
The Journal of Fourier Analysis and Applications 

Volume 5, Issue 4, 1999 

P h a s e  R e t r i e v a l  Techniques  for  
R a d a r  A m b i g u i t y  P r o b l e m s  

Philippe Jaming 

Communicated by William Moran 

ABSTRACZ The radar ambiguity function plays a central role in the theory of  radar signals. Its absolute 

value (] A (u ) 1) measures the correlation between the signal u emitted by the radar transmitter and its echo after 

reaching a moving target. It is important to know signals that give rise to ambiguity functions of given shapes. 
Therefore, it is also important to know to what extent [A(u)[ determines the signal. This problem is called the 

"radar ambiguity problem" by Bueckner [5]. Using methods developed for phase retrieval problems, we give 

here a partial answer for some classes of  time limited (compactly supported) signals. In doing so, we also 

obtain results for Pauli's problem; in particular, we build functions that have infinitely many Pauli partners. 

1. Introduction 

In this paper three problems of reconstruction of  lost phase are considered. 
The first one arises in optics, in particular in the experimental use of diffraction to determine 

intrinsic structure. In this context, only the modulus of a Fourier transform can be measured after 
diffraction occurs. This leads to the following problem. 

Problem I (Phase Retrieval). 
Let u 1, u2 E L2 (•) be two compactly supported functions such that 15u 1 (x ) I = 15u2 (x ) [ for 

all x c 1R ( 5  being the Fourier transform). Can one deduce uzfrom Ul ? 

Trivial solutions are u2(t) = CUl(t + a) and u2(t) = CUl(-t + a) with Icl = 1 and a ~ R. 
However, other solutions may arise. A fairly satisfying description of  these solutions is given in 
Rosenblatt [ 18] and Walter [23]. For functions u 1 satisfying certain properties, there are only trivial 
solutions, but in general, the set of  solutions is more complex. 

One may ask if further conditions could imply uniqueness of  the solutions. Such a question 
arises, for instance, in quantum mechanics. In his article on wave mechanics in the Handbuch der 
Physik [16], Pauli asked: 
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Problem 2 (Pauli Uniqueness). 
Is it possible, for a single particle moving in one dimension, to determine the wave function 

~(q)from I~(q)[ and tbC~(p)l ? 

It seemed reasonable that this should be possible as ~p (q) = I gr (q)] e i~(q), thus, only ee (q) has 
to be found and one may think that the missing information is contained in ] f7r  (q)l. However, this 
is not the case as shown by Bargman (cf. [17]) and later by Corbett and Hurst [7] and Vogt [22]. We 
will give new examples, and show in particular that a function may have an infinity of Pauli partners. 

Another problem of the same kind occurs in the theory of  radar signals and is known as the 
(Narrow Band) Radar Ambiguity Problem. The radar ambiguity function is the Fourier transform 
of the Wigner function: for u 6 L2(]R), 

A(u)(x, Y) = j'Nu (t-t- 2)  u (t - X']e2irrYtdt I 

Here the only quantity that is actually measured by a radar is Ie(u)(x, y){ for x, y 6 R. Thus, the 
following question arises: 

Problem 3 (Radar Ambiguity).  
Letu ~ L2(R),findall v E L2(IR) such thatfor alIx, y E R, 

IA(v)(x, Y)I = IA(u)(x, Y)I �9 

Trivial solutions are v(t) = ceiC~ + a) and v(t) = ceiC~ - a) with Ic] = 1, co, a e IR. 
The question arises whether they are the only solutions. Using algebraic methods, Bueckner [5] 

and de Buda [8] considered the case when u is of the form P(x)exp ( - ~ )  with P a polynomial. 
\ / 

They proved that, in this case, almost every solution of  the ambiguity problem is trivial; de Buda 
also gave examples of functions for which there are non-trivial solutions of  the ambiguity problem. 
We shall use here the methods developed for the phase retrieval problem to find all solutions to a 
restricted ambiguity problem. In doing so, we obtain new examples of functions for which there are 
only trivial solutions. We also throw new light on de Buda's counter-examples and show that they 
correspond to a "spectrum ambiguity." 

Before going on, we introduce the following unitary operators L2(IR) ~ L2(IR). 

1. 5 c is the Fourier transform, 

2. f o r a  ~ IR, S(a)u(t) = u(t - a) - t i m e  sh i f t -  

3. force E R, M(co)u(t) = ei~~ - f requency  sh i f t -  

4. for r 6 IR\{0}, Dru(t) = ] v / ~ u ( r t )  - scaling operator - 

5. for)~ E ]R, L(~.)u(t) = ei)dnltlu(t). 

6. Zu( t )  = u ( - t ) .  

We will note < u, v > for the usual scalar product on L2(IR) and c will denote a complex 
number of  modulus 1. We find it convenient to note Cu(t) = u(t). If A C IR is a measurable set, 
we write )('a for the characteristic function of A and ]A ] for its Lebesgue measure. 

Finally, we will also study the wide band ambiguity problem. The wide band ambiguity 
function is given by the formula 

WA(u)(r,  a) = ~ - ~  J~ u(t)u (r( t  - a))dt 

We will study the equation IWA(u)(r, a)l = IWA(v)(r, a)l for every r > 0, a 6 IR. 
In this case, "trivial" solutions are of  the form 
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1. U-m-CU. 

2. v = C Z u .  

3. v = 5r-IL()05ru (i.e.,.Uv(t) = eiXlnltI.Uu(t)). 

Again using the same tools, we show that these may be the only ones under appropriate 
conditions, and also provide an easy method to build counter-examples to the general problem (a 
"support ambiguity"). These results are new to our knowledge, except for the fact that the trivial 
solutions have been found by Altes [1] (however, he did not show that these may be the only ones). 

The article is organized as follows. Section 2 is devoted to the phase retrieval problem and 
is a review of results by Rosenblatt [18] and Walter [23]. In order to remain as self-contained as 
possible, we will recall the essential tools in the theory, i.e., the Paley-Wiener theorem and the 
Hadamard factorization theorem, which will be used again in Section 3. We will conclude this 
section with Pauli's problem and results by Corbett and Hurst [6, 7] and Vogt [22], and show how to 
build functions that have infinitely many Pauli partners. We will also list some connected questions 
which have probably not attracted the interest they deserve. 

The last section is devoted to the radar ambiguity problems. After a quick review of various 
properties, we will present some results which are not, to our knowledge, available in the literature. 

Before going on, we would like to attract the reader's attention to the monograph by Hurt [11] 
and to the survey article [15] devoted to the subject of phase retrieval. 

We shall usually refrain from saying that equations are true almost everywhere. 

2. The Phase Retrieval Problem 

Recall that we want to determine, for a given compactly supported function u E L2(N), every 
compactly supported function v 6 L 2 (R) such that for every x c IR, l S~ (x) I = 15Cv (x) I. 

For this, the Paley-Wiener theorem (see [14, Theorem VI 7.4]) provides us with important 
information about the form of 5Cu when u is compactly supported: 

T h e o r e m  I ( P a l e y - W i e n e r ) .  

Let F be an entire function and a > O. 

