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ABSTRACT We sh•w that the trace •f an indefinite•y •scillating functi•n •n a subspace •f1Rd is n•t always 

indefinitely oscillating. In the periodic case, the number of  oscillations of  the trace depends on the regularity 

of  the function. In the general case, we exhibit a definitive counter-example. 

1. Introduct ion 

The notion of chirp was introduced by Meyer [8, 10] to describe a function behaving like 

~(x) = Ix - Xo[ h sin (Ix -- x0l -~)  (1.1) 

around a point x0 ~ IR, with h > 0 and fl > 0. 
This concept proved to be useful in many domains: chirps naturally appear in the study of math- 

ematical functions like the famous Riemann "nowhere differentiable" function x ~ ~ n -2 sin(nax) 
(which has a dense set of chirp points, where it is in fact differentiable [7, 8]); they are also expected 
to happen in natural phenomenons like gravitational waves and fully developed turbulence [1, 2]. 

1.1 Preliminaries 

The sine function in (1.1) is too specific to make a general definition; actually we are only 
interested in its oscillatory nature, which can be expressed by the fact that x ~ sin(x) has bounded 
primitives of any order. This remark allows us to generalize this notion to higher dimensions. 

Definition 1. A function f ~ L~ d) has N oscillations in the strict sense if and only if it can 
be written 

f =  ~ Oafc~ 
la]=N 

the f~ belonging to L~ 

Definition 2. A function is indefinitely oscillating in the strict sense if and only if it has N 
oscillations in the strict sense for any N ~ N. 
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Definition 3. A function f is said to have N oscillations in the broad sense (N _< oc) if and only 
if it can be written f = g + h, where g has N oscillations in the strict sense and h 6 S(IR d) (the 
Schwartz class). 

These definitions, for an infinite number of  oscillations, were introduced in [8, 10, 11, 12]. 
The need for a finite number of  oscillations will soon appear. 

The general form of a chirp can then be written as: 

( 
~o(x) = Ix - xol h f \ I x  - x0l l+fi ] 

where h > 0 and fi > 0 are the chirp (or oscillating singularity) exponents of  q) at the point x0 
and f is an oscillating function in the sense of  (one of) the previous definitions. More precisely, 
which definition to take in (1.2) depends on whether we want q) to be called a chirp (then f must be 
indefinitely oscillating in the broad sense) or an oscillating singularity (then it suffices that f has a 
finite number oscillations in the broad sense). 

1.2 Statement of  the Problem 

The question of detecting chirps in a 3D turbulent flow is complicated by the fact that the only 
very precise experimental data we can get are 1D speed or pressure samples. Can we conclude from 
detecting (or not) chirps in these samples that chirps exist (or not) in the 3D flow? This problem 
amounts to a look at the trace fA of an oscillating function f on a straight line A. We are especially 
interested in the case where f is indefinitely oscillating. More generally, we consider the problem 
where A C R c/is a subspace of  dimension s < d. 

We suppose that f is continuous in order to ensure that its trace fA always exists and belongs 
to L~176 Without loss of  generality, one can suppose that 0 6 A so that A is determined by an 
orthonormal basis/z = (/x I . . . . .  /z s) c (Nd) s. If  t 6 1R s is a vector in this basis, its coordinates in 
R d are 

/z.t = 

E l  lXldtl 

We deduce the expression of the trace: fA (t) = f (/z.t). The orthogonal projector on A maps 
x c IR  d t o x . / z C I R  s. 

The purpose of this paper is to determine whether the function f~x is still indefinitely oscillating, 
and in case it is not, how many oscillations it can have. 

