
Math Z 176, 1 - 19 (1981) Mathematische 
Zeitschrift 

�9 Springer-Verlag 1981 

SchriJdinger Operators with Singular Magnetic 
Vector Potentials 

Herbert  Leinfelder and Christian G. Simader 

Universitgt Bayreuth, Fakult~it ffir Mathematik und Physik, Postfach 3008, D-8580 Bayreuth, 
Federal Republic of Germany 

Dedicated to our teacher Ernst Wienholtz on his 50th birthday 

1. I n t r o d u c t i o n  

In the present paper we consider formal Schr6dinger operators 

= - ( V -  i a) 2 + q 

with real-valued a s and q, and various selfadjoint realizations of ~ in L2(IR'). 
We are mainly concerned with the proof of two facts. 

First, if we assume 

(C.1) a =(a l ,  ..., a,,)eL2oc(IRm) m, 0<qeLloo(IW"), 

we give a new proof (Theorem 1) of the fact, that C~~ ") is a core of the 
maximal form associated with ~ .  

Second, if in addition 

(C.2) a=(al,...,a,,)6L41oo(lR") m, diva~L2oc(]Rm), 0<q6C]oo(]R" ) 

is required, then we prove (Theorem 2) the essential selfadjointness of ~ on 
C~(IR~). Observe that Condition (C.2) is minimal (with respect to a) to assure 
that ~ defines an operator from C~(1R ~) to L2(1Rm). 

In a recent paper Kato [5] proved that the minimal operator associated with 
the form corresponding to H and a certain intermediate operator coincide. If in 
addition a~LPor for some p>m, then the minimal and the maximal 
operator coincide, too ([5, p. t06, Theorem III]). By using a comparison theo- 
rem for semigroups, based on a generalization of Kato's inequality, Simon [19] 
was able to prove last statement assuming only (C.1). In our proof of Theorem 1 
we use cut-off arguments (as in [16]) to show that ~(~)c~L~(]W ") is a form core 
of the maximal form ~ corresponding to ~ .  Again with truncation methods we 
prove an L~ estimate (Lemma 4) as well as a comparison theorem 
(Lemma 6; an alternative proof is given in Lemma 10). 

Concerning the essential selfadjointness of ~r C~ (IR m) the vector potential a 
was assumed to be C ~ uptil recently (compare [-3, 16, 20]). To our knowledge 
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J6rgens [4] was the first who considered potentials a satisfying certain Stummel- 
type conditions. More sophisticated conditions of this type had been studied 
extensively by Schechter [14, 15]. 

Further results concerning singular vector potentials a are due to Simon [18, 
19]; he assumes (C.2) for m<4,  but in addition for m > 4  he has to require either 

6m 
p m m p m m p / 2  m +q~12~o~(lR ) P = ~  as/21oo(lR ) with p>m or a~/21oo(lR ) , diva with (see 

also [12]). 
This dependance on dimension comes in by the use of certain Sobolev 

inequalities and elliptic regularity theory, not allowing to show the essential 
selfadjointness of ~4 ~ on C~(IR ~) under condition (C.2). But it was Simon [19, 
Conjecture, p. 38] who suggested that condition (C.2) is sufficient (and of course 
necessary) for the essential selfadjointness of ~ l  C~(IRm). Our proof of Simon's 
conjecture avoids those methods mentioned above and is mainly based on the 
observation of ue W 2 c~L ~ implies Vue(L4) m (Lemma 7), which turned out to be a 
special case of a more general Gagliardo-Nirenberg inequality [1, 11]. Exactly 
this observation enables us to show (H+ 1)-1 (L 2 c~L ~) ~ WloZ (Lemma 9). Finally 
we prove the essential sclfadjointness of 2/f on C~~ ") if (C.2) holds with respect 
to a and if q=ql +q2, qa, q26L2o~(lR"), ql(x) > - c  [xl 2 and O>qz is A-bounded 
with relative bound smaller than one. In the proof we follow the ideas of [8, 16]. 

Since truncation methods (with respect to the range of a function) seem to be 
non-standard in studying selfadjointness problems, we sketch those proofs in the 
appendix. Finally we like to mention, that Kato's famous distributional in- 
equality is a special case of a more general distributional inequality which may 
be derived by using the chain rule (compare [17]). 

2. Preliminaries 

Let IR m be the m-dimensional Euclidean space, represent points of IR m by x 

2 For 1 <p__< oo let LP(IR m) stand for the space =(xl ,  ...,Xm) and let Ixl= xj . 
j -  

of (equivalence classes of) complex-valued functions u which are measurable and 
satisfy Slulp<oo if p<oo  and IlUlloo=esssuplul<oo if p=oo.  In case p=2,  
L2(IR m) is a complex Hilbert space with scalar product (u, v)=Sgv and corre- 
sponding norm Ilull =(u, u)~. 

Similarily L2(IRm)% the m-fold cartesian product of L2(IR~), is equipped with 

the scalar product (u,v)= ~ (uj, v) and the norm Ilull =(u, u) ~. Let s be a 
j = l  

measurable subset of IR ~ and let L4(~2) m be equipped with the norm Ilnilg4(~) 
=(S lU14) +" For Ac1R" let us denote by ZA the characteristic function of the set 

A. 
The space of infinitely differentiable complex-valued functions with compact 

support will be denoted by C~(IR ~) or ~(lRm). ~'(IR m) is the space of distri- 
butions on IR'. For l<=j<m let c~j=O/Oxi be the j-th partial derivative, each 
acting on ~'(IR~). For n~N, 1 <p  < o% ~ c l R  m open, the Sobolev space W ~' P((2) 
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is defined as the space of those uELP(O), for which all partial derivatives up to 
order n are in LP(f2). Wn'P(f2) is a Banach space with the norm Ilull.,~ 

=( ~ ~lWulP) ~/~, where c~N~, Ic~l-- ~ % v = ( ~ ,  ..., ~m)and V ' =  ImI~ j. i f p  
Icq=<n ~ j = l  j = l  

= 2, we always omit the index p, so e.g. W"' 2(~2)= W"(~2), Ilull., 2--Ilull.. 
We call a linear subspace F = ~ ' ( I R " )  semi-local, if cpu~F for all ~p~C~(lRm), 

uzF and define F~o o as the space of those u ~ ' ( N  m) such that q~u~F when 
~oz C~(]R~). If in addition F is normed, then u,~u  in F~oo means q~u,-~.~ou in F 

when ~o~C~(IR'). Let A = ~ ~ be the Laplacian, acting on @'(IRm), and let Du 

=Vu-iauz~'(lRm) m, d i v b =  ~ 6~bj~@'(1R m) with i = ] / - - 1 ,  aCL2oo(IRm) ~, 
j = l  

bZL]or " and uzL]oc(lRm). 
Concerning notations and results in the theory of linear operators in Hilbert 

space we refer to [6]. 