The following conditions are equivalent: 

1. F ]RE L2(•) and IF(z)I = o (ealzl). 

2. There exists a function f ~ L2(IR) with f (~) = O f o r  I~1 > a such that 

F ( z )  = ~ f (~ )e i~Zd~ .  

It follows that 5Cu can be expanded into an entire function of exponential type (i.e., I~-u(z)l _< 
e B Izl for z 6 C). We also denote by Uu that expansion. By the Hadamard factorization theorem ([21, 
Theorem 8.24]) 5ru can be uniquely written in the form 

e~~ I - I  1 -- z eZ/Z k 

k=l 

where the Zk s are the zeroes of 5ru in C. Moreover, if we order the zeroes of 5Cu so that I zl I _< . . .  _< 
Izkl <_ IZk+ll _ . . . .  and if we write Zk = r~(cos 0k + i sin 0k), then 

1 
k>~l_l+e converges foreverye > 0.  

_ r k  
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In particular, the infinite product l - I ~ = l  (1 - ~_) e z/zk is convergent. 

It is important in what follows to note that for z real, 

( 1 -  Z~ez/Zk = (1 ~ k ) e  z/gf - ~ /  - -  . 

Now as v is also compactly supported, .Tv is also an entire function of order 1, by the Hadamard 
factorization theorem, it is (almost) characterised by its zeroes and admits a factorization of the form 

e~~162  
k = l  

The following can then be shown: 

Theorem 2 (Walter). 
Let u c L2(N) be a compactly supported function. Let {Zk}k_>l be the zeroes of .~u (counted 

with multiplicity, and ordered so that Izk l is an increasing sequence) and write 

f u ( z )  = e~~ ~ 1 - ~ . 

k = l  

Let v ~ L2(R) be a compactly supported function, then 12;u(x)l  = I ~ v ( x ) l  f o r  all x ~ ~ if and 
only if there exists c ~ C with Icl = 1, a ~ IK and a choice ffl~ E {z~, z-~}, k = 1, 2, 3 . . . . .  such that 
for all z E C, 

F v ( Z )  = ceiaZeC~~ k x x  1 - -  e z/gk . 

k = l  

R e m a r k  1. Note that the coefficients c and a in the factorization of ~ v  in the above theorem 
are related to the trivial solution v(t) = cu(t - a). Every choice of  ffk c {zg, z-k} gives rise to a 
non-trivial ambiguity, except when (~ = ~- for every k which corresponds to the trivial solution 
v(t) = c u ( - t  + a). 

The possible replacement of z~ by ~ is called "zero-flipping" by Walter. 
If  all the ZkS are real (i.e., z~ = ~ ) ,  then only trivial solutions can occur. On the other hand, 

if at least two zeroes are non-real, there are non-trivial solutions. 
Note also that the zero-flipping corresponds to a factorization Uu (z) = f (z)g (z) and Uv  (z) = 

f (z)g(~).  In higher dimensions, an entire function can be irreducible and the above factorization 
may be trivial, i.e., zero-flipping may be impossible; see [4, 19] for details. 

1. Let H be a fixed function with support in [ _ 1 ,  1]. Let Example 

N N 

u(t) = E a j H ( t  - j )  and v(t) =- Z b j H ( t  - j ) .  
j =0  j =0  

Then 

N 

_ -  E a S  and 
% / 

j=0 
N 

.~v(t) = Q (e 2iTrt).TH with Q ( x ) =  E b j x J "  (2.2) 

j=0 
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To have 15ul = I~vl  it is enough that I P[ = I QI on the unit circle. 
But IPI = I QI on the unit circle if and only if ]P(1)] = I Q(1)l and 

1 
~J '  0/~- 

For instance, if we take 

/{ } : a j  zero of P = c~j,~jj : a j z e r o o f  Q 

: + 

Q(X) = (~'x u+~)(~x+~') 

(loll # lot'[, [fil # Ifl'l), then P and Q are two different polynomials with IP] = IQI, and v i s a  
non-trivial solution of the phase retrieval problem for u. [ ]  

One might think that if we impose further conditions on the functions u and v such as regularity, 
or positivity, then I~u l  = 17vl could imply u = c v. However, the preceding example with H a C ~ 
function and a, oe', r ,  fl' > 0 shows that this is not the case. 

The following example shows that if, in addition, we require that the support of  u be connected, 
we still do not force uniqueness. 

E x a m p l e  2. Let f ( x ) =  exp l_-@lx2 if Ix[ < 1 and f ( x ) =  0 i f  Ix[ > 1. L e t u : - f - f - f "  

and v = - f  + f '  - f " .  Then u and v are non-negative, with connected support and C ec. However, 
5C'u : ( 4 ~ 2 X  2 - -  2i:rx - 1)Scf and 5Cv : (47r2X 2 + 2irrx -- 1)5cf,  thus, IbCul = Ibrvl. [ ]  

Let us now consider the Pauli problem. Here again additional information is given. We know 
that [SOul = 15Cvl and lul = Ivl. Hence, the only trivial solutions are v = cu with Icl : 1. The 
previous approach will be difficult to use as zero-flipping on 5Cu corresponds to a convolution of u 
with a distribution, and it is far from obvious how to check that I v I = l u I. 

We call u Pauli unique if I~u l  --  lYvl and lul - -  Ivl implies v = cu. We say that u and v are 
Pauli partners if I)Cul = 15Cvl and lul = Ivl. 

Reisenbach [ 17] published the examples of  Pauli partners found by Bargman, but only in 1978 
did Vogt [22] and Corbett and Hurst [6, 7] first start a systematic study of the subject and showed 
that there are infinitely many Pauli unique functions as well as infinitely many Pauli partners. To 
exhibit Pauli partners, they used a method based on the relation C5 c = 5cCZ. 

To be specific, let u be a function such that u ( - t )  = u( t )w( t )  with Iw(t)l = i and w is not 
a constant on {t : u(t) # 0} (that is, ICZul = lul). Let v = U - 1 C F ' u  = CZu .  Then lu[ -- Ivl, 
I~vL = ICTul  = I~'ul, Thus, u and v are Pauli partners. Note also that v is a trivial solution for 
the phase retrieval problem for u ? 

Furthermore, if we take lal --  I '1 in Example 1, then we obtain Pauli parmers that are 
non-trivial solutions of the phase retrieval problem. We prove more. 

Theorem 3. 
There exists u ~ L2(IR) which has a non-denumerable infinity o f  Pauli partners that are not 

trivial solutions o f  the phase retrieval problem. 

P r o o f ,  Let (an) be a sequence of  complex numbers such that ~ l an I 2 c o n v e r g e s  and consider the 
= 1-In=0(1 + ian sin 3nx). Write F ( x )  = Y ~ - - c r  bk eikx" Let H 6 Lz(IR) be Riesz product F(x )  ~o 

supported in [0, 1], and take 
c~ 

u ( t ) =  Z b l ~ H ( t - k ) .  

: .  oo 1 Lete  6 { -1 ,  1} 1~ and F(e)(x) I-In=0( +ianen sin 3nx). Write F(e)(x) w, oo ~,(e)~ikx 
= Z . ~ k = - o o  C'k c . 

