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Abstract. This note gives a me thod  for const ruct ing real analyt ic  maps from R 2n 
into I~ 2, with an isolated critical point  at 0 E p2n for all n > 1. This  provides infinite 
families of real singularit ies which fiber "a la Milnor".  

0. Introduction 

In this note I give a method for constructing real analytic maps from 

R 2n into ]R 2, with an isolated critical point at 0 E R 2n, for all n > 1. 

These maps have a very rich geometry, which is a reminiscent of the 

geometry of complex singularities [Mi], and in some ways it is even 

richer. This provides infinite families of real singularities which fibre 

"a la Milnor" [Mi, p.100]. The construction arises from the work of 

Arnold [Ar], Camacho-Kuiper-Palis [CKP] and Gomez Mont-Verjovsky 

and myself [GSV, Se], by studying holomorphic vector fields from the 

differentiable point of view. 

The construction is in fact simple: Let x(C n, 0) denote the space of 

all germs of continuous vector fields at 0 E C n, and let F,  X be elements 

in x(C n, 0). One has a continuous map, 

r C n ~ R 2~ C ~ R 2 
F , X  : : --"+ : -  , 

defined by ~bF, x ( z ) =  (F(z), X(z)}, where 

n 
(F(z), x ( z ) )  : ~ Fi(z) . Xi(z) ,  

i=1 
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is the  usual hermi t ian  product .  These are the maps to which the title 

of this article refers. We note  tha t  if F and X are bo th  differentiable 

of class C r, then  ~F,x is of class CL  if they are bo th  real analytic, 

~F,X is real analytic, but  if F and X are complex analytic, then  ~F,x is 

not complex analytic, unless X or F are constant .  So the singularities 

we obtain are t ruly real singularities, though  we shall be considering 

holomorphic  vector fields. 

As an example,  let f:  C 2 ~ C be the Pham-Brieskorn  polynomial  

f ( z )  = z~ + z~, with p, q > 2, let 

a holomorphic  vector field whose solutions are the fibres of f ,  and take X 

to be a constant  vector field X = (al, a2). Then  ~F,X is a holomorphic 

function with an isolated critical point  at 0 and M = r  ) is the 

polar curve de termined  by a linear form (studied by Teissier, L~ and 

others, still unpublished).  Now take F to be the linear vector field in 

(;3 which is in the  Siegel domain  wi th  generic eigenvalues [CKP], for 

instance F = (z], iz2, ( -1  - i ) .  z3), and take X to be any linear vector 

field X(z )  = (zl, z2, z3); then  M = 9~1x(0 ) is the cone over the  3-torus 

S 1 x S 1 x ~1 [CKP, Lm]. Hence M = CF,Ix (0) is not a complex singularity, 

because the  3-torus is not the link of any complex surface singularity 

[Su]. Though  M is not a complex singularity, M - {0} is canonically a 

complex manifold wi th  a holomorphic C*-action with compact  quotient  

M/C*,  which is not a projective manifold [LV]; M is the space of Siegel 

leaves of F .  

Al though some things can be done in general, for F and X contin- 

uous vector fields, I prefer to restrict myself to what  I th ink is the ideal 

environment:  F holomorphic  and X the gradient vector field of a real 

analytic function f .  Then  the  variety M of CF, x is the  polar variety of 

the foliation S of F and the foliation given by the level surfaces of f ,  

i.e. M is the set of points  where the  two foliations are tangent .  

In w below we look at the geometry  of the  functions ~F,x in general. 

In ~2 we look at the varieties defined by these maps,  the  polar varieties 
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(or contact  sets), and in w we show tha t  this construct ion produces 

singularities which fibre a la Milnor [Mi], i.e. they  give rise to locally 

trivial fibre bundles of the type, 

6:Sc - M --+ S 1, 

f(z) 
Z~'--r - -  

]Jf(z)ll' 

where f is now the map  ~F,X. The  existence of this type of examples was 

asked by Milnor on page 100 of his book. This  question was answered 

positively by Looijenga in [Lo], by proving tha t  for every n > 1 there 

exists a real polynomial  map  (R 2~, 0) -+ (1R 2, 0) defining a fibration of 

Milnor's type. However, Looijenga's proof  is not construct ive in the 

sense tha t  it does not  give explicit polynomials  for which one has such 

fibrations. (See also [Pc].). Our const ruct ion gives infinite families of 

such examples. In w we s tudy  in detail  one such family. We show 

tha t  in these cases there are surprising analogies with [Mi] regarding 

the topology of the fibers. I do not know if this is a coincidence or if 

this is a special case of some general theorem. 