3. Uniqueness of Schriidinger Forms 

Throughout this section we assume Condition (C.1), that is 

2 mm a6Llo~( IR ) ,  O<q~L]oo(lRm). 

We consider the maximal form 

(3.1) ~(~) = {u~L2(IRm) I Du~L2(IR")m , q�89 

(3.2) ~(u, v)=(Du, D r ) +  ~ (q u, @v) 

= ~ (Oju-iaju, ~jv-iajv)+(@u, q~v) 
j = l  

associated to the formal SchriSdinger operator 

(3.3) ~ = - D 2 + q = - ( V - i a ) e + q = -  ~ (O~-iaj)2 +q. 
j = l  

Clearly C~(IRm)=~(~), but since [5, 19] it is also known, that C~(IR m) is dense 
with respect to [lluIil = [~(u, u) + (u, u)]~. 

This means, that the minimal form ~mln, defined as the form closure of 
C~(IR m) x C~~ is the same as the maximal form ~. 
Here we like to give a new proof of this fact using only well known 

truncation methods in WI(IR m) ([2], see also the appendix). In Lemma 1 let us 
first summarize some simple facts about /L 

Lemma 1. ~ is a symmetric closed form; hence there exists a unique selfadjoint 
operator H satisfying 

(3.4) ~ (H)  = {ue.~(~)]/~(u,- )~L2 (IR") '} 

(3.5) (Hu, v)=d(u,  v) for u~ (H) ,  v6~(d). 
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Proof Suppose (u . )c~(~)  and I l lu.-u~ll l~0 as n,l--,oo. Then there exist 
u, veL2(1Rm), waL2(lRm) m satisfying 

u,--+u, q~u,--+v, Dju.--+w~ in L2(IR ") ( l < j < m ) .  

Clearly v=@u and since Dju,~D~u in ~'(1Rm), we have D u = w ,  hence ue~(~) 
and [[[u,-ull]~0 as n--+oo. Thus A is a closed form, which is obviously 
symmetric. Applying the first representation theorem for symmetric forms [6; 
VI, Theorem 2.6], Lemma 1 is shown. [] 

Lemma 2. ~(~)c~L~~ m) is dense in ~(~) with respect to II1" Ill. 

Proof Take ua~(r then due to au~L]oo(IRm) m, DuGL2(]Rm) m, w e  have 
1,1 m uCW~o ~ (IR), hence [7, 13] (see also appendix, Corollary 1) 

(3.6) @ u l = R e  ~ D j u  in ~'(IR m) (l=<j<m). 

This implies IVtull<lDul a.e. in 1R m, so luI~W~(1R"). For an integer n consider 
now the Lipschitz-continuous function 

1, t<n 
q,.(t)= n, 

t t>n 

Clearly 

cp',(t):0 if t<n, 0 ~ o , ~ 1  

[t~o,(t)l<n, It cp',(t)l < 1. 

Since lu]~WI(IR'), we have ([2; Theorem 7.81, see appendix) (p,(Iul)~WI(IR m) 
and V [(p,(lul)] = ~o'.(lul) v lul a.e. in IR". 

Define u,=u q),([ul), then u, e U (lRm) c~ L~~ (lR m) and 

Vu,=Vuep,(lut)+ucp',(lul)Vlut in ~'(IR")", 

hence Du,  = Du cp,(lul) + u q)',(lul) V lul in ~'(IR") m. 
Now we have pointwise a.e. in IR m 

IDu, - Dut < Z~l,I >,~(ID ul + IV lul I) 

Iq~ u . - @  ul <=z~lul >=.~l@ ul 

lu.-ul < z~lul>_.~lul. 

Since u~(A) ,  V lul~L2(1p.~) ", we conclude u . ~ ( ~ )  and Iltu.-ulll-~0 as 
n ---~ O0. [ ]  

Whereas Lemma 2 covers the main work of our proof of "~(~) is a core of 
~" we follow now well known arguments in [5, 19]. We repeat these arguments 
(Lemma 3, Theorem 1) in order to keep our paper self-contained. 

Lemma 3. ~(~) is semi-local, that is q)u~(~) when cp~C~~ u~(t~) .  The 
linear subspace ~0 = {qou ] (p~ C~(IRm), u ~ ( A ) ~ L  ~~ of ~(~) is dense in ~(~) with 
respect to II1" III. 
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1 1 m (]) Uff W 1 ,  1 ( i~m).  Proof Let (peC~(lR") and ue~(d),  then ueWlo ~ (IR) and so 
Now we have in the distributional sense 

(3.7) D (~o u) = Du ~o + u Vcp~L2(IR~) m. 

This together with I[q~u~oH < [Iq+ul[. I[(pl[ ~ implies (pu~(~) .  
In addition let us now suppose ueL~(IR"), (0= 1 in a neighbourhood of the 

origin and put (p,=cp (n)" Then q~ cp, u ~ q ~ u  and (due to (3.7)) D(cp, u ) ~ D u  in 

U, hence IIl~o,u-ulll--,0 as n--,oQ. In view of Lemma2  this shows that cg 0 is 
dense in ~(d). [] 

Theorem 1. C~(IR m) is dense in ~(~) with respect to Ill'Ill, i.e. C~(IR m) is a form 
core of H. 