Then v (e) = ~ = - o o  b(ke)H( t - k) is a Pauli partner for u. 
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For properties of Riesz products, see [ 14]. [ ]  

Remark 2. In the above example, if we take H a C c~ function and (ak) a fastly decreasing 
sequence, one can even obtain u in the Schwartz class. 

Remark 3. This theorem has already been found in a less precise form by Ismagilov [12] (a fact 
we have not been aware of while writing the first version of this article). It answers a question asked 
by Friedman [9]. 

One may then ask if further conditions could imply unicity. More precisely, the following 
questions arise. 

P r o b l e m  4. 

Find unitary operators U1 . . . . .  Un : L2(tR) ~-~ L2(1R) (not necessarily commuting) such that 

i f u ,  v ~ L2(]I~) satisfy lul = Ivl, t~Cul -- 15vl and Igiu[ = Igivl  (i = 1 . . . .  n), then v = cu. 

P r o b l e m  4bis .  

Given u ~ L2(R), f ind unitary operators U1 . . . . .  Un : L2(N) ~ L2(IR) (not necessarily 

commuting) such that i f  v ~ L2(IR)satisfies lul = Ivl, I~Cul = I~vl  and [giul = Igi vl (i = 1 . . . .  n ), 
then v = cu. 

If  such operators were found, it would also be important to give them a physical meaning. 
Note that an operator that commutes with C as well as the identity operator and the Fourier 

transform will not work [22]. 

3. The Radar Ambiguity Problem 

3.1 The Problem 

As radar computations are not familiar to the general mathematical community, we begin 
with a brief simplified version of the way ambiguity functions arise in radar theory. In doing so, 
we essentially follow Wilcox [24] and Auslander and Tolimieri [3] for the narrow band ambiguity 
function and Auslander and Gertner [2[ for the wide band case. 

Let X be an object or target and assume the radar is at the origin. Let r( t )  denote the distance 
from X to the radar and let v(t)  denote the radial velocity of X at time t. The problem is to transmit 
an electromagnetic wave or pulse s (t), - T < t < T, and from the echo e (t) obtained after reflection 
on the target, determine the quantities r(0)  and v(0). 

We will now briefly explain how information is extracted from e(t) .  The first step is to pass 
from the pulse to a complex valued function called the waveform of the pulse. As s (t) is real valued, 
we have ~ s ( - t )  = ~ s ( t ) ,  and so s( t )  is completely determined by its positive spectrum. Define 
the operator ~ : Lz(N) ~ Le(•) by 

f/ s ~ ~ s ( x )  = s~s(t)e2i~rxtdt.  

s(t)+i~(t) where ~r is the Hilbert transform of s. Explicitly Then ~ps(t) - 2 

1 [ s(t) 
a (x) = - lira - - d r .  

~-+o J[x-tl>e x - t 

We have II~Psll~2 -- �89 ]lslleL2. It is customary to call [IflleL= the energy of the signal s. 
Assume now that s satisfies the following properties: 

1. ll~Pstl = 1, 
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Let 

2. f~% It,s(t)12 dt < ~ ,  

3. f ~  It .~s(t)lZ dt < o0. 

s F to = t I~s( t ) l  2 dr, fo = t IJ '-~s(t)l  2 dt 

to is called the epoch and fo the carrier frequency. 
We will further assume that s is narrow banded, i.e., that the spectrum of s is small compared 

to the doppler shift due to the radial movement  of  the target. This validates the narrow band 
approximation, i.e., the replacement of the Doppler scaling of the spectrum by a shift. 

D e f i n i t i o n  1. The waveform Us (t) of the pulse s (t) is defined by 

Us(t) = ~ps (t + to) e -2izrf~176 �9 

It follows that s(t)  = 9t{~ps(t)} = 9t{Us(t - to)e 2i~rf~ } and that IlUs 11~2 = 1. The waveform 
Us (t) is "slowly varying" in the sense that its spectrum is centered around the 0 frequency. 

Assume the following physical conditions are satisfied: 

1. There is only one target. 

2. The radar cross-section of the target is independent of  frequency. 

3. The target is in the far field of  the radar. 

4. Multiple reflecting waves are negligible. 

5. The function r(t)  is approximately linear for - T  < t < T. 

6. The velocity of  the target is small compared to the speed of electromagnetic propagation. 

Then it is generally accepted that the echo is given by e(t) = 91{7te(t)}, with 

7re(t) = e-2zr i f~176 (t - to - xo) e 2izr(fO-yO)t 

where 

2 
x0 = - r  (0) is called the time delay of the echo 

c 

2f0 
Yo = v (0) is the Doppler or frequency shift of  the echo 

c 

with c the velocity of light. In particular, xo, y0 completely determine r (0) and v (0). 
One then estimates xo, Yo by the following method originally suggested byWoodward  [25]. 

Consider 
~ x y ( t )  = e-2i~rf~ (t - -  to --  x )  e-2i~ryt  e2iJrf~ 

and form 

f + 5  7ze(t)~xy(t)d t 2 I (x, y) = 

As Ilusll 2 = l ,  I ( x o ,  yo) = 1 and I ( x ,  y) < 1 for all x, y. Thus, if we regard l (x ,  y) as light 
intensity on a screen, the brightest point should be (xo, y0) enabling us to determine the range and 
velocity of  the target. It is crucial for us to observe that 

I (x, y) = IA (Us) (xo - x, Yo - Y)I 2 

where 

Z(u ) ( x '  Y) = f ~ u  (t  + 2 ) u  ( t - x]e2i~rytdt2/ (3.1) 
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One would like to make sure, in this context, that the observed quantity, which arises from 
u~, corresponds to the given radar signal or, depending on the aims of the user, to find Vs such that 
IN (Vs) I = I A (Us) I. Following Bueckner [5], we formulate: 

Problem ( R a d a r  A m b i g u i t y ) .  
Given u E L2(N), what is the set o f  all functions v ~ L2(]R) such that 

IA(v)(x,  Y)I = [A(u)(x, Y)I (3.2) 

for  all x ,  y E ]R? 
I f  v is such a function, we say that v is an ambiguity partner of  u. 

Unfortunately, in many cases such as signals arising in seismology, oceanography, and sonar, 
the narrow-band approximation is not valid. Thus, when the target is moving, there is no uniform 
Doppler shift across the entire spectra. In [20], a signal model independent of  bandwidth and central 
frequency was proposed. Following Auslander and Gertner [2], we will now describe this model. 
This time, 

7te(t) = A ~ s ( a t  - t )  

where 

a w m 

2 7  m m 

A 

c - v(O) 

c + v (0) 
2r(O) 

c + v (0) 

The energetic parameter of  the signal 

The Doppler stretch - compress factor 

The signal delay at time t = 0 .  

(Note that a > 0). We shall ignore signal attenuation and we will again normalize the energy to 1. 
We obtain 

f_~-oo f ~ 5  A 2 / _ 4 - ~  A 2 1 = le(t)12dt = A 2 I~s(a t  - r)12 dt = - -  ]~s ( t ) l ed t  - 
a ~ a 

Thus, conservation of energy requires that A = ~fd, so the received signal can be represented as 

~e( t )  = 4~dgts(at - r )  ---- v /S~s  (a (t - r ' ) )  

with r f -- 2r(0) 
c-v(o)" 

The problem is to estimate the Doppler parameter a and the delay r (that determine r (0) and 
v(0)). The maximum likelihood estimate of these parameters is obtained by finding the maximum 
of the cross-correlation function 

+ c o  2 
F 

max ~/-d I Os(t)gts  (a(t - r ) )d t  . 
a , 'F  J _  O~ 

This suggests that the definition of the wide band ambiguity function be 

WA(u) (a ,  r )  = , / S s  u(t)u (a(t - r ) )d t  p 

We also formulate the wide band analog of the ambiguity problem. 

