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ABSTRACT In [13], Walter extended the classical Shannon sampling theorem to some wavelet subspaces. 

For any closed subspace V 0 of  L 2 (R), we present a necessary and sufficient condition under which there is a 

sampling expansion for  every f ~ VO. Several examples are given. 

1. Introduction and Main Results 

The classical Shannon sampling theorem says that for each f ~ PWjr := { f  6 L2(R) : 
supp f C [-re, Jrl}, 

+~  sin 7r(x - n) (1.1) 
f ( x ) =  Z f (n )  r e ( x - n )  ' 

n~--OG 

where the convergence is both in L2(R) and uniform on R. 
In [13], Walter extended the Shannon sampling theorem to wavelet subspaces and proved the 

following result: 

Proposition 1. 
Suppose that qg(t) is a real continuous scaling function such that ~o(t) = O([t[ - l - e )  and 

~*(co) = Zqg(n)e-in~ # 0, co ~ R .  (1.2) 
n 

Let Vo = { ~ n  CnqV(t - n) : {Cn} e g2}. Then there is an S e Vo such thatforany f e Vo, f ( t )  = 
Y]n f (n)S(t - n), where the convergence is both in L2(R) and uniform on R. 

In [9], Janssen considered the shifted sampling and the corresponding aliasing error by means 
of Zak transform. 

For convenience, we say that the sampling theorem holds on Vo C L2(R) if there exists 
{g ( . -n )  : n ~ Z} C Vo suchthat forany f e Vo, f ( x )  = ~ k  f ( k )g (x  - k ) ,  where the convergence 
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is both in L 2 (R) and pointwise on R. In sampling theory, it is natural to add the condition V0 C C (R). 
For example, PW~r C C(R)  in Shannon sampling theorem and V0 C C(R)  in Proposition 1. But 
Shannon wavelet ~0(t) = sinzrt does not decay as fast as It] - l - e ,  so Proposition 1 is not applicable --YV- 

to this wavelet sub space although (1.1) holds. 
In this paper we characterize the closed subspace V0 C LZ(R) on which the sampling theorem 

holds. 

Notations. 
g2 _~_ {Ck : ~;--ec_oc ICkl 2 < ec.}. 
~ n  stands for summation over all n ~ Z. 
C(R)  is the space of continuous function. 
ACloc = { f  6 C(R)  : f is locally absolutely continuous.}. 
L2 [ - j r ,  7r] = { f  : f is 2 j r -per iod ic  and square integrable on [ - r r ,  Jr]}. 
af(co) = ~klf(a~ + 2kzr)l 2, where f (w)  = fR f(x)e-iX~~ It is easy to see that Gf  is 

defined only a.e. 
E f  = {o9 E R : Gf(co) > 0}, Y f  ~ L2(R). 
Xe is the characteristic function of the set E. 
Vo is a closed subspace of L 2 (R). [ ]  

As we know, a family of functions {~0j : j ~ J} in a Hilbert space 7-{ is called a frame if there 
exist A > 0, B < oo so that, for all f 6 ~ ,  

A[[fll2 -< E [< f,~oj >l 2 _ BHflt 2 . 
j6J 

The constants A, B are called frame bounds. If  A = B, then we call the frame a tight frame. For 
the details on frames and dual frames, see [7, p. 56-60]. 

Our main results are as follows. 

Theorem 1. 
Let Vo be a closed subspace of L2(R) and {~o(. - n) : n ~ Z} is a frame for Vo. Then the 

following two assertions are equivalent: 
(i) ~kckqg(x -- k) converges pointwise to a continuous function for any {ctc} ~ s and there 

is aflame {S(. - n)} for VO such that 

f ( x )  = E f ( k )S ( x  - k), V f  ~ Vo, (1.3) 
k 

where the convergence is both in LZ(R) and uniform on R. 
(ii) q9 6 C(R),  ~ k  ]q~(x -- k)[ 2 is boundedon R and 

AZE~o(w) ~ l~(oJ)l ~ BXE~(W), a.e. 

for some constants A, B > O, where 

Theorem 2. 