2. Characterization of Oscillating Functions 

Oscillating functions were first studied by Xu in his Ph.D. thesis [11, 12], where the following 
basic lemma is shown: 

Lemma 1. 
I f  f E L ~ ( ~  el) and if f (~ )  vanishes for I~l ~ r, then f is indefinitely oscillating in the strict 

sense because VN, 
f =  E ac~fa 

I~I=N 

with 
IIf~lL~ ~ Cr-N I[fllL~ - 

From this lemma we deduce a lower bound for the number of oscillations of  a function. 
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Proposition 1. 
Let g ~ L~(IR d) and (a ~ S(N d) whose integral is non-zero. If there exists a constant C < ec 

such that ~/~ E (0, 1) 

sup f r - ey)g(y)dy <<_ c~N-dlog(E) -2 , 
tE~d JRd 

then g has (at least) N oscillations in the strict sense. 

Proof .  Suppose first that ~(~) = 1 for ~ in a neighborhood of 0. Then r can be used to construct 
a family of Littlewood-Paley decomposition operators: we note for j E Z 

fbj(x) = 2dJ(o(2Jx) 

Sjg = (bj , g 

Ajg  = S j + l g -  Sjg 

For j < 0 and e = 2 j, the hypothesis implies 

sup s 4 ) ( 2 J ( 2 - J t - y ) ) g ( y ) d y  <_ c2J(N-d)j  -2 
tENd d 

2-dJ sup ( a j * g ( 2 - J t )  < c2J(N-d) j -2  
tER d \ /  

]lsjgll   - czJ J - :  

One has 

g = g -  Sog + E A jg  
-c~<j<0 

and by Lemma 1, each term of the series is indefinitely oscillating in the strict sense because its 
Fourier transform is zero in a neighborhood of 0. 

Moreover, when we write 

we know by the same lemma that 

IIgJ,allL  

Ajg = E Oa gJ'a 
I~I=N 

whose series converges. To conclude, 

g = g - Sog 

indefinitely oscillating 

<_ c2-J  N IIAjglIL~ 

< C2-JN (I[siglIL  + IIsj+,glIL ) 
Cj-2 

+ Z Oa Z gJ'a 
]otl=N --~<j<O 

~L~(R d) 

A 

Now if one has just q~(0) ~ 0, by continuity this is also true in a neighborhood 1/1 of 0. One 
can then construct 0(~) 6 s(Ed)  equal to ~(~)-1 on a compact set containing a neighborhood V2 
of 0. In this way, q~ * 0(~) = 1 in V2, and 

sup f c p , o ( t - ~ y ) g ( y ) d y  _< []0[[L~ sup f qb ( t -Ey )g (y )dy  
tE~d d~d tE~d ff]~d 

< Ce N-d log(e) -2 
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so we can replace 4~ by q~ * 0 in the previous calculation. 

If  ~ 6 S(R a) is an admissible wavelet (see [4]), 

f 1 Cab(f) = <f, ~rab} = a -a-Y~ f (x)dx 

are the wavelet coefficients of a function f .  We recall that by definition f E CS'S'(xo) (the inhomo- 
geneous 2-microlocal space) if and only if 3C < o~ such that 

( lfab(f)l < Ca s 1 + 

for all b in a neighborhood of x0 and a in a neighborhood of 0 +. 
The 2-microlocal regularity of ~" at 0 gives an upper bound, that will be used later, for the 

number of oscillations of  a function. 

Proposition 2. 
Let g ~ L~(~a). If g has N oscillations in the broad sense, then 

E c N - d ' - N ( o )  

Since h 6 S ( ~  d) ~ h" 6 S(Rd),  we can suppose g to be oscillating in the strict sense, Proof. 
writing 

g(x) = Z OC~ gc~(x) 
I<=N 

with each g~ ~ L~(Rd). Hence, the wavelet coefficients of~': 

Cab (g~) : (g, ~ab) 

= g(x)eibx~(ax)dx 

= Z fa d OC~gc~(x)eibX~(ax)dx 
Icr 

and integrating N times by parts, 

= ( - 1 )  N ~ g~(x)O~ ( e i b X ~ ) d x  
Ic~l=N 

( CX ) lbtlklaN-l< x ~(c~-k)(aX) L 1 Ifab@l --< ~ [ I g ~ l l z ~ 1 7 6  k 
Ic~l=N k<_ot 

