Math Z 176, 1 - 19 (1981) **Mathematische Zeitschrift** 9 Springer-Verlag 1981

Schrödinger Operators with Singular Magnetic Vector Potentials

Herbert Leinfelder and Christian G. Simader

Universität Bayreuth, Fakultät für Mathematik und Physik, Postfach 3008, D-8580 Bayreuth, Federal Republic of Germany

Dedicated to our teacher Ernst Wienholtz on his 50th birthday

1. Introduction

In the present paper we consider formal Schrödinger operators

$$
\mathscr{H} = -(\mathbf{V} - i\mathbf{a})^2 + q
$$

with real-valued a_i and q , and various selfadjoint realizations of \mathcal{H} in $L^2(\mathbb{R}^m)$. We are mainly concerned with the proof of two facts.

First, if we assume

(C.1)
$$
\mathbf{a} = (a_1, ..., a_m) \in L^2_{loc}(\mathbb{R}^m)^m, \quad 0 \leq q \in L^1_{loc}(\mathbb{R}^m),
$$

we give a new proof (Theorem 1) of the fact, that $C_0^{\infty}(\mathbb{R}^m)$ is a core of the maximal form associated with \mathcal{H} .

Second, if in addition

(C.2)
$$
\mathbf{a} = (a_1, ..., a_m) \in L^4_{loc}(\mathbb{R}^m)^m
$$
, div $\mathbf{a} \in L^2_{loc}(\mathbb{R}^m)$, $0 \leq q \in L^2_{loc}(\mathbb{R}^m)$

is required, then we prove (Theorem 2) the essential selfadjointness of \mathcal{H} on $C_0^{\infty}(\mathbb{R}^m)$. Observe that Condition (C.2) is minimal (with respect to a) to assure that *H* defines an operator from $C_0^{\infty}(\mathbb{R}^m)$ to $L^2(\mathbb{R}^m)$.

In a recent paper Kato [5] proved that the minimal operator associated with the form corresponding to $\mathcal H$ and a certain intermediate operator coincide. If in addition $a \in L_{loc}^p(\mathbb{R}^m)^m$ for some $p>m$, then the minimal and the maximal operator coincide, too $(5, p. 106,$ Theorem III]). By using a comparison theorem for semigroups, based on a generalization of Kato's inequality, Simon [19] was able to prove last statement assuming only (C.1). In our proof of Theorem 1 we use cut-off arguments (as in [16]) to show that $\mathcal{Q}(\mathbb{A}) \cap L^{\infty}(\mathbb{R}^m)$ is a form core of the maximal form ℓ corresponding to \mathcal{H} . Again with truncation methods we prove an L^{∞} -a-priori estimate (Lemma 4) as well as a comparison theorem (Lemma 6; an alternative proof is given in Lemma 10).

Concerning the essential selfadjointness of $\mathscr{H} \mid C_0^{\infty}(\mathbb{R}^m)$ the vector potential a was assumed to be C^1 uptil recently (compare [3, 16, 20]). To our knowledge Jörgens $[4]$ was the first who considered potentials **a** satisfying certain Stummeltype conditions. More sophisticated conditions of this type had been studied extensively by Schechter [14, 15].

Further results concerning singular vector potentials a are due to Simon [18, 19]; he assumes (C.2) for $m \leq 4$, but in addition for $m > 4$ he has to require either

 $\mathbf{a} \in L_{loc}^p(\mathbb{R}^m)^m$ with $p>m$ or $\mathbf{a} \in L_{loc}^p(\mathbb{R}^m)^m$, div $\mathbf{a} + q \in L_{loc}^{p/2}(\mathbb{R}^m)$ with $p = \frac{6m}{m+2}$ (see also [12]).

This dependance on dimension comes in by the use of certain Sobolev inequalities and elliptic regularity theory, not allowing to show the essential selfadjointness of \mathcal{H} on $C_0^{\infty}(\mathbb{R}^m)$ under condition (C.2). But it was Simon [19, Conjecture, p. 38] who suggested that condition (C.2) is sufficient (and of course necessary) for the essential selfadjointness of \mathscr{H} $\mathcal{C}_0^{\infty}(\mathbb{R}^m)$. Our proof of Simon's conjecture avoids those methods mentioned above and is mainly based on the observation of $u \in W^2 \cap L^\infty$ implies $\overline{V}u \in (L^4)^m$ (Lemma 7), which turned out to be a special case of a more general Gagliardo-Nirenberg inequality [1, 11]. Exactly this observation enables us to show $(H+1)^{-1}(L^2 \cap L^{\infty}) \subset W_{loc}^2$ (Lemma 9). Finally we prove the essential selfadjointness of \mathcal{H} on $C^{\infty}_0(\mathbb{R}^m)$ if (C.2) holds with respect to **a** and if $q=q_1+q_2, q_1, q_2 \in L^2_{loc}(\mathbb{R}^m)$, $q_1(x) \geq -c |x|^2$ and $0 \geq q_2$ is Δ -bounded with relative bound smaller than one. In the proof we follow the ideas of [8, 16].

Since truncation methods (with respect to the range of a function) seem to be non-standard in studying selfadjointness problems, we sketch those proofs in the appendix. Finally we like to mention, that Kato's famous distributional inequality is a special case of a more general distributional inequality which may be derived by using the chain rule (compare [17]).

2. Preliminaries

Let \mathbb{R}^m be the *m*-dimensional Euclidean space, represent points of \mathbb{R}^m by x $=(x_1, ..., x_m)$ and let $|x| = \left(\frac{1}{2}\right)x_i^2$. For $1 \leq p \leq \infty$ let $L^p(\mathbb{R}^m)$ stand for the space jof (equivalence classes of) complex-valued functions u which are measurable and satisfy $\int |u|^p < \infty$ if $p < \infty$ and $\|u\|_{\infty} = \text{ess sup } |u| < \infty$ if $p = \infty$. In case $p = 2$, $L^2(\mathbb{R}^m)$ is a complex Hilbert space with scalar product $(u, v) = \int \overline{u}v$ and corresponding norm $||u|| = (u, u)^{\frac{1}{2}}$.

Similarily $L^2(\mathbb{R}^m)^m$, the *m*-fold cartesian product of $L^2(\mathbb{R}^m)$, is equipped with the scalar product $(\mathbf{u}, \mathbf{v}) = \sum_{i} (u_i, v_i)$ and the norm $\|\mathbf{u}\| = (\mathbf{u}, \mathbf{u})^*$. Let Ω be a $j=1$ measurable subset of \mathbb{R}^m and let $L^4(\Omega)^m$ be equipped with the norm $\|\mathbf{u}\|_{L^4(\Omega)}$ $=(\int_{\Omega} |{\bf u}|^4)^{\frac{1}{4}}$. For $A \subset \mathbb{R}^m$ let us denote by χ_A the characteristic function of the set \mathcal{A} .

The space of infinitely differentiable complex-valued functions with compact support will be denoted by $C_0^{\infty}(\mathbb{R}^m)$ or $\mathscr{D}(\mathbb{R}^m)$. $\mathscr{D}'(\mathbb{R}^m)$ is the space of distributions on \mathbb{R}^m . For $1 \leq j \leq m$ let $\partial_j = \partial/\partial x_j$ be the *j*-th partial derivative, each acting on $\mathscr{D}'(\mathbb{R}^m)$. For $n \in \mathbb{N}$, $1 \leq p < \infty$, $\Omega \subset \mathbb{R}^m$ open, the Sobolev space $W^{n, p}(\Omega)$ is defined as the space of those $u \in L^p(\Omega)$, for which all partial derivatives up to order *n* are in $L^p(\Omega)$. $W^{n,p}(\Omega)$ is a Banach space with the norm $||u||_{n,p}$ $= (\sum_{|\alpha| \leq n} |V^{\alpha} u|^p)^{1/p}$, where $\alpha \in \mathbb{N}_0^m$, $|\alpha| = \sum_{j=1}^n \alpha_j$, $V = (\hat{c}_1, \dots, \hat{c}_m)$ and $V^{\alpha} = \prod_{j=1}^n \hat{c}_j^{\alpha_j}$. If p = 2, we always omit the index p, so e.g. $W^{n,2}(\Omega) = W^{n}(\Omega)$, $||u||_{n,2} = ||u||_{n}$.

We call a linear subspace $F\subset \mathscr{D}'(\mathbb{R}^m)$ semi-local, if $\varphi u \in F$ for all $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, $u \in F$ and define F_{loc} as the space of those $u \in \mathscr{D}'(\mathbb{R}^m)$ such that $\varphi u \in F$ when $\varphi \in C_0^{\infty}(\mathbb{R}^m)$. If in addition F is normed, then $u_n \to u$ in F_{loc} means $\varphi u_n \to \varphi u$ in F when $\varphi \in C_0^{\infty}(\mathbb{R}^m)$. Let $\Delta = \sum \partial_i^2$ be the Laplacian, acting on $\mathscr{D}'(\mathbb{R}^m)$, and let $\mathbf{D}u$ $=Vu-i\mathbf{a}\,u\in\mathscr{D}'(\mathbb{R}^m)^m$, div $\mathbf{b}=\sum_{i} \partial_i b_i \in \mathscr{D}'(\mathbb{R}^m)$ with $i=\sqrt{-1}$, $\mathbf{a}\in L^2_{loc}(\mathbb{R}^m)^m$, $j=1$ $\mathbf{b} \in L^1_{\text{loc}}(\mathbb{R}^m)^m$ and $u \in L^2_{\text{loc}}(\mathbb{R}^m)$.

Concerning notations and results in the theory of linear operators in Hilbert space we refer to $\lceil 6 \rceil$.

