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0. Introduction. Some Basic Definitions

This paper deals with the existence of global classical and global strong
solutions to nonlinear wave equations

W+ Y a,(x)D"u+fuH)u=0 0.1
lal £2m
where
"ol 0\
A= ) a,(x)D% D*=]] (——) for a=(x,...,a,),
) < 21m j=i \i 0

is a formally selfadjoint positive elliptic operator and f is a real C*-function
with non-negative primitive function. We treat both the homogeneous initial-
boundary value problem over R, x Q for a smooth open set Q<IR" and the
Cauchy problem over IR, xIR". For the initial-boundary value problem we
show that any strong solution of (0.1), known to exist according to Heinz and
von Wahl [4] if

2m .
fOu)=0(uf-2m %), j=0,1, lul- o0,

is not only in the domain of definition of A as a selfadjoint operator in I7(Q),
namely in H?>™2(@)nH™2(Q), but also in H?*""2(Q) for any ¢ with

2 —4
0<o<min <—%—, 1) if n<max(4m+4]/r;, 6m+2), and D<M
n—4m

wh

_4 2 3 . 2
_[(n 4m) —m] otherwise. Notice that o> ’Zm for nzmax(@m

+4ﬁ, 6m+2). This enables us to prove that in fact

ueC’(R ., H*™2(Q)) (0.2)

if the dimension # is at most 6m -+ 1. This means in particular that u is a classical
global solution if f and the initial data fulfil some additional differentiability and
compatibility conditions. The last is of course not needed in case Q= R". In the
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important case m=1, the restriction of the dimension n is n<7. Concerning the
initial-boundary value problem the existence of classical solutions was up till
now only known for dimension n<4m (i.e. 4 in case m=1); cf. [11]. An example
inu

. . . . S
for our theory is the nonlinearity f(u?)u=sinu= u.

In contrast to the above, there are a number of papers containing much
sharper results for the Cauchy problem. For n<9 and 4= — A, Pecher [5, 6]

proved that (0.1) has global classical solutions even if the growth assumptions
2

FOu)=0(ufr=2 %), j=0,1, |u| - oo, mentioned above, are (essentially) replaced
by the weaker conditions

4 .

@ el ulz, j=0,1, n<6, (03)
4 n :

fOW?) Seluf—z 71 7%, w21, j=0,1, n=7,8,9 (0.4)

for some ¢>0. The result of Pecher was carried over by Brenner [2] to more
general equations: It was assumed that
A=) a,(x)D*

el <2
is a second order positive elliptic operator with C*®-coefficients a,(x) such that
a,(x)=a,(o0) for |x| sufficiently large, (0.5)

and in addition, the dimension was restricted to n<7. Actually, the growth
conditions on f’s derivatives were also relaxed somewhat. Under the more

2 .
restrictive growth conditions f9u2)=0(|u[+-2 ~*’) mentioned above, von Wahl
[9] proved the existence of classical solutions for n £6 without the asymptotic
assumption (0.5).

It is the aim of this paper to improve also on the above results for the
Cauchy problem: If m=1 and n<9 and (0.5) holds, we will prove that the
Cauchy problem for (0.1) has global classical solutions if f (essentially) fulfills
the growth conditions

4 .
SO Sclul-2 Y, julz1, j=0,1, (0.6)
n+2
for some &>0. This means in particular that f(u?)u=0(ulr -2 %) as |u|— co. Our
conditions also include the nonlinearity f{u?)u=sinu.
As for the existence of strong global solutions of the Cauchy problem in case
m=1, and (0.5) holds, we prove that such solutions exist under the growth
conditions

2 .
fO@d)| Sclul—= "%, =1, j=0,1.

The dimension # is not restricted in this case, and we even prove that the strong
solution is not only in C°(R_, H*?) but actually in C°(R_, H>**2) for any

2 - .
G<—7' For sufficiently small values of ¢ the growth restriction may even be
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relaxed a little. For the proof of these results it is not sufficient to use Banach’s
fixed point theorem, which seems to be the common usage in the field of non-
linear wave equations. Instead we propose a different existence proof based on
Tychonoff’s fixed point theorem (applied in the weak topology on I*(R, x IR").
This method may also give better results for the existence of locally strong
solutions to abstract second order equations u”+Au+M(u)=0 in a Hilbert
space H, since it then requires that M is a mapping from D(A) into H instead of
requiring M to be a mapping from D(A?%) into H as in [4].

In order to carry out the above program, we need estimates of the non-
linearity in fractional order Besov spaces (cf. [2, 6]). Instead of using nonlinear
interpolation (as in [6]) we will derive these estimates by direct calculations. In
order to do so we use the definition of the norm on the Besov space By ¢ in terms
of difference quotients. Let

w,(t, u)= sup luC+m—ulp,  Ilp=1lr@y. P21

and write, for s>0, s=[s]+75 where [s] is the largest integer <s and 0 <3< 1.
Then a norm on B; 4 is given by

© 1/q
luly+ (1€ 3y D‘*u))q?) 07)

0 Jae] =[5}
with the usual interpretation for g=o0. The use of (0.7) together with Besov
space inequalities for non-linearities f(u4?)u and for the solution of
W'+ Y a,(x)D*u+F=0 (0.8)

e} =2

(with zero Cauchy data say), is one of the main ideas of the present paper. Let us
remind the reader that the inequalities for the solution of (0.8) reads

T
[u@l gy e <c(T) [lt—1]77 | Fliggodt, O0st<T, 0.9)
0
where
1 1 1
1+—,=1, d==——, Oom+1)=1+s5-7,
pp 2 p

y=1+4+s—5~2ndz=—(n—1)4.

Before we proceed to describe the disposition of the contents of this paper, let us
remind the reader of some useful facts, that will be used freely in the following:
First, the inclusions between Besov and Sobolev spaces Bj 4, H*? over R":

ByPcH®PcB3?,  1<p<2, BSP2H"P2B}? 2<p <.

Next, the extension operator T: H%2(Q)— H“2(R") has the properties:
1 Tul g, 2 S l1]l o, 20y for ue H*?(Q), 0<s =<k, and so T has an extension - also
denoted by T - to L (H*?(Q), H>*(IR"). For this and related results, see Triebel
[8]. We here used the notation #(X,Y) for the set of bounded operators
between two Banach spaces X and Y. We will also use C*(I, B) and I?(I, B) to
denote the B-valued C*- and If-functions over I with values in the Banach space
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B, respectively. In the same way C°!(I, B) denotes the Lipschitz continuous
functions with values in B. In the following, ¢ will denote a constant, not
necessarily the same at each occurence.

The plan of this paper is as follows: In Chapters I and II we deal with the
(abstract) initial-boundary value problem on a Hilbert space. In Chapter I1I the
Cauchy problem is treated on the basis of the estimates for the Green’s operator
of the wave equation on R, xR” derived in [2], and given in (0.9) above.

We finally want to mention that all our results can be carried over to the
time dependent case, that is to the equation

W+ Y a,(t,x)D*+fu)u=0.

lo| < 2

I. Abstract Nonlinear Wave Equations

In this section we want to give a generalization of a theorem on abstract
nonlinear wave equations proved by Heinz - von Wahl [4]. Let H be a Hilbert
space, let A be a positive selfadjoint operator, i.e. (Au, u)=cllul|?, ueD(A), with a
positive constant ¢. Let k be any real number =1, let a mapping

k-1

M: D(A2)—D(4 2)

be given which is locally Lipschitz continuous, ie.
Lot k k
A2 (M)~ M@)| SLC) A2 (u—v)ll, u,veD(A42),

k k
where L(C) is a positive constant depending on C= |A2u| + | Az v|. Then we
have the following local existence theorem:

k+1 k
Theorem L.1. Let ¢pcD(4 2), weD(Az2). Then there exists a positive number
T(¢,¥)=T(k, ¢, ) with the following properties: There is a unique

ue () CH[0,T1H)
0<T< Tt

i k+1—i

d
with EFu(t)eD(A 2 ), i=0,1,2,

k+1-—i

A2 ue ()} C°[0,T]H),
0<T<T(d, %)
uw' +Au+Mu)=0,
u(0)=9¢,
w(O)=y,

lim u,ﬁu(z)n=+oo if T(, )< co.
L1 T{$,¥)
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Proof. The proof can be carried through exactly in the same way as that of
Theorem 1 in Heinz - von Wahl [4]. Instead of considering the integral
equation (7) in [4] onc has to treat the integral equation