C(o0 [Igc~ LIL~ a -d  sup ~'("-/:) L 1 (a + Ib[) N < 

[~l= N k_<~ 

< CaN_d(a+ [_!!)N 

[] 

3. The Periodic Case 

In this section we use the following notations: LxJ is the largest integer < x and Fx] is the 
smallest integer > x. If  A C I~ q, s is its q-Lebesgue measure. For x = (xt . . . . .  Xd) C ~d (or 
zd),  Ilxll = max/Ixil.  
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The simplest examples of  oscillating functions are periodic, of  general form 

f ( x )  = Z ame  im.x 

mEZ d 

where (am) E l 1 (Zd). It is easy to see that f is indefinitely oscillating in the strict sense if and only 
if ao = 0 (else f has no oscillation at all), and the trace can be written 

fA ( t )  = Z ameim.l  z.t 

mET, d 

Note that this is in general no longer a periodic trigonometric series. The frequency of the mth 
term is the vector m.#  E ]~s. Of course, each term of the series is oscillating but m./z can become 
very small, so that fA may have an accumulation of  terms of arbitrary low frequency and may not be 
oscillating at all; therefore, to see if the sum oscillates we need to know how fast m./z can get close 
to the 0, and compare it to the decay of am. This is a problem related to diophantine approximation. 

3.1 Some Recalls on Diophantine Approximation 

Let us denote by (x) the symmetrical fractional part of x, that is 

(x) = (xl + 1 - [Xl  + 1/27 . . . . .  Xs + 1 - [Xs + 1/2])  E ( - 1 / 2 ,  1/2] s 

Given an n x s real matrix v, the central question in simultaneous diophantine approximation 
consists of  finding q 6 Z n such that (q.v) is close to 0 or, which is equivalent, such that q.v is close 
to a vector p ~ Z s. The first answer to this problem was given in 1842 by Dirichlet. 

Theorem I (Dirichlet) .  
There exists a constant C < cx~ such that for  all v ~ (~n)S, the inequality 

C 
II(q.v)ll _< ~ (3.1) 

IIqll 7 

has infinitely many solutions q E Z n. 

Our problem seems to be slightly different, since it is a matter of making m./z close to the fixed 
vector 0. Actually, they are equivalent, by the following transformation. Since/z is a basis of A, we 
can extract s rows of /z  such that the extracted matrix is invertible. Suppose to simplify that these 

I n  [ where B is x invertible matrix. We make a diophantine 
"1 

rows are the s last ones: /z = B an s s 
/ 

approximation of /2  = - H B  -1, that is, we find q ~ Z d-s and p E Z s such that Ilq./2 - pl[ < ~. 
This can also be written [Im4z.(-B) -111 --- ~, with m = (ql . . . . .  qd-s, Pl . . . . .  Ps) E Z d, or 
IIm.~ll _ CE where C depends only on B. 

We also notice that this application �9 : Iz ~ / 2  preserves zero measures (that is, if s  = 0 
in R (d-s)xs then s  = 0 in Rdxs), so any result valid for almost every/2 is also valid for 

almost every/z. 
Dirichlet's theorem can easily be transformed this way. Instead we directly give the following 

more subtle result of Khinchin [9], generalized by Groshev [5, 6]. 

Theorem 2 ( K h i n c h i n - G r o s h e v ) .  
Let 0 : N --+ R + be such that the function r ~ r d - s - l o  (r) s is decreasing. 1 For almost every 

lz ~ (Nd)s, the inequality 

IIm4zll _< 0 (llmll) (3.2) 

has infinitely many solutions m ~ Z a if  and only if the sum ~r~_l r d - s - l o ( r )  s diverges. 

