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0. Introduction. Some Basic Definitions 

This paper deals with the existence of global classical and global strong 
solutions to nonlinear wave equations 

u"+ ~ a~(x)D~u+f(u2)u=O (0.1) 
t~[ <- 2m 

where 

A =  }~ a s(x) D ~, for c~=(a>. . . ,%) ,  
levi < 2 m  

is a formally selfadjoint positive elliptic operator and f is a real C2-function 
with non-negative primitive function. We treat both the homogeneous initial- 
boundary value problem over IR+ x f2 for a smooth open set ~2clR" and the 
Cauchy problem over IR+ x 1R ~ For  the initial-boundary value problem we 
show that any strong solution of (0.1), known to exist according to Heinz and 
yon Wahl [4] if 

2rn 

f (J) (u2)=O(lul~-2J) ,  j = 0 , 1 ,  [u[~oo, 

is not only in the domain of definition of A as a selfadjoint operator in L2(Q), 
namely in H2m'2(f2)c~/t"z(f2), but also in H2"+~'2(~2) for any a with 

n - 4 m  
{ 2m , <max(4m+4V/m,  6m+2),  and 0 < a < - -  0 < ~ r < m i n  \ n - 4 m  1 if n 4 

- otherwise. Notice that a > - -  for n_>max(4m 
n - 4 m  

+ 41fro , 6m + 2). This enables us to prove that in fact 

ue  C~ H 4m' 2 (f2)) (0.2) 

if the dimension n is at most 6m + l. This means in particular that u is a classical 
global solution i f f  and the initial data fulfil some additional differentiability and 
compatibility conditions. The last is of course not needed in case g2 = IR". In the 
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important case m = l, the restriction of the dimension n is n < 7. Concerning the 
initial-boundary value problem the existence of classical solutions was up till 
now only known for dimension n<4m (i.e. 4 in case m =  1); cf. [11]. An example 

sin u 
for our theory is the nonlinearity f (u  2) u = sin u = u. 

u 

In contrast to the above, there are a number of papers containing much 
sharper results for the Cauchy problem. For n < 9  and A = - A ,  Pecher [5, 6] 
proved that (0.1) has global classical solutions even if the growth assumptions 

2 

fO)(u) = O([ul~-~5-zJ), j = 0 ,  1, lul--* o% mentioned above, are (essentially) replaced 
by the weaker conditions 

4 

[f(J)(u2)I~CIu[~-2 -~-2j, ]u[>l,  j - -0 ,1 ,  n < 6 ,  (0.3) 

4- n 

If(a)(ua)l<clu[,-2 ,+1 ~-aj, lu j> l ,  j = 0 , 1 ,  n=7 ,8 ,9  (0.4) 

for some ~>0. The result of Pecher was carried over by Brenner [2] to more 
general equations: It was assumed that 

A= ~" a~(x) D ~ 
1~1_<2 

is a second order positive elliptic operator with C~176 as(x ) such that 

a~(x)=a~(oo) for Ix[ sufficiently large, (0.5) 

and in addition, the dimension was restricted to n<7.  Actually, the growth 
conditions on f ' s  derivatives were also relaxed somewhat. Under the more 

2 

restrictive growth conditions f(J)(u2)=O(lul,~-2 -2J) mentioned above, yon Wahl 
[9 3 proved the existence of classical solutions for n < 6 without the asymptotic 
assumption (0.5). 

It is the aim of this paper to improve also on the above results for the 
Cauchy problem: If m = l  and n < 9  and (0.5) holds, we will prove that the 
Cauchy problem for (0.1) has global classical solutions if f (essentially) fulfills 
the growth conditions 

4 
< - - - -  ~ - 2 j  kf(J)(u2)]=c u n-2 , lu l> l ,  j = 0 , 1 ,  (0.6) 

n + 2  

for some e >0. This means in particular that f (u  2) u = 0(lu17-2 -~) a s  lul  ~ oo. Our 
conditions also include the nonlinearity f(u 2) u = sin u. 

As for the existence of strong global solutions of the Cauchy problem in case 
r e = l ,  and (0.5) holds, we prove that such solutions exist under the growth 
conditions 

2 
- - - z  2 j  

I f (J) (u2)I~C U n - 4  , lUI> I, j = 0 , 1 .  

The dimension n is not restricted in this case, and we even prove that the strong 
solution is not only in C~ 2'2) but actually in C~ 2+~'2) for any 

2 
a < ~ _ 4 .  For  sufficiently small values of a the growth restriction may even be 
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relaxed a little. For  the proof of these results it is not sufficient to use Banach's 
fixed point theorem, which seems to be the common usage in the field of non- 
linear wave equations. Instead we propose a different existence proof based on 
Tychonoff's fixed point theorem (applied in the weak topology on LZ(IR+ x ~')).  
This method may also give better results for the existence of locally strong 
solutions to abstract second order equations u " + A u + M ( u ) = O  in a Hilbert 
space H, since it then requires that M is a mapping from D(A) into H instead of 
requiring M to be a mapping from D(A ~) into H as in [4]. 

In order to carry out the above program, we need estimates of the non- 
linearity in fractional order Besov spaces (cf. [2, 6]). Instead of using nonlinear 
interpolation (as in [6]) we will derive these estimates by direct calculations. In 
order to do so we use the definition of the norm on the Besov space B~' q in terms 
of difference quotients. Let 

c%(t,u)=sup[lu(.+h)-u][p, H. lip: = I]. ][rp(~,,), p > l ,  
Ih]<t  

and write, for s>O, s =  Is] +g  where Is] is the largest integer <s  and 0 < ~ <  1. 
Then a norm on BSp 'q is given by 

/oo  _ ~ d t , , 1 / q  

I/ull~+ (~( t-s  ~ cop(t,D u))q t}  (0.7) 
~o I~l=[sl 

with the usual interpretation for q=  oo. The use of (0.7) together with Besov 
space inequalities for non-linearities f (u  2) u and for the solution of 

u"+ }" a~(x)D~u+F=O (0.8) 
]~]<2 

(with zero Cauchy data say), is one of the main ideas of the present paper. Let us 
remind the reader that the inequalities for the solution of (0.8) reads 

t 

Ilu(t)l[Bf,,~<c(Z) [. It-v1-7 I IFI l~dv ,  0 < t < T ,  (0.9) 
0 

where 
1 1 1 1 

7 = l  + s - s ' - 2 n 6 >  - ( n - 1 ) 5 .  

Before we proceed to describe the disposition of the contents of this paper, let us 
remind the reader of some useful facts, that will be used freely in the following: 
First, the inclusions between Besov and Sobolev spaces B~ 'q, H s'v over IR": 

B~'P~_H~'P~_B~ '2 , 1 < p < 2 ,  B~?'~_HS'p'~_B~', 2 , 2__<p'< oo. 

Next, the extension operator T: Hk'Z(t~)--~Hk'Z(]R ") has the properties: 
[I Tu I[ ns, 2 < c Ir u Jl m, 2(~) for u ~H k' 2 (t2), 0 < s < k, and so T has an extension - also 
denoted by T -  to 5r ~' 2 (t2), H ~, 2(IR")). For  this and related results, see Triebel 
[8]. We here used the notation Lf(X, Y) for the set of bounded operators 
between two Banach spaces X and Y. We will also use Ck(I, B) and LP(I, B) to 
denote the B-valued C k- and LP-functions over I with values in the Banach space 
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B, respectively. In the same way C~ denotes the Lipschitz continuous 
functions with values in B. In the following, c will denote a constant, not 
necessarily the same at each occurence. 

The plan of this paper is as follows: In Chapters I and II we deal with the 
(abstract) initial-boundary value problem on a Hilbert space. In Chapter III  the 
Cauchy problem is treated on the basis of the estimates for the Green's operator 
of the wave equation on IR+ • IR" derived in [2], and given in (0.9) above. 

We finally want to mention that all our results can be carried over to the 
time dependent case, that is to the equation 

u"+ ~, a~(t,x)D;+f(uZ)u=O. 
lal_-<2m 

I. Abstract Nonlinear Wave Equations 

In this section we want to give a generalization of a theorem on abstract 
nonlinear wave equations proved by Heinz - v o n  Wahl [4]. Let H be a Hilbert 
space, let A be a positive selfadjoint operator, i.e. (Au, u)>c Ilull 2, u~D(A), with a 
positive constant c. Let k be any real number  > 1, let a mapping 

k k - 1  

M" D(AY)--* D(A~-)  

be given which is locally Lipschitz continuous, i.e. 

k - 1  k k 

[[A~-(M(u)-M(v))[[ <L(C)]lA~(u-v)]l, u, v~D(A~), 

k k 

where L(C) is a positive constant depending on C >  [IA2ul[ + []A~-vl[. Then we 
have the following local existence theorem: 

k + l  k 

Theorem 1.1. Let ~ e D ( A ~ ,  ~D(A2).  Then there exists a positive number 
T(qS, r  T(k, ~, ~) with the following properties: There is a unique 

uE _ (~ 0 ( [ 0 ,  r  H) 
O< T< T (r q.,) 

d i k + l  --i 

with ~ u ( t ) ~ D ( A ~ ) ,  i = O, 1, 2, 

k + l  - i  
A 2 u~ _ N c~ T], H), 

0 < T< T(q~, ~) 

u"+Au+M(u)=O, 
u(O) = ~ ,  

u'(0)=r 
k 

lim IJAzu(t)ll = +oo /f T( r  
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Proof The proof  can be carried through exactly in the same way as that of 
Theorem 1 in Heinz - yon Wahl [4]. Instead of considering the integral 
equation (7) in [4] one has to treat the integral equation 

k k k - - 1  t k - - 1  

A2 u (t) = cos A ~ t A2 q5 + sin A ~ tA-T- ~ - ~ sin A ~ ( t -  s) A~-M(u (s)) ds. 
0 

There is also a proof  being contained in [12], Theorem IV.2.3; in order to see 
this one has to transform the wave equation into a first order differential 
equation in the direct sum HOH, as it was done in [91 or [10]. [] 