3. Uniqueness of Schriidinger Forms

Throughout this section we assume Condition (C.1), that is

$$
\mathbf{a} \in L^2_{loc}(\mathbb{R}^m)^m, \qquad 0 \leq q \in L^1_{loc}(\mathbb{R}^m).
$$

We consider the maximal form

(3.1)
$$
\mathscr{Q}(\mathscr{A}) = \{u \in L^2(\mathbb{R}^m) | \mathbf{D}u \in L^2(\mathbb{R}^m)^m, q^{\frac{1}{2}}u \in L^2(\mathbb{R}^m)\}\
$$

(3.2) $h(u, v) = (\mathbf{D}u, \mathbf{D}v) + (a^{\frac{1}{2}}u, a^{\frac{1}{2}}v)$

$$
= \sum_{j=1}^{m} (\partial_j u - ia_j u, \partial_j v - ia_j v) + (q^{\frac{1}{2}} u, q^{\frac{1}{2}} v)
$$

associated to the formal Schrödinger operator

(3.3)
$$
\mathcal{H} = -\mathbf{D}^2 + q = -(\mathbf{F} - i\mathbf{a})^2 + q = -\sum_{j=1}^{m} (\partial_j - i a_j)^2 + q.
$$

Clearly $C_0^{\infty}(\mathbb{R}^m) \subset \mathcal{Q}(\mathcal{A})$, but since [5, 19] it is also known, that $C_0^{\infty}(\mathbb{R}^m)$ is dense with respect to $||u|| = \lceil \mathcal{A}(u, u) + (u, u)\rceil^{\frac{1}{2}}$.

This means, that the minimal form ℓ_{\min} , defined as the form closure of $\mathcal{L} \mid C_0^{\infty}(\mathbb{R}^m) \times C_0^{\infty}(\mathbb{R}^m)$, is the same as the maximal form \mathcal{L} .

Here we like to give a new proof of this fact using only well known truncation methods in $W^1(\mathbb{R}^m)$ ([2], see also the appendix). In Lemma 1 let us first summarize some simple facts about ℓ .

Lemma 1. $\hat{\kappa}$ is a symmetric closed form; hence there exists a unique selfadjoint *operator H satisfying*

(3.4)
$$
\mathscr{D}(H) = \{u \in \mathscr{Q}(\mathscr{R}) \mid \mathscr{R}(u, \cdot) \in L^2(\mathbb{R}^m)'\}
$$

(3.5) $(Hu, v) = \mathcal{A}(u, v)$ for $u \in \mathcal{D}(H)$, $v \in \mathcal{Q}(\mathcal{A})$.

Proof. Suppose $(u_n) \subset \mathcal{Q}(\mathcal{E})$ and $||u_n - u_n|| \to 0$ as $n, l \to \infty$. Then there exist $u, v \in L^2(\mathbb{R}^m)$, $w \in L^2(\mathbb{R}^m)^m$ satisfying

$$
u_n \to u
$$
, $q^{\frac{1}{2}} u_n \to v$, $D_i u_n \to w_i$ in $L^2(\mathbb{R}^m)$ $(1 \leq j \leq m)$.

Clearly $v=q^{\frac{1}{2}}u$ and since $D_i u_n \to D_i u$ in $\mathscr{D}'(\mathbb{R}^m)$, we have $D u = w$, hence $u \in \mathscr{Q}(\mathscr{R})$ and $||u_n-u|| \to 0$ as $n\to\infty$. Thus k is a closed form, which is obviously symmetric. Applying the first representation theorem for symmetric forms [6; VI, Theorem 2.6], Lemma 1 is shown. \square

Lemma 2. $\mathcal{Q}(\mathbb{A}) \cap L^{\infty}(\mathbb{R}^m)$ *is dense in* $\mathcal{Q}(\mathbb{A})$ with respect to $\|\cdot\|$.

Proof. Take $u \in \mathcal{Q}(\mathscr{E})$, then due to $au \in L^1_{loc}(\mathbb{R}^m)^m$, $Du \in L^2(\mathbb{R}^m)^m$, we have $u \in W^{1,1}_{loc}(\mathbb{R}^m)$, hence [7, 13] (see also appendix, Corollary 1)

(3.6)
$$
\partial_j |u| = \text{Re} \left(\frac{\bar{u}}{|u|} D_j u \right) \text{ in } \mathscr{D}'(\mathbb{R}^m) \quad (1 \leq j \leq m).
$$

This implies $|V|u|| \leq |Du|$ a.e. in \mathbb{R}^m , so $|u| \in W^1(\mathbb{R}^m)$. For an integer *n* consider now the Lipschitz-continuous function

$$
\varphi_n(t) = \begin{cases} 1, & t \le n \\ n, & t > n \end{cases}
$$

Clearly

$$
\varphi'_n(t) = 0 \quad \text{if} \quad t < n, \qquad 0 \le \varphi_n \le 1
$$
\n
$$
|t \varphi_n(t)| \le n, \qquad |t \varphi'_n(t)| \le 1.
$$

Since $|u| \in W^1(\mathbb{R}^m)$, we have ([2; Theorem 7.8], see appendix) $\varphi_n(|u|) \in W^1(\mathbb{R}^m)$ and $V[\varphi_n(|u|)] = \varphi'_n(|u|) V |u|$ a.e. in \mathbb{R}^m .

Define $u_n = u \varphi_n(|u|)$, then $u_n \in L^2(\mathbb{R}^m) \cap L^{\infty}(\mathbb{R}^m)$ and

$$
\mathcal{F}u_n = \mathcal{F}u \varphi_n(|u|) + u \varphi'_n(|u|) \mathcal{F}|u| \quad \text{in } \mathscr{D}'(\mathbb{R}^m)^m,
$$

hence $\mathbf{D} u_n = \mathbf{D} u \varphi_n(|u|) + u \varphi'_n(|u|) \nabla |u|$ in $\mathscr{D}'(\mathbb{R}^m)^m$.

Now we have pointwise a.e. in \mathbb{R}^m

$$
|\mathbf{D}u_n - \mathbf{D}u| \leq \chi_{\{|u| \geq n\}}(|\mathbf{D}u| + |V|u||)
$$

\n
$$
|q^{\frac{1}{2}}u_n - q^{\frac{1}{2}}u| \leq \chi_{\{|u| \geq n\}}|q^{\frac{1}{2}}u|
$$

\n
$$
|u_n - u| \leq \chi_{\{|u| \geq n\}}|u|.
$$

Since $u \in \mathcal{Q}(\mathbb{A}), \ \ V \mid u \mid \in L^2(\mathbb{R}^m)^m$, we conclude $u_n \in \mathcal{Q}(\mathbb{A})$ and $||u_n - u|| \to 0$ as $n \rightarrow \infty$. \Box

Whereas Lemma 2 covers the main work of our proof of " $\mathcal{Q}(\mathscr{R})$ is a core of ℓ ["] we follow now well known arguments in [5, 19]. We repeat these arguments (Lemma 3, Theorem 1) in order to keep our paper self-contained.

Lemma 3. $\mathcal{Q}(\mathbb{A})$ is semi-local, that is $\varphi u \in \mathcal{Q}(\mathbb{A})$ when $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, $u \in \mathcal{Q}(\mathbb{A})$. The *linear subspace* $\mathscr{C}_0 = {\varphi u \mid \varphi \in C_0^\infty(\mathbb{R}^m)}$, $u \in \mathscr{Q}(\mathbb{A}) \cap L^\infty}$ *of* $\mathscr{Q}(\mathbb{A})$ *is dense in* $\mathscr{Q}(\mathbb{A})$ *with respect to* $\|\cdot\|$.

Proof. Let $\varphi \in C_0^{\infty}(\mathbb{R}^m)$ and $u \in \mathcal{Q}(\mathbb{A})$, then $u \in W_{loc}^{1,1}(\mathbb{R}^m)$ and so $\varphi u \in W^{1,1}(\mathbb{R}^m)$. Now we have in the distributional sense

(3.7)
$$
\mathbf{D}(\varphi u) = \mathbf{D}u \varphi + u \nabla \varphi \in L^{2}(\mathbb{R}^{m})^{m}.
$$

This together with $||q^{\pm}u\varphi|| \leq ||q^{\pm}u|| \cdot ||\varphi||_{\infty}$ implies $\varphi u \in \mathcal{Q}(\mathscr{R})$.

In addition let us now suppose $u \in L^{\infty}(\mathbb{R}^m)$, $\varphi = 1$ in a neighbourhood of the origin and put $\varphi_n = \varphi\left(\frac{1}{n}\right)$. Then $q^{\frac{1}{2}}\varphi_n u \to q^{\frac{1}{2}}u$ and (due to (3.7)) $\mathbf{D}(\varphi_n u) \to \mathbf{D}u$ in L^2 , hence $\|\varphi_n u-u\| \to 0$ as $n\to\infty$. In view of Lemma 2 this shows that \mathscr{C}_0 is dense in $\mathscr{Q}(\mathscr{R})$. \square

Theorem 1. $C_0^{\infty}(\mathbb{R}^m)$ *is dense in* $\mathcal{Q}(\hat{\mathbb{A}})$ *with respect to* $\|\cdot\|$ *, i.e.* $C_0^{\infty}(\mathbb{R}^m)$ *is a form core of H.*

Proof. In view of Lemma 3, \mathcal{C}_0 is dense in $\mathcal{Q}(\hat{\beta})$. Take $u \in \mathcal{C}_0$, then $u \in W^1(\mathbb{R}^m)$, since $\mathbf{a} \in L^2_{loc}(\mathbb{R}^m)^m$, $u \in L^{\infty}(\mathbb{R}^m)$ and suppu compact. Let $u_{\varepsilon} = J_{\varepsilon} u$, where J_{ε} is the Friedrichs mollifier, so that $u_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^m)$ with a common support, $||u_{\varepsilon}||_{\infty} \le ||u||_{\infty}$ and $u_{\varepsilon} \to u$ in $W^1(\mathbb{R}^m)$ as $\varepsilon \to 0$. We have also $u_{\varepsilon} \to u$ a.e. pointwise along some subsequence $\varepsilon = \varepsilon_n \rightarrow 0$. Thus

$$
\mathbf{D} u_{\varepsilon} = \nabla u_{\varepsilon} - i \mathbf{a} u_{\varepsilon} \rightarrow \nabla u - i \mathbf{a} u = \mathbf{D} u \quad \text{in } L^2(\mathbb{R}^m)^m
$$

and $q^{\frac{1}{2}}u_{\varepsilon} \rightarrow q^{\frac{1}{2}}u$ in $L^2(\mathbb{R}^m)$ along the sequence. Hence $C_0^{\infty}(\mathbb{R}^m)$ is dense in \mathscr{C}_0 with respect to $\|\cdot\|$. \Box

Lemma 4. For each $\lambda > 0$ the equation $(H + \lambda)u = f \in L^{\infty}(\mathbb{R}^m)$ implies $u \in L^{\infty}(\mathbb{R}^m)$ and

1 (3.8) Ilull 0o <~ Ilflloo-

Proof. For $r > \frac{1}{2} ||f||_{\infty}$ fixed, let us consider the Lipschitz-continuous function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$

$$
\varphi(t) = \begin{cases} 0, & t \le r \\ \frac{t - r}{t}, & t > r. \end{cases}
$$

Clearly

(3.9)
$$
0 \leq \varphi \leq 1, \quad |t \varphi'(t)| \leq 1 \quad \text{and} \quad \varphi'(t) = 0 \quad \text{if} \quad t < r.
$$

Since $|u| \in W^1(\mathbb{R}^m)$ (see (3.6)), we have ([2, Theorem 7.8], see appendix).

$$
\varphi(|u|) \in W^{1}(\mathbb{R}^{m}), \qquad \mathcal{V}\varphi(|u|) = \varphi'(|u|) \mathcal{V}|u|
$$

and so

(3.10) D[u~o(lu[)~ =Du q0(lul)+u ~o'(lul) V [u[in ~'(lRm) m.