1Actually,  this condi t ion is only necessary  for  the " i f "  way,  and for  d = s § 1 or s + 2, and when r ~ ~ .  
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3.2 Oscillation Tests 

In the case of  periodic functions, Proposition 1 can be rewritten as follows: 

Proposition 3. 
Let 0 ~ S(N s) be such that 0(0) ~k O. If there exists a constant C < oc such that for every 

c (0, 1), 

am(O (~-@-) < Cf M log(~) -2 (3.3) 

m E Z  d 

then f zx has (at least) M oscillations in the strict sense. 

P r o o f .  Let ~ = q~. We estimate for every x 6 XR s 

fs~s fA(t)O(et - x)dt = 

and conclude with Proposition 1 (in Rs). 

There is a (partial) converse result: 

Proposition 4. 

rn~gd am f~ eim4z'(t+~ )llr(et)dt 
s 

: m~egd ameim--~~q)(~ 

1 
<- e-2 Z am4)(~-~ - )  

m c Z  d 

< Ce M-slog(e) -2 

[] 

Let 0 c S(IRs). If fzx has M oscillations in the broad sense, then there exists a constant 
C < oc such thatVe ~ (0, 1), 

m~egdam~(~--) <_ C~ M (3.4) 

It is only partial because of  course (3.4) does not imply (3.3). This means that we cannot 
exclude the possibility that, because of some cancellations between the am, fA has strictly more than 
M oscillation even if i~m6Zd amO ( - ~ ) l  > ceM" 

The hypothesis above is of  course weaker than supposing oscillations in the strict sense; it 
would be equivalent if fA were periodic, which is generally not true, but not far. 

Lemma 2. 
Forall~ > OandVK ~ N, 3fi ~ IR s, 181 _> K suchthat 

Proof. 

sup IrA(t) - fA(t + fl)l < oe 
t EiI~ s 

Since ~ laml converges, Sk ~ N such that ~llmll>k laml < ~, hence 

m~l~>kam ( ) o l  
e i m . t  x . t  _ e i m . N . ( t + f l )  < - -  

I[ 2 

for all/3 6 R s. 
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K Thanks to Dirichlet's theorem, there exists an integer y > ~-y such that 

y]~ l  < 

4~rdk y~llmll_<k lam I 

thus, for Ilmll >_ k, 
m.#l) < o~ 

4rr Y~qmll_<k laml 

Now we take fl = (2zry, 0 . . . . .  0): then e im't~'~ = e i2zr(Ym'tzl) and 

o{ 

e im'Iz'B -- 1 < 2~llmll_<k laml 

am e im'~'t  - - e  im'~'(t+~) < ~ ; 

m k 

hence, the conclusion. [ ]  

P r o o f  o f  P r o p o s i t i o n  4. Let ~ = r By hypothesis, f A  = g + h, g ~ L~ s) having M 
oscillations in the strict sense and h ~ S(IRs).  Let Ilxll > 2 and e 6 (0, 1). For the oscillating part 
we have 

integrating M times by part, 

z 
I,~l=M 

Iol[=M 

< CE M - s  

For the other part: 

< f[[ X 3 h(,,--I-~,~-)2/f(Et)dt 
t l l<E-7 

f 3 ( ) E ~ X + , + - .  
t l l>~-~ 

and the first integral is dominated by any power of E because of the decreasing of h; the second one 
idem because of the decreasing of Vs. 

To sum up, we found a constant C such that ge 6 (0, 1), 

sup f A t  + ~5 < CEM-s  (3.5) 
ilxll>_2 - 2 

x 2 We now get rid of the ~ term thanks to Lemma 2: there exists/7, Nfi][ >- ~ such that, taking 

X = f ie  2, 

L s - -  2 
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which implies, with (3.5), 

On the other hand, we have 

, f~x( t )~@t)d t  <_ Ce M-s  . 

, f A ( t ) ~ @ t ) d t  = ~ am s  eim't~'t~(Et)dt 

rnEZ d 

am 

m e Z  d 

hence, (3.4). [ ]  

3.3 Applications 

We now use the previous results to estimate the number of oscillations of the function fA. 

Propos i t ion  5. 

