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1. Introduction

In the present paper we consider formal Schrédinger operators
H=—(F—ia)+q

with real-valued a; and ¢, and various selfadjoint realizations of 2 in Z(R™),
We are mainly concerned with the proof of two facts.

First, if we assume
(C.1) a=(a;,...,a,)els (R™", 0Zqgel} (R™,

loc loc

we give a new proof (Theorem 1) of the fact, that C7(IR™) is a core of the
maximal form associated with #.

Second, if in addition
(C2) a=(ay, ..., a,)el}

L (R™™ divael]

loc

(R™), 0=geli, (R™)

is required, then we prove (Theorem 2) the essential selfadjointness of # on
CP(R™). Observe that Condition (C.2) is minimal (with respect to a) to assure
that # defines an operator from CP(R™) to I*(IR™).

In a recent paper Kato [5] proved that the minimal operator associated with
the form corresponding to # and a certain intermediate operator coincide. If in
addition aelf (R™)" for some p>m, then the minimal and the maximal
operator coincide, too ([5, p. 106, Theorem III7]). By using a comparison theo-
rem for semigroups, based on a generalization of Kato’s inequality, Simon [19]
was able to prove last statement assuming only (C.1). In our proof of Theorem 1
we use cut-off arguments (as in [16]) to show that 2(£)nL*(R™) is a form core
of the maximal form # corresponding to s#. Again with truncation methods we
prove an L[®-a-priori estimate (Lemma4) as well as a comparison theorem
(Lemma 6; an alternative proof is given in Lemma 10).

Concerning the essential selfadjointness of 5# | Cg (IR™) the vector potential a
was assumed to be C! uptil recently (compare [3, 16, 207} To our knowledge
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Jorgens [4] was the first who considered potentials a satisfying certain Stummel-
type conditions. More sophisticated conditions of this type had been studied
extensively by Schechter [14, 15].

Further results concerning singular vector potentials a are due to Simon [18,
19]; he assumes (C.2) for m <4, but in addition for m >4 he has to require either

(R with p= "
also [12]). m-+

This dependance on dimension comes in by the use of certain Sobolev
inequalities and elliptic regularity theory, not allowing to show the essential
selfadjointness of # on C§ (R™) under condition (C.2). But it was Simon [19,
Conjecture, p. 38] who suggested that condition (C.2) is sufficient (and of course
necessary) for the essential selfadjointness of # | CZ(R™). Our proof of Simon’s
conjecture avoids those methods mentioned above and is mainly based on the
observation of ue W2~ L implies Fue(L*)" (Lemma 7), which turned out to be a
special case of a more general Gagliardo-Nirenberg inequality [1, 117. Exactly
this observation enables us to show (H+ 1)1 (IZnL*)c W}, (Lemma 9). Finally
we prove the essential selfadjointness of # on CF(IR™) if (C.2) holds with respect
to a and if g=q,+4q,, q;, q,€13,.(R™), q,(x)= —c|x|* and 0=¢q, is A-bounded
with relative bound smaller than one. In the proof we follow the ideas of [8, 16].

Since truncation methods (with respect to the range of a function) seem to be
non-standard in studying selfadjointness problems, we sketch those proofs in the
appendix. Finally we like to mention, that Kato’s famous distributional in-
equality is a special case of a more general distributional inequality which may
be derived by using the chain rule (compare [17]).

aell (R™™ with p>m or aelf (R™)", diva+qels? (see

2. Preliminaries

Let R™ be the m-dimensional Euclidean space, represent points of IR™ by x

=(xy, ..., X,,) and let |x|= ( Y xf)z. For 1<p <o let IP(IR™) stand for the space
j=1
of (equivalence classes of) C(;mplex—valued functions u which are measurable and
satisfy [|ul?<oo if p<oo and |u|=esssuplu/<oc if p=co. In case p=2,
[*(R™) is a complex Hilbert space with scalar product (u, v)=j17v and corre-
sponding norm ||u = (u, u)*.
Similarily I?(R™)", the m-fold cartesian product of IZ(IR™), is equipped with

m

the scalar product (u,v)= ) (u;v;) and the norm |u|=(uw w)* Let Q be a

2 Vj
ji=1
measurable subset of R™ and let L*(Q2)™ be equipped with the norm |u| L)
=([ ju]** For AcIR™ let us denote by y, the characteristic function of the set
Q

A.