Proof In view of Lemma 3, (go is dense in ~(~). Take ueCgo, then ueWl(lRm), 
since aeL]oo(lRm) ", ueL~176 m) and suppu compact. Let u,=d~u, where d~ is the 
Friedrichs mollifier, so that u~e C~~ m) with a common support, Ilu~l/~ < Ilull 
and u , ~ u  in WI(1R ") as e--,0. We have also u~--.u a.e. pointwise along some 
subsequence e = e n ~0 .  Thus 

D u ~ = g u ~ - i a u ~ - ~ g u - i a u = D u  in L2(IR~) m 

and q+u~-,q~u in LZ(IR ~) along the sequence. Hence C~(IR m) is dense in cg o 
with respect to Ill'I[I. [] 

Lemma 4. For each 2 >0  the equation ( H + 2)u =f~L~(IR ") implies u 6 L~ m) and 

1 
(3.8) Ilull 0o <~  Ilflloo- 

1 
Proof For r > ~ l l f l l ~  fixed, Jet us consider the Lipschitz-continuous function 
q): IR~IR 

( p ( t ) = { 0 +  t<__r 

, t > r .  

Clearly 

(3.9) 0<q~<l ,  ]tcp'(t)[<l and (p'(t)=0 if t< r .  

Since luls W ~ (tR m) (see (3.6)), we have ([2, Theorem 7.8], see appendix). 

~o(lul)e W1(lem), V~o(lul)=~o'(lul)jTlul 
and so 

(3.10) D[u~o(lu[)~ = D u  q0(lul)+u ~o'(lul) V [u[ in ~'(lRm) m. 

In view of (3.9), (3.10), u~o(lul)~(A) follows. Now 

~(u, u ~o(lu I)) + (u, u cp (lul)) = ((H +,t) u, u ~o(lu I)) = (f, u ~o (lu I)) 

is valid, which gives 

51Dul2 (p(lul) + ~ ~ Dju u (p'(lu]) @u] +y(q +)~)lul 2 ~o(lul)=yfu~o(lul). 
j = l  
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Taking the real part of both sides of this equation and using (see (3.6)) [u[ 0jlul 
= Re (Dj u u) we obtain the equation 

IDul 2 (P (lul)+ ~ IV lul 12 (p'(lul)]ul + ~ (q +2)[ul 2 q)(lu])= Re ~ f u  qo(lul). 

Since (p > 0, p' > 0, q > 0 we have 

(3.11) Z y ]ul 2 q)(lul)< Re yfu~o(lul). 

Now observe that {lul >r} has finite measure. Thus (3.11) yields 

2 ~ lu[ 2Cp([ul)_<_ ~ I[flloo-lulq)(lul), 
(lul > r) (lul > r} 

hence 
1 

j" lul ~o(lul). ( lul-~ llfll~)_-<o. 
(I.l>r) 

1 
Since r>~l j f l l  ~ and (p(t)>O if t > r  we conclude lul=O a.e. on {lul>r}. This 

means lul =<r a.e. in 1R m. 
1 

Thus We get Ilullo~< ll/l[oo, since r>~]l/[l~ was arbitrary. [] 

For any ue.~(~) we de f ine / lue~ ' ( lR  m) by (remind (C.1)) 

(3.12) I t u =  - Au + i div(au)+ ia- D u  + qu 

= - Au + 2i . div(au) + ( -  i . div a + a2 + q) u 

(last equation being valid if (C.2) is satisfied) 

and use the notations H = H ( a ,  q) resp. H , = H ( a , ,  qn) (to be understood in the 
sense of (3.4-5)) in order to indicate the dependence on the potentials a, q resp. 

a n ,  qn. 
The next lemma summarizes more or less well known facts [5, 19]. 

Lemma5.  Let  H = H ( a , q )  resp. Hn---H(an, qn ) be the selfadjoint operators in 
Lemma 1. Then 

(3.13) ~ ( H ) =  {ue9.(~)IHur and H u = I ~ u  i f  u e ~ ( H ) ,  

(3.14) q ) u e ~ ( H )  for  q)eC~(lRm), u e ~ ( H )  and 

H (cp u) = (p Hu  - 2 V(p. D u - (A (p) u, 

(3.15) (Hu, u)= [IDull2+ IIq~u]l 2 /f u ~ ( H ) ,  

(3.16) cg={pulpeC~~ u~(H + I) - I (L2 nL~ is an operator core of  H, 

(3.17) I f  an--,a in L2or m, qn---'q in Lllor then H n ~ H  in the strong 
resolvent sense. 

Proof. (3.13): In view of Theorem 1 and Lemma 1 we have 

~ ( H ) = { u e ~ ( ~ ) l f ~ L 2 ( l R m ) :  A(u, q))=(f, p) if qoeC~(lR~)}. 

But ~(u, q))=(/lu, ~o) when q)eC~(IRm), hence the result. 
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(3.14): If ~0 ~ C~(IR m) and u ~ ( H ) ,  then/4((p u) = (p/tu - 2V~o. Du - (A ~0) u. Since 
(ou~(~)  by Lemma3 and I4u=Hu~L2(IR"), we get /t((pu)eL2(lR"). Thus 
(pu~N(H) and It ((pu)= H (~ou). 

(3.15): This is clear, since (Hu, u)=~(u, u) if uE~(H). 

(3.16): In view of (3.15) and L e m m a l  ( H + I )  -1 exists on L2(IR m) and is 
bounded. Since L 2 ~ L  ~~ is dense in L2(IRm), (H+ 1)-1(L a c~L ~) is an operator core 
of H. Now let u~(H+I)-I(L2nL~176 (p~C~(IR") such that cp=l in a neigh- 

bourhood of the origin and put cp=cp (~.]. Thus ~o.ueN(H), ~o,u~u in U(IR m) 
and due to (3.14) \ V t l  

H(cp, u)=qo, H u -  2Vcp,. Du- (Acp , )u~  Hu in L2(]Rm). 

Therefore cg is an operator core of H. 

(3.17): Though (3.17) is shown in [19, Theorem 4.1], we like to prove it here 
since our proof does not need [19, Lemma 2.5]. Of course, our arguments are 
closely related to those in [19]. 