Suppose v > d - s. I f  ao = 0 and if  there exists a constant C < c~ such that 

C 
Vm E g d, lam [ ~ - -  (3.6) 

tlml[ ~ 

r- 7 
then for  almost every A, f A has at least I ~-s [ - 1 oscillations in the strict sense. 

P r o o f .  According to Theorem 2, for almost every/z,  

s-d 
[Imll--z- 

]lm./zll ~ O(m) - 2 (3.7) 
log (llmll); 

except for a finite set of  ms, because 

rd_S_lO(r)S _ 1 
r log(r) 2 

is summable at infinity. 

Let q~ ~ D ( R  s) have non-zero integral and support in - � 8 9  g , and let e ~ (0, 1): only the 
6 

ms such that II m./z 11 < g remains in the left-hand member  of  (3.3). Note H (e) the set of these points 
(C Z s) which we cut in disjoint annuli of  width 0 -1 (e): 

H(~) = U H~(E) 
k~N 

with 
Hk(e) = {m E H(e) ,  kO- l (e )  <_ ]lmll < (k + 1)0-1(e) ]  

and by the way, for E small, 

2 

0-1(e )  ~ \ d - s ]  e~--~ Ilog(e)J~7 

Let us admit for the moment  the following lemma: 
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L e m m a  3. 
There exist 6o > 0 and C < oo (depending only on t~) such that for 0 < E < 60, each 

Hk(~), k > 1 does not contain more than Ck d-s-1 points. Moreover, Ho(~) contains only the point 
O. 

Since by hypothesis a0 = 0, we get 

OG 

Z 
mcZ d k=l m6Hk(e) 

O0 

< C ~ k  d-s-1 k0-1(6) 

k=l 

< c o - l @ )  -v Z k  d-s-v-1  

k=l 
vs  2v 

< CeZZz ]log(e)lz~-~ 

CE I~-ss] -1 ]og(,s)-2 

because in every case (integer or not), ~vs > I ~ l  - 1 and the difference compensates for the 
/ / 

logarithm. 
We just need to apply Proposition 3 to conclude. [ ]  

P r o o f  o f  L e m m a  3. In order to get rid of the exceptions, let 

= inf { [Im./z[I, m 6 Z d, m # 0 and does not satisfy (3.7)] 60 

which is certainly > 0 because 1 ~ if there were m0 6 Z d, m0 # 0 such that m0./z = 0 then 
Yn c N, nmo would not satisfy (3.7), whereas there can be only a finite number of such cases; 2 ~ 
the infimum is reached, since this set is finite. 

Thus, as soon as ~ < 60, one has for every pair (m, m')  E H(E) 2, m # m', O([m - m'l) <_ 
I(m -- m~)./xt _< e which implies 

l i ra-  m']l ___ 0-1(e )  �9 (3.8) 
Note for k > 1 

R k ( e ) =  U Q m, 
meHk(e) 2 

Q (m, r) being the d-hypercube of center m and side 2r. It follows from (3.8) that these hypercubes 
have disjoint interiors. Each one has a d-volume equal to 0 -1 (E) d, while 

Rk(e) C --6 ~ - - ,  6 "]- 

x {x ~ A• ( k - ~ ) o - l ( ' )  < x < (k  + ~ ) o - l ( E ) ]  

whose d-volume is less than co- l (6 )k  d-s- l ,  C being some constant. Hence each Hk(e) cannot 
contain more than Ck d-s-1 points. 

For the same reason, since H0(e) contains the point 0, it does not contain any other point. 
[ ]  

The fact that the number of  oscillations depends on the decay of the am, hence on the global 
regularity of  f ,  may seem surprising since the regularity appears nowhere in Definition 1 and 
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following; but it is only a consequence of the "concurrence" between the decreasing of the frequencies 
m./z and the decreasing of the Fourier coefficients am, as intuited in the beginning of this section. 