1

k k k— t k—1
Azu(t)=cos ATt A2 p+sin ATtA"2 Yy— [sinA*(t—s)A 2 M(u(s))ds.
0

There is also a proof being contained in [12], Theorem IV.2.3; in order to see
this one has to transform the wave equation into a first order differential
equation in the direct sum H@®H, as it was done in [9] or [10]. W

I Initial-Boundary Value Problems for Nonlinear Wave Equations in L*(£2)

Let Q be an open set of IR” with boundary of class C*®. Let m be a fixed integer
=>1. For every multiindex o of R" with |x]<2m let there a function 4,: R"-> R
be given with the following properties: The A, are infinitely many times
continuously differentiable, every derivative is bounded on R”; moreover

MEPmz Y Ax)EzMTYEP xeR”

|| =2m
with a positive constant M and the operator
A= ) A,(x)D*
fal=2m
is assumed to be formally selfadjoint. As it is well known the unbounded
operator A in I*(Q) given by
Au= Y A,(x)D*u, ueD(4)=H>"*Q)nH™*(Q)
laf£2m

is then selfadjoint, see [3, Theorem 5(iii)]. For our purposes it is no loss of
generality to assume that Gdrdings inequality

(Au, u)zc|lul ueD(4),

m, 2>

holds with a positive constant ¢. Thus A4 is positive selfadjoint. As it will be
proved at the end of this chapter we have the relations

H2™2(Q)=D(A?) < H**™2(Q), 0<p, (IL1)

1
2om2 _ p(gP 0<p< 1.2
H (47),  0sps_—, (I1.2)
Hme,Z(Q)mﬁm,Z(Q)=D(AP)’ %§p§ 1, (113)
clullzpm 2 S 1A%ul Zcllully ., ueD(4?), 0=p. (IL.4)

Here and in the sequel ¢ is a positive constant depending on n, m, Q, p, M and
the [ A4,llc2maer+n@ny, DUt not on u. Observe that the order of derivatives of the 4,
appearing in the ¢ can be lowered. In what follows let nz4m+ 1.



92 Ph. Brenner and W. v. Wahl
For the rest of the paper the interpolation-technique used in the proof of the
following lemma is decisive.

Lemma IL1. Let F be a continuously differentiable mapping from R into R with
|F'(u?)ul <c,
|[F*)—F(*)| <clu—vl’, u,veR,

where p is a fixed number with 0= p <

Al Let €20,

Spte< Al

n—2m n—4m
Then for real ue H>™2(Q), ve H™ 7% 2(Q) the expression F(u?)v is in H***2(Q)
and satisfies the estimate

p+e, Z—f

Proof. Let u, v be extended to the whole of R" as functions of H*"*#*&2(R"),
H™?+52(R") by means of the H>™*?+&2(Q)-, H™*7*%2(Q)-extension operator
respectively (cf. 0.). These extensions are real and will also be denoted by u, v.
Moreover we denote the resulting extension (as a pointwise defined function) of
F?) v to R" also by F(u?)v. If [F(u?)v] gp+ .2 can be estimated in the desired
way our lemma is proved. We have to estimate the expression

IF@?) vl c(lulfn ™"+ D [0lmspse  127>0.

1
g[tl sup I(F @?(- 4+ h)) = F(u? () o( + ) 12

! 2(9) (o4 B) — (- tdi
+ g SUp I F()) (o +h)—of »nm)] ;

tr 24
<2 | P P ()= o D)o |

24
2] [ ! SUPHF(HZ())(U(“i‘h)—v(‘))HLzaRn)] a

-
The first integral on the right hand side of the last inequality is denoted by I?,

Al:

. . 2
the second one by II%. With respect to I1? we have if >0, p+e+4< ’Z
n—4m

|F(u? (x +h))— F(u? ()] |o(x + )]
ScJulx+h)—u(x)? = o(x+h),

ptetn

[vle+h)l,

IIA

c- j[iu((l—r)x—l—r(x—kh))dr
50t

ptetn
<c lo(x+h),

1—1)x+1(x+h))dr

1
1

<gpetn (j |l7u(x+1h)|2"(”+”")df)2p lo(x+h)),
]
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and therefore

1 2
P<efert
0

dt
L2RY

1
1 —
(j" Vu(x+1 h)IZP(P+£+”’dr> P o+ h)|
0
1

1 1
<c j -1 (§||7u(x)|2p<p+e+ﬂ>dx>p HUHizq(mﬂ)dt-
0 n

Here
1 1 m+p+e
2q 2 no
1 m+p+e
2p  n

93

Moreover we assumed without loss of generality that u is continuously differ-

entiable.
From the latter equality it follows that

1 _ mtpte
2p(p+e+n) nlp+etn)

Let us consider the inequality

m+p+e 1 2m—1
>_._
n(p+e 2 n

being equivalent with

m+p+e>(p+e) (g—2m+1),

Moreover 2p(p-+¢&)=2 since p+e=
have n—sm

m+p+e 1 2m—1
> pa—

n(p+e+n) 2 n

and by Sobolev we get

1
12 <= Ul 367 50D 10 Foms o + e 2qm)-

Now we want to estimate I1?. We have

. Thus for sufficiently small #>0 we
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1

I ng (j W(x)lzp(m)dx)F [Sup v Jrh)—v(-)nw(m,,)]2 dt
0

e e t

n

+4 O [0 o+ e 2o

1
1 = . — (- , 2
<c| (ﬂ§|u(x)|2"(”“’dx)p |sup oleh = )“H'"*”ww] A
0 u

LIES: e t

+4|f(0)|2 HUH%{m*‘p*—s,Z(}Rn),

éC(HuH}ZJ(Z’::ZE)(]Rn)‘l' 1) HUH%IW/JMJ(]R")

1 1 1 .
where E=—2——%, EI;:% The application of Sobolev’s imbedding theorem is
Justified since

1 _om >1 2m
2p(p+e) n(p+e 2 n’
2plp+e)22

as was just proved. Estimating ||F(u?)v]| >q. by the same procedure gives the
inequality

“F(uz) v“LZ(R") é_c(“a“‘gfl"igl(ﬂ{n) + 1) HUHHM-*pvx,ZGRH)A .
Now we want to prove a second nonlinear interpolation lemma, based upon a

further restriction of the dimension. For this purpose we assume for a moment

— 2
that n3(dm+41/m) A (6m +2). Then (” m) >m. Thus the definition

*.:”‘4"1_ /(n—4m>2_
A
makes sense. Set p, =0,
_ 2m
U
2m

P Zam—2p,4 50,

and for arbitrary veN, v2>3,

2m

= 1
n—4m——2pv_1+;p2

It is not difficult to show that all p, <1 and that {p,} is monotonically increasing
with the limit p*. Moreover we have p*<1,
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1
2m_1+pva1_;p2

m+p, 1
np, 2 n ’
1
2m—14+p,_1—5-p,
1 2y
2 n

Lemma I1.2. Let ng(4m+4ﬁ) A(6m+2). Let F be a continuously differentiable
mapping from R, into R with [u F'(u®)|<Zc,

F@’)—F(@*)|<clu—vl’, u,veR,

where p is a fixed number with 0Zp<p*. Then for real ucH>*™**-12(Q),
veH?™* P 2(Q) the expression F(u?)v is in H?2(Q) and satisfies the estimate

1

IF@®)vll,, » < —=c(lulsn,, .2+ vl

Vi

provided p,=p, i.e. v=v(p).