(1.4) 

Let {qg(. - k)} be a frame for Vo. Suppose that ~o ~ ACloc and q~ ~ L2(R). Let qb(w) 
be defined as in (1.5) and satisfy (1.4). Then the first item of Theorem 1 holds. Moreover; for any 
f 6Vo, 

f ' ( t )  = Z f (k )S ' ( t  - k), a.e. (1.6) 
k 

�9 (~o) = ~ ~0(k)e -/~'~ . (1.5) 
k 
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2. Proof  of  Theorems 

349 

Lemma 1. 
Suppose ~0 E L2(R). The following two assertions are equivalent. 
(i) For any {ck} c s ~ k  Ck~(X -- k) converges pointwise to a continuous function. 
(ii) ~v ~ C ( R ) a n d s u p ~  Iqg(x - k ) [  2 < +0r 

x 

P r o o f .  ( i )~( i i ) :  It is easy to see that q9 ~ C(R).  For each x E R, since ~-~k ck~o(x -- k) is 
convergent for each {ck} E e2, it is easy to see that ~ k  ]~o(x -- k)[ 2 < +or  For each x 6 [0, 1], 
define 

AxC = Z Ckq)(X -- k),  Vc : {Ck} E s . 

k 

Then Ax is a bounded linear functional on s with the norm ]1Ax I I = (Y2~k I q~ (x - k)12) 1/2. For any 
{c/~} ~ s define f ( t )  = Y~.k ckq)(t -- k). Since f ( t )  is continuous on R, we have 

sup IAxcl = sup [ f (x) l  < + o o .  
x~[0,1] x~[0,1] 

By the Banach-Steinhaus theorem [12], sup IlAx II < + ~ ,  i.e., ~/~ I~0(x - k)l 2 is bounded on R. 
x~[O,1] 

( i i )~( i ) :  By the Cauchy inequality, y-~ Ck~p(x -- k) is convergent uniformly on R, so the limit 
function is continuous. [ ]  

For any {ck} ~ g2, define its Fourier transform as ~ k  Ck e-ik~~ The following lemma is easy 
to prove. 

Lemma 2. 
Suppose that {Xk}, { Yk } E s and X(co), Y ( co ) are their Fourier transforms, respectively. Then 

2 

1 F Z ~_xlcYn-k = ~ 7r IX(~176176176 
n k 

When one side of  the above equation is finite, the Fourier transform of x * y(n) := ~lcXkyn_k is 
X (~o)Y(co). 

Propos i t ion  2. 
([4, Theorem 3.56], [2, Theorem 2.16], and [10, Lemma 4.4.8]). Suppose ~o ~ L2(R) and 

{q)(. - n)} spans the closed subspace 11o. Then {q)(. - n)} constitutes a frame of  Vo with bounds 
A, B if  andonly  if  AXE~(O)) < G~o(co) < Bxe~(co), a.e. 

Lemma 3. 
Let {q)(. - n)} and {S(. - n)} be two frames for  Vo. Suppose ~o ~ C(R)  and ~ k  [~p(x + k)[2 < 

L < +r 'r Then there exists a constant C > 0 such that 

IS(x + k)l 2 _ C ~ I~0(x + k)l 2 . 
k k 

P r o o f .  B y L e m m a  1, Vo C C(R).  Le tS (x )  = Y~.kckq)(x--k)forsome{c~} E s where the con- 

vergence is both in L2(R) and pointwise on R. Put C(w) = Y~.k ck e-ik~ Then 3(0)) = C(a))~b(co) 

and G s (co) = I C (o9) 12G~0 (w). By Proposition 2, C (w) is bounded on E~0, so C(co) :=  C (w)Xe~ (w) is 

bounded on [ - l r ,  re]. Let C(oa) = ~ k  cke-ikc~ for  some {Ck} 6 s Since C(co)~b(w) = C(a))~b(co), 
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we also have S(x) = ~ k  O~q)(x - k). Hence 

~ l S ( x  ---- ~n ~ ~kq)(x + n - k ) 2  

12 

= - -  o9)12 go(x + n ) e  ,n~o 

27r zr 

< C(O)) 2oc Z Iqg(x + n)[2" 
n 

This completes the proof. 

L e m m a  4.  

Suppose {~o(- - n)} is a frame for  Vo. Let 

do) 

{ ~o(o))/G~o(w), o) E E~o (2.1) 
~(o)) = 0, o) r E~ 

Then {~(. - n)} is a dual frame of {~o(. - n)}. 

P r o o f .  Let T be the associated frame operator from V0 to gz defined by (T f )n  = < f ,  ~o (. - n) >. 
By [7, Proposition 3.2.3], we need only to check that the function q3 defined by (2.1) satisfies 
T*T(o = % Since G~ is 2yr-periodic and has a positive lower bound on E~, by (2.1), ~ c V0 and 

fa 1 r ~ (o))einWdo) = 1 1 [~o(o))12ein~Odo ) 
< (o,~o( . -n)  > = 2-~ 2---~ ~ G~o(o)-----~ 

1 inw 
= ~ ;(E~(o))e d o ) .  