Let f~LZ(lR m) and let u ,=(H,+i ) - l f  Then Llu,[] < [Ifll and 

IlD, u,[]2 + ][q~ u.Ll2 = Re(f, u,)< ]If I[ 2. 

Thus (u,) contains a subsequence (hereafter denoted again by (u,)) such that 
with suitable u, veL2(lR"), weL2(lRm) " 

u,~u,  q,~u,~v, D , u , ~ w  weakly in L 2. 

Since -~ -1 ' q,u ,~q~u,  D , u , ~ D u  in 9 ,  we see that v=q~u, D u = w  and conclude 
u ~ ( ~ ) .  By definition of u, and since D n (p = V(o- i a, (p ~ D (p, q~ (p--, @(p strong- 
ly in L 2 when (p~ C~(lRm), we get from (3.2) 

~(u, (p)= lira ~,(u,, (p)=(f - iu ,  cp). 
n ~ o o  

In view of Theorem 1 and (3.4)it follows usN(H) and (H+i )u=f  thus u =  
(H+i ) -a f  Since we could have started with an arbitrary subsequence of (u,) 
the arguments above show, that (H, + i) -1 ~ ( H  + i)-~ weakly. 

Similarly ( H , -  i) - 1 ~ (H - i)- ~ weakly, so by the resolvent formula 

[[(U, + i)- l f l[2= l i(f, (H, + i)- l f - ( H , - i ) -  l f ) -*  ][(g + i)- l f ll 2 

and thus the resolvent converges strongly. [] 

Next we provide a new proof for ] ( H + 2 ) f t < ( - A + 2 ) - l l f l  using again 
truncation methods. An alternative proof is given in Lemma 10. 

Lemma 6. Let ,~>0, f ~ LZ (IR m) and assume (C.1). Then 

](H + 2)-~f] __<(-A -I- ; t)-  1 [ f [. 

Proof Of course, using an approximation argument, we may assume f e L  2 c~L ~176 
Let u = ( H + 2 )  i f  then due to Lemma4  we have u~L~(IR m) and thus 
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b/ 
ue WLolo(IR"). For any e>0  let w=w = e +  lul' then we W~olc(lR m) and Iwl < 1 a.e. in 

IR". Let 0<(pc Co(IR"), then 

Du-wVlul (3.18) D (w r - -  (/9 + wV(paL2(lRrn). 
~+lul 

In view of q~(wq~)~L2(1R m) and Lemma 3 we have wq0~(d).  By definition of u 

~(u, w~o)+,~(u, w~o) = (f, w~o). 

This and (3.18) means (taking real parts) 

(3.18') y Re(Du- D(wq)))+y (q +2)lul Iwl ~o=y Re(fw) ~o. 

Since Re(ffDju)=Iu)@ul, IV lull <lDul a.e. in IR" we conclude 

Re(Du- D (w (p))= IDul2-Iwl IV lull 2 ~o + Iwl V lul- V~o 
~+lul 

1-1wl 
>_-Iv lutl: ~ ~o + lwl v lul-v~o >_ lwl v lut- r 

and thus using q>0,  ]wl<l  

(3.19) f lwl V lul. v~o +)t j" Iwl lul q)<f I/I ~o. 

Remind w = %, so that 

G(lul, ~o):= (v lul, v~o)+)41uI, ~o) <( I f  I, ~o) 

as e---,0. Let v=(-A +2) -2 If  I, then do(v, q))=(If], cp) and thus do(lUl-v, (p)<0 
for all O<q)eC~(IRm). 

By approximation (mollify and cut off 0=< q)e W~(IR")) we get 

(3.20) do(lU I - v, q)) __< 0 

Let O=jul-v, 0+=max(0 ,0 ) .  Then 
= IV0+l 2 (see appendix). 

Taking qo = 0+ (3.20) implies 

for 0 < ~oe WI(IR"). 

0+eW~(IR ") and 0 0 + = 0 2  , VO'VO+ 

Thus 0 + = 0 ,  that is lul_<_v. [] 

Remark 1. In particular Lemma 6 implies the well known fact, that ( -  A + 2)- ~ is 
positivity preserving. But this may be seen more directly as follows: 

Let 0<  feL20Rm), u = ( -  A + 2)- if. Then u is real-valued (since - A + 2 is a 
real operator) and 

G(u,~o)=(f,~o) (r A)). 
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Let u_ =rain(u, 0), then U (~VI(]R m) and again 

;Cllu_ I1= ~ G(u_, u)=G(u, u_)=(f, u_)~O. 

Thus u _ = 0, that is u = u + ->_ 0. 
We mention furthermore, that our method of proof may be applied to 

formally selfadjoint elliptic operators with variable coefficients. 
Finally we remark, that the above method also provides a proof of (if q is not 

dropped in (3.18')) 

I(H(a)+ A)-tfl~(H(O)+ X)-'lfI. 

4. Uniqueness of SehriJdinger Operators 

Throughout  this section (except in Theorem 3 and 4) we assume Condition (C.2), 
that is 

aeL41or '~, divaeL~oc(lR"), O<qeL~o~(IR" ). 

Observe, that (C.2) implies (C.1), so that all results of Sect. 3 are valid. In 
particular, see (3.16) and Lemma 4, we know that 

%0 = {o~ 1~o6 c ;  ~ u,(Zt + 1)-'(L ~ ~C| 

is an operator core of H contained in L ~. Thus, mollifying u~Cg, at first sight one 
believes to get a core U c  C~(IR m) of H. But unfortunately ue~g yields only - A u  
+2ia. VusL2(lRm), so that -AG+2ia .  FG-~-Au+2ia .  Vu is by no means 
clear. It is exactly this point, where up till now additional assumptions [-5, 18, 
19] were needed to obtain Au, a. Vu~L2(IR m) via Sobolev inequalities. Since u-~ 
- 3u + 2ia- Vu is obviously continuous on W2(~2) c~ W1,4(f2) for any bounded 
domain f2clR m, we overcome the difficulty mentioned above by showing 
cgc~(-A)c~Wl'4(lR~). This is done in Lemma 7-9, being the crucial steps of 
this section. 