1zn>0,

m+py, 22

Proof. The proof is the same as that of Lemma II.1. We set

1 1 m+p,
2q 2 no’
1 m+p,
2p n
so that
2m—1+p, —22
1 m+p, 1 VTR 2y
= >_— . |
2pp, np, 2 n

Now we describe the nonlinearity in our equations. We assume that M(u) is
formally given by

M(u)=f((Reu)*) Reu

where f/: R, » R is a C*-function satisfying the following growth conditions:
Let u, velR, then

|f@?)~fH) Sclu—vl?,

[f' @) u? =) vl sclu—vl, @) uP<c, jul21,

fora p, 0=Zp<

n 1. The connection between the conditions above on f
n—4m

and conditions of the form | f9w?)|<c|ul®, u|=1, j=1,2,3 is discussed in detail
in the beginning of Chapter IIL
We want to prove a first a-priori estimate, namely
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2m

Proposition IL.3. Let &>0, <pte< Al Let @eD(A'+Wprarzm,

n—2m n—4m
YeD(ARH+2m) bo reql. Let T >0, let u be real,

ue C([0, T], 12(Q),
u'e CO([o, T], D(A%+(P+g)/2m)),
ue CO([(); Tl D(Al +<p+8)/2m))’
u'+Au+Mw)=0 in[0,T],
u(0)=o,
u'(0)=1y.
Then the following a-priori estimate holds:

sup [|AYTETAZmy )|+ sup 4RI (g))
0=r=T 0=t=T

<e(T, sup (lAu(@)] +[A* @), [|4'+HETI2m g 4| AF+E+a2my ),
0=Zt=T

Proof. For our solution u under consideration we have: M(u)e C°([0, T7, L*(Q)).
Therefore u fulfils the integral equation

t
u(t)y=sin A*t A=* iy +cos At o — | sin A¥(t—s) A~ M(u(s)) ds.
0

Formal differentiation with respect to t yields:
(M) =Q2f W) u+fu)u. (IL5)
On using Sobolev’s inequality we get
IM @) I < c(lulP 17550+ D 141 p2a (IL6)

I 1 mtpt+e 1 m+pte

with —=-— X . Because of our restriction to p we can
2g 2 n 2p n
. 1 2m
choose ¢>0 in such a way that ————>-——— 2p(p+¢&) =2, pt+e< Al
2p{p+e)~ 2 n n—4m

In regard of our conditions to f this means that M(u)e C'([0, T], L*(£2)), and
the derivative is given by the expression on the right hand side of (IL.5). Thus we
get by partial integration

w(t)=cos AZty—sin A%t At o — jt" cos A*(t—s) M(u(s)) ds,
0
=cosA*ty—sin A*tA* p—sin A* tA~* M(p)
- j sin A*(t —s) A~ F (M(u(s))) ds,
0
=cosA¥tyy—sin A tA* o —sin A1t 4% M(p)

— jt" sin A% (t—s) A~ FQ2f "2 (s)) u? (s) + f (U (s))) w'(s) ds.
0
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Our Lemma I1.1 then shows that for some >0
IM@E)Y e, 2 S U5 ms "+ DIW S s, 2-

Let {v,} be a sequence of C™(Q)n H™2(Q)nH™***52(Q) converging to u'(s) in
H™ P+ 2(0), Because of our growth conditions on 7, " we get that

f(u?(s) u?(s) v,e H2(Q),

f@A(s) v,e H2(Q).
Therefore
Qf" () u>(s) + f (U (s)) v,eD(AHI2m),

Because of our Lemma II.1
AP+ (w () u? (5) + £ (1 (5))) v,
Scl@f @) O+ @) 0,402
Sc(lu@5a "+ D ol pre, 2-

The 2f'®*(s)u*(s)+f(@*(s))) v, thus being weakly convergent to (2f'(u?(s)) u?
+ f(W?(s))) u(s) in L*(Q) we see that

(M(u(s))y eD(APTA2m),
la@ T2 (M ()Y | < cu)5ms ™+ 1) 106 s pse, -

On applying the same method we also get the relation: M(u(s))eD(A%*=/2m),
0<s<T, and

14T 22 M(u(s)] < c(uls) 555"+ D 1) e s 2-

Thus we arrive at the estimate for u’. By partial integration we get

1
u(t)=sin A*tA-*y+cos A*t o+ | cos A*(t—s) A= (M(u(s))y ds
0
—A " M(u(t))+cos A*t A~ M(¢p)
from which the estimate for u follows. |

The assumptions in Proposition I1.3 can slightly be relaxed:

Theorem I14. Let £>0, 2m

<p+e< Al. Let @eD(Al++arzm
n—2m_‘0 n—4m et eD( )

YeD(APTPT2m) b real, Let T >0, let u be real,

weC2([0, TLI2(Q), @eD(A373), yeD(43)
and

k
weC%[0, T, D(42)),
k1
ueCo([0, T], D(422)) for a keR, k=1,
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W'+ Au+M@=0 in [0,T],
u0)=o,
w'(0)=1.

k k1
Moreover let M be a Lipschitz continuous mapping from D(AZ) into D(A22), i.e.

—1

|47 (M)~ M) Sc(C) | A2 (w—v)|

k K
with a positive constant ¢(C), CZ | A2 u| + |42 v|. Then

ue CO([O, T1, D(Al ot oyamy)
weCO([(), T], D(A%+(p+5)/2m))'

Proof. According to Theorem L1 there exists a T(¢, ), oo = T(ep, ¥)>0, with the
following properties: There is one and only one

- k_l
ue [V C*([0,T],D(4z"2)
. O0<T<T(p.¥)
with k
we () CNI0T1,D(43)),
O0<T<T{p,¥) ko1
ue () C°([0,T1, D(4z"2)),
O< T< T{p,¥)
W+Au+Mu)=0, 0=Zt<T(p,¥),
u0)=o,
u'(0)=1y.
Moreover

k
lim Az u(t)] = oo
11 T{p, )

if T, y)< 0. We consider now the equation (the E, are the spectral resolution
of A, AleR, m is an element of IN):

'+ Au, + E, M(E,u,)=0, (IL7)
u(0)=E, o, (IL.8)
1, (0)=E,, . (IL.9)

Let T™(¢, ) the just mentioned quantity belonging to (11.7), (IL.8) and (IL9). We
have

_ LS 3
T(, ), T™(@,¥)>c(| 422 ¢l + [ A2 ) >0,
where the constant ¢ does not depend on m. Moreover we have on

[0, (14T % o + | AT y)]:

1AZ T u(o)| + 14T w0

k1

1 : }éc(ué*%wu 1Az g ),
1AZ S ()] + 147w, ()]
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k1 k
where also c(|4272¢||+ [ A424|) does not depend on . As it immediately
follows from the integral equation for u we have

UneCO([0, ¢(| 473 | + | A3 )], D(A! +0+72m),

LIS

1 k
Uupe CO([0, c(Il427 2 @l + A2 )], D(A* o+ 9/2my)
Thus the proof of Proposition I11.3 gives an a-priori estimate

AL CFAZmy ()| + | AFFETOR )] <c,

m

1 « (IL.10)
O=st=c(l4z 2 ol + |42y ),

where ¢ does not depend on m since

IEA(M(Eguz)) | ,4e,, Sl AP 22" EL(M(Eup)Y |,
ScllAPT RPN M(E,, ug) ||

and also

IEs M(Es Ul s, Sc | AP M(E, uy)| 5
observe that

U € [ COLO, T(g, 1), D(4Y)
iz1

and therefore u/,, u e C°([0, T™(p, ¥)), H™ 2(Q)n C™(£2)). Now we want 7 to tend
to co. Following the lines of the proof of Theorem 1 in [4] (as it has to be done
for the proof of Theorem 1.1) we see that

5D (|42 (45 (1) =t ()] 41 42 2y (0~ D)) 0. s> c0.

mz

£l

k1 k
0<t=c(l4272 | + |42 y])

k 1
and that the limit in the norm above coincides with u on [0,c(]|A42 7z ¢||

k
+[|A2 y||)]. The a-priori estimate (I11.10) shows that

‘|A1+(P+a)/2mu(t)“+||A%+(p+s)/2mu/(t)H§c’
O0<t=c(|Aql+ APt Eralzmyy,

The integral equalities for u, u’ show that even

k1

ueCO([0, c(| A7 ol + | AZ P[], D(A! 62,

LIRS

W€ COL0, ¢(1AT72 ]| + [ A3 )], D(A o+ or2m)

From this Theorem I1.4 follows, since we can continue the whole procedure on a
second interval, then on a third one and so on, the length of these intervals
being bounded from below by a constant depending only on

k1 k
osuloT(HA?+E u@)ll + Az v (1))
<02
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If the dimension #u is restricted we get a sharper version of Theorem 114,
namely