Problem (Wide Band Radar Ambiguity). 
Given u E L2(IR), what is the set o f  all v ~ L2(IR) such that 
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IWA(v) (x ,  Y)I = IWA(u)(x ,  y)[ (3.3) 

for  all x > O, y �9 IR ? 

I f  v is such a function, we will say that v is a wide band ambiguity partner of  u. 

For both ambiguity problems, the complete answer is unknown. However, for the narrow band 
case, it may be easily checked that possible choices of u are 

1. v = cu, where c is a complex number of  modulus 1. 

2. v = M(co)u, co �9 R. 

3. v = S (a )u ,a  �9 IR. 

4 .  v = Zu. 

More cases may be obtained by combinations of  such transformations. We will say that v is 
Heisenberg related to u if v is obtained from u by a sequence of  transformations like 1, 2, 3, 4. 

In the wide band case, the situation is more complicated. First note that 

WA(u) (a ,  3) = <  u, DaS(r )u  > . 

With Parseval's identity and the commutation relations between 5 c, D, and S, we obtain 

where 

WA(u) (a ,  r)  = < a~u, .TDaS(r)u  > = <  .Tu, D 1 / a S S ( r ) u  > 

= < .Tu ,  M ( ~ ) D I / a . T U >  

_ 1 s  
WA(u) (a ,  r)  = ~ u(t )u(at )e2i~trdt .  

Trivial solutions of  the wide band ambiguity problem are then: 

1. v = cu with Icl = 1. 

2. v = CZu .  

3. v = 5C-lL(j~).)Vu (i.e., :Yv(t) = ei)~lnltl.Uu(t)), with ~. E 1R. 

If  v is obtained from u by a sequence of transformations of that type, we will say that v is 
A-related to u. 

We will not directly solve the wide band ambiguity problem. Instead, we rather solve the 
problem for WA,  i.e., we ask the following question: 

P r o b l e m  ( W  A A m b i g u i t y  Problem) .  

Given u �9 Lz(1R), what is the set o f  all v ~ Lz(1R) such that 

I~-~a(u)(a, 3) I = ]W~-~A(v)(a, 3)1 

for  all a > O , ~ � 9  

The trivial solutions of  this problem are then: 

1. v = cu with Ic[ = 1. 

2. v = C u .  

3. v = L()Ou with)~ 6 •. 
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3.2 The Narrow Band Case 

Here we will deal with the narrow band case and detail the proofs before giving results in 
the wide band case. But first, we note that u and v may be ambiguity partners without v being 
Heisenberg related to u. 

For instance, de Buda [8] gave the following example. Let 

u(t) = sin(27rnt) and v(t) = cos(27vnt) 

(for n > 1). Then u and v are ambiguity partners even though v is not Heisenberg related to u. 
Nevertheless, for special classes of functions u it is the case that every ambiguity partner of u 

is Heisenberg related to u. For instance, Bueckner [5] and de Buda [8] proved that this is the case if 

u is of the form P(x) e x p ( - ~ )  with P a polynomial. We conjecture that this result should extend 
x 2 

to functions of the form P ix) e x p ( - T )  with P an entire function of order a < 2. 
We start with an easy way to obtain counter-examples (which includes de Buda's counter- 

example), and then provide some positive results. 

3.2.1 C o u n t e r - E x a m p l e s  Let Ul, u2 be two functions in L 2 (R), respectively, supported 
in A1 and A2, and let cl, c2 be two complex numbers with IClt = [c2[ = 1. We then have 

A(CIUl § = [ C l ] 2 A ( u l ) §  U2)+C-lc2A(u2, ul)  

= A (Ul) + A (u2) + C l ~ A  (Ul, u2) § -dTc2A (u2, Ul) 

where A(ul, us) is the bilinear operator associated to A(u). Thus, if we can choose the sets A1 and 
A2 so that A(ul, u2), A(us, Ul), and A(ul) + A(u2) have disjoint supports, we obtain 

Ie(ClUl +C2u2)l -= I e ( u l ) +  n ( u 2 ) l + ] e ( u l , u 2 ) l + l e ( u 2 ,  ul)l 

= I a ( u l  + us)l 

though ClUl + c2u2 need not be Heisenberg related to ul + u2. 
Now note that the support of  

t ~"~ U 1 t §  ~ U2 t - - ' ~  

is included in ( a l  - ~) N (a2 + ~); in particular, Ul (t + ~)u2  ( t -  ~) = 0 for every t 6 R if 
x ~ A1 - A2, so that the support of A(ul,  u2) is included in the strip (A1 - A2) x N. Similarly, the 
support of  A(u2, Ul) is included in the strip (A2 - At) x II{. Thus, A(ul, u2) and A(us, ul) have 
disjoint support if A1 - A2 and A2 - A1 are disjoint. 

In a similar way, we also need A1 - A2 to be disjoint from A1 - A1 and from A2 - A2. The 
condition that A2 - A1 is disjoint from A1 - A1 and from A2 - A2 then follows automatically. 

Finally, we notice that there is no reason to restrict ourselves to two functions. We can then 
state the following: 

Proposition 1. 
Let { A j } j> I be a disjoint family of subsets of]R, of positive measure, satisfying the following 

conditions: 

1. the family {A i -- A j  }ir is disjoint, 

2. for i < j and for all k, A j - Ai is disjoint from A~ - A~. 

Let (u i )i>_l be a family offunctions such that ui is supported in Ai and such that Z ui E Lz(IR). 
i>l 
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Finally let (Ci )i> l be a family o f  complex numbers of  modulus 1. Then ~i>_l ciui and Y~4>_l ui 
are ambiguity partners but E i > l  ei ui is generally not Heisenberg related to Y~4>_1 ui. 

It is easy (see [3]) to see that A(.~u)(x ,  y) = A ( u ) ( - y ,  x) and we could state a similar 
proposition for the spectrum of u instead of the support. In particular, de Buda's  counter-example is 
obtained with A1 = [ - 2 n ,  - n ] ,  A2 = [n, 2n] (n > 1), ) ru = XA 1 -~- XA2 and 5Cv = XA1 - -  iXa2 "1 

A slight modification of that method, inspired by Example 1, leads us to the following example 
which will be crucial to us. 