2zr Jr 

It follows that ~'~n < ~, ~o(. - n) > .e-in~b(o)) = XE,(o))~b(o)) = ~b(o)). Hence, ~ n  < ~, ~o(. - 
n) > ~0(. - n) = q~. That is, T*T(o = % [] 

Now we are ready to prove the main results. 

�9 P r o o f  o f  T h e o r e m  1. ( i)~(ii) .  By Lemma 1, it suffices to show that (1.4) holds. Take f = q), 
then we have 

~o = ) "~o(k)S(. - k ) .  
k 

So Gr = ]qb(o))12Gs(o)). Hence, Er C Es. Since both {S(. - n)} and {~o(- - n)} are flames for 
170, by Proposition 2, there exist two constants A, B > 0 such that A < [qb(o))[ < B, a.e. on Er 

Next we show that ~(o)) is equal to 0 almost everywhere on [-yr,  7v]\Er Put C(o)) = 
1 - XE,(O)), then C(o)) E L2[-yr ,  yr]. Let C(o)) = )-~kCk e-ikc~ for some {ck} C s Since 
C (o))~ (o)) = O, ~ k  ck~o (x -- k) = 0 for any x 6 R. In particular, ~ g  cg~o (n - k) = 0 for any n ~ Z. 
By Lemma 2, 

0 = ~ Ckq)(n -- [C(o))l 2 q)(n)e -in~ do) 
- 7  7( 

2 

1 f[_ ~ffg)(n)e_inw do) " 
2zr ~,~rl\E~ 

Hence, qb(o)) = 0, a.e. on [-re,  zc]\E~o. 
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(ii) ~ ( i )  Let 

S(co) = q)(co), co E E~o , (2.2) 
S(CO) = 0, co • E~o , 0, w r E~ . 

Since Gs(co) is equal to ~ G ~ o ( c o )  for 09 E Er and 0 for co r Er by Proposition 2 and 

Lemma 4, {S(. - n)} is a frame for some 1)o C L2(R) and {S(. - n)} is the dual. By the definition 
of S(x) ,  it is easy to see that S 6 Vo and q9 E 17"0. Hence, Vo = Vo. For any f �9 V0, there exists 
C(co) E L2[-Tr, Jr] such that f(co) = C(co)~(co). Suppose C(co) = ~ k  Cke-ikw, then 

1 fE C(co) (co)[ '9(co)]2einWdco 
< f ,  ZS( . -n)  > -- 2yr ~ G~o(co) 

if_ = ~ C(co)~(co)einwdco = E CkCP(n -- k) 
zr k 

= f ( n ) .  

Hence, 

f ( x )  = E < f '  ~(" - k) > S(x - k) = E f ( k ) S ( x  - k ) .  
k k 

By Lemma 3 and the Cauchy inequality, the above equation is also convergent uniformly on R. 
[] 

P r o o f  o f  T h e o r e m  2. Let S, S be defined as in (2.2). 
To prove the first part of Theorem 2, by Theorem 1, we need only to show that ~ k  [~o (x - k) 12 is 

bounded on R. Since ~o �9 L2(R),  Y-~k k0(x - k)[ 2 < + ~ ,  a.e. Hence, ~ k  ckgo(x -- k) is convergent 
a.e. on R for any [ck} �9 s Suppose that Y~k Ckq)(x -- k) is convergent for some x and y �9 (x, x + 1), 
then 

y 

< Ickl2 ~ E I~o'(t - k)12dt . 
k=n k=n 

Since ~ k  ]~~ t -- k)[ 2 �9 LI[  x, Y] due to ~0 t E L2(R),  it follows by the above inequality that 
Y-~+=~-o~ ck~~ t -- k) is convergent in L 1 Ix, y]. So 

f Y Z Ckqgt(t -- k)dt  -= Ckq~'(t -- k )dt  

k 

= ECk [ ~ o ( y  - -  k )  - ~ 0 ( x  - k ) ]  . 

k 

Hence, ~ k  ck~o(y -- k) is convergent and f (x) = ~ k  c~o(x - k) is well defined everywhere. Since 
{c~} is arbitrary, it is easy to see that ~ k  k~ x -- k)[ 2 is bounded on R. 