Indeed this is unavoidable, as stated in the following (partial) converse: 

Proposition 6. 
Suppose that there exists a constant C > 0 such that 

C 
Vm ~ Z d, am > (3.9) 

-i[m[l~ 
I" 7 

except maybe for a finite number of coefficients. Then )cA has more than I ~-s I 1 oscillations in I 

the broad sense only on a negligible set of A. 

P r o o f .  We use again Theorem 2 with now 

s - d  

Ilmll T 
Ilm.~l[ ~ 0(llmll) - 1 (3.10) 

log (llmll) 7 

which has for almost every/x infinitely many solutions m(k), k 6 N because 

rd_s_lO(r)S _ 1 
r log(r) 

is not summable. We can thus, construct a sequence 

~(k) = O(llm(k)ll) ---~k--,~ O . 

Let~b ~ S ( R  s) positive be such that ~b(x) > 1 when Hx[[ < 1. 

m./z) 
y ~  amO 

r n c •  d 

(m(k).lX ~ 
>_ am(k)O \ E(k) / 

>_ CIIm(k)Li - ~  
vs v 

>_ C ~ ( k ) ~  log(llm(k)ll) ~=z 
vs 

> > ~  Ce(k)Z=; 

because 7=7 < ; which proves, with Proposition 4, that supposing"fA has oscillations" 

is wrong. [ ]  

We see, in conjunction with Proposition 5, that this result is optimal. 
A consequence of this is that, in the general case, to ensure that fA is indefinitely oscillating, 

one needs to suppose f c C~C(IRd). We see now that this is not even enough. 

4. Counter-Example in the General Case 

Proposition 7. 
There exists a non-zero, entire, (hence C co) and indefinitely oscillating function f on I~ d such 

thatfor almostno subspace A of dimension s, fA has more than L d+~+l J oscillations in the broad 
sense. 
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P r o o f .  We construct f by its Fourier transform. Let 0 < (z < 1, u E IR d, and 

A { 0 i f  [$1 < l o r ~ l  > 2 ;  
f($) = ff-~-n~r~ 2-n~ei2 u.~ elsewhere. 

where I$l = . /$2 . . . . .  $2 is now the Euclidean norm. 

f being of compact support, by  the theorem of Paley-Wiener, f is entire. Since f 
LI(]Kd), f c Lc~(~d). And since f is zero in a neighborhood of 0, by Lemma 1, f is indefi- 
nitely oscillating in the strict sense. 

tz is still an orthonormal basis of A a subspace o f ~  d. We suppose that u E ~d is neither in A 
nor in A• happens for almost every A. We write 

fA(t) = {f,a/,.t) 

---_ (27r) -d  (if, $ ~ e-i~ .t~.t) 

by Parseval's formula. 
Let SA and SA• be the orthogonal projections of $, respectively, on A and A• 

fA(t) = (2zr) - d . ~ d  ff($A + SA• ei(~+~Al)'IZ'td$ 

= (27r)-d f d  f'($A + S/Z) ei~Zx'~td$ 
JR 

because S A •  
Let /2  = (/z s+l . . . . .  /,d) be an orthonormal basis of A J-. By the change of variables: $ -+ 

(if, if'), where ~ = U, ./* and if' = $/,• ./* we get 

fa(t) = (2Jr)--d ~ eif't ~d_ f'(t*. ~ + /2.(')d('d( 

hence the Fourier transform of fA: 

f'AA (~) = (27r) s-d f f"(/*.~" +/2.~")d~" 
JR d - - s  

which can be explicitly calculated: 

~ ( ~ )  = (27r) s-d f E2-naeiZ'u'(t*'r162 / 
I_I~.I2<IUI2<4_I~.I2 n~N 

= (27r)s-d Z 2-nUei2"u'Iz'ff f ei2"u'#'r 
n o n  1_ 1~. ]2 < ] ~.t ]2 <4_  i~. 12 

nsN 

L e t a  = V/1 - [ffl 2, b = v/4 - Iff[ 2,/3 = [u./2], p = 2n/3r, m = d - s - 1 and v = /3 - lu . / 2 ;  
SO 

Xn(~) = 2 -nc~ r m eipV.OdOdr 
m 

/aa = 2 -ha r mgm(p)dr 
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where 
gm(P) = crop "-2-- Jm-1 (p) --Y- 

m+l 
Jm-1 being the Bessel function and Cm = (2zr)-7-. 