E x a m p l e  3. Let H E L 2 (IR) be supported in [0, 1 ] and let (a j)  j=0,...,n be a sequence of complex 

numbers. Let u(t) = ~ = 0  aj H( t  - j ) .  Using the bilinearity of  A as before, it is easy to see that, 

f o r x E [ j - l , j +  l ] , j = O  . . . .  n, 

�9 " - -  2irrky A(u) (x ,  y) = g~rjy akak - j e  A ( H )  (x - j ,  y) , 
\k=~ / 

while A(u) (x ,  y) = 0 for Ix] > N + 1, and A ( u ) ( - x ,  - y )  = A(u) (x ,  y). 
If  v (t) = ~ = 0  bj H (t - j ) ,  then u and v are ambiguity partners if and only if for j = 0 . . . . .  n 

n n 

aka~- je  = b~bk_je 
k=j k=j 

Let N > 3, and choose u(t) = aoH(t)  + a l H ( t  - 1) + a N H ( t  -- N)  § aN+lH( t  -- N - 1) 
and v(t)  = bol l ( t )  + b l H ( t  - 1) + b N H ( t  - N)  + bN+lH( t  - N - 1). Then, to have ambiguity 
partners, we need 

1. For j = 0, [a012 -t-- [al ]2 X -~- [aN 12 X N + laN+l 12 X N+I and ]bo ]2 + lbl ] 2 X --[- [bN [2 X N q_ 

]bN+l [2 x N + I  to have the same modulus on the unit circle T. Following Example 1, if we 
take a,  d ,  fl, fl~ > 0 and the ai 'S and bi 'S such that 

. 

[ao[ 2 = r i f t '  ]al[ 2 = d f l  laN[ 2 = o~fl / [aN+l[ 2 = aft (3.4) 

]b0] 2 = o~fl t ]bl] 2 = otfl [bN] 2 = ot'fl t [bN+I [2 = o~tfi (3.5) 

then, for --12 __ x < �89 y ~ R, we have IA(u)(x,  y)[ = IA(v)(x ,  y)l. 

For j = 1, a0al +aNgtN+IX N and bob1 +bN{)N+IX N to have the same modulus on ~2. But, 
according to Equations (3.4) and (3.5), [aNglN+lt = [b0/~l 1, so that the two polynomials 
have the same modulus on T if 

a0al xN bNbN+l xN 
- -  + a n d  1 + 
aNgtN + l bob1 

have same modulus on T, which is the case when 

bNbN+l aoal  

bo/~l aNgtN+l 

INote added in proof: Grfienbaum [10] found the example u 1 = X[-1,1], u2 = X[4,5], u3 = X[-5,-4]. 
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Note that by Equations (3.4) and (3.5), these two complex numbers have the same modulus. 
Thus, this reduces to the following condition on the phases: 

argbo - argb~ - argbN + argbN+l 

argao -- a rga l  -- argaN + arg aN+l (270.  (3.6) 

3. For j = 2 . . . . .  N - 2, there is no extra condition. 

4. For j = N - 1, laNgtlXN[ = IbNr, I o n  which is a consequence of conditions (3.4) 
and (3.5). 

5. For j = N,  laNgtO + aN+lgqXI -= [bN[~O if- bN+as I on ~2. As laNgtol --- IbN 01, we 

aN+~al bN+fl X , that is need I + ~ X  = 1 +  bNbo -- 

a N + l a l  bN+l/~l 

aNgtO bNbo 

Again, conditions (3.4) and (3.5) imply that these two complex numbers have the same 
modulus while condition (3.6) implies that they have the same argument. 

6. Finally, for j = N + 1, laN+la0] = IbN+IDOI, which follows from Equations (3.4) and 
(3.5). 

[ ]  

It is important in what follows to note that, by the Paley-Wiener  theorem, A(u) and A(v)  are 
entire functions in the y variable but A(u) does not have the same zeroes as A(v)  or A ( Z v )  = A(v) .  

3.2.2 The Radar Ambiguity Problem for Compactly Supported Functions Let 
u ~ L2(IR) be a compactly supported function. We will now examine some conditions for the 
solutions v of  [A(v)l : IA(u)l to be Heisenberg related to u. First we need to see that v is also 
compactly supported. 

Lemma 1. 
Let u ~ L2(IR) be a compactly supported function. Let v ~ L2(I~) satisfy IA(v)(x,  Y)l = 

I A (u)(x,  y) l for all x ,  y E 1R. Then v is also compactly supported. 
Moreover, i f  the support o f  u is contained in an interval o f  length 2a, then the support o f  v is 

also contained in an interval o f  length 2a. 

Proof, Up to a time shift S(ot), we may assume that u is supported in I - a ,  a]. Then, if Ix[ > 2a, 

we have, for all t ~ IR, u (t + }) u (t - ~) = 0; thus, 

A(u) (x ,  y) = u t + ~ u t - eiytdt -= 0 
o o  

for all y c N and all x with ]xl > 2a. 
But then, as ]A(v)(x,  Y)I = IA(u)(x,  Y)[ for x, y c IR, we get A(v) (x ,  y) = 0 for all y ~ R 

and all x with Ixl > 2a. 
Now, noticing that A(v) (x ,  y) is the Fourier transform of 

we obtain 

( x ) ( x )  v t + ~  v t - ~  , 

( 9 ( 9  v t +  v t -  = 0  for a l l t ,  and all x with Ix[ > 2 a .  
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After  a change of variables, we deduce from this that 1 ) ( X l ) V ( X 2 )  = 0 as soon a s  IXl - x21 > 2a. 
Therefore, the support of  v is contained in an interval of  length 2a. [ ]  

R e m a r k  4. This lemma actually gives more information. Up to a translation, we may assume 
that the support of u is contained in [ - a ,  a] and in no smaller interval. Then, by the lemma, the 
support of v is contained in an interval of length 2a that, up to a translation, we may assume to be 
[ - a ,  a]. Assume that v is actually supported in a smaller interval of length, say 2b < 2a; then we 
may exchange the roles of u and v to obtain that the support of  u is contained in an interval of  length 
2b, that is a smaller interval than [ - a ,  a]. This gives a contradiction. 

We may now assume that supports of both u and v are contained in [ - a ,  a] and no smaller 
interval, in particular, u and v are compactly supported. Thus, the Paley-Wiener  theorem ensures us 
that A(u)(x,  y) and A(v)(x,  y) are both entire functions of  exponential type in the y variable. But 

Ia(u)(x, Y)I = Ia(v)(x,  Y)I for all x, y ~ IR; thus, a(u)(x,  y)A(u)(x,  y) = A(v)(x,  y )a(v) (x ,  y) 
and then by analytic continuation we find that 

A(u)(x,  y)A(u) (x, y) = A(v)(x,  y)A(v) (x, Y) for all x ~ ~ ,  y 6 C .  (3.7) 

On the other hand, due to the Hadamard factorization theorem, an entire function f (z) of  exponential 
type is entirely determined by its zeros, up to a factor )~e "z with )~,/z c C. Unfortunately (3.7) only 
tells us that, for fixed x, i f z  is a zero of A(u)(x,  .), then either z or ~ is a zero of  A(v)(x,  .) (zero 

flipping). 

Several cases occur, for instance, A(u) may only have real zeros (e.g., if u = X[a,b]), then 
A(u) and A(v) have the same zeroes. 

There are some functions u for which every ambiguity partner v is such that either A(u) and 
A(v) have the same zeroes, or A(u) and A(Zv)  have the same zeroes. We do not know if  this can 
occur when A (u) has non-real zeroes, and so we are unable to give a characterization of  the functions 

u for which this is the case. 