In view of (3.9), (3.10), $u\varphi(|u|) \in \mathcal{Q}(\mathbb{A})$ follows. Now

$$
\mathcal{N}(u, u \varphi(|u|)) + (u, u \varphi(|u|)) = ((H + \lambda) u, u \varphi(|u|)) = (f, u \varphi(|u|))
$$

is valid, which gives

$$
\int |\mathbf{D} u|^2 \varphi(|u|) + \sum_{j=1}^m \int \overline{D_j u} \, u \, \varphi'(|u|) \, \partial_j |u| + \int (q + \lambda) \, |u|^2 \, \varphi(|u|) = \int \overline{f} u \, \varphi(|u|).
$$

Taking the real part of both sides of this equation and using (see (3.6)) $|u|\partial_j|u|$ $=$ Re(D_i u u) we obtain the equation

$$
\int |\mathbf{D} u|^2 \, \varphi(|u|) + \int |\mathbf{F} |u||^2 \, \varphi'(|u|) \, |u| + \int (q + \lambda) \, |u|^2 \, \varphi(|u|) = \text{Re} \int \bar{f} u \, \varphi(|u|).
$$

Since $\varphi \geq 0$, $\varphi' \geq 0$, $q \geq 0$ we have

(3.11)
$$
\lambda \int |u|^2 \varphi(|u|) \leq \text{Re} \int \bar{f} u \varphi(|u|).
$$

Now observe that $\{|u| > r\}$ has finite measure. Thus (3.11) yields

$$
\lambda \int_{\{|u|>r\}} |u|^2 \varphi(|u|) \leq \int_{\{|u|>r\}} \|f\|_{\infty} \cdot |u| \varphi(|u|),
$$

hence

$$
\int_{\{|u|>r\}}|u|\,\varphi(|u|)\cdot(|u|-\frac{1}{\lambda}\|f\|_{\infty})\leqq 0.
$$

Since $r > \frac{1}{x} ||f||_{\infty}$ and $\varphi(t) > 0$ if $t > r$ we conclude $|u| = 0$ a.e. on $\{|u| > r\}$. This means $|u| \leq r$ a.e. in \mathbb{R}^m .

Thus we get $||u||_{\infty} \leq \frac{1}{\lambda} ||f||_{\infty}$, since $r > \frac{1}{\lambda} ||f||_{\infty}$ was arbitrary. \square

For any $u \in \mathcal{Q}(\mathcal{A})$ we define $\hat{H}u \in \mathcal{D}'(\mathbb{R}^m)$ by (remind (C.1))

(3.12)
$$
\hat{H}u = -\Delta u + i \operatorname{div}(\mathbf{a}u) + i\mathbf{a} \cdot \mathbf{D}u + qu
$$

$$
= -\Delta u + 2i \cdot \operatorname{div}(\mathbf{a}u) + (-i \cdot \operatorname{div} \mathbf{a} + \mathbf{a}^2 + q)u
$$

(last equation being valid if (C.2) is satisfied)

and use the notations $H=H(a, q)$ resp. $H_n=H(a_n, q_n)$ (to be understood in the sense of $(3.4-5)$) in order to indicate the dependence on the potentials **a**, q resp. a_n, q_n .

The next lemma summarizes more or less well known facts [5, 19].

Lemma 5. Let $H=H(a,q)$ resp. $H_n=H(a_n, q_n)$ be the selfadjoint operators in *Lemma 1. Then*

$$
(3.13) \quad \mathscr{D}(H) = \{u \in \mathscr{Q}(\mathbb{A}) \mid \widehat{H}u \in L^2(\mathbb{R}^m)\} \text{ and } Hu = \widehat{H}u \text{ if } u \in \mathscr{D}(H),
$$

- (3.14) $\varphi u \in \mathcal{D}(H)$ for $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, $u \in \mathcal{D}(H)$ and $H(\varphi u) = \varphi Hu - 2\nabla\varphi \cdot \mathbf{D}u - (\varphi)u,$
- (3.15) $(Hu, u) = ||Du||^2 + ||q^{\frac{1}{2}}u||^2$ *if* $u \in \mathcal{D}(H)$,
- (3.16) $\mathscr{C} = {\varphi u \mid \varphi \in C_0^{\infty}(\mathbb{R}^m), u \in (H + 1)^{-1}(L^2 \cap L^{\infty}) }$ is an operator core of H,
- (3.17) If $\mathbf{a}_n \to \mathbf{a}$ in $L^2_{loc}(\mathbb{R}^m)^m$, $q_n \to q$ in $L^1_{loc}(\mathbb{R}^m)$, then $H_n \to H$ in the strong *resolvent sense.*

Proof. (3.13): In view of Theorem 1 and Lemma 1 we have

$$
\mathscr{D}(H) = \{u \in \mathscr{Q}(\mathscr{R}) \mid f \in L^2(\mathbb{R}^m): \mathscr{R}(u, \varphi) = (f, \varphi) \text{ if } \varphi \in C_0^{\infty}(\mathbb{R}^m)\}.
$$

But $\mathcal{M}(u, \varphi) = (\hat{H}u, \varphi)$ when $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, hence the result.

(3.14): If $\varphi \in C_0^{\infty}(\mathbb{R}^m)$ and $u \in \mathscr{D}(H)$, then $\hat{H}(\varphi u) = \varphi \hat{H}u - 2\overline{V}\varphi \cdot \mathbf{D}u - (\Delta \varphi)u$. Since $\varphi u \in \mathcal{Q}(\mathbb{A})$ by Lemma 3 and $\hat{H}u = H u \in L^2(\mathbb{R}^m)$, we get $\hat{H}(\varphi u) \in L^2(\mathbb{R}^m)$. Thus $\varphi u \in \mathcal{D}(H)$ and $\hat{H}(\varphi u) = H(\varphi u)$.

(3.15): This is clear, since $(Hu, u) = \mathcal{A}(u, u)$ if $u \in \mathcal{D}(H)$.

(3.16): In view of (3.15) and Lemma 1 $(H+1)^{-1}$ exists on $L^2(\mathbb{R}^m)$ and is bounded. Since $L^2 \cap L^{\infty}$ is dense in $L^2(\mathbb{R}^m)$, $(H+1)^{-1}(L^2 \cap L^{\infty})$ is an operator core of H. Now let $u \in (H+1)^{-1}(L^2 \cap L^{\infty})$, $\varphi \in C_0^{\infty}(\mathbb{R}^m)$ such that $\varphi = 1$ in a neighbourhood of the origin and put $\varphi_n = \varphi \left(\frac{1}{n} \right)$. Thus $\varphi_n u \in \mathcal{D}(H)$, $\varphi_n u \to u$ in $L^2(\mathbb{R}^m)$ and due to (3.14)

$$
H(\varphi_n u) = \varphi_n Hu - 2\mathbb{F}\varphi_n \cdot \mathbf{D}u - (\varphi_n)u \to Hu \quad \text{in } L^2(\mathbb{R}^m).
$$

Therefore $\mathscr C$ is an operator core of H.

 (3.17) : Though (3.17) is shown in [19, Theorem 4.1], we like to prove it here since our proof does not need [19, Lemma 2.5]. Of course, our arguments are closely related to those in [19].

Let
$$
f \in L^2(\mathbb{R}^m)
$$
 and let $u_n = (H_n + i)^{-1}f$. Then $||u_n|| \le ||f||$ and

$$
||\mathbf{D}_n u_n||^2 + ||q_n^{\frac{1}{2}} u_n||^2 = \text{Re}(f, u_n) \le ||f||^2.
$$

Thus (u_n) contains a subsequence (hereafter denoted again by (u_n)) such that with suitable $u, v \in L^2(\mathbb{R}^m)$, $w \in L^2(\mathbb{R}^m)^m$

$$
u_n \to u
$$
, $q_n^{\frac{1}{2}} u_n \to v$, $\mathbf{D}_n u_n \to \mathbf{w}$ weakly in L^2 .

Since $q_n^{\frac{1}{2}} u_n \rightarrow q^{\frac{1}{2}} u$, $\mathbf{D}_n u_n \rightarrow \mathbf{D} u$ in \mathcal{D}' , we see that $v=q^{\frac{1}{2}} u$, $\mathbf{D} u = \mathbf{w}$ and conclude $u \in \mathcal{Q}(\mathscr{E})$. By definition of u_n and since $\mathbf{D}_n \varphi = V\varphi - i \mathbf{a}_n \varphi \to \mathbf{D} \varphi$, $q_n^{\frac{1}{2}} \varphi \to q^{\frac{1}{2}} \varphi$ strongly in L^2 when $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, we get from (3.2)

$$
\mathscr{h}(u,\,\varphi)=\lim_{n\to\infty}\,\mathscr{h}_n(u_n,\,\varphi)=(f-iu,\,\varphi).
$$

In view of Theorem 1 and (3.4) it follows $u \in \mathcal{D}(H)$ and $(H+i)u=f$, thus $u=$ $(H+i)^{-1}$ *f*. Since we could have started with an arbitrary subsequence of (u_*) the arguments above show, that $(H_n+i)^{-1} \rightarrow (H+i)^{-1}$ weakly.

Similarly $(H_n-i)^{-1} \rightarrow (H-i)^{-1}$ weakly, so by the resolvent formula

$$
||(Hn+i)-1f||2 = \frac{1}{2}i(f, (Hn+i)-1f - (Hn-i)-1f) \rightarrow ||(H+i)-1f||2
$$

and thus the resolvent converges strongly. \Box

Next we provide a new proof for $|(H+\lambda)f| \leq (-\Delta+\lambda)^{-1}|f|$ using again truncation methods. An alternative proof is given in Lemma 10.