Theorem IL5. Let n>(4m+4)/m) A (6m+2). Let

pe ﬂ D(AH(”*‘S)/Z’"), lpe ﬂ D(A%Hp*—a)/Zm)

O <eZp* 0 <e=p*
be real. Let T >0, let u be real,

ue C3([0, T1, L*(Q)), (peD(A§+§), (peD(Ag)
and

weC([0,T], D(A%)),
ue C([0, T],D(A%*%)) for a keR, k=1,
u'+Au+Mu)=0 in[0,T],
u(0)=o,
u'(0)y=y.

k E o1
Let M be a Lipschitz continuous mapping from D(A2) into D(A2"2), i.e.
k-1 3
472" (M)~ M@ =c(C) A2 (u—v)|
k k
with a positive constant ¢(C), C= Az u| + | A2 v|l. Then

ue () C%[0,T], D(A!*¢ —2i2m),

O<esp*

we () CO([0, T], D(AF+0r-972m),

O<eZp*

Proof. The argument is the same as in the proof of Theorem I1.4. We carry it
through first for p, instead of p+e&. Thus we see that

ue C°([0, T, D(A* TFi2my),

weCP([0, T, D(A**71/2my),
Then we choose p, instead of p, and so on. .
It often happens that a nonlinear term M is not only a Lipschitz continuous

k k1
mapping from D(A2) into D(A42 " 2) for one k but for a pair k,, k,. The following
theorem deals with such a situation.

Theorem IL.6. Let k,, k=1, k,2k,. Let
k 1
@eD(A2 *2)AD(APPM A D
Ky 1 .
WeD(A2 “2)ND(AF+P2") A D,

where p is a positive number with

2m 2m
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Moreover
D= () DAY =92m)  y>(Am44)/m)A(6m+2),

O <g=p*
D,=H, (4m+4)m)v(6m+2)>n=4m+1,
D,= () DA+ -92m  p>(4m+41/m)A(6m+2),

0<e=p*

D,=H, (4m+4)Ym)v(6m+2)>n=4m+1.

ki ki 1
Let M be a Lipschitz continuous mapping from D(A2) into D(AZ ~2), i=1,2. For

k>
ueD(A2) let M satisfy an estimate

kp—1 ka
427 M) =g(lull goms.20) 42 u]

2m

where g is a continuous mapping from R into itself, and where p< Al

L]

n—4am
(@dm+4Ym)v(6m+2)>n=4m+1, f<p*, n=(@Em+4yYm)A6m+2). Then any
solution u of v’ + Au+ M(u)=0 in [0, T] with u(0)=q, ' (0)=1,

ue C([0, T, I2(Q)),
W& CH([0, T, D(A3Y),
ue CO([0, T, D(A%l%))

is in fact an element of C°([0, T], D(A'%z*%)) with w'e C*([0, T, D(A%).
Proof. Let T(k,) be the positive number T{(¢, ) which one gets by application of
Theorem I.1 in the case k=k,. The only thing we have to do is to derive an a-
priori estimate for ||Ak72 u(?)||. On using Theorem 11.4 and 11.5 we get that

ue CO([0, T, D(A* T7/2m)),

WeCO([0, T], D(AF+#12m), (IL11)

The integral equation for u gives the estimate

ky 1 ko
42 2w @)l + A2 u(®)
k

K 21 ¢ ke
<42 @l + 142 "2 Yl + [ g(|uls) | sam=5.2(0) |42 u(s)l| ds.
0

In view of (IL11) and (I11.4) the desired a-priori estimate follows. M

Before proving the announced theorem on the domains of definition of the
fractional powers of 4 we discuss some examples for our theorems.

Examples. 1. For Theorems 11.4 and I11.5. The assumptions of theorems I1.4 and
ILI.5 concerning the existence of a solution # of "+ Au+ M(u)=0 with u(0)= ¢,
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W' (0)=y are fulfilled for k=1 and all T<T(p,¥) if f fulfills the following
additional conditions:

2m
|fW*) = cluln=2m, lul=1,
2m
S Scluf=2n"" Uzl
(Observe that T(e, ) is the positive number of Theorem 1.1 in the case k=1
For a proof cf. Heinz - von Wahl [4, §2]. If jf(s) dsz0, r=20, then T(p,y¥)=
0
+ 00, cf. also Heinz - von Wahl [4, §2]. Another example is

sinReu

M(@u)=sinReu= Reu=f((Reu)?) Reu.

2. For Theorem I1.6

Let f now be of class C* too with | f"'u?)u*|<c, |u|=1.

If additionally we set m=1 and if we restrict the dimension to n=5,6,7 the
assumptions of Theorem I1.6 are fulfilled for k, =1 (as mentioned before) and for
k,=3. To see this let us first estimate |4 f(u?)u|. By formal differentiation we
get

2 2 :
W:(f(u)nhzf(uz)u) )+ 6 () 5”
” xj ox. 0x xj

l i

(IL12)

On applying Hélders inequality and Sobolev we get for the first term on the
right side:

Sc(lullfzbe+ D lullgs. 2

|y 20y

£

and for the second term

ou ou Ju Ou du ou
41" uZ u3+6 11,2
H( R AR | | Fol | B o 105|200,
112 1 2 . .
with —=—-——, ——=—. n being restricted to 5, 6 or 7 we have
2g, 2 n2q, n
z21_1+p+8
n-2 n

2 2 2
for a suitable p, O<p <——4 and any & with —2<p+a<‘4 On using
Sobolev we arrive at n

1f @2l g2, 2i0y S8t g2+ e20) - l1tll 3,200y (IL13)
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with a continuous function g: R, — R_. For ueH*>*(Q)nH"2(Q)>D(4%) we
e Sl ue (@)
and by Sobolev
L) u—f@Hu in HV*(Q),

where

k,  f(x*)zk

[l =11, —k<[f(x*)<k.
—k, f(x*) =~k

fw?)u thus being in HY2(Q) we have in fact proved that f(u?)ueD(A) if
ueD(A%). Now we deal with the Lipschitz continuity. As it concerns the first
term on the right side of (I1.12) we have for, u,veD(A4?) the estimates

”(f ‘whu?—f(v*)v?)

|

1 1 1.1 3
where ——=—. Since —=—_—— we can use Sobolev to get the desired estimate. As
2q;, n n—2 n

for the term

0%u
ox; 0
0% (u—v)

T(402Y 1,2
fwv 0x; 0x;

=c|u _U“LZm(Q) ”u||H3:2(Q)7
X

=c ]|'U”L2q1(§z) l[u— U”H3:2(Q)a

%
0x; 0x;

62
Hf(zﬂ) ———— /()

it can be handled similarly. Dealing with the second term on the right side of
(I1.12) we only treat

du ou du du
g2 3 g2y ,,3 77 T
Sy 0x; 0x; Swe dx; Ix;
We have
ey’ 3 e 2y .3 0“ au < 2
(10206 = 0% 0%) £ 2 M Selu=l 200y | Pl s
P Y
1 4 1 4 1
where ~—=——g, 1.e. —=1—— and consequently ——=———=; hence it follows
4q, 2 n 2q, n 2g, n 2

13 . . .
that z—gz—— for n=5,6,7. Using the norm equivalence (I1.4) the inequality
4, h

(IL13) changes into
IAM @) S g(lull g2+ o+e2) 142 ul

with a continuous function g: R* — R, and moreover we get
[AM (@) — M) =c(C) [A2u—v)|,
where C>| A% u||+ ) A% v|. Thus Theorem IL6 furnishes

ue C°([0, T, D(A%) = C°([0, T, H* *(Q)).
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n
2
for @Q=1R" that u is in fact a classical solution on [0, T]x R" if f is of class C>
(cf. von Wahl [9, p.269]). A case where the growth condition on f* is fulfilled is
M =R Rew = f(Rew?) Reuw
Reu

There is also a corresponding result for arbitrary m. We only want to sketch
the proof.

We assume that 4m+1<n<6m+ 1. Differentiating the equation with respect
to t we formally get

In particular u is Holder continuous in [0, T]x Q. 4 being >~, n=>5,6,7, we get

WY +Au +(f W) +2f W) u?)u' =0,
u'(0)=y,
u'(0)=—Adp—f($?) .

