .
$$

Since $\sum_k |\varphi'(t-k)|^2 \in L^1[x, y]$ due to $\varphi' \in L^2(\mathbf{R})$, it follows by the above inequality that $\sum_{k=-\infty}^{+\infty} c_k \varphi'(t-k)$ is convergent in $L^1[x, y]$. So

$$
\int_x^y \sum_k c_k \varphi'(t-k) dt = \sum_k \int_x^y c_k \varphi'(t-k) dt
$$

=
$$
\sum_k c_k [\varphi(y-k) - \varphi(x-k)].
$$

Hence, $\sum_k c_k \varphi(y - k)$ is convergent and $f(x) = \sum_k c_k \varphi(x - k)$ is well defined everywhere. Since ${c_k}$ is arbitrary, it is easy to see that $\sum_k |\varphi(x - k)|^2$ is bounded on **R**.

Next, let us prove (1.6). By (1.4) and (2.2) we see that there exists a 2π -periodic function $\alpha(\omega) \in L^{\infty}$ such that $\hat{S}(\omega) = \alpha(\omega)\hat{\varphi}(\omega)$. So $i\omega\hat{S}(\omega) = \alpha(\omega)\hat{\varphi}'(\omega) \in L^{2}(\mathbf{R})$. This implies $S \in AC_{loc}$ and $S'(t) \in L^2(\mathbf{R})$ ([3, Theorem 5.2]). On the other hand, by Theorem 1, for any $f \in V_0$, $f(t) = \sum_k f(k)S(t - k)$. Since $\{f(k)\} = \{ \langle f, S(-k) \rangle \} \in \ell^2$, similar to the above we can show that $\sum_{k=-\infty}^{+\infty} f(k)S'(t - k)$ is convergent a.e. on **R** and

$$
\int_x^y \sum_k f(k)S'(t-k)dt = \sum_k f(k) [S(y-k) - S(x-k)] = f(y) - f(x).
$$

By $[12, Theorem 7.11]$, this implies (1.6) .

3. Applications

 \Box

In this section we give some applications of the sampling theorem.

Example 1. Daubechies wavelets. It is easy to check that for Daubechies wavelets φ_N , ψ_N , the $\Phi(\omega)$ defined in Theorem 1 has no zero if $2 \le N \le 20$. So the sampling theorem holds on both V_0 and W_0 . \Box

Example 2. Spline wavelets. Let

$$
\hat{\varphi}_n(\omega) = \left(\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}}\right)^{n+1}, \qquad n \ge 1.
$$

For each $n \geq 1$, $\{\varphi_n(\cdot - k) : k \in \mathbb{Z}\}\$ constitutes a Riesz basis for the subspace it spans and $\Phi_n(\omega) = \sum_k \varphi_n(k) e^{-ik\omega}$ has no zero on **R** ([6, p. 89–111]).

Remark 1.

If we define $\hat{\varphi}_n(\omega) = \left[\frac{1-e^{-i\omega}}{i\omega}\right]^{n+1}$, then $\Phi_n(\pi) = 0$ for even n. By Theorem 1, there is no *sampling theorem on Vo (the case of n=2 was studied in [13]). Janssen presented an alternative approach to solve this problem. For even n, he chose* $\{\frac{1}{2} + k\}$ to be the sampling points, which is *equivalent to our choice. For details, see [9].*

Example 3. Let $E \subset \mathbb{R}$ be a bounded measurable set. Define

$$
\hat{\varphi}(\omega)=\chi_E(\omega).
$$

By Proposition 2, $\{\varphi(\cdot - k)\}$ constitutes a frame for some closed subspace $V_0 \subset L^2(\mathbf{R})$. Moreover, $\sup_x \sum_k |\varphi(x - k)|^2 < +\infty$ (see [5]) and

$$
\varphi(k) = \frac{1}{2\pi} \int_{E} e^{ik\omega} d\omega = \sum_{n} \frac{1}{2\pi} \int_{E \cap [2n\pi - \pi, 2n\pi + \pi]} e^{ik\omega} d\omega
$$

$$
= \sum_{n} \frac{1}{2\pi} \int_{(E - 2n\pi) \cap [-\pi, \pi]} e^{ik\omega} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n} \chi_{E}(\omega + 2n\pi) e^{ik\omega} d\omega.
$$

So

$$
\sum_{k} \varphi(k) e^{-ik\omega} = \sum_{n} \chi_{E}(\omega + 2n\pi).
$$

By Theorem 1, there is a sampling expansion for each $f \in V_0$. In particular, if $E = [-\pi, \pi]$, the above equation turns out to be

$$
\sum_k \varphi(k)e^{-ik\omega} = 1.
$$

Consequently, the function *S(x)* defined in (2.2) satisfies $S(x) = \varphi(x) = \frac{\sin \pi x}{\pi x}$ and $V_0 = PW_\pi :=$ ${f \in L^2$: supp $\hat{f} \subset [-\pi, \pi]$. For any $f \in V_0$,

$$
f(x) = \sum_{k} f(k)S(x - k) = \sum_{k} f(k) \frac{\sin \pi (x - k)}{\pi (x - k)}
$$

which is just the Shannon sampling theorem. \Box

Example 4. Suppose that E is a measurable set and $\{E + 2k\pi : k \in \mathbb{Z}\}\)$ constitutes a partition of R. Let

$$
\varphi(x) = \frac{1}{2\pi} \int_E e^{i\omega x} d\omega.
$$

Then $\sum_{k} |\hat{\varphi}(\omega + 2k\pi)|^2 = \sum_{k} \chi_E(\omega + 2k\pi) = 1$, a.e. Hence, $\{\varphi(\cdot - n)\}$ is an orthonormal basis for the space V_0 it spans. It is easy to see that $V_0 = \{f : \text{supp } \hat{f} \subset E\}.$