The space of infinitely differentiable complex-valued functions with compact
support will be denoted by CZ(IR™) or Z(IR™). 2'(IR™) is the space of distri-
butions on R™. For 1<j<m let §;=0/0x; be the j-th partial derivative, each
acting on &'(IR™). For nelN, 1 <p< oo, QcR™ open, the Sobolev space W™ ?(Q)
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is defined as the space of those ueIf(€), for which all partial derivatives up to

order n are in IP(Q). W™?(Q) is a Banach space with the norm [ul, ’

=( Y, [V ul?)'?, where aeNg, |a|= Y o, V=(d,, ..., d,) and P *= [Toy. 1t p
|l =n Q j=1 j=1
=2, we always omit the index p, so e.g. W™2(Q)=W"(Q), lull,, = llul,.
We call a linear subspace F < 2'(R™) semi-local, if pueF for all pe Cy(R™),
ueF and define F,, as the space of those ue%'(R™) such that pueF when
e Cg(R™). If in addition F is normed, then u,—u in F . means ¢u,—~ou in F

loc

when e CP(R™). Let 4= ) 6]? be the Laplacian, acting on &'(IR™), and let Du

=1
=Vu—iaueZ'(R")", divh= ) 8;b,c2'(R™) with i=}) -1, ael} (R™"
)

bell (R™" and uel? (R™).

Concerning notations and results in the theory of linear operators in Hilbert
space we refer to [6].

3. Uniqueness of Schriodinger Forms

Throughout this section we assume Condition (C.1), that is

acl?

loc

(R, 0=geL;, (R").

loc

We consider the maximal form

3.1 2(#) = {ue*(R™) | Due I*(R™" g*ucl?(R™)}
(3.2) 4(u, v)=(Du, Dv)+(q*u, ¢*v)

J

s

(Ou—iaju d,v—ia;v)+(q*u, g% v)

J

associated to the formal Schrédinger operator
(3.3) H=—-D’+q=—F —ia)’+q=— 3 (3,—ia)’*+q.
j=1

Clearly CZ(IR™) = 2(#4), but since [5, 19] it is also known, that CF(IR™) is dense
with respect to ||ull| = [4(u, u)+ (1, u)]%.

This means, that the minimal form #_;,, defined as the form closure of
%] Cy(R™) x CF(IR™), is the same as the maximal form #.

Here we like to give a new proof of this fact using only well known
truncation methods in W*(R™) ([2], see also the appendix). In Lemma 1 let us
first summarize some simple facts about 4.

Lemma 1. #Z is a symmetric closed form; hence there exists a unique selfadjoint
operator H satisfying

(3.4) D(H)={ue2(#)| 4(u, - )e'(R")}
(3.5) (Hu,v)=4(u,v) for ue@(H), vel(4).
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Proof. Suppose (u,)c2(%4) and |lu,—ull -0 as n,I—o0. Then there exist
u, ve[*(R™), we [2(R™" satisfying

u,~u, q*u,—v, Du,—»w, in (R") (1<j<m).

Clearly v=g*u and since D;u,—~D,u in Z'(R"™), we have Du=w, hence uc2(%4)
and |[Ju,~ul] >0 as n—oo. Thus # is a closed form, which is obviously
symmetric. Applying the first representation theorem for symmetric forms [6;
VI, Theorem 2.6], Lemma 1 is shown. []

Lemma 2. 2(#£)nL*(R™) is dense in 2(4) with respect to |||+ |
Proof. Take ue2(#), then due to aueL (R™™, DuclI?(R™)", we have

loc

ue W, {(IR™), hence [7, 13] (see also appendix, Corollary 1)

loc

i

(3.6) 6j|u|=Re( Dju> in R (1<j<m).

|ul

This implies |V jul| <[Du| ae. in R", so |ule W!(IR™). For an integer n consider
now the Lipschitz-continuous function

1

(Pn(t)={g

t

t<n

2

t>n

Clearly
¢,()=0 if t<n, 0=¢,=1
lte,OI<n, lte,()=1.

Since |ule W'(R™), we have ([2; Theorem 7.8], see appendix) ¢,(|uj)e W*(IR™)
and ¥ [, (u)]]=¢,(u) ¥ lul ae. in R™.
Define u,=u ¢, (jul), then u, e *(R™) A L[°(R™) and

Vu,=Vuo,(u) +u e (u)¥iul in Z'(R")"
hence Du, =Du ¢, (jul) +u @, (jul) V' |ul in Z'(R™)".
Now we have pointwise a.e. in IR™
Du, —Du| < g1y 2 (I Dul+ |V ul])
|q%“n“q%”|§X<|u|;n}|q%“|
|, = 1] = Yy 2yl 14]-

Since uel(#), V|ule2(R™", we conclude u,c2(4) and [ju,—ul|—>0 as
n—o0. []

Whereas Lemma 2 covers the main work of our proof of “2(#) is a core of
#” we follow now well known arguments in [5, 19]. We repeat these arguments
(Lemma 3, Theorem 1) in order to keep our paper self-contained.