Differentiating the nonlinearity a second time with respect to t gives

(fE?)w) =(f @) +2f @) u?)u"+ @& @)+ 6/ ) u)u'®.

Now we have
H“l“lzﬂ(g)é Hu/HLZ(ll(Q) “uI”quz(Q)gc . Hu/HLZm(Q) HM/HHZWHZ(Q)

1 1 2 1 2 1
where *zf——m, _h:_nlz__m if dm+1=ns6m+1,
g, 2 n 2q, n ~2
and

@) +2f @) uyu" | Sc(fulfin @+ 1) [0 m 2

This combined with Lemma IL1 gives: ueC°([0,T], H*™%(Q)),
w'eC°([0, T], H*™2(Q)), u"eC°([0, T], H™*(Q)), T<T(¢, ). Next considering
the twice differentiated equation

(W) + A+ (f @)+ 21 @) ) ' +(@f " @) u® + 61w u)u'> =0,
W) =—A¢—f(* ¢, wO)=—AY—(f(@)+2f"(¢?) )V,

we have to deal with the Lipschitz continuity of the nonlinearity. As in the case

m=1 we get that for
w”eCO([0, T, H™2(Q)),

u'eCO([0, T], H*™2(Q)),
w'eC([0, T], H>™*(Q)),
ue C°([0, T], H*™*(Q))
the expression (f(u?)+2f W) uP)u’+@f" W) ud+6f'wHu)u'? is in fact an
element of C% ([0, T], I*(€)). Using the estimates needed for the latter result
one can easily show that u has in fact the properties mentioned above.

As it concerns the initial values for u”,u” they must be in D(A4), D(4?)
respectively. This of course is fulfilled in particular if
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peD(4?),
f(@*) peD(A)=H>">(Q)n H™*(9),
yeD(4?),
(f(@)+2f"(§?) ¢*)yeD(4})=H™*(Q).
For ¢eD(A4?), yeD(A4%) the expressions f(¢2) ¢, (f($?)+2f (9> ¢ are in
D(A), D(A?) respectively if f is of class C*™. [ ]

We now prove the announced theorem concerning the domain of definition
of the fractional powers of selfadjoint elliptic operators.

Theorem IL.7. We have
DA%y H?**™2*(Q), 0Zo,
with a continuous imbedding. The following estimates hold:
A7) Sc(M, n,m, ©, [P0 D A, oy, VD714, oy,
ey 1gll o) [ull gzme. 2095

ueD(A""Y), 0< 0, and

4] romo 2oy S (M, 1,1, @ [V DA o 5 [PHIIED 1A oo,

s [ Aallco) A ull,

0=0, ueD(4°).

Proof. First we treat the case oe[0, 1] on which all others then will be reduced.
Let T be the extension-operator from H>™2(Q) into H*™2(R") (cf. introduction).
In particular this means that for s, 0<s<2m, space T(H*?(Q)) is contained in

H2(RY=D([(— A+ l)m]fsr?); (—A4+1)" is the positive definite selfadjoint ellip-
e m . .
tic operator (— Y 0—2%— ) with domain of definition D((—4+1)")
i=1 9%
=H?™2(R"). We have

(= 4+ 1" Tull = | Tull gom, 2quey S ¢ |1 gom, 2y S c | Aul].
On applying the Heinz-Kato inequality [7, p. 145] we see that

T(D(A%) = D([{(— 4+ 1)1,
I{=Aa+1)"] Tu| =cl|A%ull, Ozoxl,

ueD(A4°). On using the Fourier transformation we get

D([(—4+1)"]7)=H?>""*(R"),

(= A4+ ull= [l g2em, 220
whence it follows
1 Tu] g2om. 2@y Sc | A7 ull.
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T being the extension operator we have for ue H™ (@) H2™2(€) the incquality
6]l g2om, g =C |A%ull.

H™2(Q)nH*™2(Q) being dense in D(A4%) with respect to the graph norm of A°
the last inequality holds for all ue D(4°) and we have D(A°)= H*™2(Q). For the
second direction we need Hadamard’s three lines theorem. Let ve H2™ 2(IR"). We
define

Ryv:=v—weH™*(Q)nH>™*(Q),

where w is the uniquely determined solution of Dirichlet’s problem
(—4+1)gw=0,
w—veH™2(Q)
over Q; instead of v|Q we also write v, and we set
n 02 m
(—A+1D)iu= (—i; ﬁ—i-l) u,
we H*™2(Q)nH™*(Q),
n 82 m
(~a+170=(- % 55+1) e
ge H*™2(Q).

Then (—4+1)"=(—A4+1)g.=(~4+1)]'gn. According to [3, Theorem 1] we
have

“U_‘W“Hhmz(g) Sc ”U”szn,z(gy
For sie H*™%(R") we define
f(Z):=A1/2+a+itRQ(—A+1)_(1/2+a+i1)ﬁ, z=g+it.

Then f is holomorphic in 0 <o <3, continuous in 0<¢ <. Moreover f satisfies
the estimates

LfO+iDl Scl(=A+1)" Y2504 2 g,
Zcllil,
IfA+inl<cli(=4+1D7C 0"l yam 2 gms
Zclal.
Following Hadamard’s three lines theorem we get
1473 Ro(=A+1)~E ™ af <c|al,
1472 Ry Scll(—A+1)EFm ).
Now set v=#i; then R,ii=R,v=v—weD(A) and

HA(H—%(U_W)” éc ||ﬁHH2m(a+1/z),zan).
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If 4 is the extension of a function ue H™ 2(Q) ~n H*™2(Q) to the whole of IR", then
w=0, and we get
l4° Ful <c N grzmo + 1722, 2qmy»

Zc “uHHZm(o'+l/2),2(]Rn).
For u as above we have (—4+ 1) gv=(—4+1)zv and
lv—w HLZ(Q) = U“LZ(Q)'
A calculation analogous to the foregoing one then shows that
||A"?4||§C!|M\lyzma,z(m, Oéag-%.

Thus we get the desired result for all 6, 0 <o < 1. Treating the case 6> 1 we set J
=g—[o]. Then 1=06=0 and we have

HAU uH 2c HA[G] u”HZém,)(Q).

By linear elliptic regularity theory (cf. [3, p.52]) 47" being a bounded linear
operator from I2(Q) into H?“™2(Q) and from H*™?(Q) into H2leIm*2m2(Q) jt
is also a bounded linear operator from H?°™?%(Q) into HPIm+2om2(Q) ¢f. [1,
p. 77]. Thus we get

”A[a] u Hﬂlém, 2 2c H”“Hzlalm +26m,2(0)-
Moreover
“Aa u” § C “A[q] u“}ﬁém, 24

It is not difficult to prove that for a function ¢e C*(IR") having all its derivatives
bounded the expression ¢ g fulfills the estimate:

Hd’gHHsJ(Q)éC(S: n,m,Q, ¢) HgHHS’Z(Q)a 0<s<2m, gGHZ""’ Z(Q)
Thus we get
HA{G] “HHlém, 2(0) =c “?"15 ”H2[61m+ 25m,2(0)>

and our theorem is proved. |

In what follows it is useful to define the notion of a weak solution for the
wave equation in a way slightly different from that used in Heinz - von Wahl

[4].

Definition I11.8. Let T>0. Let M be a Lipschitz continuous mapping from
D(AHNIP(Q) into I2(Q) for a certain p=1, ie. for u, veD(A¥) N IP(Q) we have

1M @) — M)l £c(C) [[4*u—v)] .

where CZ |[ull oo+ 10l oy + 143 ul + [A% 0| Let ¢peD(A)NIF(Q), Yel*(Q).
An element

ue C°([0, T1, D(A%) nL2((0, T); L(2) n C([0, T], L*(2))
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with )
u(ty=cosA*tp+sin A*t A%y

- } sin A%(t —s) A~ % M(u(s)) ds
o

is called a weak solution over [0, T] of u” + Au+ M(u)=0 with initial values ¢, .

Proposition IL9. For given initial data ¢,  there exists at most one weak solution
over [0,T] of '+ Au+M(u)=0.