Par ts  of this work were done while the au thor  was a guest at the Uni- 

versity of Geneve in Switzerland, at the I C T P  in Trieste, at IMPA in 

Rio de Janeiro, at T I T  in Tokyo, and at CIMAT, Guanajua to ,  Mexico. 

He would like to thank  these inst i tut ions for their  suppor t  and hospital- 

ity. He is specially grateful to professors Alberto Verjovsky, Francisco 

Gonzalez-Acufia, C6sar Camaeho and L& Dfing TrSng for fruitful con- 

versations. 

1. The Geometry of  ~F,X 
Let F and X be elements in x(C n, 0), wi th  F holomorphic  and X being 

the  gradient  vector field of some real analytic function 

f:  C n ~ ]R 2n --+ IR, 

with  an isolated critical point  at 0. The  level surfaces of f ,  )2t = f - l ( t ) ,  

are normal  to X and define a (real) codimension 1 foliation S of C n, 

singular at 0. Let ~c be the holomorphic  foliation by complex curves 
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defined by F.  

1.1 Definition (e.f. [Th]). The polar variety of f and F is the set M of 

points in C n where the foliations jc and S are tangent.  

It is clear that  one has, 

M = {z ~ C ~ L (F(z ) ,X(z) )  = 0}, 

so it is a real analytic space defined by the equations: 

a e ( F ( z ) ,  X(z) )  = O, 

Im(F(z),  X(z ) )  = o. 

Away from M these two foliations meet transversely, defining a foliation 

F by real curves. 

1.2 Lemma.  The curves of F are the integrals of the real analytic vector 

field, 

~(z) = (i(F(z),  x ( z ) ) )  �9 F(z) ,  

whose zero locus is M .  

Proof.  It is clear that  ~-(z) is always tangent  to 5 c, because at each point 

z ~ C n, T(z) is F(z)  multiplied by a complex number. So we must prove 

that  T(Z) is normal to X(z) .  One has, 

(r(z), X(z ) )  = ((i(F(z),  X ( z ) ) ) .  F(~), X(z ) )  

= (~(F(z), X(z ) ) ) .  (F(z), X(~)) 

= ill (F(~) ,  X(~))II 2. 

Hence Re(~-(z), X(z)} = 0, so T(z) is normal to X(z ) ,  because the real 

part  of the hermit ian product  is the usual inner product  in R 2n ~ C n. 
[] 

This vector field gives the dynamical  behaviour of F in the direction 

determined by the level surfaces of f .  For instance, if X(z )  = z and F 

is a linear vector field in the Poinea% domain with generic eigenvalues, 

then 7 is Morse-Smale [Gu], which is used in [CKP] to prove tha t  the 

linear vector fields in the domain of Poinea% are structurally stable. If 

we multiply ~- by the complex number i, we get another vector field, 

which commutes with ~- and gives the dynamical  behavior of F in the 

direction transversal to the level surfaces of f .  
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The  following proposi t ion gives a geometr ic  in te rp re ta t ion  of the  

m a p  z ~ i(F(z),  X(z)},  which is essential ly the  m a p  men t ioned  in the  

in t roduc t ion  of this  article. 

1.3 Propos i t ion .  For each z E C n - M,  the argument of the complex 

number i (F(z ) ,X(z )}  is the angle by which we must rotate the vector 

F(z) in its complex line~ to make it tangent to the level surface of f at 
Z. 

Define a funct ion  q~ = CF, x:  C n - M --+ S 1 C C by, 

i(F(z),X(~)) 
r  = i<F(z),X(z)} ' 

and  set Eo = r  For each 0 E [0, Tr) C R, we define a map,  

~0: C n --+ R, 

by ~o(z) = Re(ei~ X(z)}.  We set, 

Mo = r = {~ ~ C n I aete~~ X(~)) = 0}  

MO is the  set of points  where  F(z) is or thogonal  over R to X(z) ;  M~/2 

is the  set of points  where  iF(z) is o r thogonal  over R to X(z) ,  and  so on. 

One has the  following decompos i t ion  theorem:  

1.4 Theorem. 

i) C n = U•fo, 0 E [0, Tr). 

ii) M = NMo, 0 E [0, Tr). 

iii) 114o = Eo U M U Eo+~, for each O. 