Lemma 3. 2(#4) is semi-local, that is @ue2(%4) when peCy(R™), uc2(#). The
linear subspace €y={pu|peCF(R™), uc2(4) L} of 2(#4) is dense in (4) with
respect to || - |||
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Proof. Let peC¥(R™) and uc2(#%), then ueW,k;'(R™) and so ue W {R™).
Now we have in the distributional sense

(3.7) D(pu)=Dugp+uVpel*(R™"

This together with ||gZug| < g ul- ||, implies pue2(#).

In addition let us now suppose ue L°(R™), ¢ =1 in a neighbourhood of the
origin and put ¢,=¢ (;) Then ¢* @, u—g*u and (due to (3.7)) D(p,u)—Du in
I?, hence ||op,u—ul|—>0 as n—oo. In view of Lemma 2 this shows that %, is
dense in 2(%4). [

Theorem 1. CY(IR™) is dense in 2(#%) with respect to |- ||, i.e. C(R™) is a form
core of H.

Proof. In view of Lemma 3, %, is dense in 2(#). Take ue%,, then ue W'(R™),
since ae L, (R™™, ue L*(R™) and suppu compact. Let u,=J,u, where J, is the
Friedrichs mollifier, so that u.e Ciy(R™) with a common support, [u,] < |lul,
and u,—u in W*(R™) as ¢—0. We have also u,—u a.e. pointwise along some

subsequence s=¢,—0. Thus
Du,=Vu,—iau,»>Vu—iau=Du in *(R™)"

and g*u,—g*u in I*(R™) along the sequence. Hence CZ(IR™) is dense in %,
with respect to |||-[. O
Lemma 4. For each 1> 0 the equation (H+ A)u=jfel®(R™) implies ue °(R™) and
1
(3.8) [l oo =7 11f Nleo-
1

Proof. For r>=| f|,, fixed, let us consider the Lipschitz-continuous function

. A
¢:R—-R 0, t<r
I)={(t—
(p() —t—r, t>r.
Clearly
(3.9) 0<p<1, lte'(t)£1 and @'(H)=0 if t<r.

Since [u|e W!(R™) (see (3.6)), we have ({2, Theorem 7.8], see appendix).

p(u)eWH(R™), Vo(u)=e (u)V|ul
and so

(3.10) D[uo(u)]=Du p(ul)-+u e (u)Vul in Z'(R")".
In view of (3.9), (3.10), u ¢ (Ju|)e 2(%4) follows. Now
4, u (lul)+ (, wo(ul) =((H+A) u, u@(|u))) = (f, up(ul))

is valid, which gives

JIDuP g(ul)+ 3. Dy (u) ul+a-+2) el ol =] Fuo
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Taking the real part of both sides of this equation and using (see (3.6)) |u| d;|u]
= Re(D;uu) we obtain the equation

JIDul® @(uD)+ [P lul|* @ (ul) ul + [ (g +2) [ul* @ (jul)=Re | fup(lul).

Since =0, ¢' 20, g=0 we have

(3.11) 2§ 1ul? o(lu) = Re | fue(u).

Now observe that {Ju|>r} has finite measure. Thus (3.11) yields

T P ouds [ 1S e lul e(ul),

{lul>r} {lul>r}

hence 1
[ lulou- (ul = 1/ 1) 0.

{Ju|>r}

and @(t)>0 if t>r we conclude |u|=0 a.e. on {|u|>r}. This

oo

, 1
Since r>;1|f
means |[u| <r a.e. in R™.

00 —

1 . 1 .
Thus we get |u|l <= f] ., since r>11\f[|oo was arbitrary. [

For any ue2(4) we define Hue %' (IR™) by (remind (C.1))
(3.12) Hu= —Au+idiv(au)+ia-Du+qu
= —Au+2i-div(au)+(—i-diva+a’+q)u
(last equation being valid if (C.2) is satisfied)

and use the notations H=H(a, g) resp. H,=H(a,, g,) (to be understood in the
sense of (3.4-5)) in order to indicate the dependence on the potentials a, g resp.

a,,q,
The next lemma summarizes more or less well known facts [5, 19].

Lemma S. Let H=H(a,q) resp. H,=H(a,, q,) be the selfadjoint operators in
Lemma 1. Then

(3.13) D(H)={uc2(4)| AueI>(R"™)} and Hu=Hu if uc2(H),
(3.14) ueP(H) for peCT(R™), ueP(H) and
H(pu)=pHu—2V¢p -Du—(4¢)u,
(B.15) (Hu,u)=|Du|’+ |q*ul? if ue2(H),
(3.16) €={oulpecCY(R™), ue(H+1)"*(I> L")} is an operator core of H,
(3.17) If a,—»a in L5, (R™™, q,—q in L} (R™), then H,—~H in the strong

loc loc

resolvent sense.
Proof. (3.13): In view of Theorem 1 and Lemma 1 we have
D(H)={uc2(4)| feCR™): %4(u, p)=(f, ¢) if peCFR™)}.