II. Initial-Boundary Value Problems for Nonlinear Wave Equations in L 2 (I2) 

Let O be an open set of IR " with boundary of class C ~. Let m be a fixed integer 
> l. For  every multiindex e of IR" with ]er < 2 m  let there a function A~: I R " ~ N  
be given with the following properties: The A~ are infinitely many times 
continuously differentiable, every derivative is bounded on ~n; moreover 

Ml~12m>= ~ A~(x)~>M-11~I2m , xEIR", 
1~l=2m 

with a positive constant M and the operator 

A= Z A~(x) D~ 
i<<=2m 

is assumed to be formally selfadjoint. As it is well known the unbounded 
operator A in L2((2) given by 

Au= ~ A~(x)D~u, uGD(A)=H2m, 2(y2)c~I2Im, 2(y2) 
Io:l <=2rn 

is then selfadjoint, see [3, Theorem 5(iii)]. For our purposes it is no loss of 
generality to assume that G~rdings inequality 

(Au, u)>c]luN~,2, u~D(A), 

holds with a positive cons tan t  c. Thus A is positive selfadjoint. As it will be 
proved at the end of this chapter we have the relations 

I212~176 O<=p, (II.1) 

1 
HzP"'2=D(A~ O<_p< (II.2) 

- 4m'  

/-/2~m, 2(~) ~ H~", ~(~2) = D(A~), �89 (n.3) 

cllulPzp,,,2<=]lApu]l<cllul]2o,,,2, u~O(AO), O<p. (II.4) 

Here and in the sequel c is a positive constant depending on n, m, O, p, M and 
the HA~llc~to~+,~,), but not on u. Observe that the order of derivatives of the A~ 
appearing in the c can be lowered. In what follows let n > 4m + 1. 
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For the rest of the paper the interpolation-technique used in the proof of the 
following lemma is decisive. 

Lemma ILl. Let F be a continuously differentiable mapping from IR+ into N with 
If'(u2)ul <c, 

[F(u2)-F(v2)I<=cIu-vl p, u, velR, 

where p is a fixed number with 0 < p < 
2m 

/x 1. Let ~ > 0, 
n - 4 m  

2m 2m 
- - < P + e <  n 4m A1. n - 2 m  

Then for real uffH2m'2(~), vEH'+P+~'2((2) the expression F(u2)v is in HP+a'2((2) 
and satisfies the estimate 

1 p+e+rt <--c(l lul l2, ,  +1) Ilvll,,+,+~,2, 1 > t / > 0 .  IIF(u 2) II,,+ 

Proof Let u,v be extended to the whole of ]R n as functions of H2m+p+~'2(~'), 
Hm+~ ") by means of the Hzm+P+~'2((2) -, H~+P+~'2(~)-extension operator 
respectively (cf. 0.). These extensions are real and will also be denoted by u, v. 
Moreover we denote the resulting extension (as a pointwise defined function) of 
F(u 2) v to JR" also by F(u 2) v. If llF(u 2) vIIH .... 2~,) can be estimated in the desired 
way our ]emma is proved. We have to estimate the expression 

i [,01-~ sup I[(F(u2( �9 4- h) ) -  F(u 2 ('))) v(' 4- h)II L~-) 
0 Lt Ihl<t 

1 ]2 dt 
+t  T-47 supHf(uZ('))(v('4-h)--v('))l[L2~) t 

[hl<t 

<2 supll(F(u2(.+h))-F(u2(')))u('+h)llL~a,) - -  

- -  0 F [hl_-<t t 

~ 12 dt +2S kto+ l sup[iF(uZ(.))(v(.+h)_v(.))liL~ea,) ] -t-" 
0 [hi <t 

The first integral on the right hand side of the last inequality is denoted by 12, 
2m 

the second one by II 2. With respect to I 2 we have if t/> 0, p + e + t / < n - 4 m / x  1: 

[ f ( u  2 (x 4- h)) - f ( u  2 (x)) I I v(x 4- h)[ 

< c. ]u(x + h ) -  u(x)l "+~+" [v(x + h)[, 

<c.  o i ~--zu((1-z)x+z(x+h))dzlO+~+nlv(x+h)l' 

i z(x+h))dzlp+~+ ~ _-<c. h. Vu((1-z) x +  [v(x+h)l, 
1 

~ tP+a+u ( i  ] Vu(x 4- ~ h)12p(a+e+e) dr )  2~ lv(x + h)l , 
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and therefore 
1 

(i t +h'Z I 2 < c ! t  ' - I  Vu(x+zh)12p(P+~+")d~ 2P ]v(x dt 

1 1 

Here 
1 1 m+p+e 

2q 2 n 

1 m+p+e 
2p n 

Moreover we assumed without loss of generality that u is continuously differ- 
entiable. 

From the latter equality it follows that 

1 m+p+e 
2p(p+e+r / )  n(p+e+tl)" 

Let us consider the inequality 

being equivalent with 

m+p+s 1 2 m - 1  
> 

n (p + e) 2 n 

m+p+e>(p+e) - 2 m + l  , 

m - - > p + g ,  
gl 

- - 2 m  
2 

2 m  
- - > p + e .  
n - 4 m  

2D'/ 
Moreover 2p(p+e)>2 since p+e>n_2m.  Thus for sufficiently small r />0 we 
have 

m+p+e 1 2 m - 1  

n ( p + e + t / ) > 2  n 

and by Sobolev we get 

= , 2 (p~). 
t/ 

Now we want to estimate II 2. We have 
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1 

I I 2 < 2 !  lu(x)[ 2p(p+~)dx p [supllV(.+h)_v(.)HL2,~,, ) 2.__ 
= Lib ] <=t tP+e t 

+ 4 If(0)[ z [l v [l~ . . . . .  a~-), 
1 ) ]2_ 

< c  ! lu(x)lZP(~ p [sup Ilv( '+h)-v( ')l ln . . . . . .  2e~") d~ 
Llhl<t t p+~ t 

+ 4  I f ( 0 ) l  2 ] l v l l ~  . . . . . .  2(~xn ) , 

<c(I lu l I2~O-+~~ [I 2 = vllu . . . . . .  2~ao~ 

1 1 
where 

2q 2 
justified since 

m 1 m 
=-- .  The application of Sobolev's imbedding theorem is 

n '  2p n 

1 m 1 2m 
2p(p+ e) n ( p + e ) > 2  n 

2p(p+e)> 2 

as was just proved. Estimating [[F(u z) vll/~2~,,) by the same procedure gives the 
inequality 

2 p+e 

Now we want to prove a second nonlinear interpolation lemma, based upon a 
further restriction of the dimension. For this purpose we assume for a moment 

/n--4m~ 2 
that n> (4m+4] /m)A (6m+2). Then ~ )  >m. Thus the definition 

makes sense. Set Pl =0, 
2 m  

P2 -n--4rn' 
2m 

1 Ps n _ 4 m _ 2 p z  +sp2 

and for arbitrary vsN, v>3, 

2m 
P~= 1 

n - 4 m - 2 p v _ l  + v p z  

- m  

It is not difficult to show that all Pv < 1 and that {Pv} is monotonically increasing 
with the limit p*. Moreover we have p* __< 1, 
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1 
2 m - l + p ~ _ l - - v P 2  m + p ~ _ l  

np~ 2 n 

1 
2 m - - l  q-pv_l- -~vP2 

2 n 

Lemma II.2. Let n >= (4m + 4J/m)/x (6m + 2). Let F be a continuously differentiable 
mapping from IR + into IR with [u F' (u2)[ ~ C, 

[F(u2) -F(v2) l~c lu -v l  p, u,v~IR, 

where p is a f ixed number with 0 < p < p * .  Then for real u c H  2m+pv 1,2(~), 
vEHZm+Pv'2([2) the expression F(u 2) v is in HP"z(~Q) and satisfies the estimate 

1 
IlF(u 2) ~11 ~,  2 ~ c(ll u II G~,++~o~_~, z + 1) II vii m+~, 2, 

V ~  

provided p~>=p, i.e. v>=v(p). 

Proof The proof is the same as that of Lemma II.1. We set 

1 ~ > 0 ,  

so that 

1 1 m+p~ 

2q 2 n ' 

1 m+p~ 

2p n 

/0 2 
1 m+pv 1 2 m - l + P ~ - l - 2 v  - -  

- - = - - >  �9 
2pp v np~ 2 n 

Now we describe the nonlinearity in our equations. We assume that M(u) is 
formally given by 

M(u) =f( (Re  u) 2) Re u 

where f :  IR+-, ~ is a C2-function satisfying the following growth conditions: 
Let u, vEIR, then 

I f  (u2)-  f (v2)l <= c lu- vl ~, 

[f'(u2) u2--f'(v2)V2I~cIu--v]P, ]f"(U2)IIu[3~C, ]U]~I ,  

2m 
for a p, 0 ~ p < n - ~ m / x  1. The connection between the conditions above on f 

and conditions of the form If(J)(u2)l ~ c l u f  j, lul ~ 1, j = 1, 2, 3 is discussed in detail 
in the beginning of Chapter III. 

We want to prove a first a-priori estimate, namely 
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2m 2m 
< p + e < n _ - - Z ~ m A 1 .  Let ~osD(Al+(P+~)/2m), Proposit ion II.3. Let r  n - 2 m  

t ) sD(A  +-+(p+~)/2m) be real. Let T > 0 ,  let u be real, 

u~ C2([0, T],  L2 (f2)), 

u ' s  C~ T],  D(A~+(o+~)/2m)), 

ue  C~ T],  D(A 1 +(p + ~)/2,~)), 

u " + A u + M ( u ) = O  in [0, T] ,  

u(O) = ~, 

u'(O) = 0 .  