L e m m a 7  [1, 11]. If uE~(-A)c~L~176 then VusL4(IR"). Moreover for any 
~>0 there exist constants c, c(e)>0 such that 

(4.1) ]kVulIL4<~m)mG~HAull +c(a)Ilul] 

(4.2) HVui]24(~m)m <=cllull~ IIflulI 

for all uE~(-A)c~L~(lRm). 

Proof. We begin with the case u~C~(IR m) and we may assume throughout our 
proof u to be real-valued (otherwise consider Re u and Im u). For 1 __<j =< m we 
have 

S ( ~  ut 4 = Y ~,(~ u) ~ = - ~ u ~ [(~ u)~] = - i ~ 3 ( ~ , ) ~  o~,.  

Thus llOju[i~<31luli, llO~uil2, IIOyutl, that is [t03ull2,<311ull| II0~ull. 
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By partial integration (since ~j and ~ commute) we have 

(l__<j, 

which gives 
j , k = l  

(4.2') 

I1~ Gull 2= IIAull z. Thus 

II,V~ull2. <= 3 Ilullo~ IIAull (1 ~ j~m) .  

Next consider the case uE~( - -A)c~L  ~~ supp u compact. 
Let un=J1/nu , where J1/n is the Friedrichs mollifier, so that u~Cff(lRm), 

u,--,u, A u , ~ A u  and [lunll~o< IlulI~. 
Now (4.2) shows, that ~j u~ is a Cauchy sequence in L4(1R~). Thus ~j G ~ 0j u 

in L40R m) and (4.2') holds good by a limiting process. 
Finally let us consider u s 9 ( - A ) c ~ L  ~176 Then we choose a function 

~0sC~(1Rm), satisfying 0 < q 0 < l  on IR m and q~--1 near the origin and put 

q~ = q) (n)" Clearly G : =  q ~ u , a ~ ( -  A) has compact  support, satisfies II u .  II oo --< Ilu II 
/ x  

and un ~ u, A u, ~ A u in L-~ (IRm). As in the preceeding step we conclude 0j u a L4(IR m) 
and see that  (4.2') (implying (4.2)) holds true. 

To obtain (4.1) let ~>0.  Then in view of (4.2) 

with a constant depending only on the dimension m. [] 

Lemma 8. Let H(a) be the selfadjoint operator of Lemma 1. Suppose ~2 is a 
bounded subset of IR m and c is a positive number. Then there exists a constant d > 0 
such that 

(4.3) Ilzlull =<2 IIH(a)ul[ +dllu[l~o 

for all ue~ (H(a ) ) c~@(-A)~L~( IR  ~) with supp u c f 2  and all vector potentials a 
satisfying I1 div a I[ L2(el + I] a21[/2(~ < c. 

Proof Let a be a vector potential (satisfying (C.2)) with 

II div a 1] L2(o) + I[ a 2 II L2<~ =< c 

and let ue~(H(a) )  ~ 9 ( -  A) ~ L ~ with supp u c O. In view of div (a u) = (div a) u 
+ a - V u  and formula (3.12), (3.13) we have 

H(a) u =  - Au+ 2ia.  V u + ( i . d i v a + a 2  +q) u. 

Thus using (4.1) and 2 z I[a [IL2(o)= Ilallz,r we obtain 

IIAull < liB(a)ull + 2 IlallL4(O~,, [IVullL,<o)m + [lldiv allL=(o> 

+ Ila2tlL=(~+ IlqllL~(j Ilu/l~ 

< IIH(a)ull +2~l/cl lAull  + I-2c(~)1/c+ c +/IqtlL=(~3 tlutl~. 
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Therefore  

(1 - 2 c  lfc)IIAul] < IIH(a)ull +[2c(e)l/c+c+ Ilqllgz(~ )] Ilulloo. 

Choosing e - ~ = 4 l f c ,  we obtain estimate (4.3). [ ]  

Lemm a  9. Let H be the selfadjoint operator of Lemma 1. Then 

cg = {gu I~oe C?(IR"), ue(H + 1)- 1(L2 rv L~176 

satisfies 

(4.4) 

11 

~c~( -A)~L~(~" )~  Wl, 4(1R% 

Proof. Let (oeC~(lR' ) ,  ue(H+l)-l(L2c~L~ Choose a , ~ C  ~ such that  a n n a  , 
d i v a , ~ d i v a  in L2o~(mollify a?). Let  us denote by H = H ( a )  resp. H , = H ( a , )  the 
selfadjoint operators  of  L e m m a  1 corresponding to a, q resp. a, ,  q. Define u, 
=(H~+I)-I(H+I)u, then u~-->(H+l)-~(H+l)u=u by (3.17) and by (3.15) we 
have (remind D~ = V -  ia~) 

]ID~ u./I 2 + I[u.l[ 2 =<((H~ + 1) u~, u.) : ((H + 1) u, u~)< II(H+ 1) ull [lu.[I. 

This gives IPu.l[ < IP(H+ 1)ull and IID.u.II < II(H+ 1)uN. 
Let us now put  v.=~pu., then in view of (3.13), (3.14) we see that  v.e~(H.) 

and 

H.v.= cp(H.u.) + 2Vq~. D .  u. + (A ~p) u., 

Hence 

[Im. v.H < H~oH ~(]l(H.+ 1) u.H + ]lu.qD + 2]bv~o]l co HD. u.l] + IhA~o]l o, Ilu.I/ 

< I[(H+ 1) u[I [2 H~oll oo + 2 IlVcpl[ 0o + [IA q~l[ 0o] =:  a. 

By L e m m a 4  we have Ilv.ll~o<l[~o[loollu.[Ioo<[Iq~l[oo[l(H+l)ul[oo and since 
v.e~(H.)r~L ~, suppv,  compact ,  we conclude v.sWl(lR'). In view of div(a .v . )  
= (d iva . )  v . + a . - V v . ,  (3.12), (3.13), (3.14) we obtain 

(4.5) H~ v, = - A v, + 2 ia , .  Vv, + (i. div a, + a,  2 + q) v,. 