But #(u, @)=(Hu, ¢) when ge C¥ (IR™, hence the result.
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(3.14): If peCP(R™) and ueP(H), then H(pu)=q@Hu—2Vp-Du—(Ap)u. Since
pue2(#) by Lemma3 and Hu=HuecI?(R"), we get H(pu)eI*(R™). Thus
pueP(H) and H(pu)=H(ou).

(3.15): This is clear, since (Hu, u)=4(u, u) if ue 2(H).

(3.16): In view of (3.15) and Lemmal (H+1)~! exists on I*(R™) and is
bounded. Since I? nL* is dense in L*(R™), (H +1)~1(I* n L™) is an operator core
of H. Now let ue(H+1)"'(I?nL”), peCZ(R™) such that p=1 in a neigh-

bourhood of the origin and put ¢,=¢ (7) Thus ¢, uc2(H), o, u—u in [*(R™)

and due to (3.14) "
H(p,u)=¢,Hu—2V¢, - Du—(4d¢,)u—Hu in [*(R™).

Therefore € is an operator core of H.

(3.17): Though (3.17) is shown in [19, Theorem 4.1], we like to prove it here
since our proof does not need [19, Lemma 2.5]. Of course, our arguments are
closely related to those in [19].

Let fe*(R™) and let u,=(H,+i)~'f. Then |ju,[| < | f| and
ID, u,l*+ ligZ u, > =Re(f, u) <]

Thus (u,) contains a subsequence (hereafter denoted again by (u,)) such that
with suitable u, ve [*(R™), we I*(IR™)™

u,—>u, qiu,—v, D,u,—>w weakly in I2.

Since g2 u,—~q*u, D,u,~Du in &', we see that v=g*u, Du=w and conclude
ue2(%). By definition of u, and since D, o =FV¢—ia, o —>Do, g ¢ > g* ¢ strong-
ly in I? when e C¥(R™), we get from (3.2)

4(u, )= lim %,(u,, @)=(f—iu, ¢).

n— oo

In view of Theorem 1 and (3.4) it follows ueZ(H) and (H+i)u=Jf, thus u=
(H+i)~'f. Since we could have started with an arbitrary subsequence of (u,)
the arguments above show, that (H,+i)~*—(H +i)~! weakly.

Similarly (H,—i)~* —>(H —i)~' weakly, so by the resolvent formula

WH,+ )~ f 12 =%i(f, (H,+) " f = (H, =)~ ) > [(H+) 7 )
and thus the resolvent converges strongly. []

Next we provide a new proof for [(H+1) f1<(—A4+2A)~!f] using again
truncation methods. An alternative proof is given in Lemma 10.

Lemma 6. Let 1>0, fel>(R™) and assume (C.1). Then
(H+)" fIS(—4+D)7 S

Proof. Of course, using an approximation argument, we may assume fel’ N L~
Let u=(H+1)"1f then due to Lemmad4 we have ucI®(R™) and thus
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uew?!

loc

R™. Let 0<ge Co(R™), then

(R™. For any &>0 let w=w5=8L, then we W}

Iul loc(]R-m) and |W| é]— a.c. in

_ Du—wl|u]

(3.18) DOvg)==—

o+ wVpeX(R™).

In view of g*(wo)e [*(IR™) and Lemma 3 we have wpe2(#4). By definition of u
7 (u, W)+ A, wo)=(f, wo).

This and (3.18) means (taking real parts)

(3.18) [Re@u-Dwo)+](q+)ul [wl o={ Re(fw) o

Since Re(#@D;u)=|u] 0,lul, |V ju|<|Du| a.c. in R™ we conclude

_IDul>~|w| |V |ul|?

Re(Du - D(wo) =——— = —— ¢-+WVlul Vo
2 1-|W|
2|V ful| W@+lwl7‘ul‘7¢§YW{7lu|'V€0

and thus using ¢ =0, |w| L1

(3.19) JwiPlul-Vo+afiwliulo<f|flo.