Then the following a-priori estimate holds: 

sup [IAt+(P+~)/Zmu(t)ll+ sup HA4+(P+~)/2"u'(t)[[ 
O <_t<_ T O <=t<= T 

<e(T ,  sup ([[Au(t)[[ + []A~ u'(t)[[), ][Al +(P+~)/2m cpl[ + IIA~+(o+~)/2~[I). 
O<t<_T 

Proof  For  our  solut ion u under  considerat ion we have:  M(u)~ C~ T],  Lz(f2)). 
Therefore  u fulfils the integral equat ion 

t 

u(t) = sin A �89 t A -+ ~ + cos A ~ t r - ~ sin A~(t - s) A -�89 m(u(s)) ds. 
0 

Forma l  differentiation with respect  to t yields: 

(M(u))' = (2f ' (u  2) U 2 + f(u2)) u'. (II.5) 

On using Sobolev 's  inequali ty we get 

II(M(u))'  I[ < c ( l l  "l"lP+'ll~ J- 1) [1 U' II L2~n) ( II .6)  

1 1 m + p + e  1 m + p + e  
- - . Because of our  restriction to p we can with 2q 2 n ' 2p n 

1 1 2m 2m 
choose e > 0 in such a way that  - -  > - -  , 2p (p  + e) > 2, p + e < /x 1. 

2p(p + e) = 2 n n - 4m 
In regard of our condit ions to f this means  that  M(u)eCl([O,  T],  Lz(f2)), and 

the derivative is given by the expression on the right hand side of (II.5). Thus we 
get by partial  integrat ion 

u'(t) = cos A + t ~ -  sin A ~ tA  �89 (p - i cos A~(t - s) m(u(s)) ds, 
0 

= cos A ~ t ~ -  sin A ~ tA  ~ ~o - sin A �89 tA  ~ M(cp) 
t 

- ~ sin A + ( t - s )  A -~(M(u(s)))' ds, 
0 

= c o s A ~  t t p - s i n A ~  tA~ cp--sinA+ tA  ~ M(cp) 

- i sin A*(t - s) A - ~-(2f'(u 2 (s)) u 2 (s) + f ( u  2 (s))) u'(s) ds. 
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Our  L e m m a  II.1 then shows that  for some t / > 0  

r p-I- t +r/ 1 t IlM(u(s)) lip+t, 2 <e(llu(s)]lzm,2 + )llu (s)[[,,§247 

Let  {v,} be a sequence of cm(~)nI21~'2(f2)c~Hm+~ converging to u'(s) in 
H m§ 2(f2). Because of our growth condit ions on f ' ,  f "  we get that  

f'(u2(s)) u2(s) v , s / t l '  2 (~2), 

f (u 2 (s)) v, d2P ' 2 (f2). 
Therefore  

(2 f ' (u2 (s)) u2 (s) + f (u2 (s))) v, ~D(A(P+~)/2"). 

Because of our  L e m m a  II.1 

[[A(P+~)/2m(2f'(u2(s))u2(s)+ f(u2(s))) v,[[ 

< c II (2f ' (u  2 (s)) u 2 (s) + f ( u  2 (s))) v, II o * ~, 2 
p+~+~/  

<c(I]u(s)b]2,,,2 +1)[Iv,][m+o+~,2. 

The  (2f'(u2(s))u2(s)+f(u2(s)))v,, thus being weakly convergent  to (2f'(u2(s))u 2 
+f(ua(s)))u(s) in L2(g2) we see that  

(M(u(s))), ~D(A(p+,)/2,.), 

IIA(P+e)/2,,(M(u(s)))'][ < p+~+, ' =c(llu(s)llz~.,2 + 1)tlu (s)H~+o+t,2. 

On applying the same me thod  we also get the relat ion:  M(u(s))sD(A(O+~)/2~), 
0<s_< T, and 

IIA (p+~)/2" M (u(s))ll o+~ +n <e(llu(s)l[Nm, 2 +1)[[u(s)lFm+p+~,2. 

Thus we arr ive at the est imate for u'. By part ial  integrat ion we get 

t 

u(t) = sin A ~ tA  -~ 0 + cos A ~ t q~ + ~ cos A~(t - s) A - 1 (M(u(s)))' ds 
0 

- A - 1 M(u (t)) + cos A ~ t A - i M(q~) 

f rom which the est imate for u follows. �9 

The  assumpt ions  in Propos i t ion  II.3 can slightly be relaxed: 

2m 2m 
Theorem 11.4. Let g>O, n _ 2 r n < P + e < n _ 4 m A 1 .  Let (p~D(AI+(P+e)/zm), 

~/~D(A ~+(p+e)/zm) be real. Let T > O ,  let u be real, 

k + l  k 
ua  C2([0, T],  L2((2)), (paD(A2 ~), tp~D(A2~ 

and 
k 

u'~ C~ T] ,  D(A~)), 
k + l  

u~C~ TJ, D(A7 2-)) for a k~lR, k>=l, 
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u"+Au+M(u)=O in [0, T],  

u ( O ) = ~ o ,  

u ' (o )  = ~,. 

k k 1 

Moreover let M be a Lipschitz continuous mapping from D(A2) into D(A2-g), i.e. 

k - - 1  k 

I[ A - 5 -  ( M  (u) - M (v))II < c (C) [I AT (u - v)II 

k k 

with a positive constant c(C), C> IlATull + II/~vl[. 7hen 

us  C~ T], D(A 1 +(p+~)/zm)), 

u'6 C~ T], D(A~+(P+~)/2")). 

Proof.. According to Theorem 1.1 there exists a T(cp, g,), oo > T(cp, 0 )>0 ,  with the 
following properties: There is one and only one 

k 1 

us  ~ C:([0, T], D(Ag-2~) 
0 < T <  T(q~, #t) 

with k 
u's _(~ CI([O,f],D(A2~), 

O< T <  T(qLO) 
k 1 

us  _ ~ C~ 7~],D(A2+2~), 
O< T <  T(qh0) 

u"+Au+M(u)=O,  0 < t < T((p, t)), 

u (o)  = ~o, 

u'(O) = 0 .  
Moreover 

k 

lim ]]A2u(t)][ = oo 
t T T(q~, 0)  

if T(~0, 0) < oo. We consider now the equation (the Ex are the spectral resolution 
of A, 2siR, r~ is an element of N): 

u/, + Aura + E~ M(E,~ ua) = 0, (II.7) 

u(0) = E,~ q~, (II.8) 

u,(0)=E,~ 6. (II.9) 

Let T~(~o, 0) the just mentioned quanti ty belonging to (II.7), (II.8) and (II.9). We 
have 

k 1 k 

T(qo, O), V~(~o, @)>c(llAT+~ q)][ + ]IATOI[)>0, 

where the constant c does not depend on r~. Moreover we have on 
k 1 k 

V0, c(llA~-%-q~ll + IIA~-~'ll)]: 

k 1 k 

[IAT+gu(t)ll+llA T '(t)ll t k +~ k 
k+~ U _<-- c([IA~- ~q~l[ + I[Ai- ~'1[), 

]117- ?-um(t)][ + HA2u~(t)n J 



G l o b a l  C l a s s i c a l  S o l u t i o n s  o f  N o n l i n e a r  W a v e  E q u a t i o n s  99  

where also 
follows from the integral equation for u we have 

k 1 k 

ufiteC~ 0, c(llAT+5-~0 II + 11170 II)], D(A 1 +(p§ 
k I k 

u',cc~ c(llA~§ ~oll + ]115-011)], D(/�89 

Thus the proof of Proposition II.3 gives an a-priori estimate 

IIA x § § u,dt)ll + FIA @+(~ § u'~(t) ll _-< c, 
k 1 k 

O< t <_c(llAY+5- ~ol[ + I[ATOII), 

where c does not depend on rg since 

I[Em(M (Efit ufit))' II p+ ~, 2 < c IIA (p+ ~)/2~ Efit(M (E,~ ue~))' II , 

=__< c [IA(P+~)/2m(M(E fit ufit ))' II 
and also 

observe that 

k J. k 

c([]AT+7~ol]+[[A70[[) does not depend on nS. As it immediately 

IlEfit M (Efit urn)lip § 2 ~ c IIA(~247 ~)/2m M (E m ufit) ll ; 

(II.lO) 

and that the limit in the norm above coincides with u 
k 

+ []A7 0[])]. The a-priori estimate (II.10) shows that 

11A 1 +(o+o/2m uKt)]l + []A&+(p+o/2m u'(Q [I <= c, 

0 < t  _< c([[A q) l[ + [[A ~+(e+~)/2'~ 0I[). 

The integral equalities for u, u' show that even 

k 1 k 

uE c~ c(llAT+7~oll + I[A7 011)], D(AI+(o+O/zm)), 
k 1 k 

u'e C~ c(IrAT+X ~o [I + IIAs- 01r)], D(A~+(P+e)/2m)). 