Next, let us prove (1.6). By (1.4) and (2.2) we see that there exists a 2 j r -per iod ic  function 
a(co) �9 L ~ such that S(w) = ot(w)~o(co). So iwS(co) = a(co)~(w)  ~ L2(R). This implies 
S �9 ACloc and S~(t) �9 L2(R) ([3, Theorem 5.2]). On the other hand, by Theorem 1, for any f �9 V0, 
f ( t )  = ~ k  f ( k ) S ( t  - k). Since {f(k)} = {< f ,  S(. - k) >} e e2, similar to the above we can 
show *'-atu, z_~k=-~v'+~ f (k )S~( t  - k) is convergent a.e. on R and 

fx  y Z f ( k ) S ' ( t  - k )d t  Z f ( k )  [S(y - k) - S(x  - k)] = - f ( x ) .  f ( Y )  
k k 
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B y [ 12, Theorem 7.11 ], this implies (1.6). 

3.  A p p l i c a t i o n s  

In this section we give some applications of the sampling theorem. 

E x a m p l e  1. Daubechies wavelets. It is easy to check that for Daubechies wavelets q)N, ~PN, the 
@ (w) defined in Theorem 1 has no zero if 2 < N < 20. So the sampling theorem holds on both V0 
and W0. 

E x a m p l e  2. Spline wavelets. Let 

(sin~)n+a 
~n(~o) = ~ n > _ l .  

For each n _> 1, {q)n(" - k) : k 6 Z} constitutes a Riesz basis for the subspace it spans and 
dp n (co) = ~k~pn(k)e -ik~ has no zero on R ([6, p. 89-111]). [ ]  

R e m a r k  1. 
rl_e-i~o]n+l 

I f  we define ~bn(oo) = 1 _ ~ _  l , then Cbn(Zr) = O for even n. By Theorem 1, there is no 

sampling theorem on Vo (the case of  n=2 was studied in [13]). Janssen presented an alternative 
approach to solve this problem. For even n, he chose {�89 + k} to be the sampling points, which is 
equivalent to our choice. For details, see [9]. [] 

E x a m p l e  3. Let E C R be a bounded measurable set. Define 

~ ( ~ )  = x ~ ( ~ ) -  

By Proposition 2, {~o(. - k)} constitutes a frame for some closed subspace V0 C L2(R). Moreover, 
SUpx ~ k  [q)(x - k)l 2 < + e c  (see [5]) and 

~(k) -- | iEeik~~ 1 iE eikC~ 
2zr n ~~ ~[2nzr-zr,2nzc +a'] 

1 f(E eik~176 
~-~ Z ~ -2n~) N[-u,,q 

12 

I F  -- 27r ~ XE(CO + 2nzr)eik~ �9 
n 

So 

(p(k)e -ilcw = ~ XE(CO + 2nrr) . 
k n 

By Theorem 1, there is a sampling expansion for each f E V0. In particular, if E = [ - r r ,  zr], the 
above equation turns out to be 

Z cp(k)e-ik~ = 1. 

k 

Consequently, the function S(x) defined in (2.2) satisfies S(x) = q)(x) = sinrrx and Vo = PW~ :=  ---y-y- 

{ f  6 L 2 : supp f C [ - r r ,  7r]}. For any f ~ Vo, 

. . . .  sin sr ( x  - k )  

k k 
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which is just the Shannon sampling theorem. []  

E x a m p l e  4. Suppose that E is a measurable set and {E § 2kzr : k ~ Z} constitutes a partition of 
R. Let 

1 ; 
~o(x) = ~ j~ etCOX dco . 

Then Y]k I~(co + 2kJr)l 2 = ~ k  XE(co + 2kTr) = 1, a.e. Hence, {~o(. - n)} is an orthonormal basis 

for the space Vo it spans. It is easy to see that V0 = {f  : supp f C E}. 
For any x, define 

Cx(w)  = S eiX(w+2kzr) XE(co + 2krc). 

k 

Then Cx(co) E L2[-zr, 7r] and Cx(co) = e ixw for co E E. Let Ek = (E - 2kzr) n [ - z r ,  st]. Then 
we have U Ek = [-st ,  rr] and 

k 

~0(x + n) 1 fEei (x+n)~ 1 
2re 2zr 

1 fE Cx(co)ein~~ 
= ~ ~-~ Nt2k.-.,2k~r+.] k 

= Z~- -~  Cx(co)ein~~ 
k k 

i f _ _  ~ --  Cx ( co )ein~ d w  . 
27r 

Hence, 

On the other hand, since 

1 
Z [~(x + n)l 2 = ~ IICx(w)l122t_~,=] = 1.  

n 

~o(n) = ~ ~ ~ = ~n,O , 

by Theorem 1, the sampling theorem holds on V0 with sampling function S(x) = ~o(x). [] 

Remark  2. 
Both the scaling function of translation invariant multiresolution [11] and the minimal sup- 

ported frequency wavelet [8] satisfy the conditions of Example 4. [] 
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