2 
We use the following asymptotic formula as x --+ oc: 

~ 2  ~ ( : r q  z r ) (  ) 
Jq(x) = x -gcOs x 2 ~- q- O X - 3  

to finish calculating )~n (if). First the main part: 

2 l+m 
)~n(O) = Cmfl!-~2 n(L~-cO r~-Jm-___! (2nf lr)dr  

dl 2 
l--m nrl-m l- 1 m+l ] 2  

= Crnf l~-2 ~ -7 - -~ )L2 -nc~ -~r~ -  Jm_72 (2nflr) 
.11 

,+,,, -n(L~-+,~] ( 2 - ~  Jm~l (2nil)) = crof t - -7-2  t " (2~+tfl) - Jm_@ 

l+m / 2 -  _n/2+m +00 
= C m f l - - ~ / _ ~ 2  c 2 

zrm zrm 
• ( 2 ~ s i n ( 2 n + l f i - T ) - s i n ( 2 n f i - T ) + O ( 2 - n ) )  

= yn2-n(~+d-~+t) 

with 0 < lim supn__,~ t• < ~ ;  as for the increment (q ~ 0): 

1--m n l 1--m Olx f 
) vn (~ ) -  s = C m f i ~ 2  ' ~ -  ; 

J 
(a, l)U(b,2) 

m- 1 n 
= 2-n(c~+-Z-)2-70(ff 2) 

= 2-n(c~+a-~-l)O@2) . 

Remember that 

l+m 
r -7 -  J,~_, (2nfir) dr 

-2-- 

( 2 ; r ) d - s  f s  ---- Z )~n(O)ei2"u'tz'~ q- Z ('kn(~ ) -- )~n(0))  e i2nu'Iz'~ 

nEN nEN 

and the following classical lemma on lacunary Fourier series: 

Lemma 4. 
Let h > 0 and w ~ IR s. I f  there exists a constant C < co such that Vn ~ N, Vn < C2 -hn, then 

r = Ynei2nw.~ 

n6N 

is globally HOlder with exponent h. 

O~q_d-s+l ~_d-s+3 
We thus, see that f l  is at least C --7-- and f2 is at least C ~ (0) thanks to the O(ff2). 
On the other hand, let ~ 6 S(IR s) be an admissible wavelet whose Fourier transform has a 

in  { 21u'/zT~ _< Ixl _ < 21u4*llog(2) } 2  . The wavelet coefficients of f l  at scale a = 2 - j  support a re  

c2-, ,b = (/11, 

~Xn(O)(~2,,u.lzlog(2),xt--~e-lbx~(2-Jx)) 
hEN 
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because of the supports, 

Ic2- ,b(fl>l = lyJI 2-J(a+d-~+') 

This implies that there exist a sequence aj --~ 0 and a constant C1 > 0 such that ICaj0(f'~A) I > 
C l a j  ~ d-~_4-1 

Suppose now that fA  ~ C N-s ' -N  (0): by definition there exists a constant C2 < 

such that ICaj0(  l -- C2ay -s Then necessarily N _< ot + _ 4 ~ ;  if ot is small enough 

( < 1 +  [d+~+lJ d+.~+l), we conclude with Proposition 2 that fzx has not more than ~ J  

oscillations in the broad sense. [ ]  

5. Further Remarks and Improvements 

If s = dim (A) = 1, Lemma 2 expresses nothing but the fact that the trace of a periodic function 
is almost-periodic in the sense of Bohr [3]. We recall one of his most famous results on this subject. 

Theorem 3. 

I f  f is almost-periodic and F : t w-> fo f (s )ds is bounded on IR, then F is also almost-periodic. 