Lemma 6. Let $\lambda > 0$, $f \in L^2(\mathbb{R}^m)$ and assume (C.1). Then

$$
|(H+\lambda)^{-1}f| \leq (-\Delta+\lambda)^{-1}|f|.
$$

Proof. Of course, using an approximation argument, we may assume $f \in L^2 \cap L^{\infty}$. Let $u=(H+\lambda)^{-1}f$, then due to Lemma 4 we have $u\in L^{\infty}(\mathbb{R}^m)$ and thus

 $u \in W^1_{loc}(\mathbb{R}^m)$. For any $\varepsilon > 0$ let $w = w_{\varepsilon} = \frac{u}{v_{\varepsilon} + u_{\varepsilon} + u_{\varepsilon}}$, then $w \in W^1_{loc}(\mathbb{R}^m)$ and $|w| \le 1$ a.e. in \mathbb{R}^m . Let $0 \leq \varphi \in C_0(\mathbb{R}^m)$, then

(3.18)
$$
\mathbf{D}(w \varphi) = \frac{\mathbf{D}u - wV |u|}{\varepsilon + |u|} \varphi + wV \varphi \in L^2(\mathbb{R}^m).
$$

In view of $q^{\frac{1}{2}}(w\varphi) \in L^2(\mathbb{R}^m)$ and Lemma 3 we have $w\varphi \in \mathcal{Q}(\mathbb{A})$. By definition of u

 $\hat{\mathcal{U}}(u, w \varphi) + \lambda(u, w \varphi) = (f, w \varphi).$

This and (3.18) means (taking real parts)

(3.18')
$$
\int \text{Re}(\overline{\mathbf{D}u} \cdot \mathbf{D}(w \varphi)) + \int (q + \lambda) |u| |w| \varphi = \int \text{Re}(f w) \varphi.
$$

Since $\text{Re}(\bar{u}D_iu) = |u|\partial_i|u|, |V|u| \leq |\mathbf{D}u|$ a.e. in \mathbb{R}^m we conclude

$$
\operatorname{Re}(\overline{\mathbf{D}u} \cdot \mathbf{D}(w\varphi)) = \frac{|\mathbf{D}u|^2 - |w||\mathbf{F}|u||^2}{\varepsilon + |u|} \varphi + |w|\mathbf{F}|u| \cdot \mathbf{F}\varphi
$$

$$
\geq |\mathbf{F}|u||^2 \frac{1 - |w|}{\varepsilon + |u|} \varphi + |w|\mathbf{F}|u| \cdot \mathbf{F}\varphi \geq |w|\mathbf{F}|u| \cdot \mathbf{F}\varphi
$$

and thus using $q \ge 0$, $|w| \le 1$

$$
(3.19) \t\t\t\t\t \int |w| \mathbf{V} |u| \cdot \mathbf{V} \varphi + \lambda \int |w| |u| \varphi \leq \int |f| \varphi.
$$

Remind $w = w_s$, so that

$$
\mathcal{U}_0([u], \varphi) := (\mathcal{V} | u|, \mathcal{V} \varphi) + \lambda (|u|, \varphi) \leq (|f|, \varphi)
$$

as $\varepsilon \to 0$. Let $v=(-\Delta+\lambda)^{-1}|f|$, then $\mathcal{A}_0(v, \varphi)=(|f|, \varphi)$ and thus $\mathcal{A}_0(|u|-v, \varphi) \leq 0$ for all $0 \leq \varphi \in C_0^{\infty}(\mathbb{R}^m)$.

By approximation (mollify and cut off $0 \le \varphi \in W^1(\mathbb{R}^m)$) we get

$$
(3.20) \quad \mathscr{h}_0(|u|-v,\,\varphi) \leq 0 \quad \text{for } 0 \leq \varphi \in W^1(\mathbb{R}^m).
$$

Let $\psi = |u| - v$, $\psi_{+} = \max(\psi, 0)$. Then $\psi_{+} \in W^{1}(\mathbb{R}^{m})$ and $\psi \psi_{+} = \psi_{+}^{2}$, $\nabla \psi \cdot \nabla \psi_{+}$ $= |\mathbf{F}\psi_{+}|^2$ (see appendix).

Taking $\varphi = \psi_+$ (3.20) implies

$$
\lambda \|\psi_{+}\|^2 \leq \mathcal{M}_0(\psi_{+}, \psi_{+}) = \mathcal{M}_0(\psi, \psi_{+}) \leq 0.
$$

Thus $\psi_+ = 0$, that is $|u| \leq v$. \square

Remark 1. In particular Lemma 6 implies the well known fact, that $(-\Delta + \lambda)^{-1}$ is positivity preserving. But this may be seen more directly as follows:

Let $0 \le f \in L^2(\mathbb{R}^m)$, $u = (-\Delta + \lambda)^{-1} f$. Then u is real-valued (since $-\Delta + \lambda$ is a real operator) and

$$
\mathcal{U}_0(u, \varphi) = (f, \varphi) \qquad (\varphi \in W^1(\mathbb{R}^m) = \mathcal{Q}(-\varDelta)).
$$

Let $u_{-} = min(u, 0)$, then $u_{-} \in W^{1}(\mathbb{R}^{m})$ and again

$$
\lambda \|u_{-}\|^2 \leq h_0(u_{-}, u_{-}) = h_0(u, u_{-}) = (f, u_{-}) \leq 0.
$$

Thus $u_{-}=0$, that is $u=u_{+}\geq 0$.

We mention furthermore, that our method of proof may be applied to formally selfadjoint elliptic operators with variable coefficients.

Finally we remark, that the above method also provides a proof of (if q is not dropped in (3.18'))

$$
|(H(\mathbf{a}) + \lambda)^{-1}f| \leq (H(\mathbf{0}) + \lambda)^{-1}|f|.
$$

4. Uniqueness of Schrödinger Operators

Throughout this section (except in Theorem 3 and 4) we assume Condition (C.2), that is

$$
\mathbf{a}\in L_{\text{loc}}^4(\mathbb{R}^m)^m, \quad \text{div}\,\mathbf{a}\in L_{\text{loc}}^2(\mathbb{R}^m), \qquad 0\leq q\in L_{\text{loc}}^2(\mathbb{R}^m).
$$

Observe, that (C.2) implies (C.1), so that all results of Sect. 3 are valid. In particular, see (3.16) and Lemma 4, we know that

$$
\mathscr{C} = \{ \varphi u \mid \varphi \in C_0^{\infty}(\mathbb{R}^m), \ u \in (H+1)^{-1}(L^2 \cap L^{\infty}) \}
$$

is an operator core of H contained in L^{∞} . Thus, mollifying $u \in \mathscr{C}$, at first sight one believes to get a core $\mathscr{C} \subset C_0^{\infty}(\mathbb{R}^m)$ of H. But unfortunately $u \in \mathscr{C}$ yields only $-\Delta u$ $+2i$ **a**. $\nabla u \in L^2(\mathbb{R}^m)$, so that $-Au_{\varepsilon}+2i$ **a**. $\nabla u_{\varepsilon} \to -Au+2i$ **a**. ∇u is by no means clear. It is exactly this point, where up till now additional assumptions $[5, 18,$ 19] were needed to obtain Δu , $\mathbf{a} \cdot \nabla u \in \vec{L}^2(\mathbb{R}^m)$ via Sobolev inequalities. Since $u \to \infty$ $-4u+2i\mathbf{a}\cdot \nabla u$ is obviously continuous on $W^2(\Omega)\cap W^{1,4}(\Omega)$ for any bounded domain $\Omega \subset \mathbb{R}^m$, we overcome the difficulty mentioned above by showing $\mathscr{C} \subset \mathscr{D}(-A) \cap W^{1,4}(\mathbb{R}^m)$. This is done in Lemma 7-9, being the crucial steps of this section.

Lemma 7 [1, 11]. If $u \in \mathcal{D}(-A) \cap L^{\infty}(\mathbb{R}^m)$, then $\mathcal{V}u \in L^4(\mathbb{R}^m)$. Moreover for any $\varepsilon > 0$ *there exist constants c, c(* ε *)* > 0 *such that*

(4.1)]kVulIL4<~m)mG~HAull +c(a)Ilul]

(4.2)
$$
\|Fu\|_{L^4(\mathbb{R}^m)^m}^2 \leq c \|u\|_{\infty} \|Au\|
$$

for all $u \in \mathcal{D}(-A) \cap L^{\infty}(\mathbb{R}^m)$.

Proof. We begin with the case $u \in C_0^{\infty}(\mathbb{R}^m)$ and we may assume throughout our proof u to be real-valued (otherwise consider Re u and Im u). For $1 \le j \le m$ we have

$$
\int (\partial_j u)^4 = \int \partial_j u (\partial_j u)^3 = - \int u \partial_j [(\partial_j u)^3] = - \int u \, 3 (\partial_j u)^2 \partial_j^2 u.
$$

Thus $\|\partial_i u\|_{L^4}^4 \leq 3 \|u\|_{\infty} \| \partial_i u\|_{L^4}^2 \| \partial_i^2 u\|$, that is $\|\partial_i u\|_{L^4}^2 \leq 3 \|u\|_{\infty} \| \partial_i^2 u\|$.

By partial integration (since ∂_i and ∂_k commute) we have

$$
\int (\partial_j \partial_k u)^2 = \int \partial_j^2 u \partial_k^2 u \qquad (1 \le j, k \le m)
$$

which gives
$$
\sum_{j,k=1}^m \|\partial_j \partial_k u\|^2 = \|Au\|^2.
$$
 Thus

$$
(4.2')
$$

$$
\|\partial_j u\|_{L^4}^2 \le 3 \|u\|_{\infty} \|Au\| \qquad (1 \le j \le m).
$$

Next consider the case $u \in \mathcal{D}(-\Delta) \cap L^{\infty}$, supp u compact.

Let $u_n = J_{1/n} u$, where $J_{1/n}$ is the Friedrichs mollifier, so that $u_n \in C_0^{\infty}(\mathbb{R}^m)$, $u_n \to u$, $\Delta u_n \to \Delta u$ and $||u_n||_{\infty} \leq ||u||_{\infty}$.

Now (4.2) shows, that $\partial_j u_n$ is a Cauchy sequence in $L^4(\mathbb{R}^m)$. Thus $\partial_j u_n \to \partial_j u$ in $L^4(\mathbb{R}^m)$ and (4.2') holds good by a limiting process.