Remind w=w,, so that

Sl @):=(V [ul, V@) + A(ul, @) (| f1, @)

as e—0. Let v=(—4+A) 71| f], then 44(v, p)=(|f], @) and thus £,(Ju|—v, @)<0
for all 0= e CF(R™.
By approximation (mollify and cut off 0<pe WH{R™) we get

(3.20) #o(lul—v, ) <0 for 0<peWI(R™),
0 » @

Let y=|u|~v, ¥, =max(,0). Then ¥ eW'(R™ and Yy, =y2, VY-V,
=V, |* (see appendix).
Taking ¢ =y, (3.20) implies

A 2404, ) =400, ¥ ,) 0.
Thus ¥, =0, that is [u]<v. [

Remark 1. In particular Lemma 6 implies the well known fact, that (— A+ 1)1 is
positivity preserving. But this may be seen more directly as follows:

Let 0L fel*(R™), u=(—A4+21)"'f. Then u is real-valued (since —A+1is a
real operator) and

Ao, 0)=(f, @) (9eW'(R")=2(—24)).
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Let u_ =min(u, 0), then u_eW!(R™) and again
Mu_[?<Ao(u_,u_)=4ou,u_)=(f,u_)<0.

Thus u_ =0, that is u=u_ 20.

We mention furthermore, that our method of proof may be applied to
formally selfadjoint elliptic operators with variable coefficients.

Finally we remark, that the above method also provides a proof of (if g is not
dropped in (3.18")

(H@)+ )~ fISHO)+ ) flL

4. Uniqueness of Schrodinger Operators

Throughout this section (except in Theorem 3 and 4) we assume Condition (C.2),
that is

ael*

(R, divael?

(R™),  0=qeLli, (R™).

loc

Observe, that (C.2) implies (C.1), so that all results of Sect.3 are valid. In
particular, see (3.16) and Lemma 4, we know that

€ ={pu|leeCy(R™), ue(H+1)"'(IZn L")}

is an operator core of H contained in L°. Thus, mollifying u€%, at first sight one
believes to get a core € = CT(R™) of H. But unfortunately ue% yields only — Au
+2ia-Vuel?(R™), so that —Au,+2ia-Fu,—~ —Au+2ia-Vu is by no means
clear. It is exactly this point, where up till now additional assumptions [5, 18,
197 were needed to obtain Au, a-VueI?(R™) via Sobolev inequalities. Since u —
—Au+2ia-Vu is obviously continuous on W2*(Q)nW'*(Q) for any bounded
domain Q<R™ we overcome the difficulty mentioned above by showing
C =D (—A) AW *R™). This is done in Lemma 7-9, being the crucial steps of
this section.

Lemma 7 [1,11]. If ue@(—~A)nL°(R"™), then Vuel*(R™). Moreover for any
&> there exist constants c, c(e)>0 such that

(4.1) Vit Laqgemym S €| At + € (&) ]l
(4.2) Wulfsgmm=clull,, || 4ul
Sor all ue P (— A)n L*(R™).

Proof. We begin with the case ue CZ(R™) and we may assume throughout our
proof u to be real-valued (otherwise consider Reu and Imwu). For 1<j<m we

have
§@u*={8,u(@uP=—[ud,[(5;w)’]=—[u3(0,u)? 3} u.

Thus 10;ul$ <3 ul, 10,413, 107 ul, that is 3,023 Vull, 137 ull.
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By partial integration (since 0; and d, commute) we have

f@0,w?=fdjudju (1<), ksm)
which gives Y. |8, ull>=|4u]’ Thus
Jok=1

(4.2) 18;u =3 ull, |dul  (1<j<m).
Next consider the case us2(— 4) " L®, supp u compact.

Let u,=J,,,u, where J,,, is the Friedrichs mollifier, so that u,eCy(R™),
u,—u, Au,—Au and |u,| < vl -

Now (4.2') shows, that 0;u, is a Cauchy sequence in [*(R™). Thus d;u, —0;u
in IHR™) and (4.2) holds good by a limiting process.

Finally let us consider ue@(—A4)nI®. Then we choose a function
e CPR™), satisfying 0<¢=<1 on R™ and ¢=1 mnear the origin and put

Q,=@ (;) Clearly u,: = @pu,e 2 (— 4) has compact support, satisfies ||u,[ , = [u|

and u, - u, Au, - Au in I*(R™). As in the preceeding step we conclude 0 sue{R™)
and see that (4.2") (implying (4.2)) holds true.
To obtain (4.1) let ¢>0. Then in view of (4.2)

V) oo S cFllullf, | dul* e[ du| +i el oo

with a constant depending only on the dimension m. [

Lemma 8. Let H(a) be the selfadjoint operator of Lemma 1. Suppose Q is a
bounded subset of R™ and c is a positive number. Then there exists a constant d >0
such that

(4.3) lAull <2 H(@)u| +d|ul.,

Jor all ue Z2(H(@)) n D (— A)nL*(IR™) with suppu<Q and all vector potentials a
satisfying |dival 2+ 2% 20 S e

Proof. Let a be a vector potential (satisfying (C.2)) with
Idival 20+ ||32HLZ(Q)§C

and let ue Z(H(a))nD(—A)nL* with suppucQ. In view of div(au)=(diva)u
+a-Fu and formula (3.12), (3.13) we have