Proof. On using Gronwall’s inequality the proof immediately follows from the
integral equation. n

We want now to dispense with the existence assumption in Proposition I11.3.
We get

Theorem I1.10. Let >0,

2m

n—2m§’0+8<n—4m/\1'
Let

peD(Al Tletazmy, ¢ real,

YeD(AY2HERZmy oy peql,
let T>0.

We assume moreover: If u is a real valued, a.e. on (0, T)x Q defined function
with
ue (:2([07 ’T“], LZ(Q)),
we CO([O’ T]: D(A1/2+(P+€)/2m))°
ueC([0, T, D(4" * ¢ +or2my),

W+ Au+M@u)=0 in[0,T7],
u(0)=9,
u'(0)=y
for some T, 0SXT<T, then

SupT(\IA”("“’/Z"“u(t)\I + AN TRy )]

0=t

SH(T, AL T0H02m | 4 412w ol )

where h is a continuous function from R xR _ into R ; moreover h does not
depend on T. Then there exists in fact a unique u with

ueC([0, T1, I2(@)
ue CO([0, T], D(A* *o+a2m
W' CO([0, T], D(4M2+ 0+ ar2m).
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w'+Au+Mwu)=0 in[0, T],
u(0)=9¢,
u'(0)=1y.
Proof. For all K, T with K>0, T>0 the set
[(K, T):={wl|w e *((0, T); D(A' Tt +9/2m)),
we I=((0, T); D42+ o+arm),
w real, w()=¢,
”IWl”fof%‘)‘:ess Sl}p(“Al +(P+s)/2mw(t)H + “A1/2+(P+s)/2mW;([)H)éK}
te(0, T)
is a compact convex set in the Hilbert space I?(Q4), Q7:=(0, T) x @, endowed

with the weak topology. Namely, if {w,} is a sequence being contained in
I'(K, T) there is a subsequence {w; } with

w;, —=w in I*((0, T), D(AL+ e+ ar2m))
Wi, —w in IZ((0, T),D(A'zl“*‘(p-il-s)/zm)),
w(0)=¢;
we can assume that also
w, —w  weak star in [°((0, T); D(AL++a12my,
wi —w'  weak star in L°((0, T); D(4*+@+a/2m)),
We specialise K to
2 ”Al-#(p+s)/2m¢” +2 HA%-!—(IH—S)/Zml/l“ +4 ||A(p+£)/2m M(¢))H 41

Let us define a mapping & by setting

Fw)t)=sin A*t A Ty+cosAtt
(F w)(t) W ® (IL14)

t
—[sin A% (t—s) A~ M(w(s))ds, 0<t<T
0

As it was done in the proof of PropositionIL3 one can show that

(M(w)Y eL((0, T); H **2(Q))
and

(M(w(s))y =(MW))(s)=2f (W (s) w?(s)+ f (W (s)) w'(s) ae. in (0, T).
From this it follows that in fact
M(w),  (M(w))eL*((0, T); D(A®* /%))

(cf. the corresponding part in the proof of PropositionIL3). Forming (% w)
according to (II.14) and using partial integration as in the proof of
Proposition IL.3 we get the formulas
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(F wy(t)=cos A*ty —sin ATt A% ¢
_sin A%t A~ M(w(0)) (IL15)

- jfsin A¥(t—s) A~ M(w(s)) ds,

(F w)(t)=sin A2t A= Yy +cos At p— A~ M(w(t))
+cos At AT M(w(0)) (IL.16)

+ jcos A*(t—s) A~ (M(w(s))) ds.

Now observe that

w(0)=9,
Mw(1)= Ef) (M(w)) (s)ds+M(9),
and therefore

AR+ @+2m 4 =% M)
<resssup |49 I (9)] + |42 M),

O<s<T
AL+ 6972 4= M o))
Stesssup AP (M(w)) (s)]| + | A€ M ().

O<s<T
Thus we get
7 wlife. =K
if T="1T, is small enough, say
Ty So=0(|AMHETI2m P 4 || AFHEHI2mY || 4 | AP 92 M ()|, T),
the bound ¢ only depending on the quantities 7,
AT B | Aoy | 40902 A ()
Moreover
FweCO([0,T,], D(A =¢+9/2m)),
(F wyeC([0, T, ], D(A**(e+a/2m),
Now we want to show that & is continuous with respect to the weak topology
of IZ(Q; ). If {w,} is a sequence contained in I'(K, T;) with accumulation point w

in the weak topology of I*(Q7 ) we choose a subseugence {w;,} as before. On
applying Rellich’s choice theorem we see that

W =W

a.e in Q7 . Thus
M(w,)—=M(@w) in *(Qs).
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Let us consider the integral equation for & w, . We have (v(t):=sin 4*r A%y
+cos A¥t):

T,

[ (F w, (0, ¥()de

° T, Ty ¢

[ (@), y(tydt— | j(M(wjv(S)), sin A*(t—s) A~y (1)) ds dt, velZ(Q5).
Y 00

Of course M(w;)— M(w) in I2((0,£) x Q). The expressions || M(w L) being
essentially bounded on (0, T}) (cf. the estimate for [|(M(u(s)))| p+z2 In the proof
of Proposition I1.3) one gets by Lebesgue’s theorem that

T, P

(5) (F w,;, ¥ (@)dt - (j:(g: w(t), ¥ (1)) dt.

Thus # is also continuous. On applying Tychonoff’s fixed point theorem one
gets that & has a fixed point u with
ue C°([0, 7,1, D(A o+ a2m)),
w'eCO([0, T,], D(A*+e+al2m)),
u(0)= 9,
w(0)=y.
On using the integral Egs. (I1.15) and (I1.16) we see that ue C*([0, 7,1, I2(Q)) and
u'+Au+Mwu)=0 in [0,T;]. Now we repeat the whole procedure with initial

values . R
u(1y), w(Ty).

This gives as before a solution of u”+Au+M(u)=0 over [T, T,] and so on.
Because of our a-priori estimate for the quantity

sup ([[ATFEF 2] + | AFFET A2y (1))

O0=t=T
we can choose T, in such a way that
T = T,20,=0,(1A™CHImp| 4 || A3+ C+92my | T) >0

with a positive constant 6,(||A*T@*+92me|| || 4FHE+a2my ) T), So far we
proved every part of Theorem I1.10 with the exception of the uniqueness. One
casily shows that u is also a weak solution over [0, T] being in L*((0, T), L"*°(£2))

. . 2 . .
with p,=min (‘m, 1). Thus Proposition I1.9 shows the uniqueness.

IIL On Classical and Strong Global Solutions of (H)
u’+A(x, D)u+M(u)=0, u(0)=¢, ' (0)=y

Where we for simplicity assume that ¢, ¥ are in H™*, for k large enough (this
can be made much more precise!) and where
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1° A is a real positive elliptic differential operator with C%-coefficients,
which are constant for |x| large,

2° MeC”, for some 6z 3 and M(IR)= R,

3° IMOYw)|sc(l+ul*), j=0,1,...,6; p;20 where po=p+1 and p, =p, and
where for simplicity we assume p; <max (0, p +1—j),

4° M(u)=f(u*)u and | f(u)duz0 for v=0.

Notice that in [2], we used the notation p for p, instead of, as here, for p,. Since
the assumptions on A4 are invariant under addition of f(0)u, say, we may assume,
as we also will, that f{0)=0, i.e. M'(0)=0. If we assume that p <1 and that feC’
as above, and then compare condition 3° with the growth conditions used in
Chapter 11, namely

IS —f@*) clu—vl’, i)

W ul® <c, (i)

|f @) =@ Sclu—vl?, (i)
Ifw*yut| <c (iv)

we find that (i) and (i) imply with (iii) for v==0 that 3° holds for j=0,1,2. The
condition on M’ is implied by (iv) (which was used in the example for
Theorem I1.6). On the other hand, if condition 3° holds then also (i), (ii} and (iv)
hold (and (iii) for v=0). Thus condition (iii) remains to be satisfied. However,
this condition will only be needed in the application of TheoremIL.10 in
Theorem I11.2 below. Straightforward computations show that (iii) is satisfied if
in addition to 1° through 4° above, we assume that

5° IM (W) S c(1+ul)* .

This extra condition will be added in TheoremIIl.2 below, but will not
otherwise be assumed in this Chapter.