Finally let us consider $u \in \mathcal{D}(-\Delta) \cap L^{\infty}$. Then we choose a function $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, satisfying $0 \le \varphi \le 1$ on \mathbb{R}^m and $\varphi \equiv 1$ near the origin and put $\varphi_n = \varphi \left(- \right)$. Clearly $u_n := \varphi u_n \in \mathcal{D}(-\Delta)$ has compact support, satisfies $||u_n||_{\infty} \le ||u||_{\infty}$ /x and $u_n \to u$, $\Delta u_n \to \Delta u$ in $L^2(\mathbb{R}^m)$. As in the preceeding step we conclude $\partial_i u \in L^4(\mathbb{R}^m)$ and see that (4.2') (implying (4.2)) holds true.

To obtain (4.1) let $\varepsilon > 0$. Then in view of (4.2)

$$
||\nabla u||_{L^{4}(\mathbb{R}^{m})^m} \leq c^{\frac{1}{2}} ||u||_{\infty}^{\frac{1}{2}} ||Au||^{\frac{1}{2}} \leq \varepsilon ||Au|| + \frac{c}{4\varepsilon} ||u||_{\infty}
$$

with a constant depending only on the dimension m .

Lemma 8. Let $H(a)$ be the selfadjoint operator of Lemma 1. Suppose Ω is a *bounded subset of* \mathbb{R}^m *and c is a positive number. Then there exists a constant* $d > 0$ *such that*

(4.3)
$$
\| \Delta u \| \leq 2 \| H(\mathbf{a}) u \| + d \| u \|_{\infty}
$$

for all u $\mathcal{D}(H(\mathbf{a})) \cap \mathcal{D}(-\Delta) \cap L^{\infty}(\mathbb{R}^m)$ with supp $u \subset \Omega$ and all vector potentials **a** *satisfying* $\|\text{div}\,\mathbf{a}\|_{L^2(\Omega)} + \|\mathbf{a}^2\|_{L^2(\Omega)} \leq c.$

Proof. Let a be a vector potential (satisfying (C.2)) with

$$
\|\text{div}\,\mathbf{a}\|_{L^2(\Omega)} + \|\mathbf{a}^2\|_{L^2(\Omega)} \leq c
$$

and let $u \in \mathcal{D}(H(\mathbf{a})) \cap \mathcal{D}(-\Delta) \cap L^{\infty}$ with supp $u \subset \Omega$. In view of div $(\mathbf{a} u) = (\text{div } \mathbf{a}) u$ $+a \cdot Fu$ and formula (3.12), (3.13) we have

$$
H(\mathbf{a})u = -\Delta u + 2i\mathbf{a} \cdot \nabla u + (i \cdot \operatorname{div} \mathbf{a} + \mathbf{a}^2 + q) u.
$$

Thus using (4.1) and $\|\mathbf{a}^{2}\|_{L^{2}(\Omega)} = \|\mathbf{a}\|_{L^{4}(\Omega)}^{2}$ we obtain

$$
\| \Delta u \| \le \| H(\mathbf{a}) u \| + 2 \| \mathbf{a} \|_{L^4(\Omega)^m} \| \mathbf{v} u \|_{L^4(\Omega)^m} + \left[\| \operatorname{div} \mathbf{a} \|_{L^2(\Omega)} \right. \\ \left. + \| \mathbf{a}^2 \|_{L^2(\Omega)} + \| q \|_{L^2(\Omega)} \right] \| u \|_{\infty} \\ \le \| H(\mathbf{a}) u \| + 2\varepsilon \sqrt{c} \| \Delta u \| + \left[2c(\varepsilon) \sqrt{c} + c + \| q \|_{L^2(\Omega)} \right] \| u \|_{\infty}.
$$

Therefore

$$
(1-2\varepsilon\sqrt{c})\|Au\| \le \|H({\bf a})u\| + [2c(\varepsilon)\sqrt{c} + c + \|q\|_{L^2(\Omega)}] \|u\|_{\infty}.
$$

Choosing $\varepsilon^{-1} = 4\sqrt{c}$, we obtain estimate (4.3). \square

Lemma 9. *Let H be the selfadjoint operator of Lemma 1. Then*

$$
\mathscr{C} = \{ \varphi u \mid \varphi \in C_0^{\infty}(\mathbb{R}^m), \ u \in (H+1)^{-1}(L^2 \cap L^{\infty}) \}
$$

satisfies

$$
(4.4) \t\t\t\mathscr{C} \subset \mathscr{D}(-\Delta) \cap L^{\infty}(\mathbb{R}^m) \cap W^{1,4}(\mathbb{R}^m).
$$

Proof. Let $\varphi \in C_0^{\infty}(\mathbb{R}^m)$, $u \in (H+1)^{-1}(L^2 \cap L^{\infty})$. Choose $\mathbf{a}_n \in C^{\infty}$ such that $\mathbf{a}_n \to \mathbf{a}$, $div \mathbf{a}_n \rightarrow \text{div } \mathbf{a}$ in \tilde{L}_{loc}^2 (mollify a!). Let us denote by $H = H(\mathbf{a})$ resp. $H_n = H(\mathbf{a}_n)$ the selfadjoint operators of Lemma 1 corresponding to **a**, q resp. a_n , q. Define u_n $=(H_n+1)^{-1}(H+1)u$, then $u_n \to (H+1)^{-1}(H+1)u=u$ by (3.17) and by (3.15) we have (remind $\mathbf{D}_{n} = \mathbf{F} - i \mathbf{a}_{n}$)

$$
\|\mathbf{D}_n u_n\|^2 + \|u_n\|^2 \leq \left(\left(H_n + 1\right)u_n, u_n\right) = \left(\left(H + 1\right)u, u_n\right) \leq \|(H + 1)u\| \|u_n\|.
$$

This gives $||u_n|| \le ||(H+1)u||$ and $||\mathbf{D}_n u_n|| \le ||(H+1)u||$.

Let us now put $v_n = \varphi u_n$, then in view of (3.13), (3.14) we see that $v_n \in \mathcal{D}(H_n)$ and

$$
H_n v_n = \varphi(H_n u_n) + 2\nabla \varphi \cdot \mathbf{D}_n u_n + (\varphi) u_n.
$$

Hence

$$
||H_n v_n|| \le ||\varphi||_{\infty} (||(H_n + 1) u_n|| + ||u_n||) + 2||\varphi||_{\infty} ||D_n u_n|| + ||\varphi||_{\infty} ||u_n||
$$

\n
$$
\le ||(H+1) u|| [2||\varphi||_{\infty} + 2||\varphi||_{\infty} + ||\varphi||_{\infty}] =: a.
$$

By Lemma 4 we have $||v_n||_{\infty} \le ||\varphi||_{\infty} ||u_n||_{\infty} \le ||\varphi||_{\infty} ||(H+1)u||_{\infty}$ and since $v_n \in \mathscr{D}(H_n) \cap L^\infty$, supp v_n compact, we conclude $v_n \in W^1(\mathbb{R}^m)$. In view of div($\mathbf{a}_n v_n$) $=(\text{div } a_n)v_n+a_n\cdot Fv_n, (3.12), (3.13), (3.14)$ we obtain

(4.5)
$$
H_n v_n = -\Delta v_n + 2i\mathbf{a}_n \cdot V v_n + (i \cdot \text{div } \mathbf{a}_n + \mathbf{a}_n^2 + q) v_n.
$$

Since $\mathbf{a}_n \in \mathbb{C}^{\infty}$, (4.5) shows $\Delta v_n \in L^2(\mathbb{R}^m)$, i.e. $v_n \in \mathcal{D}(-\Delta)$.

Now let Ω be a bounded subset of \mathbb{R}^m , such that supp $v_n \subset \text{supp } \varphi \subset \Omega$ and let $c > 0$ be a constant satisfying

$$
\|\text{div}\,\mathbf{a}_n\|_{L^2(\Omega)} + \|\mathbf{a}_n^2\|_{L^2(\Omega)} \leqq c.
$$

Due to Lemma 8, (4.3) we obtain

(4.6)
$$
\| \Delta v_n \| \leq 2 \| H_n v_n \| + d \| v_n \|_{\infty} \n\leq 2 a + d \| \varphi \|_{\infty} \| (H+1) u \|_{\infty} < \infty
$$

By (4.6), using the weak compactness of the unit ball, we may extract a weakly convergent subsequence of (Δv_n) . Since $v_n = \varphi u_n \rightarrow \varphi u$ in $L^2(\mathbb{R}^m)$ we conclude $\varphi u \in \mathscr{D}(-\Delta)$, thus bearing in mind Lemma 4 and Lemma 7, we have shown (4.4) . \Box

Theorem 2. *Assume* (C.2) *and let H be the selfadjoint operator in Lemma 1. Then* $C_0^{\infty}(\mathbb{R}^m)$ *is an operator core of H, i.e.* $\mathcal{H} = -(\mathbf{V}-i\mathbf{a})^2 + q$ *is essentially selfadjoint on* $C_0^{\infty}(\mathbb{R}^m)$.

Proof. In view of (3.16), (4.4) the set $\mathscr C$ is an operator core of H satisfying $\mathscr{C} \subset \mathscr{D}(-A) \cap L^{\infty}(\mathbb{R}^m) \cap W^{1,4}(\mathbb{R}^m)$. Thus, using (3.12), (3.13) and div(au) $=(\text{div }\mathbf{a})u+\mathbf{a}\cdot\nabla u$, we have for each $u\in\mathscr{C}$

(4.7) *Hu= - Au + 2ia. Vu +(i.div a +aZ + q)u.*

Define $u_{\varepsilon} = J_{\varepsilon} u$, where J_{ε} is the Friedrichs mollifier and $\varepsilon < 1$, such that $u_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^m)$ with a common support in $\Omega = \sup p u + \{x | |x| \leq 1\}$, $||u_{\varepsilon}||_{\infty} \leq ||u||_{\infty}$ and $u_{\varepsilon} \to u$ in $W^2(\mathbb{R}^m) = \mathcal{D}(-\Delta)$. We have also $u_{\varepsilon} \to u$ a.e. pointwise along some subsequence $\varepsilon = \varepsilon_n \rightarrow 0$. By (4.2) we get

$$
\|\mathbf{a} \cdot \nabla u_{\varepsilon} - \mathbf{a} \cdot \nabla u\| \leq \|\mathbf{a}\|_{L^4(\Omega)^m} \|\nabla (u_{\varepsilon} - u)\|_{L^4(\Omega)^m}
$$

$$
\leq c \|\mathbf{a}\|_{L^4(\Omega)^m} \|u\|_{\infty} \|\Delta u_{\varepsilon} - \Delta u\|
$$

Thus, considering each term in (4.7), we conclude $Hu_g \to Hu$ in $L^2(\mathbb{R}^m)$ as $\varepsilon \to 0$. Since $\mathscr C$ is a core of H, $C_0^\infty(\mathbb{R}^m)$ turns out to be a core of H, too. \Box

To prove the essential selfadjointness of $\mathcal{H} = -(\mathbf{V} - i\mathbf{a})^2 + q$ on $C_0^{\infty}(\mathbb{R}^m)$ including also negative parts of q , we need Lemma 6. But since $(C.2)$ is now (in this section) assumed, a nice proof of $|(H+\lambda)^{-1}f| \leq (-\lambda+\lambda)^{-1} |f|$ can be given using Theorem 2.