For any x , define

$$
C_x(\omega) = \sum_k e^{ix(\omega+2k\pi)} \chi_E(\omega+2k\pi).
$$

Then $C_x(\omega) \in L^2[-\pi, \pi]$ and $C_x(\omega) = e^{i\chi\omega}$ for $\omega \in E$. Let $E_k = (E - 2k\pi) \cap [-\pi, \pi]$. Then we have $\bigcup E_k = [-\pi, \pi]$ and k

$$
\varphi(x+n) = \frac{1}{2\pi} \int_{E} e^{i(x+n)\omega} d\omega = \frac{1}{2\pi} \int_{E} C_{x}(\omega) e^{in\omega} d\omega
$$

$$
= \sum_{k} \frac{1}{2\pi} \int_{E \cap [2k\pi - \pi, 2k\pi + \pi]} C_{x}(\omega) e^{in\omega} d\omega
$$

$$
= \sum_{k} \frac{1}{2\pi} \int_{E_{k}} C_{x}(\omega) e^{in\omega} d\omega
$$

$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} C_{x}(\omega) e^{in\omega} d\omega.
$$

Hence,

$$
\sum_{n} |\varphi(x+n)|^{2} = \frac{1}{2\pi} ||C_{x}(\omega)||_{L^{2}[-\pi,\pi]}^{2} = 1.
$$

On the other hand, since

$$
\varphi(n) = \frac{1}{2\pi} \int_E e^{in\omega} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{in\omega} d\omega = \delta_{n,0},
$$

by Theorem 1, the sampling theorem holds on V_0 with sampling function $S(x) = \varphi(x)$.

Remark 2.

Both the scaling function of translation invariant multiresolution [11] and the minimal supported frequency wavelet [8] satisfy the conditions of Example 4. \Box

Acknowledgment

The authors are grateful to the referees for their valuable suggestions.

References

- [1] de Boor, C., deVore, R., and Ron, A. (1994). Approximation from shift-invariant subspaces of $L^2(\mathbb{R}^2)$, *Trans. Amer. Math. Soc.,* 341,787-806.
- [2] de Boor, C., deVore, R., and Ron, A. (1994). The structure of finitely generated shift-invariant subspaces in $L^2(\mathbb{R}^2)$, *J. Func. Anal.,* 119, 37-78.

354 *Xingwei Zhou and Wenchang Sun*

- [3] Benedetto, J.J., Heil, C., and Walnut, D.F. (1995). Differentiation and the Balian-Low theorem, *J. Fourier Anal. Appl.*, 1,355-402.
- [4] Benedetto, J.J. and Walnut, D.F. (1994). Gabor frames for L^2 and related spaces, in *Wavelets: Mathematics and Applications,* Benedetto, JJ. and Frazier, M.W. Eds., CRC Press, Boca Raton, F1.
- [5] Butzer, P.L., Splettstöber, W., and Stens, R.L. (1988). The sampling theorem and linear prediction in signal analysis, *Jber. d.Dt. Math.-Verein,* 90, 1-70.
- [6] Chui, C.K. (1992). *An Introduction to Wavelets,* Academic Press, New York.
- [7] Daubechies, I. (1992). *Ten Lectures on Wavelets, SIAM,* Philadelphia.
- [8] Fang, X. and Wang, X. (1996). Construction of minimally supported frequency wavelets, *J. Fourier Anal. Appl., 2,* 315-327.
- [9] Janssen, A.J.E.M. (1993). The Zak transform and sampling theorems for wavelet subspaces, *IEEE Trans. Sig. Process.,* 41, 3360-3364.
- [10] Long, R. (1995). *Multidimensional Wavelet Analysis,* Word Publishing Corporation, Beijing.
- [11] Madych, W.R. (1992). Some elementary properties of multiresolution analysis of $L^2(\mathbb{R}^2)$, in *Wavelets, A Tutorial in Theory and Applications,* Chui, C.K., Ed., 259-294, Academic Press, New York.
- [12] Rudin, W. (1987). *Real and Complex Analysis,* McGraw-Hill, New York.
- [13] Walter, G. (1992). A sampling theorem for wavelet subspaces. *IEEE Trans. Inform. Theory,* 38, 881-884.
- [14] Young, R. (1980). An Introduction to Non-Harmonic Fourier Series, Academic Press, New York.

Received January 16, 1998 Revision received July 26, 1998

Nankai Institute of Mathematics, Nankai University, Tianjin 300071, RR. China e-mail: xwzhou @ sun.nankai.edu.cn

Nankai Institute of Mathematics, Nankai University, Tianjin 300071, ER. China