Proof .  S t a t e m e n t  (ii) is clear and  s t a t e m e n t  (i) follows f rom s t a t e m e n t  

(iii), so we prove (iii). It  is also clear t ha t  M C Mo. Let us prove tha t  

Eo C Mo. If z E Eo then,  

e-i~ X(z))  
~ 1 ,  

i{F(z),  X(z)) 

thus,  

e-~~ X(z)) = i(e~oF(z), x(~)), 
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is a real number .  Hence  Re(ei~ X(z)) = 0, so z is in Mo. The  prove 

t ha t  Eo+~r C Mo is similar, so we leave it. Let  us prove, 

Mo C Eo U M U Eo+~. 

If z E Mo then  i(ei~ X(z)) E R. If {F(z),  X(z ) )  r 0, this implies, 

ei~ X(z)} 
i(F(z), X(z))  = +1, 

and t ha t  z is in Eo or in Eo+~r, depend ing  on the  sign in the  right hand  

side. [] 

2. The Polar Varieties 

In this sect ion we give some general  p roper t ies  of the  polar  variet ies 

arising by  the  cons t ruc t ion  of w above.  We s ta r t  wi th  a few examples ,  

giving an insight of the  difficulty for unde r s t and ing  these  singularit ies:  

2.1 Examples .  a. Let  F =  ()`1, zl ,  )`2, z2, )`3, z3) in C 3 and X =  (Zl, z2, z3), 
3 

SO M =  {z E C 3 I • )`lllZlll 2 = 0 } .  
i=1 

i) If Re)`i > 0 for i = 1,2,3,  then  M = {0}. 

ii) If )`1 = 1, ),2 = - 1 ,  )`3 = i, then  M is given by  the  equat ions:  

Ilzlll = IIz21l,z3 = o; 

M is the  cone over the  2-torus,  it has real eodimens ion  3. 

iii) If )`1 = 1, )`2 = 1, )`3 = - 1 ,  then  M is given by  the  equat ion:  

Ilzllt 2 + IIz2112 = Ilzall 2, 

so it is a codimens ion  1 real quadric .  

iv) If  )`1 = 1, ) `2  = i, )`3 = - 1  + i, t hen  M is given by: 

Ilzlll = IIz211 = IIz311, 

which is the  cone over the  3-torus. It  has codimens ion  2. 

b. Our  next  example  is due  to T. I to lit, p. 186]: Let  X = (Zl, z2) and 

let 

F = (2zl  + (1 + i)z~,  z2). 
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Then M has two connected components: One component consists of 

0 E C 2, which is an isolated point of M, and the other component  M1 

has a circle $1 as singular set ~ ;  if we remove ~ from M1 what we get 

is the disjoint union of two cylinders homeomorphic to g 1 • R, which 

are transversal to all the spheres around 0. 

We see in these examples tha t  the behaviour of the corresponding 

polar variety changes drastically in each case. Still, one has the following 

theorem, which is an easy extension of Theorem 2.3 in [GSV], so we state 

it without  proof. 

2.2 Theorem.  M is a real geometric complete intersection in C ~, of 

real codimension 2, with a unique singular point at 0 E C n i f  and only 

i f  all the contacts of S and S are generic, ezcept at O. In this case 

M* = M - {0} is canonically a complez (n - 1)-manifold. 

A contact of two foliations is a point where they are tangent,  i.e. a 

point in M. We refer to the article of R. Thorn [Th] for a discussion 

of "generic contacts". The idea is simple: X is a gradient vector field 

of some function f .  By restricting f to the leaves of 5 ,  one gets a 

vector field X~= whose solutions are contained in the leaves of 5 c. The 

zeros of X• are the points in M, and the contact  is generic when the 

corresponding zero of Xs~ is non-degenerate.  Hence, these are contacts 

which are either non-degenerate local minimal points in 5 c, or local 

maximal  points or saddles. It follows (c.f. [GSV, T h e o r e m  2.3]) tha t  if 

M is a complete intersection with an isolated singularity at 0, and if it 

has a point z E M - {0} which is either a minimal point, a saddle or a 

maximal point, then the connected component  of M - {0} that  contains 

z consists of contacts of the same type. 