Since a . e C  ~, (4.5) shows Av,eL2(IR"), i.e. v,,e~(-A). 
Now let f2 be a bounded  subset of IR m, such that  supp v, c supp ~o ~ O and let 

c > 0  be a constant  satisfying 

II div a,  N c~(n) + ]l a~ 1] c2(n) < c. 

Due  to L e m m a  8, (4.3) we obtain 

(4.6) IIA v.II=< 2 IIH. v.ll + d  IIv.II | 

<2a+d ]lqg]l o0 ]I(H+ 1)ul] oo < oo. 

By (4.6), using the weak compactness  of the unit ball, we may extract a weakly 
convergent  subsequence of (Av.). Since v.=qou.--->cpu in LZ(IR 'n) we conclude 
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( p u c ~ ( - A ) ,  thus bearing in mind Lemma4 and Lemma7,  we have shown 
(4.4). [] 

Theorem 2. Assume (C.2) and let H be the selfadjoint operator in Lemma 1. Then 
C~(IR m) is an operator core of H, i.e. Jt~ = - ( V - i a ) 2  + q is essentially selfadjoint 
o n  

Proof. In view of (3.16), (4.4) the set ~ is an operator core of H satisfying 
cgc~(-A)~L~(IRm)c~WI'4(IRm).  Thus, using (3.12), (3.13) and div(au) 
= ( d i v a ) u + a .  Vu, we have for each u~Cg 

(4.7) H u =  - Au + 2ia.  Vu +(i .div  a +aZ + q)u. 

Define u~=J~u, where J~ is the Friedrichs mollifier and e < l ,  such that 
u~E C~(IR ~) with a common support in f2 = supp u + {x] ]xl < 1}, Ilu~ll ~ =< Ilull ~ and 
u~-,u in W2(IRm)=~(-A). We have also u~-,u a.e. pointwise along some sub- 
sequence ~=e,-~0. By (4.2) we get 

Ila-Vu~-a. Vull < Ila [IL4(~)m [IV (u~-u)llL4(~)~ 

<c Ila[Igo(~)m I[ul[ co IIA u~-A ul[. 

Thus, considering each term in (4.7), we conclude H u ~ H u  in L2(IR m) as e~0.  
Since (g is a core of H, C~ ~ (IR") turns out to be a core of/4, too. [] 

To prove the essential selfadjointness of ~ = - (V- i a) 2 + q on C~(1R m) includ- 
ing also negative parts of q, we need Lemma 6. But since (C.2) is now (in this 
section) assumed, a nice proof of I ( H + 2 ) - t f ] < ( - A + 2 )  -1 Ifl can be given 
using Theorem 2. 

Lemma 10. Let 2>0,  feL2(lR m) and assume (C.2). Let H be the selfadjoint 
operator of Lemma 1. Then 

(4.8) [(H + 2)- ~ f I  < ( -  A + 2) - ~ [f]. 

Remark 2. Iterating (4.8) and using the well known formula 

( - ~  

e-tA=,~limoo 1 + ~  A ) 

one easily obtains from (4.8) 

(4.9) ]e-rail <dA [fl (t > 0). 

Proof of Lemma I0. Choose a ,~C ~ such that a,--*a, diva,--+diva in L]o ~. Denote 
by H,  the selfadjoint operator H(a,) of Lemma 1. Let cp, ~ e  C~(IRm), 0 < ~, �9 = 1 
near supp ~o, and let (0, = [1 ~o 12+ e2j~ with e>0. Then an elementary calculation 
(see also [7, 13, (X.47)]) shows 

2 \  

-<l(H,+2)~ol +X i ( P ~ - ~ )  �9 
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Thus 
( -  A + 2)(~cp~)=eb(- A + Z)~o~- 2V ~ . V  cp~-(A q))qo~ 

= ~ ( - A  +2)q~-(A ~)~o~ 

<l(H,+2)q~l+24~ \~o ~ - ~  / - ( A  q~) ~o ~. 

Define u~=24~\ - ~ i - ( A 4 5 ) ~ o ~ ,  then using the fact that ( - A + 2 )  -1 is 

positivity preserving (see Remark 1), we obtain 

~(])e~(-- A-~- 2) -1  ](Hn ~-,)~)~I ~-(- A -~- 2)- lu e. 

Since 4~(p~lcpl, u ~ 0  in LZ(IR m) as e ~ 0  we have 

I~ol<(-A +2) -1 [(H,+ 1) q~I 

Since H,  ~o~H~o, this yields 

(4.10) [~o I < ( - A  +2) - '  I(H+2)~p[. 

By Theorem 2, C~O(IR m) is a core of H, thus (4.10) is valid for ~oE~(H), too. Now 
let ~o=(H+2) - l f~@(H) ,  then I ( H + 2 ) - ~ f I < ( - A + 2 )  -1 l/l- []  

Theorem 3. Suppose aeL~o~(IR") ~, div aeLZo~(lR m) and q~L]o~(IR'). Assume that q_ 
= rain(q, 0) is A-bounded with relative bound a < 1. 

Then ~ =- - (I 7 -  i a) 2 + q is essentially selfadjoint on C~ (IR ~) and semibounded 
from below. 

Proof Let 2 > 0  and f ~U( lR ' ) .  Let q+ =max(q,0) and let H o be the selfadjoint 
operator of Lemma 1 associated with ~o  = - ( V - i a ) 2 + q + .  In view of (4.8) we 
have 

I(Ho + 2 ) -~ f l  < ( - A  +2) -1 if]. 
Thus 

[q_(Ho + Z ) - l f l < l q _ l ( -  A+ Z) -1 If[ 
and therefore 

][q_(Ho+Z)-~f]] < [[q_(-A +2) -~ If[ I[- 

Since q_ is A-bounded with relative bound a <  1, there exist a < a * <  1, 2" > 0  
such that for each g~L2(IR ~) 

Hq_(-A +2*)gll <a* ][gll 

Let qo~C~(IR m) and define g=(Ho+2*)~o , then 

(4.11) [Iq_ ~oll <a* I[(go + 2*)q)]l =<a* []Ho qo]l + a ' Z *  II~oll. 