From this Theorem II.4 follows, since we can continue the whole procedure on a 
second interval, then on a third one and so on, the length of these intervals 
being bounded from below by a constant depending only on 

k 1 k 

sup (llAs-§ + [IATu'(t)[I). 
O<_t<=r 

k 1 _ §  

on [0,c(llA2 2ell 

u~-, u ~  , ~  c~ T~(r 0)), D(A')) 
1>=1 

and therefore u~-, u~e C~ Tin(q), I/I)), 12t rn" 2(/2)~ cm(~Q)). Now we want n5 to tend 
to oo. Following the lines of the proof of Theorem 1 in [4] (as it has to be done 
for the proof of Theorem 1.1) we see that 

k k 1 
- - §  ! t sup ([[AT(u~,(t)-ufit(t))l[ + [/Az 2 (u~,(t)-ufit(t))l[)-*O. ~ - ~  oo. 

fit' >_ffl 

k 1 k 

O<-t<-c(llA~-+7 ~oll + 111701[) 
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If the dimension n is restricted we get a sharper version of Theorem II.4, 
namely 

Theorem ILK Let n > ( 4 m + 4 1 / ~  ) A (6m+2).  Let 

~o~ ~ D(AI+(P*-~):2"), Oe ~ D(A ~+(p*-~)/z'~) 
O<~__<p* O<e=<p* 

be real. Let T > O, let u be real, 

k 1 k + 
~oeD(A2 2), OeD(A2) ue c=([o, m], L=(Q)), 

and 
k 

u'~ c ~  T] ,  D(A~-)), 
k 1 

u~C~ T],D(A2+Y)) for a kMR, k> l, 

u"+Au+M(u)=O in [0, T],  

u (o) = q~, 

u'(O) = ~. 
k k 1 

Let M be a Lipschitz continuous mapping from D(AE) into D(A$-~), i.e. 

k - 1  k 

I I A ~ - ( M ( u ) -  M(v))]l < c (C)  ][A~(u - v)]] 
k k 

with a positive constant c(C), C> [[A~uH + HATvpl. Then 

ue (~ C~ T1, D(AI+(P*-~)/2m)), 
0 < s < p *  

u'e ~ C~ T] ,D(A 4+<~ ~)/a~)). 
0 < E < p *  

Proof The argument is the same as in the proof of Theorem II.4. We carry it 
through first for pl instead of p + e. Thus we see that 

uE C O ([0, T], D(Ai +pl/2m)), 

u 'e  C~ T], D(A~+~ 

Then we choose P2 instead of Pl and so on. I I  

It often happens that a nonlinear term M is not only a Lipschitz continuous 
k k 1 

mapping from D(AT) into D(A~-~ for one k but for a pair k~, k 2. The following 
theorem deals with such a situation. 

Theorem II.6. Let kl, k2 > 1, k2 > k ~. Let 

k2 1 
~o ~D(AT +~) ~ D(A i + p/zm) ~ D 1, 

k2 1 

OeD(AT - ~  c~ D(A ~+p/2m) c~ D2, 

where # is a positive number with 

2m 2m 
<~< A1. 

n - 2 m  - n - 4 m  
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Moreover 

O 1 =  ("] D ( A I + ( P * - e ) / 2 m ) ,  n~(4m+4l /m)A(6m+2) ,  
0<8<p* 

DI=H,  (4m+4l~m)v(6m+2)>n>4m+l ,  
D2= 0 D(A~+(P*-~)/2~), n>(4m+4]~)A(6m+2) ,  

0<~<p* 

D2=H , ( 4 m + 4 l / m ) v ( 6 m + 2 ) > n > 4 m + l .  

ki ki 1 

Let M be a Lipschitz continuous mapping from D(AT) into D(AT-g), i= 1, 2. For 
k2 

u~D(AT) let M satisfy an estimate 

k2 - 1 k2 

IIA ~--M(u)II < g(llull~=~+ ~.=(n)) ll/-2 u[I 

2m 
where g is a continuous mapping from IR+ into itself, and where ~ < /x 1, 

n - 4 m  
(4m+4]fm)v(6m+ Z)>n> 4m+ l, /3<p*, n>(4m+4l/-m)A(6m+ 2 ). Then any 
solution u of u" + Au+ M(u)=O in [0, T] with u(0)=q}, u'(0)=O, 

u~ C2([0, T], L2 (f2)), 
kl 

u'e c1([o, T3, D(A~)), 
kl , 1 

u~ c~ T], D(A~-~)) 
k2 q_ 1 k2 

is in fact an element of C~ T], D(AS- ~)) with u' ~ C1([0, T], D(A 2~). 

Proof. Let T(k2) be the positive number T(rp, 4) which one gets by application of 
Theorem 1.1 in the case k--k 2. The only thing we have to do is to derive an a- 

k2 
priori estimate for [[AYu(t)][. On using Theorem II.4 and II.5 we get that 

u6 C~ T], D(A 1 +~/2m)), 
u'6 C~ T], D(A-~+~/2m)). (II.11) 

The integral equation for u gives the estimate 

k2 1 k2 
IlAS--~ u'(t)]l + [IA~ u(t)l[ 

k2 k2 1 t k2 

< lIAr-~oll + IIAT-~,[I + j g(llu(s)ll~2m+~,2(~))IlAYu(s)ll ds. 
o 

In view of (II.11) and (II.4) the desired a-priori estimate follows. [] 

Before proving the announced theorem on the domains of definition of the 
fractional powers of A we discuss some examples for our theorems. 

Examples. 1. For Theorems II.4 and II.5. The assumptions of theorems II.4 and 
II.5 concerning the existence of a solution u of u '+Au+M(u)=O with u(0)= (p, 
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u'(0)=~p are fulfilled for k = l  and all T <  T(qo,~b) if f fulfills the following 
addit ional  conditions: 

2m 
I f (u2) l<clul , -2~,  l u l > t ,  

2m --2 
I f ' ( u2 ) l~c lub -2~  , l u l l 1 .  

(Observe that T(~0, ~b) is the positive number  of Theorem 1.1 in the case k =  1.) 

For  a p roof  cf. Heinz  - yon Wahl  [4, w 2]. If i f (s)  ds > O, r > O, then T(~o, ~) = 
0 

+ oo, cf. also Heinz  - v o n  Wahl  [4, w 2]. Another  example is 

sin Re u 
M(u) = sin Re u 

R e u  
- -  Re u = f ( ( R e  u) 2) Re u. 

2. For Theorem 11.6 

Let  f now be of  class C 3 too with If'"(U 2) U4I ~C, lul =:_ 1. 
If addit ionally we set m = 1 and if we restrict the dimension to n = 5, 6, 7 the 

assumptions of Theorem II.6 are fulfilled for kz = 1 (as ment ioned before) and for 
k2=3.  To see this let us first estimate I[Af(u 2) uH. By formal differentiation we 
get 

U 2 2 " U 2 U 2 (~2U ,, 2 (~U (~U 0 2 f ( u 2 ) u = ( f (  ) +  f (  ) ) ~ + ( 4 f  ( u ) u 3 + 6 f ' ( u 2 ) u )  - - .  (II.12) 
~x~ 3xj ~x~ ~x~ 

On applying H61ders inequality and Sobolev we get for the first term on the 
right side: 

( f ( u  2 ) t 2 2 6~2/A + 2 f  ( u ) u  ) ~ - ~  < c (  u v+~ exzexj  - II [lu2,~<~+l)Ilu11~/3,2<~ 

and for the second term 

(4f"(U2) U3+6f'(u2)U)~jXj <--C ~Xi ~ <--C ~l ~U 
__ __ ~X i L2 q, (f2) UXi ~ L2 q2(f2) 

1 1 2 1 2 
- - . n being restricted to 5, 6 or 7 we have w i t h 2 q  2 2 n '2q~  n 

2_>1 l + p + ~  

n - 2  n 

2 2 2 
for a suitable p, 0 < p < ~  and any e with <__p+e< . 
Sobolev we arrive at n ~ n - 4  

On using 

II f ( u  2) u ]] n2, 2~) =< ~ (H u ]] u . . . . . . .  co))' ]1 u II u3, 2~a~ (II. 13) 



Global Classical Solutions of Nonlinear Wave Equations 103 

with a cont inuous function g" IR+---, IR+. For uffHa'2(Q)~I2II"2(f2)DD(A ~) we 
have 

fk(u 2) uEI21 1' 2(0) 

and by Sobolev 

where 

fk(uZ) u~f(uZ)u in Hi '  2(~2), 

[ k, f ( x  a) > k 
fk(x2) = ~ f(x2),  -Ir 

( - k ,  f (x2)_-  < - k  

f(u2)u thus being in /t1'2(f2) we have in fact proved that  f(uZ)uED(A) if 
ueD(A~). Now we deal with the Lipschitz continuity.  As it concerns the first 
term on the right side of (II.12) we have for, u, veD(A ~) the estimates 

( f ' (u  2) U 2 - - f '0 )  2) 02/A < 1)2) OXi ~Xj =C IlU--VlIL2q,(o)I[UlI~a,2(O), 

f ' ( v  2) v 2 aZ(u2 v) 

1 1 1 1 3 
where - . Since - >  - -  we can use Sobolev to get the desired estimate. As 

2ql  n n - 2  n 
for the term 

O2U f(v2) ~2V f ( u  2) &, &j 

it can be handled similarly. Dealing with the second term on the right side of 
(II.12) we only treat  

~u ~u 0u 3u 
f" (u2)  u3 ax~ axj f"(v2)  v 3 -  - -  

3x, 8xj" 
We have 

(f . (u2) u3 0u O xU - f " ( v  z) v 3) ~ <=c 11 U-/)11LNql(/2) I1VN I124q2(f2) 

where 1 1 2 1 4 4 1 
4q2 - 2  n' i.e. 2~-2=1 - -  and consequently 1 _ n 2ql  n 2; hence it follows 

1 1 3 
that  > - - -  for n = 5, 6, 7. Using the norm equivalence (II.4) the inequality 

2ql  = 2  n 
(II.13) changes into 

I]AM(u)[I <g([lulln . . . . . . .  (~)) I[Aeull 

with a cont inuous function g: IR + ~ IR +, and moreover  we get 

Ila(M(u)- M(v))}l ~c(C) IIA~(u-v)]l, 

where C >  ][A~u][ + ][A~vl[. Thus Theorem 11.6 furnishes 

/AE C~ T3, D(A2)) = C~ T-I, H 4' 2 (~)), 
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gt 
In part icular  u is H/51der cont inuous in [0, T]  x ~. 4 being >~ ,  n = 5, 6, 7, we get 

for O = IR" that  u is in fact a classical solution on [0, T]  x IR" if f is of class C 5 
(cf. yon Wahl  [-9, p. 2691). A case where the growth condit ion on f ' "  is fulfilled is 
M(u) sin Reu  

= ~ueu Reu=f ( (Reu)2 )Reu"  

There is also a corresponding result for arbi t rary m. We only want to sketch 
the proof. 