In the lemmas below, u will denote a solution of the integral equation
corresponding to (H), and a statement ,ucly (R, ;X)” will be short for

- loc
“uell (I;X) = uel™(I;X)”, any bounded interval ISR .

Lemma IIL1. (H) has a weak solution in L (R, ;H"?). This is a well known

loc

consequence of 4° and the energy inequality.

Lemma lI1.2. (H) has a classical solution for n<9 if uely (R, ;L) for some r=n
+1. This was proved in [2].

Lemmalll3. Let s=5+0,0<06<1 and seZ . Then an equivalent norm on B} is

given by
1

: dt\a
Il lul + (Jes0p 3 10—l )

|h]Zt |a)=5
where u,(x)=u(x+h).
For a proof, cf. Lofstrom and Bergh [1].
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We will below prove inequalities of the type
1M ()]l 5.2 < c@)(llull 55,2+ 1) (#)

where c(u)eLy ., for solutions u=u(t) of (H). Sometimes we even prove the

loc>

corresponding I7 — ¥ -inequalities. The I? — [#-inequalities (0.9) for the equation

. 1 1

(H) then proves that if é(n+1)<14s—5" and s(n—1)<1 (where l<p=2, —+—

11 , . . bp

=1, 6=§——,), then ueL?® (]R+;B;:2) and so in particular (by [2], Lemma 1.1),
b

loc
ueLy (R, ; H*?). This argument will be applied time after time, without further

reference.
The critical point in improving upon previous results [2, 6] is now:

Lemma IIL4. Let n= 6, and assume that

21+m-15) 2

_ (p—
p< — n_z\p 5), s<p. (ITL.1)
Then ue LY (R, ; H?) for (n+1)=1+s—5"
4 1.1 1
Corollary 111.4.1. If p<——2, then uely (R, ;L) for any r such that Eg;>§
n—

Cltp—(—1)
n ’

Proof of Lemma II1.4. By 3° and 4°, and since we may assume that M’'(0)=0,
M(u)=f(u*)u, where | f(u?)|<clul’, p<HZ1. Thus

|M(uy) = M) S |t —w, P lu—u, | =2l + 1 — w0, | ),
where now 0<6<1 is, for the moment, arbitrary and p<6=<1. Hence for

11
1<pg2, —+I7=1, dn+1)=1+4s—5
p

=8| M(uy) — M),

<ct™u—uy |3 lu—u, |7 (ullf et lu—u 3 ful, (I11.2)
provided
LN I (l,_s—,)-[-p (i_s_) (I1.22)
p 2 pon pon
L (i—f) : (IT1.2b)
p 2 \p n

We take O=p, and s<0=p=0. Then, in particular, (IIL.2a) implies (ITL.2b). In
addition, since 8=p, (II1.2a) is equivalent to

lp_l—ks—(n—i—l)ééza
2 n
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which is equivalent to
np 2(1+(m—-10y 2 S
n—2 n—2 n—2

which is equivalent to (IIL.1). Hence (I11.2) holds, where p satisfies (IIL.1). From
(II1.2) and Lemma IIL.3 we have (since 6>s and 6>s!)

1Ml gs 2 cllully 5 ully, - Nullg ) =cllully H(lul gg,2+1)

and the lemma follows as indicated above. W

4 -
Lemma ITL5. Assume that p<——§. Then ueL‘ﬁ,c(IR+l;H1'q), d,(n+1)=1, where
n—
1

1 4
S,=———, for 6=n<10. If p<——L this conclusion holds for all n.
T2 4 n—2n+1

Proof. For the last statement we merely refer to [2]. Assume then that

uely (R, ;L) with r as in Corollary I11.4.1. Then
M)y, Scliullf lully,, (TIL.3)
provided
1<25* 2
P =0T

it is sufficient to require that

or, equivalently, that

pr— ("—_—2+L) p+2- " >0 (IIL4)
n n

This certainly holds for p=0. Since the left hand side takes its minimal value at p
=(n—2)/4+1/2n—2)>4/(n—2) for n=6, we only have to check (II1.4) for p
=4/(n—2). Thus we obtain the condition

4 ( 4 1 )> 2 4 - n—2 N 1
- <
n—2\n=2 n—-1/ n+1 n-2 2mn+1) n-1

which is easy to verify for 6 <n<10. Thus (ITL4), and hence (IIL.3) is proved for
p<4/(n—2), 6<n=<10, where the r-value of Corollary I11.4.1 is used. This
completes the proof of LemmalIll.5. M
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Remark. We may actually obtain a better bound for p for n= 11, using (IIL4). A
simple approximation actually shows that (I11.4) holds for

p<

and as a conclusion, ue L2 (R, ; H*%) for such values of p, all n=11. M

loc
1 1
Lemma IIL6. Let 5T = d,(n+1)=1—p. Assume that
q

4 n—3(h—1pu

) (I11.5)
n—2-—2¢ n+1

p<

11 ¢ ® e
and that ueLﬁc(IR+;Hl>r) where i £=0. Then MELloc(]R+;H1+ Fwd),
where

4 n—in—u

IIL.6
6<n—2—28 n+1 ( )
Proof. For |a|=1 we have, |h| £t and u,(x)=u(x+h) as before,
D*(M(u,) — M(u))=M"(u,) D*u, — M'(u) D*u
= M(u,)(D*u, — D*u)+ (M (u,) — M'(u)) D*u.
By assumption
IM'(u)| <clu,/ and  |M'(w)~MW|Scly,—ul’, p=<0=<1
Hence for p<0<1,0<0<6, 6<0,
£ HD“(M(uh)——M(u))Hq (11L.7)
<ct™?|D*u,—Dull, , w15 ,+ct™ 0 ulf  lu—w,)95° 1D, .
which holds by Hoélder’s inequality if
1.1 u 11
> .
=7 n +p (r n)’ (II1.8 a)
1_1 ~1 — /1 1
Sxs OTE LG (6-5) (———). (IIL8b)
9= q n r ron

Since (II1.5) holds, and since (II1.84a)} is equivalent with

—2-2 2(1- —(n—
pn 8§25 +ﬁ= (1—p ﬁ=2n (n—Dpu
2n °n n+l n nn+1)

(II1.8a) holds. In addition, if 6= p, 8=0—0>0 sufficiently small, then (II1.8b)
holds if (II1.6) is satisfied. On the other hand, if 6 < p, we may take 6=p and §
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—o >0 so small that the bound

4 n—iln—Du

<
p n—2-—2¢ n+1

implies that

1.1 11 ~ 1
e d e NG R
q q n ron n

so that (III.8b) holds. Thus, squaring (IIL.7) and integrating over (0,1) against
dt/t we obtain by Lemma3 and the usual inclusions between Besov- and
Sobolev spaces

IM@) | gyro S llull g snsoaLlulf A+ llully,, .

The IP—If-estimates for the solution of (H) now implies the statement of
Lemmalll.6. W

Corollary ITL6.1. Assume that ueL3, (R ; H") and that 6 (n+1)=1. If p<4/n

loc
—2), then ue L2 (R _; H'*°%) for any 6 <a,,, where o, is the first positive zero of

, n—4 1 ) 1
_ 2~ >0,
X x( TSI AR TS =

Proof. Since we may take e=n/(n+ 1) and y=0 in Lemma 111.6, we find that

4 a4 1 no 4 L4
’%_n—2—28n+1_n—2 2 n on+l n=2_ 1 2 " n-=-2
1- 14—
n—2n+1 n n—2

Hence the bound p<4/(n—2) implies the conclusion of Lemma IIL6. Since
K,>p we may choose ¢ <x, in Lemma II.6 such that x, = p, and such that

4 n n
&= .
“n+1l

<l
X0 Ty aent 1

Replacing H'" by H*** and putting e=¢,=n/(n+1)+x,, we obtain the

iterative formula

vr

B 4 n B
Th—2-2e,n+1 " Tntil

X,i1 +x,, v=0,

and so the corollary follows form the monotonicity of the map x, —»x,_ |.