Finally, as in Example 3, A(u) and A(v) may have some common non-real zeroes and some 

conjugate zeroes. 

In what follows, after eventually replacing u by Zu or by some uf  if zero flipping occurs, 
we shall assume that A(u) and A(v) have the same zeroes. In other words, we now consider the 
following restricted radar ambiguity problem: 

Problem (Restricted Radar  Ambiguity) .  

Given a compactly supported u ~ L2(N), what is the set of ambiguity partners v of u, such 
that for every x ~ ~, A(u)(x, .) and A(v)(x,  .) have the same zeroes in the complex plane? 

We will call such ambiguity partners restricted ambiguity partners. 

Example 3 shows the following: 

Proposition 2. 

There exist compactly supported functions u which have ambiguity partners that are not re- 
stricted ambiguity partners either of u or of Zu. 

By the Hadamard factorization theorem, if  u and v are restricted ambiguity partners, we 
have that, for each x 6 •, there exist two complex numbers )~x, IZx such that, for all y 6 C, 
A (v)(x,  y) = )~x e ~xyA (u)(x, y), as these two ambiguity functions have the same zeroes. Further, 
as IA(u)(x,  y)[ --  ]A(v) (x, Y) l, we see that I)~x [ = 1 and/Zx is a purely imaginary complex number. 
We can, therefore, write 
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A(v)(x,  y) = ei~~ y) for all x, y 6 1I{ (3.8) 

where ~o, ~ : R ~ R. 

We first identify 0 .  (3.8) implies that A(v)(O, y) = A(u)(O, y) for every y E R. But 
A(u)(O, y) = 5C[lu[ 2] (y) and A(v)(O, y) = 5c [Ivl 2] (y), thus, lul 2 = Ivl 2. In particular u and v 
have the same support, so for every x E N, 

t ~ + u  t + ~  u t - ~ ,  a n d t ~ - + v  t + ~  v t - ~  

have the same support. But, the Fourier transforms of these functions are A(u)(x, .) and A(v)(x,  .); 
thus, by the Paley-Wiener  theorem, they have the same exponential type. On the other hand, 
Equation (3.8) implies that the exponential type of  these two functions differs by f~ (x)l so 7r (x) = 0 
for every x 6 IR. 

Now we identify ~0. Let f2 be the set of all x such that A(u)(x,  y) is not identically 0; thus, 

f2 = x : t ~--~ u t + ~ u t - ~ i s n o t 0 a . e .  

As A(u)(x, y) is continuous (cf. [3]), we may assume that ~ is continuous on f2. As A(u)(O, O) = 
A(v)(O, 0) = 1, we can assume that ~0(0) = 0. Moreover, f2 is an open set of  R, and so a countable 
union of  disjoint intervals. Further, as A ( u ) ( - x ,  - y )  = A(u)(x, y), - f 2  = f2, and we can assume 
that ~o is odd. As A(u)(O, 0) 1, 0 ~ S2, and so we can write ~2 oc = = U k = - ~  Ik with 0 E I0 and 
I _ k  = Ik. 

D e f i n i t i o n  2. Let f : N ~ C be a measurable function. Then a point x E ~ will be called a 
Lebesgue point of f if  

if. -~] f ( y ) d y  --+B',Ax} f ( x )  

where q)(B) -+B'-Jx} ~ means that for every e > 0 there exists r > 0 such that for every ball B of 
radius < r containing x, Iq)(B) - cel < e. 

IANII Recall  that a point x in a set A C ~ is called apoint of density of A if i-i7i- --> 1 where I is 
an interval containing x of  length r / ~  0. In other words, a point of  density of A is a point of  A that 
is a Lebesgue point of  XA. 

Recall that if  f E ~L 1 (IR), then almost every point of IR is a Lebesgue point of f ,  in particular, 
almost every point of a measurable set A is a point of  density of A. 

In what follows we assume that every point in the support of  u is a Lebesgue point of  u, and so a 
Lebesgue point of  lul; thus, also a point of density of the support of u. Let S = {x E I~ : u(x)  ~ 0} 
be the support of  u, and let 

X X X X 

By definition, [Ex [ > 0 if and only if  x E f2. Note also that, as every point of Ex is a point of density 
of Ex, if  [Ex [ = 0 then Ex = 0. 

Proposition 3. 
I f  S is the support of u, then f2 = S - S. 

P r o o f .  We first prove that S - S C f2. Let x r f2. By definition [Ex [ = 0, so that Ex = 0, that 
is, (S - ~) N (S + ~) = 0 which yields x r S - S. 

For the reverse inclusion, let x ~ f2. Then IExl > 0 which implies that I(S - x)  n SI > 0. In 
particular, there exist ~7, ~ E S such that 0 - x = ~; thus, x = ~7 - ~ ~ S - S. [ ]  
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L e m m a  2. 
I f  to, tl ,  t2 are in S, then 

go (t2 - t l )  § go (tl - to) --  go (t2 - to) (2zr) .  (3.9) 

P r o o f .  As A(u)(x ,  .) and A(v) (x ,  .) are Fourier  transforms, we have 

x x x x 
u ( t  + -~) u ( t  - -~) = ei~~ ( t  -k -~) v ( t  - ~ )  . 

I f  x and y are in S, then 

s 
~ ) d s d t  --+ u(x )u(y )  

(27) 2 

as ~ -+  0. If  we further assume that x and y are Lebesgue points of v, us ing the cont inui ty  of  go, we 
obtain 

fit s s 1 f ei~O(S)v(t + ~ ) v ( t _ ~ ) d s d t _ _ + e i ~ ( x _ Y ) v ( x ) v ( y ) ,  
(27) 2 Jis-(x-y l<  

as ~ -+  0. Thus, 
u(x)u(y )  = ei~~ . (3.10) 

Apply ing  relat ion (3.10) to t2, tl E S, and to t l ,  to 6 S, we have 

u (t2) u (t l)  = ei~(t2-tl)v (t2) v (t l)  and u (q)  u (to) --- eig~176 (tx) v (to) �9 

Mul t ip ly ing  these two relations, we find 

u (t2) u (to) [U(tl)] 2 = ei~p(t2-tl)+i~~176 (t2) V (to) IV (tl)[ 2 �9 

Then,  as [u [ = Iv [ almost  everywhere,  relat ion (3.10) leads us to 

go (t2 - tx) + go (tl - to) ~ go (t2 - to) (2~r) 

for almost  every to, t l ,  t2 in S, and by  cont inui ty  of  go on f2 = S -  S, relation (3.9) is valid everywhere. 
[] 

L e m m a  3. 
There exists co ~ IR and a real sequence (bk)keZ such that, if  there are to, t l ,  t2 ~ S such that 

t2 - tl E I~, tl -- to ~ IIc, and t2 - to c Ik,, then 

bk + bg, ----- bk, (2zr) .  (3.11) 

and, for  every x E I~, go(x) = cox + bk. 

P r o o f .  First, by choosing to, t l ,  t2 E S such that x = t2 - tl c I0, y = tl - to E Io and 
x + y = t2 - to 6 Io, (3.9) becomes go(x + y) = go(x) + go(y) from which it is easy to see that go is 
linear, that is, there exists co 6 R such that go(x) = cox on I0. 