We assume that 4m + 1 -< n-< 6m + 1. Differentiating the equat ion with respect 
to t we formally get 

(U')" q- Au' q- ( f ( u  2) q- 2f ' (u  2) U 2) U' = 0, 

u'(0) = ~, 
u"(O) = - A 0 _ f (4 2 )  4. 

Differentiating the nonlineari ty a second time with respect to t gives 

( f (u  2) u)" = ( f (u  2) + 2f ' (u  2) u 2) u" + (4 f"  (u 2) u 3 + 6f ' (u  2) u) u' 2. 

Now we have 

Ilu'1124<~ Hu' 

1 1 2m 
where 

2q2 2 n ' 2ql  

and 

L2q~(~)ll u I[L2q2(.~)= c '  [I IIL2q~(~) II u [IH2m, z(~) 

2m 1 m + p + ~  
- > -  if 4 m + l < n < _ 6 m + l ,  

n = 2  n 

N It [l(f(u2)+2f'(u2)u2)u"[l<c(= u uzm,P+~ 2ca) + 1) II ll~=.2(a). 

This combined with L e m m a  II.1 gives: u~C~ 
u'~ C~ T],  H 2m' 2(fj)), u " s  C~ T],  H ~' 2(~2)), T <  r(qS, ~). Next  considering 
the twice differentiated equation 

(u")" + Au" + ( f (u  2) + 2f ' (u  2) u 2) u" + (4f"(u 2) u 3 + 6f ' (u  2) u) u '2 = 0, 

u"(0) = - A qb-f(q52) qS, u'"(0) = - A t ) -  (f(q52) + 2f'(q52) q52) ~, 

we have to deal with the Lipschitz continuity of the nonlinearity. As in the case 
m = 1 we get that  for 

u'"e c~ T], H m, 2(~)), 
u"~ C~ T], H2'n,2(f2)), 
u'~ C~ T], H3m, 2(~)), 
u~ c~ T], H4m' 2(~)) 

the expression (f(uZ)+2f'(u2)uZ)d'-l-(4f"(uZ)u3+6f'(u2)u)d2 is in fact an 
element of C~ T],L2(fJ)). Using the estimates needed for the latter result 
one can easily show that  u has in fact the properties ment ioned above. 

As it concerns the initial values for u", u'" they must be in D(A), D(A ~) 
respectively. This of course is fulfilled in part icular  if 
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~D(A2), 
f(~2) d)~D(A)= H TM 2(0)c~/q"' 2 (~2), 

~D(A-~), 
(f(qb 2) + 2f,(qb 2) q~2) ~ D ( A  ~) = i2i,,, 2 (f2). 

For qb~D(A2), ~b~D(A ~) the expressions f(q~2)~b, (f(q~2)+2f'(~b2)qSz)~t are in 
D(A), D(A~) respectively i f f  is of class C 2". �9 

We now prove the announced theorem concerning the domain of definition 
of the fractional powers of selfadjoint elliptic operators. 

Theorem II.7. We have 
D(A~)cH2~ O<a, 

with a continuous imbedding. 7he following estimates hold: 

IIA~u]l <=c(M, n, m, O, II Vl~l<~a+ a) A~llco(~), I1 Vl~lr l ) -  l A~[]co<O.., 

�9 . . ,  II/~llco<~))llull,~ . . . .  <~), 

u~D(A[a]+t), O<a, and 

IlulIH . . . . .  <a) < c(M, n, m, O, II VJ~ll~+ ~) A ,  llcocn), Ih V I~I(E~ ~) ~A~/Ic0/~), 

�9 . . ,  IIA~llco<~>)IIA~ull, 

O<-a, u~D(A% 

Proof. First we treat the case de[-0, 1] on which all others then will be reduced. 
Let T be ttie extension-operator from H TM 2(f2) into H TM 2(IR") (cf. introduction). 
In particular this means that for s, O<<_s<-2m, space T(H~'2(~2)) is contained in 

S 

H ~, 2(IR")=D([(-A + 1)"]57~); ( - A  + 1)" is the positive definite selfadjoint ellip- 

tic operator - ~  ~-x2+1 with domain of definition D ( ( - A + I )  m) 

=/_/2", 2 (IR"). We have 

II [ ( -  A + 1)"]  Tull = II Tu[IH~,,. ~ex~) <c I lulI .  . . . . .  <~> _-< c l lAull .  

On applying the Heinz-Kato inequality [-7, p. 145] we see that 

T(D(A'~)) = D ( [ ( -  A + 1)~3~), 

[l[(-A+l)"]~ , 0_<a_<l, 

u~D(A~ On using the Fourier transformation we get 

D ( [ ( -  A + 1)"]~) = H2~"' Z(IR"), 

II[-(-A + l ) "Yul l= l Iu l l ,  . . . .  ZORn), 
whence it follows 

IITu[I. . . . .  ~OR~>~cllA~ul[. 
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T being the extension opera tor  we have for u~/4 m' 2 (f2)c~ H 2", 2 ((2) the inequality 

Ilull, . . . . .  (~)__<c I[A~ull. 

I2Im'2(f2)c~H2m'2(f2) being dense in D(A ~) with respect to the graph norm of A ~ 
the last inequality holds for all u~D(A ~) and we have D(A ~) c H 2~m, 2(0). For  the 
second direction we need Hadamard ' s  three lines theorem. Let  v~H TM 2(IR'). We 
define 

Rs? v : = v -  w@I2Irn, 2(O)~ H2rn, 2(Q), 

where w is the uniquely determined solution of Dirichlet 's problem 

( - A  + 1)•w=O, 

w-v~I:t",2(O) 

over f2; instead of vlf2 we also write v, and we set 

( 
u ~ H2m, 2(Q) a I2lm, 2(~), 

3 2 
( - A  + l'~'s~g= ( - i=1 ~ ~-~ -}- 1) rag' 

g ~ H z.,, 2 (~'~). 

Then ( - A + I ) " = ( - A + I ) ~ n = ( - A + I ) ~ r m e . .  According to [3, Theorem 1] we 
have 

[I v -  w [I H . . . .  (~) < c II v II H2,~, ~(~). 

For  fi~H TM 2(IR~) we define 

f (z):=A1/2+~+itRo(-A+l)-( i /2+~ z = a + i t .  

Then f is ho lomorphic  in 0 < a < �89 cont inuous in 0__< a < �89 Moreover  f satisfies 
the estimates 

Ilf(0 + i t)[I < c  I[(- A + 1) -(1/2 +it)m ~ [].~, 2(N~9' 

<cll~l l ,  

II f (1  +it)l[ _-< c I[(- A + 1)-(z +~)m ~ll~/=m, ~ , ) ,  

<cll~l l .  

Following Hadamard ' s  three lines theorem we get 

[IA~+~Ro( - A  + 1) -(~+ ~ ~ll __<c I[~ll, 

N ow set v=f i ;  then R o f i = R a v = v - w ~ D ( A )  and 
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If ~ is the extension of a function u e l l  m' 2(t-2)c~ H TM 2(t?) to the whole of IR", then 
w = 0, and we get 

I I /~+~ul l  __<c II~llH2m~o+,J2,,-~.), 

-<_c IlullH2m,o+,.).=~). 

For  u as above we have ( - A  + 1 ) ~ , e v = ( - A  + l ) ~ v  and 

II v - w [I L2(•) = II v II z~<~)' 

A calculation analogous to the foregoing one then shows that  

llA~uil<cllulI, . . . . .  r 0_<a<_�89 
Thus we get the desired result for all a, 0_< a-< 1. Treat ing the case a > 1 we set b 
= a -  [a].  Then  1 _> b_> 0 and we have 

llA~ ull __>c HAt~ u 11.2~,~(~). 

By linear elliptic regularity theory (cf. [3, p. 52]) A -M being a bounded  linear 
opera tor  from LZ(f2) into H2tr and from H2m'z(f2) into HZ~lm+z~'2(f2) it 
is also a bounded  linear opera tor  from H2~"g(f2) into H2Mm+2am'2(f2), cf. [1, 
p. 77]. Thus we get 

IIA E~u IIn . . . . .  <~) > c I lul lH~, . . . . . . .  (~). 

Moreover  

11 AS u 1[ < c It At'l u 11 u~,-, ~(a)- 

It is not  difficult to prove that for a function q~e C~r ") having all its derivatives 
bounded  the expression ~b g fulfills the estimate: 

II4glln.,:(a) <c(s,n,m, f2,~) Ilgllm,=(.), O<_s<2m, geH2Sm'2(O). 
Thus we get 

II A t~l u II H . . . . .  (a) < c II u I I .~<  . . . . . .  ~(~), 

and our  theorem is proved. �9 

In what  follows it is useful to define the not ion of a weak solution for the 
wave equat ion in a way slightly different from that used in Heinz  - v o n  Wahl  
[4]. 

Definition II.8. Let T > 0 .  Let M be a Lipschitz continuous mapping from 
D(A~)c~LP(t'2) into Lz(f2) for a certain p >  1, i.e. for u, veD(A~)c~LP(f2) we have 

IlM (u)-  M (v)[I < c( C) I[A~ ( u -  v)]l , 

where C> IlutlL~(~)+ IIVIIL~<a) + IIA~ull + ItA~vll- Let OeD(A})c~LP(O), ~/sL2(~Q). 
An element 

uE C~ r] ,  D(A~))c~L~176 T); LP(t?))c~ C~([0, r ] ,  L2 (f2)) 
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with 
u (t) = cos A ~ t qb + sin A ~ t A -~ 0 

- i sin A ~ (t - s) A - ~ M(u(s)) ds 
0 

is called a weak solution over [0, T] of  u" + Au  + M ( u ) = 0  with initial values O, ~. 

Proposition II.9. For given initial data ~, ~ there exists at most one weak solution 
over [0, T] of u " + A u + m ( u ) = O .  