H(@)u=—Au+2ia-Fu+(i-diva+a’+q)u.
Thus using (4.1) and [|a®| 5o, = |8 Z:(qm We obtain
[ Aull < | H(a) u| +2Ha“L4(Q)m HVu||L4(Q)m+[Hdiva”Lz(Q)

+| 32“1;(9) + ”q”LZ(Q)] el
<|H@)ul+2&Vcldull +[2c@ Ve +c+ gl ol Il -
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Therefore
(1-267/0) | dull < | H(@) ull +[2¢(6) Y + e+ Il gy 1l -
Choosing ¢! =4ﬁ, we obtain estimate (4.3). [J
Lemma 9. Let H be the selfadjoint operator of Lemma 1. Then
€ ={ou|peCP(R™), ue(H+1)" I[*nL?)}
satisfies
4.4) C=D(— AL (R A WEH(R™).

Proof. Let e CY(R™), ue(H+1)"1 (> nL”). Choose a,eC™ such that a —a,
diva,—diva in I?_(mollify a!). Let us denote by H= H(a) resp. H,=H(a,) the

loc

selfadjoint operators of Lemma 1 corresponding to a, g resp. a,, ¢. Define u,
=(H,+1)""(H+1)u, then u,—>(H+1)"'(H+1)u=u by (3.17) and by (3.15) we
have (remind D,=F —ia,)

1D, 10,12+ 14, |2 S ((H, + 1)y, )= (H + 1)y ) S [ (H + 1) u] o, .
This gives lu,| < |(H+ 1) ufl and [D,u,| < [(H +1)ul.

Let us now put v,=¢@u,, then in view of (3.13), (3.14) we see that v,e%(H,)
and

annzqo(Hnun)—'—zV(p ’ Dnun+(AqD) un'
Hence

1H, 0, S 1o (CH,+ 1) |+ 1, )+ 2170, 1D, + [ ) o, 1]
SHH+Dul 2]0)l o +2IF el o+ 40 ,1=:a.

By Lemma4 we have [v,flo=lol, |u,lo= ol H+Dul, and since
v,€P(H,)N L, suppv, compact, we conclude v,e W!(R™). In view of div(a,v,
=(diva,)v,+a,-Vv,, (3.12), (3.13), (3.14) we obtain

(4.5) H,v,=—Av,+2ia, Vv, +(i-diva,+aZ+q)v,.

Since a,eC®, (4.5) shows Av,e[*(R™), i.e. v,e D (—4).
Now let 2 be a bounded subset of IR™, such that supp v, csupp ¢ < Q and let
¢>0 be a constant satisfying

Idiv a,[l )+ lagll 2@ Sc
Due to Lemma 8, (4.3) we obtain

(4.6) 14v,l=2(H, v, +dllv,l

=2a+d|lo], I(H+Dul,, <o,

By (4.6), using the weak compactness of the unit ball, we may extract a weakly
convergent subsequence of (4v,). Since v,=¢@u,~ou in I*(IR™) we conclude
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pueP(—A), thus bearing in mind Lemma 4 and Lemma 7, we have shown
44). O

Theorem 2. Assume (C.2) and let H be the selfadjoint operator in Lemma 1. Then
C®(R™) is an operator core of H, ie. # = —(V —ia)*+q is essentially selfadjoint
on CZ(R™).

Proof. In view of (3.16), (4.4) the set € is an operator core of H satisfying
CcD(—MHNI[PR™AWL4(R™). Thus, using (3.12), (3.13) and div(au)
=(diva)u+a - Vu, we have for each ue%

(4.7) Hu=—Au+2ia-Vu+(i-diva+a®+q)u.

Define u,=J,u, where J, is the Friedrichs mollifier and e<1, such that
u,e CY(R™) with a common support in Q=supp u+ {x||x| <1}, |lu,] = u], and
u,—»u in W*(R™)=2(— 4). We have also u,—u a.c. pointwise along some sub-
sequence e=¢,—0. By (4.2) we get

la-Vu,—a-Vu| é“a“um)m ”V(”e_“)“U(Q)m
sclall sym lulls, 1du,— Aul.
Thus, considering each term in (4.7), we conclude Hu,—Hu in [*(R™) as ¢—0.

Since % is a core of H, C¥(IR™) turns out to be a core of H, too. []

To prove the essential selfadjointness of # = — (V—ia)* +q on CF(R™) includ-
ing also negative parts of g, we need Lemma 6. But since (C.2) is now (in this
section) assumed, a nice proof of |(H+4)~1f|<(—=4+A4)~'|f| can be given
using Theorem 2.