Lemma 10. Let $\lambda > 0$, $f \in L^2(\mathbb{R}^m)$ and assume (C.2). Let H be the selfadjoint *operator of Lemma 1. Then*

(4.8)
$$
|(H+\lambda)^{-1}f| \leq (-\Delta+\lambda)^{-1} |f|.
$$

Remark 2. Iterating (4.8) and using the well known formula

$$
e^{-tA} = \lim_{n \to \infty} \left(1 + \frac{tA}{n} \right)^{-1}
$$

one easily obtains from (4.8)

(4.9)
$$
|e^{-tH}f| \leq e^{tA}|f| \quad (t>0).
$$

Proof of Lemma 10. Choose $\mathbf{a}_n \in \mathbb{C}^\infty$ such that $\mathbf{a}_n \to \mathbf{a}$, div $\mathbf{a}_n \to \text{div}\mathbf{a}$ in L^2_{loc} . Denote by H_n the selfadjoint operator $H(\mathbf{a}_n)$ of Lemma 1. Let $\varphi, \overline{\Phi} \in C_0^{\infty}(\mathbb{R}^m)$, $0 \leq \Phi, \Phi = 1$ near supp φ , and let φ _s = $[|\varphi|^2 + \varepsilon^2]^{\frac{1}{2}}$ with $\varepsilon > 0$. Then an elementary calculation (see also [7, 13, $(X.47)$]) shows

$$
(-\Delta + \lambda)\varphi_{\varepsilon} \le \operatorname{Re}\left(\frac{\overline{\varphi}}{\varphi_{\varepsilon}}(H_n + \lambda)\varphi\right) + \lambda\left(\varphi_{\varepsilon} - \frac{|\varphi|^2}{\varphi_{\varepsilon}}\right)
$$

$$
\le |(H_n + \lambda)\varphi| + \lambda\left(\varphi_{\varepsilon} - \frac{|\varphi|^2}{\varphi_{\varepsilon}}\right).
$$

Thus

$$
(-\Delta + \lambda)(\Phi \varphi_{\varepsilon}) = \Phi(-\Delta + \lambda) \varphi_{\varepsilon} - 2V \Phi \cdot V \varphi_{\varepsilon} - (\Delta \Phi) \varphi_{\varepsilon}
$$

= $\Phi(-\Delta + \lambda) \varphi_{\varepsilon} - (\Delta \Phi) \varphi_{\varepsilon}$

$$
\leq |(H_n + \lambda) \varphi| + \lambda \Phi \left(\varphi_{\varepsilon} - \frac{|\varphi|^2}{\varphi_{\varepsilon}} \right) - (\Delta \Phi) \varphi_{\varepsilon}.
$$

Define $u^{\epsilon} = \lambda \Phi \left(\varphi_{\epsilon} - \frac{|\varphi|^2}{\varphi_{\epsilon}} \right) - (A\Phi)\varphi_{\epsilon}$, then using the fact that $(-A+\lambda)^{-1}$ is positivity preserving (see Remark 1), we obtain

 $\Phi \varphi_{\varepsilon} \leq (-\Delta + \lambda)^{-1} |(H_n + \lambda) \varphi| + (-\Delta + \lambda)^{-1} u^{\varepsilon}.$

Since $\Phi \varphi$ $\rightarrow |\varphi|$, $u^{\varepsilon} \rightarrow 0$ in $L^2(\mathbb{R}^m)$ as $\varepsilon \rightarrow 0$ we have

$$
|\varphi| \leq (-\varDelta + \lambda)^{-1} |(H_n + \lambda)\varphi|
$$

Since $H_{n} \varphi \rightarrow H \varphi$, this yields

$$
(4.10) \t\t |\varphi| \leq (-\Delta + \lambda)^{-1} |(H + \lambda)\varphi|.
$$

By Theorem 2, $C_0^{\infty}(\mathbb{R}^m)$ is a core of H, thus (4.10) is valid for $\varphi \in \mathcal{D}(H)$, too. Now let $\varphi = (H+\lambda)^{-1} \tilde{f} \in \mathcal{D}(H)$, then $|(H+\lambda)^{-1} f| \leq (-\Delta+\lambda)^{-1} |f|$. \square

Theorem 3. Suppose $\mathbf{a} \in L^*_{loc}(\mathbb{R}^m)^m$, div $\mathbf{a} \in L^2_{loc}(\mathbb{R}^m)$ and $q \in L^2_{loc}(\mathbb{R}^m)$. Assume that $q_ = min(q, 0)$ *is* Δ *-bounded with relative bound a* < 1.

Then $\mathscr{H} = -(\mathbf{V} - i\mathbf{a})^2 + q$ is essentially selfadjoint on $C_0^{\infty}(\mathbb{R}^m)$ and semibounded *from below.*

Proof. Let $\lambda > 0$ and $f \in L^2(\mathbb{R}^m)$. Let $q_+ = \max(q, 0)$ and let H_0 be the selfadjoint operator of Lemma 1 associated with $\mathcal{H}_0 = -(\overline{V}-i\mathbf{a})^2 + q_+$. In view of (4.8) we have

$$
|(H_0 + \lambda)^{-1}f| \leq (-\Delta + \lambda)^{-1} |f|.
$$

Thus

$$
|q_{-}(H_0+\lambda)^{-1}f| \leq |q_{-}|(-\Delta+\lambda)^{-1}|f|
$$

and therefore

$$
||q_{-}(H_0+\lambda)^{-1}f|| \leq ||q_{-}(-\Delta+\lambda)^{-1}||f||.
$$

Since q_{-} is Δ -bounded with relative bound $a < 1$, there exist $a < a^* < 1$, $\lambda^* > 0$ such that for each $g\in L^2(\mathbb{R}^m)$

$$
||q_-(-\varDelta + \lambda^*)g|| \leqq a^* ||g||
$$

Let $\varphi \in C_0^{\infty}(\mathbb{R}^m)$ and define $g = (H_0 + \lambda^*)\varphi$, then

$$
(4.11) \t\t |q_{-}\varphi| \le a^* \|(H_0 + \lambda^*)\varphi\| \le a^* \|H_0\varphi\| + a^* \lambda^* \|\varphi\|.
$$

Since $C_0^{\infty}(\mathbb{R}^m)$ is a core of H_0 (Theorem 2), we conclude by Rellich-Kato [13, Theorem X.12] that $\mathcal{H} = -(\bar{V}-i\mathbf{a})^2+q$ is essentially selfadjoint on $C_0^{\infty}(\mathbb{R}^m)$, semibounded from below and in addition $\mathcal{H}\left[C_0^{\infty} (\mathbb{R}^m) = H_0 + q_-\right]$.

Theorem 4. Suppose $\mathbf{a} \in L^4_{loc}(\mathbb{R}^m)^m$, div $\mathbf{a} \in L^2_{loc}(\mathbb{R}^m)$ and assume $q = q_1 + q_2$ with q_1 , $q_2 \in L^2_{loc}(\mathbb{R}^m)$, $q_2 \leq 0$. Let q_2 be Δ -bounded with relative bound $a < 1$ and suppose q_1 *satisfies* $q_1(x) \geq -c |x|^2$ with a constant $c \geq 0$. Then $\mathcal{H} = -(\mathbf{F} - i\mathbf{a})^2 + q$ is essen*tially selfadjoint on* $C_0^{\infty}(\mathbb{R}^m)$.

To prove Theorem 4 we first derive an a-priori estimate of $\Vert \mathbf{D}\varphi \Vert$ in terms of $\|\varphi\|$ and $\|H_n\varphi\|$, where H_n is the operator

(4.12)
$$
\mathcal{D}(H_n) = C_0^{\infty}(\mathbb{R}^m)
$$

$$
H_n = -\mathbf{D}^2 + \max(q_1, -c n^2) + q_2
$$

$$
= -\Delta + 2i\mathbf{a} \cdot \mathbf{V} + i \operatorname{div} \mathbf{a} + \mathbf{a}^2 + \max(q_1, -c n^2) + q_2.
$$

Lemma 10. *Assume the conditions of Theorem 4 and let H, be the operator defined* $in (4.12)$ *. Then there exists a constant* $d > 0$ *, such that*

$$
(4.13) \t\t ||\mathbf{D}\,\varphi||^2 \leqq d \cdot ||\varphi|| [n^2 ||\varphi|| + ||H_n\varphi||] \t\t for all $\varphi \in C_0^{\infty}(\mathbb{R}^m)$.
$$

Proof of Lemma 10. Let $V_n = \max(q_1, -cn^2)$, thus $V_n + cn^2 \ge 0$. Let $\mathscr{D}(S_n) = \mathscr{D}(V_n)$ $=\mathcal{D}(q_2)=C_0^{\infty} \mathbb{R}^m$ and $S_n=-\mathbf{D}^2+V_n$, so that $H_n=S_n+q_2$. Since q_2 is \varDelta -bounded with relative bound $a < 1$ we know due to (4.11) for each $\varphi \in C_0^{\infty}(\mathbb{R}^m)$

(4.14)
$$
||q_2 \varphi|| \leqq a^* ||(S_n + c n^2) \varphi|| + b ||\varphi||
$$

with constants a^* < 1, $b=a^* \lambda^*$ independent of *n*. This yields

$$
||S_n \varphi|| \leq ||H_n \varphi|| + ||q_2 \varphi|| \leq ||H_n \varphi|| + a^* ||S_n \varphi|| + (b + a^* c n^2) ||\varphi||
$$

and then

(4.15)
$$
||S_n \varphi|| \leq (1 - a^*)^{-1} [||H_n \varphi|| + (b + a^* c n^2) ||\varphi||].
$$