2.3 Example.  Let F be a linear vector field in the Siegel domain with 

generic eigenvalues (see [CKP, Lm]) and let X ( z )  = z. Then M is a 

complete intersection with a unique singular point at 0. It is the inter- 

section of two real quadrics, and it is a cone with vertex at 0. The base 

of this cone is the intersection of M with the unit sphere, and it may 

have a very interesting topology, as it is shown in [Wa,Lm,LV], where 
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3. About Milnor's Fibration Theorem 

J. Milnor in [Mi] proved the following fibration theorem: 

Theorem. Let f: (bt C I~ n+k, P) --+ (IR k, O) be a real analytic funct ion 

with a critical point at P ,  such that for  each point x ~ P near P ,  the 

Jacobian matrix D f ( x )  has rank k. Let ~) = f - l ( o ) ,  let S~ be a small 

sphere around P and let N" = N'(]2) be a tubular neighbourhood of 13 • S~ 

in ~ .  Then one has a function, 

r  e - -Jkf  --+ ~k-1 ,  

which is the projection map of a C ~ fibre bundle. 

We proved in [Se] tha t  the method above produce infinite real sin- 

gularities satisfying Milnor's hypothesis: whenever F is a vector field in 

C n of the form, 

F(z)  = (klZq , . . .  

where the ki's are all non-zero complex numbers and the ai's are integers 

> 1, and if X is the radial vector field X(z )  = ( z l , . . .  , z~), then  the map 

~bv, x satisfies Milnor's hypothesis. 

We note tha t  in all these cases ~F,X satisfies Milnor's hypothesis, 

one has the fibre bundle, 

@: C n -- ~k / ' ( f )  --+ S 1 C C,  

where 

II~F, Xll' 
and Theorem 1.4 above implies tha t  each pair of antipodal fibres is glued 

together  along M forming a real analytic space homeomorphic to, 

MO = {z ~ C n I Re(F(z) ,X(z)> = 0}. 

This is necessarily a real hypersurface in C n with an isolated singularity 

at 0, c.f. [Pal. 

We now give more examples of vector fields F and X for which the 

corresponding function ~PF, X satisfies Milnor's hypothesis, so one has an 
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associated fibre bundle. In these examples X is no longer the radial 

vector field. 

3.1 Example.  Let f :  C 2n -+ C be the Pham-Brieskorn polynomial,  

z a 2 n  f ( z )  = z~ 1 + . "  + 2n ' 

with ai > 2 for all i. Set 
of 

k= 
Ozi 

and let F be any hamiltonian vector field of the form 

( f 2 , - f l ,  �9 �9 �9 , f2n, - f2~ -1 ) ,  (f3, .]4, - f l , - f 2 , . . .  ), 

etc., whose solutions are contained in the fibres of F .  Let 

X = ( a l , . . .  ,an) 

constant.  Then CF, X is a holomorphic function with an isolated critical 

point at 0. Hence the polar variety M is a complex hypersurface in 

C 2n with an isolated singularity at 0, so it has an associated Milnor 

fibration. It would be interesting to unders tand the relationship among 

these fibrations as we take different hamiltonian vector fields, and also 

their relationship with the original Milnor fibration of the function f .  

An extra  bonus we have in these cases .is tha t  Theorem 1.4 above tells us 

that  the double of the Milnor fibre is the intersection of the unit sphere 

•4n-1 with the real analytic variety, 

2n 

M 0 = {z �9 C 2~ I R e E g i r i ( z  ) = 0}. 
i = l  

a n  . . . , �9 3.2 Example.  Let F ( z )  = ( z ~ l , . . .  , z~ ), and X = (1, l, Z r + l ,  . .  , Zn ) .  

Then, 

~ar+ l ~ z a n ~ n "  @F,X(Z) = Z; 1 4 - ' ' '  4- zar r 4- ar+l ar+l  4 - ' ' '  4- 

We write, 

and we consider its derivatives with respect to Z l , f l , . . .  , z n , f n .  This 

is a 2 • 2n matrix. The determinant  of the first 2 x 2 minor is 0 if and 

Bol. Soc. Bras. Mat., VoL 27, N. 2, 1996 



208 JOSE SEADE 

only if, 

-'2a llzlll = 0, 

i.e. if and only if zl = 0. The same s ta tement  holds for z2 , . . .  ,zr. 

Considering the minor given by the partial derivatives with respect to 

Z~+l and Zr+l we see that  its determinant  is 0 if and only if, 

2 _ 112  +1 a r + l  ~r+lll = [[Zr+l 

and similarly for ar+2,... , an. This happens if and only if zi = 0 for all 

zi, i > r. Hence r satisfies Milnor's hypothesis. 