Proof  On using Gronwall's inequality the proof immediately follows from the 
integral equation. �9 

We want now to dispense with the existence assumption in Proposition II.3. 
We get 

Theorem II.lO. Let ~ > O, 

Let  

2m 2m 
- - ~ P + e < n n - 2 m  --4m AI" 

~)6D(A I +(o+~)/2m), ~o real, 

~]ED(A1/2 +(P+e)/2m), 0 real, 

let T>0 .  
We assume moreover." I f  u is a real valued, a.e. on (0, 7")x ~ defined function 

with 
u~C2([O, 7"], L2(f2)), 

u' ~ C~ 7"], D(A1/2 +(P+~)/2~)), 

uE C~ T], D(A 1 +(p+~)/2m)), 

u " + A u + M ( u ) = O  in [0, T], 

u(0)=4, 
u'(O)=r 

for some T, 0 < T < T, then 

sup_ (llAl +(o+~)/2mu(t)l[ + IlA1/2+(P+~)/2mu'(t)[I) 
O<=t<=T 

<=h(T, IlA l +(P+e)/2m~)[1-1- ][A1/2+(P+e)/2ml/Ill) 

where h is a continuous function from N+ x IR+ into IR+; moreover h does not 
depend on T. Then there exists in fact  a unique u with 

ue c~([o, T], L2(~)), 
ue C~ ([0, T], D(A 1 +(p+~)/2m, 

u'e C~ T], D(A1/2+(P+~)/2'~)), 
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u " + A u + m ( u ) = O  in[0, T], 

u(0) = 05, 

u ' ( 0 ) = ~ .  

Proof For all K, 7 ~ with K > 0, 7 ~ > 0 the set 

r(K, ~): = {wlw ~ L~176 7~); D(A j +(o+~)/2m)), 

w'~ L~((O, 7~); D(A1/2 +(p+~)/2,,)), 

w real, w(0) = qS, 

[[[wl[lf~,~):=ess sup(l[Al +(P+~)/2mw(t)[[ + ][A1/Z+(P+~)/2mw'(t)ll)< K} 
te(O, T) 

is a compact convex set in the Hilbert space L2(Qf), Qf:=(0,  7 ~) x f2, endowed 
with the weak topology. Namely, if {w~} is a sequence being contained in 
F(K, T) there is a subsequence {wj~} with 

Wj~  ~ W 

t ! 
Wj~  ~ W 

w(0)=05; 

we can assume that also 

W j r  --4" W 

We specialise K to 

in L2((0, T), D(A 1 +(P+ ~)/2m)), 

in L2((0, T), D(A~+(P+~)/2~)), 

weak star in U~ 7"); D(A 1 +(P+ ~)/2,,)), 

weak star in L~176 ~); D(A-~+(P+~)/2")). 

2 I[A 1 +(p+e)/2m 0511 +2  IIA ~+(p+~)/2" @11 + 4 IIA (p+~)/2m M(05)II + 1. 

Let us define a mapping ~- by setting 

( ~  w)(t)=sin A} t A -~  O + cos A ~ t 05 
(II.14) 

t 

- ~ s i n A ~ ( t - s ) A - } M ( w ( s ) ) d s ,  O<t<_T. 
0 

As it was done in the proof of Proposition II.3 one can show that 

(M(w))' ~C~((O, T); H o+ ~, 2 (f2)) 

and 

(M(w(s)))' = (M(w))'(s) = (2f'(w2(s)) wZ(s) + f(wZ(s))) w'(s) a.e. in (0, T). 

From this it follows that in fact 

M(w), (M(w))' eL~176 7"); D(A(P+~)/2)) 

(cf. the corresponding part in the proof of Proposition II.3). Forming (~w) '  
according to (II.14) and using partial integration as in the proof of 
Proposition II.3 we get the formulas 
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( ~  w)'(t) = cos A ~ t ~ - sin A ~ tA  ~ c~ 

- sin A �89 tA  -~ M(w(O)) 
t 

- ~ sin A~(t - s) A -  1 m ( w  (s))' ds, 
0 

( ~  w)(t) = sin A ~ t A -  ~ ( / +  cos A ~ t q5 - A - t M(w (t)) 

+ cos A ~ t A -  1 M(w(O)) 
t 

+ S c o s / t ~ ( t -  s) A -  ~(M(w(s)))' ds. 
0 

N o w  observe that 

w (o)  = q~, 

t 

M(w(t)) = ~ (M(w))'(s) ds + M(c~), 
0 

and therefore 

Thus we get 

(II.15) 

IlZ ~§ ~)/2~ A -~ M(w(t))ll 

< tess sup 11A (~ + ~)/2,,(M(w)),(s)II + II A<~ + e)/2m M(~))II, 
0 < s < T  

IIA1 +(0 +~)/2,. A-~  M(w(t))l[ 

< tess  sup 11A(~ + e)/2,~ (M(w))'(s)II + II Ac~ + e)/2 m M(~)II. 
0 < s < T  

(II.16) 

~"  p+e < 111 s" will(o, f > _ - /  

if T = T, is small enough, say 

Z 1 < 6 = ~(IIA 1 +(o +~/2,. q~ II + IIA {§ ~)/2m 0 II + II A(p § ~)/2m M(qS)ll, r ) ,  

the bound  6 only depending on the quantities T, 

IIA1 +(p§ 411 + IIA{+(o+=}/2~ ~,11 + IIA(P+=)/e"M(O)I I. 

Moreover  

~ W e  C ~  r l ] ,  D( A1 +(p + ~)/2m)), 

( ~  w)' ~ C ~ ([0, T 1 ], D(A {+(p + ~)/2m)). 

N o w  we want  to show that ~ is cont inuous with respect to the weak topology 
of L2(Qr If  {w~} is a sequence contained in F(K, T1) with accumulat ion point  w 
in the weak topology of  L2(Qfl) we choose a subseuqence {wjv } as before. On  
applying Rellich's choice theorem we see that 

a.e. in Qfl" Thus 

Wj~ ~ W 

M ( w ~ ) ~ M ( w )  in L2 (Q~). 
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Let us consider the integral equation for J w j v .  We have (v( t ) :=sinA~tA-~O 
+ c o s A ~ t  q~): 

f~ 
( g  wjjt), O(t)) clt 

0 

= I (v(t),O(t)dt- I t(M(wjv(s)),sinA~(t-s)A-~r ~'sL2(Qf). 
0 0 0 

Of course M(wjv)~M(w ) in L2((0, t)xQ). The expressions ]lM(wg,(s))l[ being 
essentially bounded on (0, T1) (cf. the estimate for [[(M(u(s)))'][p+~,2 in the proof 
of Proposition II.3) one gets by Lebesgue's theorem that 

fl fl 
(• wjv(t), tp(t))dt ~ I ( f f  w(t), ~b(t)) dr. 

0 0 

Thus ~ is also continuous. On applying Tychonoffs fixed point theorem one 
gets that ~ has a fixed point u with 

US C~ ([0, Zl], D(  A 1  +(p+~)/2m)), 
u's  C~ ([0, 7"1], D(A}+(P+E)/zm)), 

u (o) = 4,, 

u ' ( 0 ) = O .  

On using the integral Eqs. (II.15) and (II.16) we see that us  C2([0, T1], L2(g2)) and 
u"+Au+M(u)=O in [0, T1]. Now we repeat the whole procedure with initial 
values 

u(fO, u'(fO. 

This gives as before a solution of u"+Au+M(u)=O over [T1, T2] and so on. 
Because of our a-priori estimate for the quantity 

sup.(llA l +(o+ ~)/2mu(t)ll + IIA~+(~+ ~)/2" u'(t)[I) 
O<t<=r 

we can choose T~ in such a way that 

with a positive constant a2(ILm~+<P+~)/>"411+llA~+(P+~)/2m~,lI,T). So far we 
proved every part of Theorem II.10 with the exception of the uniqueness. One 
easily shows that u is also a weak solution over [0, T] being in L~((0, T), L"R~ 

( 2m ,1~ with po=min  \ n - 4 m  ]. Thus Proposition II.9 shows the uniqueness. 

Ill. On Classical and Strong Global Solutions of (H) 
u"+A(x,D)u+M(u)=O, u(O)=~b, u'(O)=~p 

Where we for simplicity assume that qS, 0 are in H l'k, for k large enough (this 
can be made much more precise!) and where 
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1 ~ A is a real positive elliptic differential operator with C~176 
which are constant for [xl large, 

2 ~ M ~ C  ~, for some 0->3 and M(1R)_~IR, 
3 ~ IM~ <c(1 + lulP0, j = 0 ,  1, ..., a; pj__>0 where P0 = P +  1 and Pl =P, and 

where for simplicity we assume p j__< max (0, p + 1 - j ) ,  

4 ~ M(u)=f(u2)u and i f ( u ) d u > O  for v>0.  
0 

Notice that in [2], we used the notation p for Po instead of, as here, for Pl. Since 
the assumptions on A are invariant under addition off(0)u,  say, we may assume, 
as we also will, that f (0 )=0 ,  i.e. M'(0)=0. If we assume that p <  1 and that f e C  ~ 
as above, and then compare condition 3 ~ with the growth conditions used in 
Chapter II, namely 

If(u 2) - - f ( v 2 ) ]  ~ C [U - -  Vl; , (i) 

If"(u2)l lul 3 <c, (ii) 

[ f '(u2)u 2 - f'(v2)v2[ < c l u -  v f  , (iii) 

If'"(u 2) u 41 < c (iv) 

we find that (i) and (ii) imply with (iii) for v = 0  that 3 ~ holds for j = 0 ,  1,2. The 
condition on M"' is implied by (iv) (which was used in the example for 
Theorem II.6). On the other hand, if condition 3 ~ holds then also (i), (ii) and (iv) 
hold (and (iii) for v =0). Thus condition (iii) remains to be satisfied. However, 
this condition will only be needed in the application of TheoremII.10 in 
Theorem III.2 below. Straightforward computations show that (iii) is satisfied if 
in addition to 1 ~ through 4 ~ above, we assume that 

5 ~ IM"(u)I <c(1 + ]ul)~ 

This extra condition will be added in Theorem III.2 below, but will not 
otherwise be assumed in this Chapter. 