Now we look at another connected componen t  Ik of  f2. If  to, tl ,  t2 6 S are such that x = 

t2 -- tl E Ik, y = tl -- to ~ I0, and x + y = t2 - to c I~, then go satisfies go(x + y) = go(x) § coy. 
Thus,  for every k, there exists b~ such that, for x 6 Ik, go(x) = cox + bk. 

Finally,  relat ion (3.11) is a direct consequence  of relat ion (3.9). [ ]  

We have proved that there exist to ~ S, co E N, and a sequence (bk) satisfying (3.11) such that, 
f o r x  E I k  -t- to, v(x)  = cei~ 
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Conversely, assume that the bk'S satisfy condition (3.7), let to �9 S, and define go(x) = cox + bk 
for x �9 Ik + to. Let v(x) = cei~~ Then for x �9 Ik + to and almost every t �9 R, either there 

x x exists U, k" such that t + 7 6 (Ik, + to) f3 S and t - 7 E (lk,, + to) O S, (as x = 
Ik + to), bk = bk, -- bk- and 

( x )  ( X)=ei~Oxeib~u ( x )  ( x )  
t -  v t t -  u t + ; 

X X or t § 7 and t - 7 are not both in S whence 

( ( v v = .  u = 0 .  

In particular, A(ei~p(X)u)(x, .) : eibk +iwX A ( u ) ( x ,  .), and 

(ei~~ (x , . )  -- IA(u)(x ,  .)l . 

Summarizing the previous results, we can now state the following theorem. 

Theorem 4. 
Let u �9 L2(IE) be a compactly supported function and let v be a restricted ambiguity partner 

ofu.  
I f  $2 is the open set of  all x such that A(u)(x ,  .) is not identically O, there exists a locally 

constant function ~o on S2 such that, for every to, tl, t2 belonging to the support of u, 

go (t2 - tl) § go (q - to) -= go (t2 - to) (270 (3.12) 

and 
v(x ) = cei~~ X~ ei~ u (x - a) 

for  some a �9 N, co r N, c e 72 and some xo belonging to the support of u. 
Conversely, every function v of  that form is a (restricted) ambiguity partner of  u. 

R e m a r k  5. Using the relation A ( ~ u ) ( x ,  y) = A ( u ) ( - y ,  x) we can easily state this theorem for 
band limited functions if we replace u and v by 5Cu and ~ v  in the above theorem. 

Proposition 1 is a particular case of Theorem 4 in which condition (3.12) is reduced to go odd. 
In the case u = X[a,b] all the zeroes of A(u) are real, thus, for every solution v of  the ambiguity 

problem for u, A(u) and A(v)  have the same zeroes and we have a complete solution of  the ambiguity 
problem for this u. Moreover, if every ambiguity partner of H in Example 3 is a restricted ambiguity 
partner of H,  then Example 3 and Theorem 4 give every ambiguity partner of U(t) = aoH(t)  + 
a l H ( t  - 1) + a u H ( t  -- N)  + aN+lH( t  -- N - 1). 

The theorem essentially states that if u is "simple" (in particular, the support is an interval), 
then the solutions of the ambiguity problem are "simple," whereas for complicated u (for example, 
when the support has big gaps) the solutions are also complicated. 

3.3 The Wide Band Case 

Recall that 

WA(u) (a ,  r)  = ~ / S ] ~  u(t)u (a(t - z))dt  

and that WA(u) (a ,  r)  = ~ a W A ( U u ) ( 1 / a ,  r /a)  where 

W~A(u)(a, z) = fR u(t)u(at)e2~i~tdt " 
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We want to know if ]WA(u)l = IWA(v)l implies that v is A-related to u. 
Here we will briefly review so.~me results for the wide band ambiguity problem for band limited 

functions or, equivalently, for the WA-ambiguity problem for compactly supported functions. These 
results can be obtained in a similar way to those of the previous section; therefore, we will only give 
sketches of  the proofs. 

First, let us write u = u0 + ul~and v = couo~ q-- ClU l~where u0 = X [ a o , a l ] ,  U l  = X[a2,a3]" We 
seek conditions on a0, aa, a2, a3 for WA(uo) + WA(ua), WA(uo, Ul), WA(ua, uo) to have disjoint 
supports. One then finds functions having wide band ambiguity functions with the same absolute 
value which are not A-related. The precise result is the following: 

Proposition 4. 
Let (ak)k>_o be an increasing sequence of positive real numbers such that 

a2k+_.__~l . and 1. for all k > O, az(k+l) > aZk+l azk ' 

2. for all k > 0, a2(k+l)+l < a2(k+l)az(k+l) 
- -  a 2 k + l  

Let (Uk)k>_O be a sequence o f f  unctions in L2(tR) such that for all k > O, UUk is supported in 
[a2~, a2k+l], and Y~k>>_o uk c L2(N). 

Finally, let (ctc)k>_O be a sequence of complex numbers of modulus 1. Then, for every a > 0 
and every r E ]R, 

WA(~>_oCkUk)(a 'r )  = wa(k~>_oUlc)(a'r)  

whereas, in general Y~k>>_o CkUk is not A-related to ~k>_O Uk. 

We now focus on finding examples of band limited functions for which the solutions of  the 
wide band ambiguity problem for u are all A-related to u. Again, it is equivalent to work with WA 
and compactly supported functions. We will first need the following lemma: 

L e m m a  4. 
Let K be a compact set of positive measure such that 0 ~ K and let u ~ L2(~)  be supported 

in K. I f  v E L2(~)  satisfies 
Iff-'a(v)(a, r)  I = Iff-'a(u)(a, r)  I 

for all a > O, r ~ N, then v is also compactly supported. 

P r o o f .  K being a compact not containing 0, we can find an e > 0 and an ~ > 0 such that if 
[xl < e or Ixl > r~, then u(x) = 0. But then, 

W~A(u)(a, r) = fI~ u(t)u(at)eZ~rirt dt = 0 

if a > ~ or if a < ~, and so v(t)v(at) = 0 a.e. Thus, if to is any Lebesgue point of v that is in the 
8 support of v, v(t) = 0 i f  It[ > ~ [t0l and i f  [tl < ~ [t0[. Hence, v is compactly supported. [ ]  

R e m a r k  6. The Paley-Wiener theorem implies that if u is supported in [ - 7 ,  ~7], so is v and the 
previous proof tells us that if K is contained in [-~7, - e ]  U [e, ~], so is the support of v. 

To go further, we again use the methods~ of Section 3. A second appeal to the Paley-Wiener 
theorem tells us that WA(u)(a,  r)  and WA(v)(a,  r) are entire functions of  order 1 in r. 