3.3 Example.  The following is an example where the vector field X is 

not necessarily linear. Let F = (z~,z~) and X = (z[,z~), with p, q, r, 

s > 0 and p ~ r, and q ~ s. 

The proof that  these examples satisfy Milnor's hypothesis is exactly 

as in the example above, so we omit the details. One decomposes CF, X 

into its real part  and its imaginary part,  and considers the jacobian 

matr ix taking derivatives with respect to the zi's and the ~i's. Then 

one shows that  there is always a 2 x 2 minor whose determinant  is ~ 0, 

unless zi = 0 for all i. 

3.4 Example.  As a last example, consider F to be a linear vector 

field, F(z) = ( )UZl , . . .  ,)~nzn)- It is easy to see that  if we take X to 

be the radial vector field X(z) = ( Z l , . . . ,  Zn), then the corresponding 

function Cg, x never satisfies Milnor's hypothesis. The rank of its ja- 

cobian matrix drops at the axes. However, suppose n = 2n is even, 

and take X(z) = ( z 2 , - Z l , . . . ,  z2~,-z2r_l)~ then it is an exercise to 

show that  ~F,X satisfies Milnor's hypothesis if and only if II~lll r ll~21l, 

][A3[[ r []A41], and so on until IlA2r_l[[ @ [[A2rl[. 
It is worth noting that  one produces more examples by mixing the 

previous ones. Whenever  (Fi, Xi), i = 1 , . . .  , r, are pairs of vector fields 

in Cni for which the map ~Fi,x i satisfies Milnor's hypothesis,  the direct 

sum (F1 |  | F~, X1 @" " |  X~) is a pair of vector fields in C n l+ ' '+nr  
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4. The Topology of the Fibres: An Example 
Let (F(zl ,  Z2) be the vector field in C 2 defined by, 

Let M be the set of points z = (Zl, z2) in C 2 where F(z)  is tangent  to 

the spheres around 0. That  is, 

M = { z e C  2 f ( r ( z ) , z } = 0 } ,  

where  (F(z) ,  z} = z~.  Zl - zk" z2 is the hermit ian product. 
We first s tate the results, the proofs come later. 

4.1 Theorem.  M has real dimension 2, it is smooth away f i r m  0 c C 2, 

and it is embedded in C 2 as the cone over a link L in S 3 with (k + 3) 

components, each being a fibre of  the Hopf  fibration S3 ~ g2. 

4.2 Theorem.  Let r = CFJd: S 3 -- L --+ S 1, defined as above: 

- z)[ 

Then r is the projection map of a (locally) trivial, C ~ fibre bundle. 

4.3 Theorem.  Each fibre Eo of 0 can be compactified by attaching L as 

its boundary; Eo is a surface of  genus, 

(k -- 2)(k + 1) 
g( o) = 

2 

and (k + 3) boundary components. Moreover, Eo and Eo+~ are glued 

together along L, forming the closed, smooth surface 

No = {z E S 3 I Re@i~ = 0}, 

which has genus g(No) = k 2, equal to the (Poincar&Hopf)  local index of  

the vector field F.  

Let us prove Theorem 4.2 first. Let F = (z~, -z~) .  For each e i~ E 

gl,  let Fo be the vector field Fo(z) = (ei~ and define ~Po(z) = 

Bol. Soc. Bras. Mat., Vol. 27, ~ 2, 1996 
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Re(e i~  as before. We claim that  if k > 1, then (0,0) is the only 

critical point of ~b0. By definition one has, 

= - + e- 0( 2%1 - z l k z 2 ) } .  
g 

Therefore, 

and 

Or 1 r ~..iO,k-l= e-iO~kl 
-- [--'~ ~'1 ~2 q- 2f, Oz I 2 

Or _ 1 [kei 0 z~_17~1 _ e_iO~k}. 
Oz2 2 

If Or176 and ~162176 ~i-- ~ are both zero then, 

- -ke  i O z k - l z  2 q- e-iOz~ = 0 =  ke i O z ~ - l z l  - -  e-iOz~. 

This implies tha t  either (Zl ,  Z2) = (0, 0), or else Z 1 and z2 are bo th  non- 

zero. In the latter case, dividing the first equation by 22 and the second 

by ;q, one gets 

--tge iOz~ -1  + e-iO z~ -1  = 0 = tge iOz~ -1  -- e-iO z k - l ,  

which implies k = 1. Hence (0, 0) is the only critical point of ~b0. 