Since

$$
(S_n \varphi, \varphi) = \|\mathbf{D}\varphi\|^2 + (V_n \varphi, \varphi) \ge \|\mathbf{D}\varphi\|^2 - c n^2 \|\varphi\|^2
$$

we get

$$
\|\mathbf{D}\,\varphi\|^2 \leq c\,n^2\,\|\varphi\|^2 + \|\varphi\|\,\|S_n\,\varphi\|
$$

combining last inequality with (4.15) we obtain

$$
\|\mathbf{D}\,\varphi\|^2 \leq c\,n^2\,\|\varphi\|^2 + (1-a^*)^{-1}\,\|\varphi\|\,\|H_n\varphi\| + \frac{b+a^*c\,n^2}{1-a^*}\,\|\varphi\|^2
$$

$$
\leq (1-a^*)^{-1}\left[(b+cn^2)\|\varphi\|^2 + \|\varphi\|\,\|H_n\varphi\|\right]
$$

which gives estimate (4.13). \Box

Proof of Theorem 4. Let $\lambda \in \{+i, -i\}$ and let $\mathscr{D}(H) = C_0^{\infty}(\mathbb{R}^m)$,

$$
H = -(\mathbf{V} - i\mathbf{a})^2 + q = -A + 2i\mathbf{a} \cdot \mathbf{V} + i \operatorname{div} \mathbf{a} + \mathbf{a}^2 + q.
$$

Then we have to show, that $R(H+\lambda)$ is dense in $L^2(\mathbb{R}^m)$. Suppose $f \in R(H+\lambda)^{\perp}$, that is $(f, (H + \lambda) \varphi) = 0$ for each $\varphi \in C_0^{\infty}(\mathbb{R}^m)$.

In view of Theorem 3 there exist $\varphi_n \in C_0^{\infty}(\mathbb{R}^m)$ such that (remind (4.12))

(4.16)
$$
\| (H_n + \lambda) \varphi_n - f \| \leq \frac{1}{n}.
$$

Now choose $\Phi \in C_0^{\infty}(\mathbb{R}^m)$ satisfying $0 \leq \Phi \leq 1$,

(4.17)
$$
\Phi(x) = \begin{cases} 1, & |x| \le \frac{1}{2} \\ 0, & |x| \ge 1 \end{cases}
$$

and put $\Phi_n = \Phi \left(\frac{\ }{n} \right)$. Then for any $\varphi \in C_0^{\infty}(\mathbb{R}^m)$

$$
\Phi_n H \varphi = \Phi_n H_n \varphi.
$$

We have

$$
||f||^2 = \lim_{n \to \infty} (f \Phi_n, (H_n + \lambda) \varphi_n) \qquad ((4.16), (4.17))
$$

\n
$$
= \lim_{n \to \infty} (f, \Phi_n (H + \lambda) \varphi_n) \qquad ((4.18))
$$

\n
$$
= \lim_{n \to \infty} (f, (H + \lambda) (\Phi_n \varphi_n) + 2 \nabla \Phi_n \cdot \mathbf{D} \varphi_n + (\Delta \Phi_n) \varphi_n) \qquad ((3.14))
$$

\n
$$
= \lim_{n \to \infty} (f, 2 \nabla \Phi_n \cdot \mathbf{D} \varphi_n + (\Delta \Phi_n) \varphi_n), \qquad \text{since } f \in R (H + \lambda)^{\perp}.
$$

Due to (4.16) and Lemma 10, (4.13) we get the estimates

$$
\begin{aligned} \| (A \Phi_n) \varphi_n \| &\leq \frac{1}{n^2} \| A \Phi \|_{\infty} \| \varphi_n \| \leq \frac{1}{n^2} \| A \Phi \|_{\infty} (\| f \| + 1) \\ \| V \Phi_n \cdot \mathbf{D} \varphi_n \|^{2} &\leq \frac{1}{n^2} \| V \Phi \|_{\infty}^{2} \cdot d \| \varphi_n \| \left[n^2 \|\varphi_n\| + \| H_n \varphi_n\| \right] \\ &\leq \frac{1}{n^2} \| V \Phi \|_{\infty}^{2} d(\| f \| + 1)^2 (2 + n^2) \end{aligned}
$$

thus $\|(\Delta \Phi_n)\varphi_n+2\mathbb{F}\Phi_n\cdot \mathbf{D}\varphi_n\|\leq c^*<\infty$.

The last estimate yields

$$
\|f\|^2 \leq \lim_{n \to \infty} \|f \cdot \chi_{\{x \mid |x| > \frac{n}{2}\}} \| \cdot c^* = 0,
$$

thus H is essentially selfadjoint on $C_0^{\infty}(\mathbb{R}^m)$. \Box

Appendix

The purpose of this appendix is to give the proof (Theorem A) of the facts, concerning truncation method, being decisively used in Lemmas 2-6. We like to mention that the assumptions in Theorem A are not the weakest possible ones. For related results with the sharpest assumptions we refer the reader to $[9, 10]$ (see also $[2, 1.7.4]$). We have chosen the assumptions in Theorem A such that simple proofs can be given. However, all relevant applications are included.

First we introduce some notations. By $\mathcal{L}_{\mathscr{M}}(\mathbb{R}^k;\mathbb{R})$ we denote the space of uniformly Lipschitz continuous functions $f: \mathbb{R}^k \to \mathbb{R}$ endowed with the norm

$$
[f] = \sup_{\substack{\mathbf{x}, \mathbf{y} \in \mathbb{R}^k \\ \mathbf{x} + \mathbf{y}}} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|}.
$$

Let Ω be an open subset of \mathbb{R}^m and let $\mathcal{M}(\Omega)$ be the space of real measurable functions defined in Ω . Given a function $f \in \mathcal{L}_{\mathscr{P}}(\mathbb{R}^k; \mathbb{R})$ we define a mapping T_f : $\mathcal{M}(\Omega)$ ^k $\rightarrow \mathcal{M}(\Omega)$ by

$$
T_f \mathbf{u} = f \circ \mathbf{u}, \qquad \mathbf{u} = (u_1, \dots, u_k) \in \mathcal{M}(\Omega)^k.
$$

By $W^{1,p}(\Omega;\mathbb{R})$ we shall mean the set of realvalued functions in $W^{1,p}(\Omega)$.

Theorem A. Let k, $m \in \mathbb{N}$, $1 \leq p < \infty$, $\Omega \subset \mathbb{R}^m$ open and assume $f \in \mathcal{L}(\mathbb{R}^k; \mathbb{R})$ *satisfies f(0)*=0. *In addition we assume* $f \in C^1(\mathbb{R}^k \setminus \Gamma)$ *, where* Γ *is any closed countable subset of* \mathbb{R}^k .

Then T_f maps $W^{1,p}(\Omega;\mathbb{R})^k$ continuously into $W^{1,p}(\Omega;\mathbb{R})$. Moreover the chain *rule*

$$
\partial_i (f \circ \mathbf{u}) = (\mathbf{g} \circ \mathbf{u}) \partial_i \mathbf{u}, \qquad \mathbf{u} \in W^{1,p}(\Omega; \mathbb{R}^k), \qquad 1 \leq j \leq m
$$

holds true for any Borel function **g**: $\mathbb{R}^k \to \mathbb{R}^k$ *satisfying* **g**=**Vf** *on* $\mathbb{R}^k \setminus \Gamma$ *.*

Proof. We devide the proof in three steps.

Step 1. In Step 1 we assume $\Gamma = \emptyset$. Let $\mathbf{u} \in W^{1,p}(\Omega; \mathbb{R})^k$, then there exists a sequence $(\mathbf{u}_n) \subset W^{1,p}(\Omega;\mathbb{R})^k \cap C^1(\Omega)^k$ such that $\mathbf{u}_n \to \mathbf{u}$ in $W^{1,p}(\Omega)^k$. In addition we may assume

 $\mathbf{u}_n \rightarrow \mathbf{u}_n$, $\partial_i \mathbf{u}_n \rightarrow \partial_i \mathbf{u}_n$, $|\mathbf{u}_n| + |\partial_i \mathbf{u}_n| \leq w$ a.e. in Ω

with a suitable function $0 \leq w \in L^p(\Omega)$. Since

$$
|f \circ \mathbf{u}_n| \leq |f| |\mathbf{u}_n| \leq |f| \mathbf{w}
$$

$$
|\partial_j(f \circ \mathbf{u}_n)| = |(\mathbf{F}f \circ \mathbf{u}_n) \cdot \partial_j \mathbf{u}_n| \leq |\mathbf{F}f| \circ \mathbf{u}_n |\partial_j \mathbf{u}_n| \leq [f] \mathbf{w}
$$

and $f \circ \mathbf{u}_n \rightarrow f \circ \mathbf{u}$, $\partial_i (f \circ \mathbf{u}_n) \rightarrow (Vf \circ \mathbf{u}) \cdot \partial_i \mathbf{u}$ a.e. in Ω as $n \rightarrow \infty$, we conclude by Lebesgue's dominated convergence theorem that $f \circ u_n \rightarrow f \circ u$ in $W^{1,p}(\Omega)$ and thus $\partial_i (f \circ \mathbf{u}) = (\nabla f \circ \mathbf{u}) \cdot \partial_i \mathbf{u}.$

Step 2. In Step 2 we show $\partial_i \mathbf{u} = \mathbf{0}$ on $\mathbf{u}^{-1}(N)$ for $1 \leq j \leq m$, when N is any closed countable subset of \mathbb{R}^k .

Since $\mathbf{u}^{-1}(N) \subset \bigcap_{k=1}^{k} u_{\nu}^{-1}(pr_{\nu}N)$, we may assume $k=1$. Furthermore (by intersecting with compact intervalls) we may assume N to be compact. Choose $\varphi_n \in C_0^0(\mathbb{R})$ satisfying $\varphi_n = 1$ on N, $0 \le \varphi_n \le 1$ and $\varphi_n \to \chi_N$ pointwise as $n \to \infty$. Set t $\psi_n(t) = \int_0^{\infty} \phi_n$, then $\psi_n \to 0$ pointwise and (using Step 1)

$$
|\psi_n \circ u| \le |u|, \qquad |V(\psi_n \circ u)| = |(\varphi_n \circ u)V u| \le |Vu|.
$$

Thus, by Lebesgue's dominated convergence theorem $\psi_n \circ u \to 0$ in $W^{1,p}(\Omega)$ and $0 = V0 = (\chi_N \circ u)Vu$, which means $Vu = 0$ a.e. on $u^{-1}(N)$.