Lemma 10. Let A>0, feI?(R™) and assume (C 2). Let H be the selfadjoint
operator of Lemma 1. Then

(4.8) (HAD)TIS(=4+)7H S
Remark 2. Tterating (4.8) and using the well known formula

t —n
e = lim (1 —I——A>
n

R— C

one easily obtains from (4.8)
(4.9) le=f 1< f] (t>0).

Proof of Lemma 10. Choose a,e C* such that a,—a, diva,—~diva in I3 . Denote
by H, the selfadjoint operator H(a,) of Lemma 1. Let ¢, Pe CF(IR™), 0@, &=1
near supp @, and let ¢, =[|@|*>+¢*]* with £¢>0. Then an elementary calculation
(see also [7, 13, (X.47)]) shows

(—4+ )¢, < Re (;’ (H +;b)<p)+;u (

gl(H,,H)mH(%—'Z' )

&
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Thus
(—A4+)(Pop)=0(—A+ ), — 2V -V @, —(4D) o,
=0(—4+N)p,—(49) e,
"”'2)—(11@)%
@

£

<|(H,+7) g+ i® (<ps—

lol?

Define u*=4d ((ps— )—-(A@gos, then using the fact that (—4+A)~! is

£

positivity preserving (seec Remark 1), we obtain
O 0, <(—A+2)~ U, + Dol +(— 4+

Since @ ,— ||, u*~0 in L*(R™) as e—0 we have

lpls(=4+2)7 " |(H,+ Dol
Since H, - H ¢, this yields
(4.10) lpl=(=4+ ) (H+Dol.
By Theorem 2, CZ’(IR™) is a core of H, thus (4.10) is valid for pe Z(H), too. Now
let p=(H+ A" feD(H), then [((H+ A fIS(—A4+1)~'|f]. O
Theorem 3. Suppose acL] (R™)", divacI2 (R™) and gel3 (R™). Assume that q_
=min(g,0) is A-bounded with relative bound a<1.

Then # = —(V —ia)* +q is essentially selfadjoint on CZ(R™) and semibounded
from below.

Proof. Let >0 and feI*(R™). Let g, =max(q,0) and let H, be the selfadjoint
operator of Lemma 1 associated with #,= —(V —ia)*+q,. In view of (4.8) we
have

[(Ho+ )" fIS(—=4+2)" 1 f].
Thus
lg_(Ho+2) fIZlg_ (= 4+ A~ | f]

lg (Ho+ A~ fl=lg_(—4+ D71 1]

Since g_ is A-bounded with relative bound a<1, there exist a<a*<1, 1¥*>0
such that for each ge*(R™)

and therefore

lg_(—4+A%)g| =a* gl
Let e C3(R™) and define g=(H,+ A¥) ¢, then
(4.11) lg_oll =a* [(Hy+A*)pll Sa* |Ho ol +a* 2* |p]|.

Since CF(IR™) is a core of H, (Theorem 2), we conclude by Rellich-Kato [13,
Theorem X.12] that # = —(V—ia)*+q is essentially selfadjoint on CF(R™),

semibounded from below and in addition #|Cy(R™)=H,+q_. [
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Theorem 4. Suppose acL} (R™)", divaeIZ (R™ and assume q=gq,+q, with q,,

g,€L3, . (R™), g, <0. Let g, be A-bounded with relative bound a<1 and suppose q,

satisfies q,(x)= —c|x|* with a constant ¢=0. Then # = —(V —ia)’>+q is essen-
tially selfadjoint on Cg (IR™).

To prove Theorem 4 we first derive an a-priori estimate of |D ¢|| in terms of
lell and |H,@ll, where H, is the operator

4.12) 9(H,)=Cg(R™)
H,=—D?*+max(q,, —cn?+gq,
=—A+2ia-V+idiva+a’+max(q,, —ch?)+q,.

Lemma 10. Assume the conditions of Theorem 4 and let H, be the operator defined
in (4.12). Then there exists a constant d >0, such that

(4.13) IDeol*<d-lo|n*[¢|+|H,l]1 forall peCFR™).

Proof of Lemma 10. Let V,=max(q,, —cn?), thus V,+cn*=0. Let 2(S,)=2(V,)
=9(q,)=Cg R™) and S,= —D*+V,, so that H,=S,+4,. Since g, is 4-bounded
with relative bound a <1 we know due to (4.11) for each e Cy(R™)

(4.14) lgz @l Sa* (S, +cn®) ol +b o]l
with constants a* <1, b=g* 1* independent of n. This yields

IS.ol 1H, 0l + a0l S H, 0| +a* S0l +(b+a*cn®) ol

and then
(4.15) IS, 0l £(1—a*)"'[|H,@ll + (b +a*cn?) o]
Since

(S,0,0)=|Doll*+(V,0,0)2 [Do|*—cn®|p|?
we get

Del2<cn?llol*+ el ISl
combining last inequality with (4.15) we obtain

b+a*cn?
Dol*<cn? ol +(1—a*)~" [o] IH,0| +W“¢’“2

<(A-a*)"t[b+en?)lo|*+ ol | Hyel]
which gives estimate (4.13). [
Proof of Theorem 4. Let Ae{+1i, —i} and let Z(H)=Cg (IR™),
H=—(F—ia)>+q=—A+2ia-V+idiva+a’+q.