Corollary I1L6.2. If 6<n=<9 and if p<4/(n—2), then ucL¥ (R, ; H*7).

loc

Proof. Since 6,=B—) B?*—C, where B=(n—4)/4+%/n+1) and C=2n/(n+1)
in CorollaryI11.6.1, we find that o,=1 for the values of n between 6 and 9. In
addition, ueLy (R, ;H*?) if uel? (R ;H"") where 1/r—1/n<2/(n+1), by
Lemma 6.1 in [2]. By the above consequence of Corollary I11.6.1, we only have

1
to check that =—Q2+n/n+1))/n<2/mn+1), ie. n<10— —6—, which holds for
n<9. W 2 n+1
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LemmallL7. Ler 6<n<9. Assume that ucL? (R,;H*">7), ¢>0, and that
p<4/n—=2). If in addition 4
s< -1, (I1L9)
n—(5 +28)—(4+28);

then ue Lj (R ; H**>%), where §, (n+1)=1, o,=1/2-1/q.

Remark. As proved below, ¢=0 implies that we can choose s>0 in (IIL9) for
6<n=9. In fact, for these values of n, and for 0 <¢ =1, ¢ is smaller than the right
hand side of (II1.9), that is we may for any & 0=<¢=<1, choose s>¢ satisfying
(1i19). m

Proof. As in the proof of LemmalIll.4, we first prove an IF— I%-inequality for
M(u). We have, |o|=|f|=1,
D>+ P (M () — M(u)

=(M"(u,) D*u, D*u, — M" () D*uDP u) +(M'(u,) D* P u, — M' () D*+Pu)

=I1+1I
By assumption

IM"(,) ¢ and  |M"(u,)—M"W)|<clu—w,’, 0=6=1
and hence, if we estimate I by

| < 1(M" (@) — M"'()) D, D, + | M"(w)| | D*u, D*u, — D*u DPu

< clu—u,*|D%u,| | Dy} + c|D*(uy, — )| |DPuy| + | D*ul | DP(u, —u),

we get by Holder’s inequality
2| D* (M (uy) — M),
§CK7SHuh—u“?+e,q’ HD“MH 1+s,9 HDﬁuH 1+e,9q
+et S ID%uy, — W)l g D"yl 1 4 g

(I1L10)
+ct™* HDﬁ(uh—u)H 1,4’ “Dau“ 1+¢,q

+Ct_sHuh_uH?+s,q’HDa+ﬁuHs,q'
+er uyllf 1D P~ ),

provided
111 1 1+e 1 1+s
ge(v— +8)+—,— LA (IIL112)
9~ \¢ nl'qd nqd n
1,1 1,1 T+e (IIL11b)
9-q¢ n'q n
e L R L) (IL11¢)
= \¢ nl'qd n
lgp(i,—IH)Jrl,. (LIL11d)
a-"\¢ n /g
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Now, (II1.11a) is equivalent with

that is, equivalent with (notice that S(n+1)=1!)

s+1

4 — 2 n+1
n—(5+2¢)—(4+2¢)/n —0=9) [1 +n—(5——28)-—(4+2s)/n T ]

Thus, if >s and 6 —s is sufficiently small, (II1.9) implies that (II1.11a) holds. In
addition, the right hand side of (IIL.9) is decreasing in n, and for n=9,

4
n—(5+28)—(4+28)/n_1’

e< 0<e<1

b

as is easily checked by straightforward computations. We find in particular that
the right hand side in (I11.9) is positive for ne[6,9] and €[0, 1]. Next, condition
(II1.11b) means that

g 1 21 3 2 n2-9n—4

—2-—-30——=7— ——=

n-2 n 2 n+l n 2nmn+1)

(ITL11bY

and here the right hand side of (IIL.11b) is <0 for 6<n<9. Hence (IIL.11Db)
holds for all e 0. Since 0<s <0 and p<8<1, (II1.11¢) follows from the fact that
for 6=n<9, strict inequality holds in (IIL.11b) and from (IIL11d). Merely
observe that by (IIL.11b) and (I11.11d)

2oL L pses
q

q 7] qg n

where we choose 0=y if s<p and 6—s small if s=p. Finally we recognize
(II1.11d) as (I11.8a) with u=0 and 1/r—1/m=1/9'—(1+¢&)/n and this inequality

certainly holds for =0 if p<4/(n—2), as proved in LemmaIIl.6. Thus, as in
LemmalIL.6, we obtain from (I11.10)

IM @) g5z = el 5 4 oy + D lltt] 52 rs.2

and so Lemma I11.7 follows from the I” — I-estimates for the wave-equation. W

CorollaryIIL.7.1. Let 6=<nzx9. Assume that p<4/n—2) and that
uely (R ;H>?). Then ueLy (R, ; H*>*>9) for any a<a,, where o, is the first

loc loc

positive zero of

SN __é)l"( LA
X x2(n+1) (n 7 - +2n+1 9+n n)=0.

In particular, 0, =1 for n=6,7, 8 and 9.

Proof. As showed in the proof of Lemma IT1.7, the right hand side of (II1.9) is >¢
and so applying the argument of Lemmalll.7 recursively, replacing ¢ by s in
each step, we obtain the corollary. M
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As an immediate consequence of Corollary 111.7.1 and Corollary I11.6.2, we
now obtain:

Theorem IIL1. If n<9 and p<4/(n—?2), then (H) has a global classical solution.

Proof. By LemmaIlIl.2, it is enough to prove that ueLy? (R, ;L) for some r=n
+1. We may also restrict ourselves to the case n= 6, since the result is already
known for n<6 (see [2], and also [5] in the case of A= —A). But then

Corollaries I11.6.1 and II1.7.1 imply that we only have to prove that

1 >£ 313
n+1"2 4 n g w
which, since 6,(n+1)=1, is equivalent to
n<10—
n+1

which certainly holds for n<9. The proof of the theorem is then completed. W
If we apply LemmaIILS5, 6 and Corollary I11.6.1 we find that for n= 10 the
solution u of (H) belongs to L2 (R, ; H' **%) for some ¢>4n/(n—2)(n+1)>p.

Then Lemma IIL.6 with g=¢'=2 and u=1 (Notice that we may take ¢>1 in
(IIL.5), by the above) implies the following result:

Lemma JIL8. Let p<2/(n—4) and assume that g <o ,, where g, is the first positive

zero of

n—4
2

x%—

x+1=0.
Then ueL®

loc

(R ;H***?),

The proof should by now be obvious. As a consequence we thus obtain the
following result by an application of Theorem I1.10:

Theorem II1.2. Assume that p<2/(n—4) and 6 <2/{n—4). If in addition to 1° to 4°
we assume that

59 M @) Sc(l+]ul?

then (H) has a global strong solution which belongs to LY (R, ; H>*°2).

loc

Remark. The result of TheoremIIL2 applies also to certain initial-boundary
value problems where the boundary is convex with respect to the operator A.
This is a consequence of the fact that the I?— I%-estimates hold also for the
solution of such a problem. |

If in the proof of LemmalIL6 we assume that ue L7 (R , ; H'**") where 1/r

—(146)/n=1/2—(2+¢)/n, and that 6 <& where o <e¢ is small, then we obtain as
in the proof of (IIL.7),

£ DM (uy) — Mw) |,

St Dy~ w5, Nt 15 g+ ct =7 fulll o 01535 1D%0 5,
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which holds provided &— =0 is small and

If we choose 0 —o small and 0=p we find that if

<M (IIL12)
n—4-—2¢

then these inequalities are valid. As in Lemma IIL.6, we may draw the conclusion

that ueL? (R, ; H**"?) for some >0 if (IIL12) holds. In addition, we obtain

casily the following table of values of ¢ using Lemma I11.5 and Corollary I11.6.1.
In this table we have also computed the bound for p given by (II1.12).

bound 4 n 4
" 6> p-boum "2 nrl -2
10 0,699 0,74 045 0,50
1 0,52 0,50 041 0.4
12 0,40 0,39 037 0.40
13 034 0,32 033 0,36

t

Thus we may draw the following additional conclusion:

4
Theorem IIL3. Assume that 5° holds and that p<—§ for n=10 and
4 n n=
n—2n+1
this conclusion is valid for all n provided (I11.12) holds where ¢<c,— 1/(n+1) and
G, is the first positive zero of

xz—x(n_4+ ! )+2 e
2 a+l n+1

for n=11, 12. Then ueLy (R . ; H***2) for some ¢>0. In general,

loc

p<

2 3
In particular, this is the case if p<—— (1 +—> .
n—4 n—2
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