Starting from this remark, Meyer proposed the following characterization. 

Propos i t ion  8. 

Let N E N. I f  f is an almost-periodic function on IR, the three following properties are 
equivalent. 

~ 

2. 

3. 

Proofi 

f has N oscillations in the broad sense. 

f has N oscillations in the strict sense. 

f = 3UfN, where fN is almost-periodic. 

Clearly, 2 ~ 1, and 3 ~ 2 is trivial since an almost-periodic function is bounded. 
To prove 1 ,~ 3, we proceed by induction: it is obvious for N = 0. Suppose that the 

equivalence is true for N, and that f has N + 1 oscillations in the broad sense: 

f ( t )  = oN+laN+ 1 (t) + bN+l(t)  

where aN+l E L~(IR) and bN+ 1 E S ( ~ ) .  Since oN+laN+I E L~(IR), we also have OkaN+l E 
LCC(IR) for 0 < k < N + 1. 

Consider BN+I : t ~-~ f t_~ bN+l (t)dt: it is bounded, andit suffices to show that BN+ 1 (+00) = 
0 to have BN+I E S(]~). 

In other words, SN+I = ONaN+I -}- BN+I (t) is a bounded primitive of an almost-periodic 
function, thus, by Theorem 3, almost-periodic itself. Another well-known property of almost- 

• tx+r periodic functions is that T ,Ix SN+ 1 (t)dt  converges, uniformly in x, to a constant CN as T --+ ~ .  

First 1 [x+T ONaN+l(t)dt < ~_ IL~IoN_laN+I -+ 0 a s T  ~ ~ .  Asfor • tx+r ax -- T ,Ix BN+l( t )d t ,  
observe that it tends to BN+ 1 (--O~) = 0 when x -+ - o e ,  and to BN+ 1 (+o~)  when x -+ +oe.  By 
uniformity of the limit, this implies that BN+I (+o~) : 0. 

The function SN+I thus, has N oscillations in the broad sense, so by the induction hypothesis, 
SN+I = ON fN+a where fN+a is almost-periodic. []  

Corollary 1. 
1 I f  am > ]-~ff , s = 1, and ~ is an even integer, then for no line A, f A has more than ~ - 1 

oscillations in the broad sense. 

This is to compare with Proposition 6. 
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P r o o f .  As previously,/~ is a unit vector of &, and fA (t) = f(l~.t). 
Suppose that fzx has 2q = ~-1 oscillations: by Proposition 8, there is an almost-periodic 

am eim.lxt function F suchthat fA = OzqF.  By the Uniqueness Theorem, necessarily F( t )  = ~ 

By the Theorem of Dirichlet, there are a constant C < eo and infinitely many m's such that 
Im./zl < C [ml 1-d As a consequence, am �9 ~ ~ diverges, which yields a contradiction. 

Meyer also found a better counter-example than Proposition 7 if d = 2 and s = 1. 

Proposition 9. 
There exists a C ~ indefinitely oscillating function f on ~ 2  such that for n__o_o line A, f A is 

2-oscillating. 

Proof. The function is 

~- ,  exp(i  (cos (v/n) Xl + sin (v'n) x2)) 
f ( x )  

n=zZ" n log(n) 2 

It is entire and indefinitely oscillating because its Fourier transform has support on the unit 
circle. 

[ c~ 1 Now if bt = sin(~b) is a unit vector of A, we have 

OO 

fA(t)  = y ]  exp (i c~ ( v / ~ -  ~b) t) 

n=2 n log(n) 2 

With nj  L(~b + ~ + 7rj)2], remark that nj ~ 7vj 2 and that ~ - ) -  - q~ = -~ + 7 r j  + O ( j - 1 ) ,  and 
cos(~#~-~) -2 

thus, cos(~/-n - q~) = O ( j - 1 ) .  Then Y]~=2 nlog(n)2 = +oc ,  which proves that fz~ can't  have 2 

oscillations. [ ]  
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