In the lemmas below, u will denote a solution of the integral equation 
corresponding to (H), and a statement ,,u~/Z~oc(lR+;X) '' will be short for 
,,ueLloo(i ; 1  X) ~ u~L~(-[;X) '', any bounded interval I__clR+. 

LemmalI I . ! .  (H) has a weak solution in LI~oc(]R+;HI'2). This is a well known 
consequence of 4 ~ and the energy inequality. 

Lemma III.2. (H) has a classical solution for n <9 if u~L]~ + ; E ) f o r  some r > n 
+ 1. This was proved in [2]. 

Lemma III.3. Let s =Y+ 0-, 0 < 0- < 1 and s ~ + .  Then an equivalent norm on B~ ,q is 
given by 

1 

u ell.~,. = [lul[p+ (St_~qsu p ~ dt II \o Ihj~=~ I ~ I ID=(uh-u)II%T 

where uh(x ) = u(x + h). 

For a proof, cf. L6fstr6m and Bergh [1]. 
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We will below prove inequalities of the type 

HM(u) ll~;.2 <=c(u)(llull~;.~_ + 1) (4~) 

where c(u)~L~o~, for solutions u=u(t) of (H). Sometimes we even prove the 
corresponding L p -  LV'-inequalities. The L p -  U-inequalities (0.9) for the equation 

( 1 1  
(H) then proves that if 5 (n+1)<  1 + s - s '  and 3 ( n - 1 ) <  1 where 1 < p < 2 , - + ~  

P P 1 1 \  
1, ~5=~-~,) ,  then ~ . s',z = ue/21oo(lR + , Bp, ) and so in particular (by [-2], Lemma 1.1), 

u~L~ This argument will be applied time after time, without further 
reference. 

The critical point in improving upon previous results [2, 6] is now: 

Lemma III.4. Let n >= 6, and assume that 

2(1 + ( n -  1)6) 2 
P< n - 2  n_2(P-S) ,  s<p. (III.1) 

Then ucI21~oc(lR + ; H s''p') for 5(n + 1)= 1 + s -  s'. 

4 1 1 1 
CorollarylII.4.1. I f  P < n - 2 '  then ue/Al~c(lR+;/Z ) for any r such that ~ > r > ~  

l + p - ( n - 1 )  -1 

t/ 

Proof of Lemma III.4. By 3 ~ and 4 ~ and since we may assume that M'(0)= 0, 
M(u)=f(u2)u, where If(u2)l <clul ~ p<O< 1. Thus 

[M(Uh)- M(u)] ~ C([U-- Uh[O[U-- Uh[ 1 --OIu[P'-[- [U -- Uh[O[Uh[), 

where now 0_<0<1 is, for the moment, arbitrary and p<O<_l. Hence for 

-1+2=1, 
l <p<__2, p P' 

provided 

t-SllM(uh)-M(u)Hp 
<=ct-slru-uhrl~ rlu-u, ~s.5~. lluTrf. ,. + c t -S l lu-ud  ~ ilulls... (III.2) 

o C! t p - z  \p' n] +p \p n] '  (III.2a) 

1 
p = 2  + (p,__s).  (III.2b) 

We take O=p, and s<O=p=O. Then, in particular, (III.2a) implies (III.2b). In 
addition, since O=p, (III.2a) is equivalent to 

1 l + s - - ( n + l ) 6  
<26  

2P n 
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which is equivalent to 

np < 2 ( 1 + ( n -  1)3) 2 
n -  2 n -  2 F - n ~ s  

which is equivalent to (III.1). Hence (III.2) holds, where p satisfies (III.1). From 
(III.2) and Lemma III.3 we have (since O>s and O>s!) 

IIM(u)ll,;,=<_c Ilul[ ~,2(l[ulls, p, + IlullZp,)_-< c Ilull 1,z(llullB~,,2 + 1) 

and the lemma follows as indicated above. �9 

4 
Lemma III.5. Assume that p <n---2" 7hen u~ IAz~oc(lR + ~ ; H l'q'), 3 q(n + 1) = 1, where 

1 1 4 n 
6 q -  2 q;, for  6 < n <- 10. I f  p < n - 2 n + 1 this conclusion holds .for all n. 

Proof. For the last statement we merely refer to [2]. Assume then that 
u~/Al~oc(1R+ ;/5) with r as in Corollary III.4.1. Then 

H M(u)ll t,q, <c  Iru]ly Ilull ~,~, (III.3) 
provided 

1 2 
p-=<2fi - 

r n + l "  

Since we may use any r > 2 such that 

1 1 n - 2  p - >  
r 2 n (n-1)  n 

it is sufficient to require that 

or, equivalently, that 

(~ n-2 p)<2 
P n ( n -  1) n +1 

p 2 _ ( n - 2 +  1 ~ n 
(II1.4) 

This certainly holds for p = 0. Since the left hand side takes its minimal value at p 
= ( n - 2 ) / 4 + l / ( 2 n - 2 ) > 4 / ( n - 2 )  for n__>6, we only have to check (III.4) for p 
= 4 / (n -2 ) .  Thus we obtain the condition 

4 ( 4  1 )  2 4 n - 2  1 

n - 2  n - 2  n - 1  > n + l < = ~  "~2(n+l) ~ n - 1  

which is easy to verify for 6<n-< 10. Thus (III.4), and hence (III.3) is proved for 
p < 4 / ( n - 2 ) ,  6_<n_<10, where the r-value of Corollary III.4.1 is used. This 
completes the proof of LemmalII.5. �9 
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Remark. We may actually obtain a better bound for p for n > 11, using (III.4). A 
simple approximation actually shows that (III.4) holds for 

4 ~/ p < - -  
n--2 2 n + 3  

n + l  
n - - 2 n - - 1  

and as a conclusion, ueL~oc(lR + ;H l'q') for such values of p, all n>  11. 

1 1 
Lemma III.6. Let ~ - - ~  = ~ q(n q- 1) = 1 - #. Assume that 

4 n - � 8 9  1)# 
p <  

n - 2 - 2 e  n + l  

[ ]  

(III.5) 

1 1 
and that  ufflJl~176 ) where . . . .  , ~>0. 
where r 2 n - 

Then ueLTor + ;Hl +'*+"'r 

(7< 
4 n - � 8 9  1)# 

n - - 2 - 2 ~  n + l  
(m.6) 

Proof For I< = 1 we have, Ihl ~ t  and Uh(X)=U(X +h) as before, 

D~( M (Uh) - M (u) ) = M' (uh) D ~ u a - M'(u) D ~ u 

= M(uh)(D~uh --D~u) + (M'(Uh) -- M'(u)) D~u. 

By assumption 

IM'(uh)I<cluhF and 1M'(Uh)--M'(u)l<--cluh--ul o, p<_O<_l. 

Hence for p < O < l ,  0 < 0 < 0 ,  a<O, 

t -~ IID~(M(uh)-- M(u))llq (III.7) 

<=ct-~ q, Ilu h ~ r + c t - ~ t  ~ Ilull~,rllu-u h o.9 D~ul ,+u q, 

which holds by HSlder's inequality if 

1 > l _ ~ _ + p  ( 1 _ 1 t ,  (III.8 a) 
q - q  n \r n/  

1 - > - l - a + #  +ol-+(O-O)  { t l  1 (III.Sb) 
q - q '  n r , r - n / "  

Since (III.5) holds, and since (III.8a) is equivalent with 

n - 2 - 2 e < 2 c ~ _  t #  2 ( 1 - g ) ~  # 2 n - ( n - 1 ) #  
P 2n - n -  n + ~  n -  n (n+ l )  

(III.8a) holds. In addition, if a>p ,  O = O - a > O  sufficiently small, then (III.8b) 
holds if (III.6) is satisfied. On the other hand, if a<p ,  we may take O=p and 0 
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- a  > 0 so small that the bound 

implies that 

p <  
4 n -  �89 - 1)# 

n - 2 - 2 e  n + l  

(1 1 ] +  0")! (0- 
q - q  n \r n/ 

so that (III.8b) holds. Thus, squaring (III.7) and integrating over (0,1) against 
dt/t we obtain by Lemma3 and the usual inclusions between Besov- and 
Sobolev spaces 

IIM(u) llBa . . . .  =<ellull~&+ . . . . .  [flu[If,r+Hull~,~]. 

The LP-/J-estimates for the solution of (H) now implies the statement of 
Lemma III.6. �9 

Corollary III.6.1. Assume that u ffL~ l'q') and that 6 q(n + 1)----1. I f  p < 4/(n 
-2 ) ,  then ueL~oo(IR + ;H 1 +~'q') for any cr < Cro, where a o is the first positive zero of 

/ n - 4  1 \ + 2 n @ i > 0 .  ) _ 

Proof Since we may take e=n/(n+ 1) and # = 0  in Lemma III.6, we find that 

4 n 4 1 n 4 1 4 

n - 2  1 1 2 n - 2 "  ~ C n - n - 2 - 2 e n + l  2 n n + l  n - 2 1 _  ~ 

n - 2 n + l  n n - 2  

Hence the bound p < 4 / ( n - 2 )  implies the conclusion of Lemma III.6. Since 
~c,>p we may choose o-<x o in Lemma III.6 such that Xo>p, and such that 

4 n n 
X o <  8 >  = n - 2 - - 2 e n + l '  - n + l "  

Replacing H l'r by H l+x'~'q' and putting e=e~= n / ( n + l ) + % ,  we obtain the 
iterative formula 

4 n n 
% + 1 - n _ 2 _ 2 e ~ n + l ,  e ~ = n ~ l  +x~, v>_0, 

and so the corollary follows form the monotonicity of the map x~ ~ %+ ~. 

Corollary III.6.2. I f  6_<n_<9 and if p< 4 / (n -  2), then ueL~oc(lR + ;HZ'q').  