Step 3. Finally, in Step 3 we complete the proof of Theorem A. Consider the function $f_{\varepsilon} = J_{\varepsilon}f - (J_{\varepsilon}f)(0)$, where J_{ε} is the Friedrichs mollifier, then $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^k)$ \cap $\mathscr{L}\varkappa(\mathbb{R}^k; \mathbb{R})$ satisfies

$$
\begin{aligned} [f_{\varepsilon}] &\leq [f], \quad f_{\varepsilon}(0) = 0 \\ V f_{\varepsilon}(\mathbf{x}) &= J_{\varepsilon}(Vf)(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^k \setminus \Gamma, \quad \varepsilon < \text{dist}(\mathbf{x}, \Gamma). \end{aligned}
$$

Moreover $f_e \rightarrow f$ pointwise on \mathbb{R}^k and $\mathbb{F} f_e \rightarrow \mathbb{F} f$ pointwise on $\mathbb{R}^k \setminus \Gamma$. By Step 1 we know $f_{\varepsilon} \circ \mathbf{u} \in W^{1,p}(\Omega)$ and

$$
|f_{\varepsilon} \circ \mathbf{u}| \leq [f] | \mathbf{u} |
$$

$$
|\partial_j(f_{\varepsilon} \circ \mathbf{u})| = |(\mathbf{V} f_{\varepsilon} \circ \mathbf{u}) \cdot \partial_j \mathbf{u}| \leq |\mathbf{V} f_{\varepsilon}| \circ \mathbf{u} | \partial_j \mathbf{u} | \leq [f] | \partial_j \mathbf{u} |.
$$

As $g = Vf$ on $\mathbb{R}^k \setminus \Gamma$ and since $\partial_i u = 0$ a.e. on $u^{-1}(\Gamma)$ by Step 2, we have $f_* \circ \mathbf{u} \rightarrow f \circ \mathbf{u}$ as well as

$$
\partial_j (f_\varepsilon \circ \mathbf{u}) = (\nabla f_\varepsilon \circ \mathbf{u}) \, \partial_j \mathbf{u} \to (\mathbf{g} \circ \mathbf{u}) \cdot \partial_j \mathbf{u} \qquad \text{a.e. in } \Omega \text{ as } \varepsilon \to 0.
$$

Thus by Lebesgue's dominated convergence theorem we get $f_e \circ u \rightarrow f \circ u$ in $W^{1,p}(\Omega)$ and $\partial_i(f \circ \mathbf{u}) = (\mathbf{g} \circ \mathbf{u}) \partial_i \mathbf{u}$ for any $1 \leq j \leq m$. To show the continuity of T_f , we consider a sequence $(\mathbf{u}_n) \subset W^{1,p}(\Omega;\mathbb{R})^k$ such that $\mathbf{u}_n \to \mathbf{u}$ in $W^{1,p}(\Omega)^k$. By looking at a suitable subsequence (denoted hereafter again by (\mathbf{u}_n)) we may assume in addition $\mathbf{u}_n \to \mathbf{u}_n$, $\partial_i \mathbf{u}_n \to \partial_i \mathbf{u}_n + |\partial_i \mathbf{u}_n| \leq w$ a.e. in Ω with suitable $w \in L^p(\Omega)$. Now we have

$$
f \circ \mathbf{u}_n \to f \circ \mathbf{u}, \quad |f \circ \mathbf{u}_n| \leq [f] |\mathbf{u}_n| \leq [f] w
$$
 a.e. in Ω

and similarly (looking at $\Omega \setminus u^{-1}(\Gamma)$ resp. $u^{-1}(\Gamma)$)

$$
\partial_j(f \circ \mathbf{u}_n) = (\mathbf{g} \circ \mathbf{u}_n) \cdot \partial_j \mathbf{u}_n \rightarrow (\mathbf{g} \circ \mathbf{u}) \cdot \partial_j \mathbf{u} = \partial_j(f \circ \mathbf{u})
$$

$$
|\partial_j(f \circ \mathbf{u}_n)| = |(\mathbf{g} \circ \mathbf{u}_n) \cdot \partial_j \mathbf{u}_n| \leq [f] |\partial_j \mathbf{u}_n| \leq [f] w \quad \text{a.e. in } \Omega
$$

where g: $\mathbb{R}^k \to \mathbb{R}^k$ satisfies $g = Vf$ on $\mathbb{R}^k \setminus \Gamma$ and $g = 0$ on Γ . Thus we conclude by Lebesgue's dominated convergence theorem, that $T_f \mathbf{u}_n \to T_f \mathbf{u}$ in $W^{1,p}(\Omega)$.

Let us now give two applications of Theorem A, often used in this note.

Corollary 1. Let $u \in W_{loc}^{1,1}(\Omega)$. Then $|u| \in W_{loc}^{1,1}(\Omega; \mathbb{R})$ and

$$
\partial_j |u| = \text{Re}\left(\frac{\bar{u}}{|u|}\partial_j u\right) \quad (1 \leq j \leq m).
$$

Proof. Considering a bounded open subset Ω' with $\Omega' \subset \Omega$ we may assume $u \in W^{1,1}(\Omega)$. Clearly $u_1 = \text{Re } u$ and $u_2 = \text{Im } u$ belong to $W^{1,1}(\Omega;\mathbb{R})$. Thus, considering the function $f \in \mathcal{L}$ *i*_l(\mathbb{R}^2 ; \mathbb{R}) \cap $C^1(\mathbb{R}\setminus\{0\})$, given by $f(x) = |x|$, we conclude by Theorem A, that

$$
|u| = f \circ (u_1, u_2) \in W^{1,1}(\Omega)
$$

and

$$
\partial_j |u| = \begin{cases} \frac{u_1 \partial_j u_1 + u_2 \partial_j u_2}{|u|}, & u \neq 0 \\ 0, & u = 0 \end{cases}
$$

since Re($\bar{u} \partial_i u$)=u₁ $\partial_i u_1 + u_2 \partial_i u_2$, we have shown Corollary 1. \Box

Corollary 2. Let $u \in W^{1,p}(\Omega; \mathbb{R})$. Then $u_{+} = \max(u, 0)$ resp. $u_{-} = \min(u, 0)$ belong to $W^{1,p}(\Omega; \mathbb{R})$ and

$$
\mathbf{F} u_+ = \begin{cases} \mathbf{F} u, & u > 0 \\ 0, & u \le 0 \end{cases}
$$
 resp.
$$
\mathbf{F} u_- = \begin{cases} 0, & u \ge 0 \\ \mathbf{F} u, & u < 0. \end{cases}
$$

Proof. Consider the functions f_+ , $f_- \in \mathcal{L}^i/(I\mathbb{R};\mathbb{R}) \cap C^1(\mathbb{R}\setminus\{0\})$ given by $f_+(x)$ $=$ max(x,0), $f_-(x)$ =min(x,0). In view of Theorem A we have $u_{(+)}$ $=f_{(+)}\circ u\in W^{1,p}(\Omega)$ and

$$
\mathbf{\nabla}(f_{(\pm)} \circ u) = \begin{cases} (f'_{(\pm)} \circ u) \mathbf{\nabla} u, & u \neq 0 \\ \mathbf{0}, & u = 0. \end{cases} \square
$$

Referenees

- 1. Gagliardo, E.: Proprietà di alcune classi di funzione in più variabili. Ricerche di Mat. 7, 102-137 (1958)
- 2. Gilbarg, D., Trudinger, N.S.: Elliptic Partiai Differential Equations of Second Order. Grundlehten der mathematischen Wissenschaften 224. Berlin, Heidelberg, New York, Springer 1977
- 3, Ikebe, T., Kato, T.: Uniqueness of self-adjoint extensions of singular elliptic differential operators. Arch. Rational Mech. Anal. 9, 77-92 (1962)
- 4. Jörgens, K.: Über das wesentliche Spektrum elliptischer Differentialoperatoren vom Schrödinger-Typ. Tech. Report, Univ. of Heidelberg 1965
- 5. Kato, T.: Remarks on Schrödinger operators with vector potentials. Integral Equations Operator Theory 1, 103-113 (1978)
- 6. Kato, T.: Perturbation Theory for Linear Operators, Berlin, Heidelberg, New York: Springer 1966
- 7. Kato, T.: Schr6dinger operator with singular potentials. Israel J. Math. 13, 135-148 (1972)
- 8. Kato, T.: A second look at the essential selfadjointness of Schrödinger operators. Physical Reality and Mathematical Description, pp. 193-201. D. Reidel Publ. Co., Dordrecht 1974
- 9. Marcus, M., Mizel, V.J.: Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Amer. Math. Soc. 251, 187-218 (1979)
- 10. Marcus, M., Mizel, V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33, 217-229 (1979)
- 11. Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math. 8, 648-674 (1955)
- 12. Perelmuter, M.A., Semenov, Yu.A.: Selfadjointness of elliptic operators with finite or infinite variables. Funktional Anal. i. Prilozen 14, 81-82 (1980)
- 13. Reed, M., Simon, B.: Methods of Modern MathematicaI Physics, II, Fourier Analysis, Self-Adjointness. New York, San Francisco, London: Academic Press 1975
- 14. Schechter, M.: Spectra of Partial Differential Operators. Amsterdam, London: North Holland 1971
- 15. Schechter, M.: Essential self-adjointness of the Schr6dinger operator with magnetic vector potential. J. Func. Anal. 20, 93-104 (1975)

- 16. Simader, C.G.: Bemerkungen über Schrödinger-Operatoren mit stark singulären Potentialen. Math. Z. 138, 53-70 (1974)
- 17. Simader, C.G.: Remarks on Kato's inequality. To appear
- 18. Simon, B.: Schrödinger Operators with singular magnetic vector potentials. Math. Z. 131, 361-370 (1973)
- 19. Simon, B.: Maximal and minimal Schr6dinger forms. Journal of Operator Theory. 1, 37-47 (1979)
- 20. Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus. Math. Ann. 135, 50-80 (1958)

Received May 9, 1980