Thus one has: 

4.4 Lemma.  Let, 

Mo = {z  e C 2 ] ei~ - z~z2) + e - i~  - zlkz2) = 0}, 

with k > 1. Then  each M0 - {0} is a non-empty ,  smooth,  orientable 

3-submani fo ld  of  C 2 . 

That  M0 - {0} ~ ~ is a consequence of 1.4 above and 4.5 below. 

Let us define a 1-parameter family of diffeomorphisms of (2 2 by, 

- i s  -ic~ 
h~(zl ,  z2) = (e~c-i q ,  ek-1 z2), 

with c~ E R. It is clear that  if ~ is of the form 2~rr(k - 1), then ha is the 

identity, so the orbits of this flow are all periodic, of period 2~r(k - 1). 

It is clear from the definition that  one has Mo = Mo+~ for all 0. Thus, 

given t E IR we identify Mt with M[t], where [t] is t reduced module 7r. 
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4.5 Lemma.  Let z = (Zl, z2) and let 
-ic~ -ic~ 

(Wl, W2) = (ek-1Zl, e k - 1 Z 2 ) .  

Then (zl, z2) E MO if and only if (Wl, w2) E M0+~. 

Proof .  By definition, 

M o + a  = l~f~i(O+a)[~k~'k~2~l - -  Z~Z2) -k e - i ( O + a ) ( Z 2 k Z l  - -  Z l k Z 2 )  --~ 0} ,  

and, 

One has, 

M o  = {e  iO(z~z  1 - z ~ z 2 )  + e iO(z2 k z  1 - z l  kz2)  = 0} .  

e ~(~ ( ~ 1  - w ~ 2 )  + e -~(~ (w2kwl  - ~1k~2)  = 

= e ~ ~  - z ~ 2 )  + e - ~ ~  - ~?~2) .  

Hence (Zl,Z2) E M0 if and only if (Wl,W2) E M0+a. [] - 

The  theorem below summarizes  the  previous discussion. 

4.6 T h e o r e m .  Let F be a holomorphic vector field as above. Define a 

map 
�9 : C 2 - { M }  --+ ~1, 

by ~(z) = arg(i<F(z),z}). Then 6~ is the projection map of a locally 

trivial fibre bundle over S 1. Each fibre Eo is an open 3-manifold, that 

can be "compactified" by attaching the boundary M. Furthermore, for 

each O, the fibers Eo and Eo+~ are glued together along MI forming the 

real analytic variety Mo of points where the vector field ei~ is tangent 

to the spheres (as a real vector field); Mo - {0} is smooth away from O. 

This theorem essentially implies Theorem 4.2. To complete  the  proof  

of 4.2 we observe tha t  the above 1-parameter  family of diffeomorphisms 

preserves the  sphere $3, and the s tandard  action of ]R in C 2, 

t" (Zl, z2) = (tzl, tz2) 

preserves each M0. Hence each M0 is a cone tha t  intersects transversally 

the sphere ~3. This proves 4.2. [] 

The  proof  of the following l emma is a s traight-forward computa t ion .  

This  l emma is also a special case of [Se]. 
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4.7 Lemma.  The Jacobian matrix of the map "(~(z) = (F(z), z), has rank 

2 everywhere except at O. Hence, M is smooth away from O, of dimension 

2. 

It follows tha t  M is embedded in C 2 as the cone over a knot or link 

L C S 3. We will prove tha t  L consists of (h + 3) fibres of the Hopf 

fibration. For this we recall how the Hopf fibration looks like. One 

has two special fibres, given by the intersection of ~3 with the two axis, 

which define the Hopf link. If we remove from ~3 these two fibres we get 

a thickened open torus T 2 • (-I, i). This can be foliated by tori ~2 • t, 

and each such torus can be foliated by torus knots of type (i, i). These 

are the fibres of the Hopf fibration. 

Let us prove Theorem 4.1. By definition one has that M is the set 

of points (Zl, z2) that satisfy, 

z~g: 1 = z~2 2. 

Hence one has, 

4.8 Lemma.  M is the union of the two axes {zl = 0} and {z2 = 0}, with 

the real analytic variety, 

r k - l . Z 2  ~ k - l ( Z l  ~ 
M -  : iz2 [~22) : -1 ~11~;Zl ~ 0 ~ z2}" 

This means tha t  every point in M -  satisfies: 

i) ilzl]l = Ilz2il, and  
ii) (k + 1) arg(zl) = (k + 1) arg(z2). 