Proof Since a 0 = B - BZl/BfZC- C, where B = (n - 4)/4 + �89 + 1) and C = 2 n/(n + 1) 
in CorollaryIII.6.1, we find that % = 1  for the values of n between 6 and 9. In 
addition, ueL~oo(lR + ; H 2,q) if ueL~ + ;H  1'') where 1 / r -  1In < 2/(n + 1), by 
Lemma 6.1 in [2]. By the above consequence of Corollary III.6.1, we only have 

to check that 2 -  (2 + n/(n + 1))/n < 2/(n + 1), i.e. n < 10 - 
6 

n-<9. �9 = n + l '  which holds for 
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LemmalII .7 .  Let 6<-n<9. Assume tha t  u@lAl%c(]R+;H2+e'q'), s ~ O ,  and that 
p < 4/(n - 2). I f  in addition 

4 
s < 1 1, (III.9) 

n - ( 5  + 2 e ) - ( 4 + 2 ~ )  
n 

then u~/Al~oc(]R + ;H2+S'q'), where 3q(n + 1) = 1, ~q = 1/2-1/q ' .  

Remark. As proved below, e = 0  implies that we can choose s > 0  in (III.9) for 
6 _< n _< 9. In fact, for these values of n, and for 0 _< ~ _< 1, e is smaller than the right 
hand side of (III.9), that is we may for any e, 0 < e <  1, choose s > e  satisfying 
(II1.9). �9 

Proof. As in the proof of Lemma III.4, we first prove an LP-Lq-inequality for 
M(u). We have, Ic~l =lfll =1, 

D ~ + P (M(un) - M(u)) 

= (M"(Uh)DaUhDflUh -- M"(u)D~uD~u) + (M'(uh)D~+flUh -- M'(u)D~+Bu) 

= I + I I .  

By assumption 

]M"(Uh)]<=C and ]M"(Uh)--M"(U)I<=C[U--Uhl ~ 0__<0__<1 

and hence, if we estimate I by 

III< ](M"(Uh) - M"(u))D~UhDfl uhl + IM"(u)I ]D=uhD~ Uh --D~uDPul 

~ C [U -- Uh[OlDC~Uh[ ] D~ Uh[ + c]D~(uh --u)] IDfl Uh] -t- ID~u] [Ofl(Uh --U)[, 

we get by H61der's inequality 

t - s l id  ~ + ~(M(Uh) -- M(u))II q 

<ct-SllUh-UH~ , ]lD~u][ 1 +s,q, ]lDCu[] 1 +~,q, 

+ et -s HD~(un-u)l] 1,q' ]lDflUhH1 + ~,q' 

+ e t - s  LIDP(uh- u)ll 1,q, IIO~utl 1 +~,q' 

+ct  -~ IlUh-Ull~ ]lD~+Pull,,q, 

+ c t - S  ]lUhllf + ~,q, ]ID~+~(Uh--U)IIq, 
provided 

(!  1 + ~ t  1 1+~ 1 l + s  1->0 - -~q, - - t  q, 
q \q n / n n 

1 1 1 1 l + e  

q=q'  n q' n 

(~, + ) i s l>O>_p, l>0q 1 e - 4 q ,  n" 

(III.10) 

(III.11a) 

(III.11b) 

(III. 11 c) 

1 (ql, 1 + ~ )  1 
->Pq n + q '  (III.11d) 
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Now, (III.11a) is equivalent with 

1 2 + e ) < 2 6  - 1, 
q, ,, (q ' 

that is, equivalent with (notice that fi(n+ 1)= 1 !) 

4 ( 0 - s )  [1-t 2 n+l_] 
s + l < = n - ( 5 + 2 ~ ) - ( 4 + 2 e ) / n  n - ( 5 - 2 ~ ) - ( 4 + 2 ~ ) / n  n " 

Thus, if O>s and O - s  is sufficiently small, (III.9) implies that (III.11a) holds. In 
addition, the right hand side of (III.9) is decreasing in n, and for n = 9, 

4 
e<  1, 0_<~_<1, 

n -  (5 + 2 ~) - (4 + 2 ~)/n 

as is easily checked by straightforward computations. We find in particular that 
the right hand side in (III.9) is positive for nE[6, 9] and ee[0, 1]. Next, condition 
(III. 11 b) means that 

e 1 2 1 3 2 n 2 - 9 n - 4  
-_> -3 f i  - (III.11 b)' 
n - 2  n 2 n + l  n 2n (n+ l )  

and here the right hand side of (III.11b)' is < 0  for 6<n_<9. Hence (III.11b) 
holds for all ~ > 0. Since 0 < s < 0 and p < 0 < 1, (III.11 c) follows from the fact that 
for 6 < n < 9 ,  strict inequality holds in (III.11b) and from (III.11d). Merely 
observe that by (III.11 b) and (III.11 d) 

->0q n -bq, p_<0_<l 

where we choose O=p if s < p  and O - s  small if s > p .  Finally we recognize 
(III.11d) as (III.8a) with # = 0  and 1 / r -  1/n> 1 / q ' - ( l + e ) / n  and this inequality 
certainly holds for e > 0  if p < 4 / ( n - 2 ) ,  as proved in LemmaIII.6. Thus, as in 
LemmaIII.6, we obtain from (III.10) 

IlM(u)ll ~ . . . .  <e(llUlla+~,q, + 1)IlulIBN +s,z 

and so Lemma III.7 follows from the L p -  Lq-estimates for the wave-equation. �9 

Corollary III.7.1. Let  6 <_ n <- 9. Assume that p < 4/(n - 2) and that 
ueL~ + ; H2'r Then ueI21~o(lR + ; H2 +~'~ for any a < ~ l, where ~1 is the first 
positive zero of  

In particular, rr 1 = 1 for  n = 6, 7, 8 and 9. 

Proof  As showed in the proof of Lemma III.7, the right hand side of (III.9) is > e 
and so applying the argument of LemmaIII.7 recursively, replacing e by s in 
each step, we obtain the corollary. �9 
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As an immediate consequence of Corollary III.7.1 and Corollary III.6.2, we 
now obtain: 

Theorem III.1. I f  n < 9 and p < 4/(n - 2), then (H) has a global classical solution. 

Proof  By LemmaIII.2,  it is enough to prove that u~/~]~(IR+;E) for some r > n  
+ 1. We may also restrict ourselves to the case n > 6, since the result is already 
known for n=<6 (see [2], and also [5] in the case of A = - A ) .  But then 
Corollaries III.6.1 and III.7.1 imply that we only have to prove that 

1 1 3 1 3 
>~-c~q q' 

n + l  n n' 

which, since 6q(n + 1)= 1, is equivalent to 

4 
n < 1 0 - - -  

n + l  

which certainly holds for n < 9. The proof of the theorem is then completed. �9 
If we apply LemmaIII.5,  6 and Corollary III.6.1 we find that for n >  10 the 

solution u of (H) belongs to L]~ ;H  I +~'q') for some o > 4 n / ( n - 2 ) ( n  + 1)> p. 
Then Lemma III.6 with q = q ' = 2  and # =  1 (Notice that we may take e> 1 in 
(III.5), by the above) implies the following result: 

Lemma III,8. Let  p < 2 / ( n - 4 )  and assume that c~ < 02, where o 2 is the first positive 
zero of  

X 2 - - ~ - ~ x + l > 0 . =  

Then u~L~ + ; H2 +~'2). 

The proof should by now be obvious. As a consequence we thus obtain the 
following result by an application of Theorem II.10: 

Theorem III.2. Assume that p < 2 / ( n - 4 )  and cr < 2 / (n -4 ) .  I f  in addition to 1 ~ to 4 ~ 
we assume that 

5 ~ IM"(u)l < c ( l  +]ul) ~ 

then (H) has a global strong solution which belongs to L~ + ;H2+~'2). 

Remark. The result of Theorem III.2 applies also to certain initial-boundary 
value problems where the boundary is convex with respect to the operator A. 
This is a consequence of the fact that the LP-Lq-estimates hold also for the 
solution of such a problem. �9 

If in the proof of LemmaIII .6 we assume that u6L~o~(IR+;H 1+~'~) where 1/r 
- ( 1  + ~)/n = 1 / 2 -  (2 + e)/n, and that o < c7 where o < e is small, then we obtain as 
in the proof of (III.7), 

t -  ~ l1D~(M(uh) - M(u))I] 2 

< -~ D ~ = c t  rl (Uh-U)fl~ . . . .  PlUh f + ~ + c t - ~ t ~  u ~ r D~u ~ 
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which holds provided ~ - f f  > 0  is small and 

l + e - O - > p ( 1  11 p(1  2 + e ' ~ ,  
n \ 7 - 7 ~ i  = ~_--~-! 

If  we choose 0 - a  small and 0 = p we find that  if 

2 ( 1 + e - ~ )  
p < (III. 12) 

n - 4 - 2 e  

then these inequalities are valid. As in L e m m a  III.6, we may draw the conclusion 
that  u~L~o,(1R+;H z+~,2) for some a > 0  if (III.12) holds. In addition, we obtain 
easily the following table of values of  e using L e m m a I I I . 5  and Corol lary  III.6.1. 
In this table we have also computed  the bound  for p given by (III.12). 

4 n 4 
n ~ > p-bound 

n - 2  n+l  n -2  

10 0,699 0,74 0,45 0,50 
11 0,52 0,50 0,41 0,44 
12 0,40 0,39 0,37 0,40 
13 0,34 0,32 0,33 0,36 

Thus  we may draw the following additional conclusion:  

4 
TheoremlII .3 .  Assume that 5 ~ holds and that P<t~2-2 for n = 1 0  and 

4 n 
P < n - 2 n +  l for n = l l ,  12. Then ueL~ ;H2+~,2) for some cr>O. In general, 

this conclusion is valid for all n provided (III.12) holds where ~< a o -  1/(n + 1) and 
a o is the first positive zero of 

I n - 4  1 \ n 

x 2 - x  1 

2(+3) 
In particular, this is the case if P < ~ - 4  1 ~ . 
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