Since C~(IR") is a core of H o (Theorem 2), we conclude by Rellich-Kato [13, 
Theorem X.12] that J t ~ = - ( V - i a ) 2 + q  is essentially selfadjoint on C~(IR~), 

semibounded from below and in addition ~ l  C~ (IR m) = H o + q _. [] 
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Theorem 4. Suppose a~L~oo(lR") m, diva~L]oc(lR m) and assume q=ql  +qz with ql, 
q2sL~oc(lRm), q2<0. Let q2 be A-bounded with relative bound a< 1 and suppose ql 
satisfies ql(x)_>_-c ]xl 2 with a constant c >O. Then ~ r  + q is essen- 
tially seIfadjoint on C~ (lRm). 

To prove Theorem 4 we first derive an a-priori estimate of lID 0 f] in terms of 
II~ll and IIH.~o[I, where H n is the operator 

- -  c O  m (4.12) ~ ( H . ) -  C O ( lR)  

H , =  - D 2  +max(q~, - -  Cn2)- ']-  q2  

= - A + 2ia.  V + i d i v a +  a2 +max(q> - c n 2 ) + q >  

Lemma 10. Assume the conditions of Theorem 4 and let H,  be the operator defined 
in (4.12). Then there exists a constant d>0,  such that 

(4.13) IID~oflN<d" II~oll In 2 II~oll + IIH.~ol[] for all ~0~ C~(IRm). 

Proof of Lemma 10. Let V,=max(ql,  -cn2) ,  thus V,+cn2>O. Let @(S,)=~(V,) 
= ~ ( q 2 ) =  C~ IR m) and S ,=  - D 2 +  V,, so that H , = S , + q 2 .  Since q2 is A-bounded 
with relative bound a < 1 we know due to (4.11) for each ~0~ C~ (IR m) 

(4.14) IIq2 ~oll <a*  II(S.+ cn2)~ol[ +b  [l~oll 

with constants a*<  1, b=a* 2* independent of n. This yields 

IIS.q)ll < IIH.cPll + [IN2 q~l[ < IlH.q~ll +a* IIS.5o II +(b+a*cn 2) IlcPll 

and then 

(4.15) IIS.~o II-<-(1 - - a * )  - 1  [IIH. ~o [I +(b  +a*cn 2) I1~o [I] 

Since 
(S, cp, ~0)= lID (Pll2 +(g,~o, ~0)__> IIDq)ll2-cn 2 I[cPll 2 

we get 
IID~ol[2<cn 211~o112 + I1~oll [IS.q~[I 

combining last inequality with (4.15) we obtain 

b+a* cn z 
IlDq)l[2<cn211~~176176 l - a *  11'~ 

<(1 - a * )  - I  [(b+cn 2) 11~oll2 + II~oll IIH,~oll] 

which gives estimate (4.13). [] 

Proof of Theorem 4. Let 2E{+i,  - i }  and let @(H)= Cff(lRm), 

H =  - ( V - i a ) 2  +q = - A + 2ia .  V + id i va+a2  +q. 

Then we have to show, that R ( H + 2 )  is dense in L2(IRm). Suppose f ~ R ( H + 2 )  • 
that is (f, (H + 2) q)) = 0 for each ~oEC~(IRm). 

In view of Theorem 3 there exist (p~ C~(IR m) such that (remind (4.12)) 
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1 
(4.16) I](H,+ 2) q0,-fl[ ~ - .  

/1/ 

Now choose ~ e  C~ ~ (IR") satisfying 0 < ~b_< 1, 

1, Ixl_<_�89 
(4.17) ~(x)=  0, I x [ > l  

put ~ , = ~  (2]. Then for any (peC~(lR m) and 
\n/  

(4.18) ~ , H  (o = ~ , H ,  cp. 

We have 
[[fl[2 = lira (f~b,, (H, + 2) (p,) ((4.16), (4.17)) 

n ~ o o  

= lira (f, ~b.(H + 2) (p,) ((4.18)) 
n ~ o o  

= l im(f , (H+2)(<b,(p , )+2V~, .D(p,+(A~,)(p , )  ((3.14.)) 
n ~ c o  

= lim(f,2V~,.D(p,+(A~b,)(p,),  since f E R ( H + 2 ) ' .  
n ~ o o  

Due to (4.16) and Lemma 10, (4.13) we get the estimates 

<i < 1  
II(A ~.)~o,,ll = ~  IIA ~ll~o II~o.II = ~  IIA 4~ll~o([If II + 1) 

live..  D ~o.[I 2 _-<~ IIWll~. d II q,.l[ [n 2 I[q~.ll + IlH. ~o.l[] 

1 
_-< ~ IIWll~ d(l[f II + 1)2( 2 + n2) 

thus L/(A~.)%+2V~.'Dq~.II ~ c * <  oo. 

The last estimate yields 

IIfll2 ~ lim I I /z  II .c* =0, 

thus H is essentially selfadjoint on C~~ [] 

Appendix 

The purpose of this appendix is to give the proof (Theorem A) of the facts, 
concerning truncation method, being decisively used in Lemmas 2-6. We like to 
mention that the assumptions in Theorem A are not the weakest possible ones. 
For related results with the sharpest assumptions we refer the reader to [-9, 10] 
(see also [-2, 1.7.4]). We have chosen the assumptions in Theorem A such that 
simple proofs can be given. However, all relevant applications are included. 
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First we introduce some notations. By 2A)~(IR~;IR) we denote the space of 
uniformly Lipschitz continuous functions f :  IRk-~IR endowed with the norm 

I f ( x ) - f ( y ) l  
I f ]  = sup 

~,y~R~ [x-yl  
x=l=y 

Let 0 be an open subset of IRm and let ~( f2)  be the space of real measurable 
functions defined in O. Given a function f~S@(IRk; IR) we define a mapping TI: 
J~(f2)k~ J~(O) by 

Tyu = f  o u, u = (u~,..., uk)s~(f2) k. 

By WI"P(f2; 1R) we shall mean the set of realvalued functions in Wl,P(f2). 