Hence one has, 

4.9 Lemma.  M -  can be parametrized by, 
�9 2s7~ 

M -  = {(zl, z2) I zl = re i~ and z2 = re~(~ 

w i t h s = O ,  1 , . . .  ,k ,  r >_O andO E [O, 2~). 

P r o o f .  W e  a lready k n o w  that  ]izll] = IIz2tl = r, for s o m e  r _> 0. To  prove 

tha t  if (zl, z2) E M -  then their arguments are as stated in the lemma 

(and vice versa), is a straightforward computation.  

I f ( z l , z 2 )  E M N S 3  t h e n r  = -~;  for each fixed 0 one has 1 point 

in the zl-axis, the point -~  �9 e i~ and (k + 1) points in the z2-axis, the 
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points 
�9 287c 

�9 e ~ ( ~  = 0 , . . .  ,k .  
2 

As the angle increases from 0 to 0 + 27r, we go round the first axis 

once, and each of the (k + 1)-points in the z2-axis also goes round once�9 

Therefore M - N S  3 consists of (k+ 1) torus knots of type (1, 1). These are 

(k + 1) fibres of the Hopf fibration, which together with two fibres of the 

Hopf link, shows that  L consists of (k + 3) fibres of the Hopf fibration, 

proving Theorem 4.1. 

Let us now determine the monodromy map of the fibre bundle, 

r ~ - L --+ S 1 , 

i<F(z), z> 
Z ~---+ 

We already know that  the above flow {ha}, t ransports  fibres onto fibres. 

Moreover, the orbits of this flow can be regarded as liftings of the gen- 

erator of 7rl of the base S 1. Thus, the monodromy h is the first re turn 

map of this flow. To determine h, take a point (zl, z2) in some fibre Eo, 

then h(zl, z2) is the first point in Eo of the form, 

- i O  - i O  

( W l ,  W 2)  = ( e k - 1 Z l ,  e k - 1  z 2 )  , 

for some c~ > 0. But we know that  (wl, w2) is in Mo+,~, so tha t  c~ must 

be a multiple of 27r. Hence 

-27vi -2~vi 
h ( z l ,  z2)  = (e z l ,  e k -1  z2), 

so it is periodic, of period ( k -  1). 

We now recall that  g3 _ L is the total  space of the Hopf fibration 

minus (k+3) fibres. This means S 3 - L  is S 1 x (g2- (k+3)-poin ts ) .  Hence 

the monodromy h maps Eo onto (S2-(k+3)-points)  as a (k-1)-fold cover. 

Thus, if we a t tach a 2-disc II) 2 for each boundary  component  of Eo, we 

get a closed surface E0 which is a branched cover of g2, ramified at (k+3) 

points. Hence, by Hurwitz formula, the Euler-Poincar6 characteristic of 

E0 is, 

X(EO) = (k + 3) - (k - 1 ) ( k  + 2) + (k - 1 )  = - k  2 + k + 4 .  
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Thus Eo has genus, 
(k -- 2)(k + 1) 

g ( E o )  = 
2 

as s tated in Theorem 4.3. 

By Theorem 1.4, the fibres Eo and Eo+~ are glued together along L 

forming the closed smooth surface, 

No = {Re(c~~  z> = 0} ~ a 3 

Topologically, No is the double of Eo, so its genus is twice the genus of 

Eo plus the number of new handles tha t  we create when we identify the 

boundaries. Since we have (k + 3)-boundary components on each fibre, 

we increase the genus by (k + 2). Hence the genus of No is, 

g(No)  = (k - 2)(k + 1) + k + 2 = k 2, 

thus we arrive to Theorem 4.3. [That k 2 is the Poincar6-Hopf index of 

F follows from the well known fact, that  the local index of F equals its 

algebraic multiplicity 
02, 0 

, : (4, 4---7' 
which is k2.] [] 

The same approach can be used in other cases. For instance, if 

(z k z k~ k > 1, one gets that  M is the cone over ( k + l )  fibers of F : < 1' 22, 

the Hopf fibration, the corresponding vector bundle is also trivial, and 

every two antipodal fibers are glued together forming a closed surface 

in the 3-sphere, whose genus is (k - 1) 2. 
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