Here again, WA(u)  and WA(v)  need not have the same zeroes. For instance, let N > 4 be an 
integer, and let 

u = a0x[1 ,2  ] q- a lX[4,8]  -+- aNX[22N,22N+l ] ~- aN+lX[22N+2,22N+3] 
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and 

V ---- b0X[l,2 ] + blX[4,8] -i-bNX[22N,22N+l] -1-bN+l)([22N+2,22N+3] 
Then if  lail -= Ibil for i = 0, 1, N,  N + 1 and if  

argb0 - a rgb l  - argbN + arg b u + l  --= arga0 -- a rga l  -- argaN + argaN+l  (2rc) 

but ar~g.b0 - a rgb l  ~ arga0 - a rga l  (27r) and argbu -- a r g b u + l  ~ argau -- argaN.~-i (2rr), 
then W A ( u )  and W A ( v )  have the same modulus, but not the same zeroes, neither do W A ( u )  and 

W A ( C Z v )  have the same zeroes. 
In what follows, we assume that W A ( u )  and W A ( v )  have the same zeroes and solve the 

following restricted wide band ambiguity problem: 

Problem (Restricted Wide Band Ambiguity). 
Given a compactly supported function u E Lz(IR), what is the set o f  all v c Lz(R) such that 

[W"A(u)(a, v) I = IW-'A(v)(a, r)  I 

for  all a > O, v E R, and such that W A ( u )  and W A ( v )  have the same zeroes? 

Using Hadamard 's  factorization theorem, we can write 

W~A(v)(a, r )  = e i(r W-'A(u)(a, v) 

with ~o, ~ �9 R e+ R, from which we deduce again that ~ = 0, as in the narrow band case. 
We will now identify q). Let f2 be the set of all a such that WA(u) (a ,  r) is not identically 0, 

thus: 
S 2 = { a  : t~--~ u ( t ) u ( a t ) i s n o t O a . e . }  . 

As WA(u) (a ,  v) is a continuous function of  (a, v), i2 is an open set of IR and so a countable union 

of disjoint intervals, ~2 = UI, eN Ik. 
Now, as 

W~A (u) (a, T) = e i~~ W"A (v) (a, v) , 

as WA(u) (a ,  "c) and WA(v ) (a ,  r )  are continuous, and as 

WA(u) (1 ,  O) = WA(v ) (1 ,  O) ---- 1,  

we may assume that ~o is continuous and that 9)(1) = 0, in particular [ul = Iv[ almost everywhere. 
We again assume that every point in the support S of u is a Lebesgue point of  u, and so a 

Lebesgue point of lu[ and a point of density of S. We also assume that 0 r S. 
The following proposition can be obtained in a similar way to Proposition 3: 

Propos i t ion  5. 
Let u ~ L2(IR) be supported in a compact set not containing O. Let S+ be the set o f  positive 

density points o f  the support o f  u and S_ the set o f  negative density points o f  the support o f  u. Then 

s S--2-+ U - -  = : x ,  y E S + U " x,  y ~ S_ . 
S+ S -  

But now, W A  is the Fourier transform of u( t )u(at )  in the r variable and 

W~A (u) (a, v) -= e i~(a) W'~A (v) (a, ~) , 

so that 
u(t )u(at)  = eir . 
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Thus, if tl, t2 E S, then 
�9 t 2 

U (tl) U (t2) = eZ~~ (tl) v (t2) 

and, as for Lemma 2, we obtain the following: 

L e m m a  5. 
I f  to, tl, t2 are in S, then 

q) + q) --= ~o (2Jr) . 

From this we deduce the following analog of  Lemma 3: 

L e m m a  6. 
There exist X E IR and a real sequence (bk)kcZ such that, if there are to, tl, t2 E S such that 

to q to Ik,,, then tl E Ik, V2 ~ Ik' and ~ c 

bk + bk, =- bk" (2zr) 

and, for  every k E N, x EIk,  ~0(x) = L 1ogx + bk. 

Translating the results from W A  to W A  we finally have the following analog of Theorem 4: 

T h e o r e m  5. 
Let K be a compact set not containing 0, and let u E L2(R) whose spectrum is in K. Let v be 

such that 5 v  is a solution of  the restricted wide band ambiguity problem for  ~u .  I f  f2 is the open 
set o f  all x such that W A (.Tu ) (x, .) is not identically O, there exists a locally constant function ~o on 
f2 such that for  every to, tl, t2 belonging to the spectrum of  u 

~o + ~o -- q) (2zr) 

and 

(~o)eiXlogx .Tv(x ) = ce '~~ .Tu (x ) 

for  some c E qF, X ~ ]R and some to belonging to the spectrum of  u. 
Conversely, every function v o f  that form is such that .Tv is a solution of  the restricted wide 

band ambiguity problem for  .Tu. 

4. Conclusion 

The radar ambiguity problem is far from being solved. The phenomenon of  zero flipping is 
certainly not understood and indeed, in some cases the extra structure of  ambiguity functions (cf. [3]) 
may well intervene to render it superfluous. That is, no zero-flipping may be allowed. 

This article improves our understanding of the radar ambiguity problem in three ways: 

1. It completely solves the radar ambiguity problem up to zero flipping. 

2. It provides new examples where the solution set is minimal (for example, when u = X[a.b]) 
or near to minimal, that is, without zero flipping (for instance, when u is a sum of translates 
of  X[a,b], via Proposition 1). 

3. It provides a method of obtaining many functions u for which the solution set is much 
bigger then expected. In particular, it contains functions that are far from being Heisenberg 
related to u (Example 3). 
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. 2 

It would be particularly interesting to explain what happens for funcnons of the form P (x)e -x  

with P a polynomial. In this case A (u) is essentially a polynomial and the additional structure alluded 
to above comes into play, forbidding zero flipping. We believe that this result extends to functions 

of the form P (x)e -x2 with P an entire function of order less than 2. (One can easily show that, if 
u is of the form P ( x )  e x p ( - x  2) with P an entire function of order a < 2 and if v is an ambiguity 
partner of u, then v is of the form M(co)S(a)  ( Q ( x )  exp( -x2) )  with Q an entire function of same 

order ~.) 

Such a result would be of theoretical significance. Recall that Bueckner associated to every 
function u a Hilbert-Schmidt operator Ku. It turns out that v solves the radar ambiguity problem for 
u if and only if Ku and Kv are "similar." A careful reading of [5] also shows that if Ku is of finite 

rank, then u is of the form P ( x ) e  -x2 with P an entire function of order at most 2. As finite rank 

operators approximate Hilbert-Schmidt operators, we think that the result for finite rank operators 
and some considerations on the "speed" of approximation should also bring new results. 

Note Added in Proof  

After the first submission of this paper the author became aware of certain earlier examples 
of non-trivial Pauli partners and ambiguity partners. In [13], Janssen gave other examples of Pauli 
parmers and found non-trivial ambiguity-partners of Proposition 1 with a method based on the 
Zak transform Z f ( r ,  o)) = Y'~keZ e - a i ' k ~ ~  r + k). His Example 1 can also lead to another 

proof of Theorem 3: let (Ak)ksN, (Bk)k~r~ be two partitions of [ - 1 / 2 ,  1/2] into open sets and 
let q~g 6 L 2 ( [ - 1 / 2 ,  1/21) be supported in Ak x Bk. Let fk  = z- lq)k ,  then f = Y]keN fk  and 
g = Y~gsN cl: f k  with [ck[ = 1 are non-trivial Pauli partners that are non-trivial solutions of the phase- 
retrieval problem. However, these examples are essentially different from those in Theorem 3. Note 
also that f and f are never compactly supported, nevertheless taking a smooth q~k leads to f c S(IR). 
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