TheoremA. Let k, mEN, l < p < c ~ ,  O c i R  m open and assume f~Sf@(IRk;IR) 
satisfies f (0 )=0 .  In addition we assume f~Cl( iRk\F),  where F is any closed 
countable subset of IR k . 

Then Ty maps WI'P(O; IR)k continuously into WI'P(O; IR). Moreover the chain 
rule 

0j(fo u) =(g o u) 3ju, u~ WI'P((2; IRk), 1 <=j <=m 

holds true for any Borel function g: IRk~IR k satisfying g = V f  on IRk\F. 

Proof We deride the proof in three steps. 

Step l. In Step l we assume F = ~ .  Let uEWI'P(O;IR) k, then there exists a 
sequence (u,) c WI,P(O; IR)k C~ C1(0) k such that u,--,u in WI'P(O) k. In addition we 
may assume 

u.~u, ~ju.~0ju, lu.l+l~ju.l__<w a.e. i n O  

with a suitable function 0 < w~LP(O). Since 

[ fou ,  l ~ [ f ]  lu, l=<[f]w 

18j(fo u,)l = l(Vf~ u,). ~ju,[ <=lVf[ o u, I 0ju,] ~ I f ]  w 

and f o u , - , f o u ,  Oi(foun)--,(Vfou).Oiu a.e. in O as n~oe ,  we conclude by 
Lebesgue's dominated convergence theorem that fo  u,---,fo u in WI'P(f2) and thus 
3j(fo u) = (Vfo u). ~ju. 

Step 2. In Step 2 we show 3 j u = 0  on u - I (N)  for l ~ j < m ,  when N is any closed 
countable subset of IR k . 

k 

Since u - l ( N ) =  ~u~-l(pr~N), we may assume k = l .  Furthermore (by in- 

tersecting with compact intervalls) we may assume N to be compact. Choose 
~p,~C~ satisfying q~,= 1 on N, 0=<q~,< 1 and ~o,-~ZN pointwise as n---,~. Set 

t 

@,(t) = ~o,, then @,-~0 pointwise and (using Step 1) 
0 

f~,~ Iu(O.ou)l=l(q~.ou)Vul<=lVul. 
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Thus, by Lebesgue's dominated convergence theorem ~bno u--+0 in Wl'P(f2) and 
0 = V0=(XN o u) Vu, which means Vu =0  a.e. on u-l(N).  

Step 3. Finally, in Step 3 we complete the proof of Theorem A. Consider the 
function f~=d~f-(d~f)(0), where d e is the Friedrichs mollifier, then f ~  Ca(IR k) 
:~ ~i/~ (IRk; IR) satisfies 

[f~] < I f ] ,  f~(0) = 0 

Vf~(x)=J~(Vf)(x), xelRk\F,, ~ < dist(x, F). 

Moreover fd-+f pointwise on IRk and Vf~--+Vf pointwise on IRk\E By Step 1 we 
know f~ o usWl'v(f2) and 

]f~o uI< I f ]  lu[ 

Ic~j(f~ o u)l = I(Vf~ o u). c~jal <lVf~l o u I c~jul __< I f ]  I ~jal. 

As g = V f  on lRk\F and since 0 j u = 0  a.e. on u - l (F )  by Step2, we have 
f~o u--+fo u as well as 

c~j(f~ou)=(Vf~ou)c~u--,(gou).c?~o a.e. in f2 as ~--+0. 

Thus by Lebesgue's dominated convergence theorem we get f ~ o u ~ f o u  in 
WI'P(f2) and <?j(fou)=(gou)0ju for any 1 <_j<m. To show the continuity of T:, 
we consider a sequence (u , )cWl"(~2; lR~ such that un~u in WI'P(f2) k. By 
looking at a suitable subsequence (denoted hereafter again by (u,)) we may 
assume in addition u~--+u, 0ju,--+0ju, lu~l+10ju~l<w a.e. in f2 with suitable 
wsLV(f2). Now we have 

fou~-*fou, I f o u . l < [ / ]  lu~l<[ / ]w a.e. in f2 

and similarly (looking at ~2\u-I(F) resp. u-I(F)) 

c~(fo u.) = (g o u,). 0 i u ,~ (g  o u)- c~j u = 0j(fo u) 

13j(fou~)l=l(gou,)-0ju~l<[f]  13ju, l < l - f ] w  a.e. in f2 

where g: IRk~IR ~ satisfies g = V f  on IRk\F and g=0  on E Thus we conclude by 
Lebesgue's dominated convergence theorem, that Tsu,--,T~u in W~'P(~2). [] 

Let us now give two applications of Theorem A, often used in this note. 

Corollary 1. Let uzWllogt(O). Then lul~W~o~(~2; ~.) and 

0~ lu[= Re ([uu~-i 0ju ) (1 < j<m) .  

Proof Considering a bounded open subset ~' with f2'cg2 we may assume 
u~Wl'l(f2). Clearly u l = R e u  and u 2 = I m u  belong to WI'I(Y2;IR). Thus, con- 
sidering the function f ~ @ ( I R 2 ;  IR)c~ CI(IR\{0}), given by f (x )= lx[ ,  we con- 
clude by Theorem A, that 

[ul = f o  (ul, u 2 ) f f N  1, I (~:~) 
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and 

b/1 (~jU 1 -~-U 2 ~jU 2 
0ilut= ]u] , u , 0  

0, u = 0  

since Re(ff~ju)=u 10ju 1 + u  2 ~ju2, we have shown Corollary 1. [] 

Corollary 2. Let u e W 1, p (O; IR). Then u + = max (u, 0) resp. u _ = min (u, 0) belong to 
WI'P(O; IR) and 

{Vu,  u>O {0, u > 0  
g u + = resp. V u = - 

0, u < 0  - Vu, u < 0 .  

Proof. Consider the functions f+, f e~i/~(lR;lR)r CI(IR\{0}) given by f+(x) 
=max(x,0), f_ (x )=min(x ,O) .  In view of Theorem A we have u(_+) 
=f(+) o u~WI,P(~2) and 

. , 0  
v(f~+-)~ O, u=O. [] 
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