Then we have to show, that R(H + A) is dense in I*(IR™). Suppose feR(H +A)*,
that is (f,(H+ 4) )=0 for each ¢eCg(R™).
In view of Theorem 3 there exist ¢, Cy (IR™) such that (remind (4.12))
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Now choose &< CJ(R™) satisfying 0= ¢ <1,

1, IxI=3
(4.17) @(x)—{o’ s
and put ¢, =@ (;) Then for any e CF(R™)
(4.18) ®,Ho=0,H,op.
We have
If1?=lm(f 2, (H,+Ae,) (416),(4.17)

=lim(f,®,(H+Ae,) (418)

n— oo

=lim(f,(H+4)(2,9,)+2V®,-D o, +(42,)9,) ((3.14))

n— o

=1lim(f,2V®,-Do,+(49,)¢,), since feR(H+A)".

n—+ 0

Due to (4.16) and Lemma 10, (4.13) we get the estimates
1 1
1(42) @, =5 14210 l9ul = 5 1481111 +1)

1
IIV@’,"D%HZéﬁz Wol%-dle,ln* e, + I H,,l]

1
<5 wolZdlifl+1)*Q+n?)

n

thus (49,) @,+2V®, - Do,| £c* < 0.

The last estimate yields

If1Z<slimlf x

n— o "
x]\x|>§

thus H is essentially selfadjoint on C3(R™). O

|- c* =0,

Appendix

The purpose of this appendix is to give the proof (Theorem A} of the facts,
concerning truncation method, being decisively used in Lemmas 2-6. We like to
mention that the assumptions in Theorem A are not the weakest possible ones.
For related results with the sharpest assumptions we refer the reader to [9, 10]
(see also [2, 1.7.4]). We have chosen the assumptions in Theorem A such that
simple proofs can be given. However, all relevant applications are included.
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First we introduce some notations. By Zx(IR¥;IR) we denote the space of
uniformly Lipschitz continuous functions f: R*—R endowed with the norm

e sup L/
X’xyf];{k [x—y]

Let Q be an open subset of R™ and let .#(Q) be the space of real measurable
functions defined in Q. Given a function fe %#(R*; R) we define a mapping T,
M (Y- M (Q) by

Tru=fou, u=(uy,...,u)eMQ
By W?(Q;R) we shall mean the set of realvalued functions in W*?(Q).

Theorem A. Let k, meN, 1<p<o, QcR™ open and assume feZip(R*;R)
satisfies f(0)=0. In addition we assume feC*(R*\I'), where I' is any closed
countable subset of R

Then T, maps WhP(Q; R)* continuously into W ?(Q;R). Moreover the chain
rule

0, (few=(gou)du, weWhHP(Q;RY, 1<j<m
holds true for any Borel function g: RF¥—IR* satisfying g=Vf on R*\TI.

Proof. We devide the proof in three steps.

Step 1. In Step 1 we assume I'=g. Let ueW'?(Q;R), then there exists a
sequence (u,) = WH?(Q; Ry~ C1(QY* such that u,—u in W*7(Q)*. In addition we
may assume

u,—u, 0;u,~0u |ul+[dul[Sw ae inQ

n

with a suitable function 0 SwelI?(Q). Since

|feu =/ Tu,|=LfTw
10(fou)|=|(fou,)-0u,| <V flow,|0;u, <[/ 1w

and fou,~fou, J;,(feu)>(¥fou)-0,u ae in Q as n—oo, we conclude by
Lebesgue’s domlnated convergence theorem that fou,—fou in W?(Q) and thus
di(fomy=Ffou)-0;u.

Step 2. In Step 2 we show d;u=0 on u='(N) for 1<j<m, when N is any closed
countable subset of IR"

Since u=*(N)< ﬂu‘l(pr N), we may assume k=1. Furthermore (by in-

tersecting with compact intervalls) we may assume N to be compact. Choose
¢, CH(R) satisfying ¢, =1 0on N, 0<¢,<1 and ¢,—yy pointwise as n— 0. Set
t

()= ¢,, then ¥,—0 pointwise and (using Step 1)
0

Woul=lul, Vb, cw)l=l(@, o)V ul<|Vul
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Thus, by Lebesgue’s dominated convergence theorem y,ou—0 in W?(Q) and
0=F 0=y ou) Fu, which means Fu=0 a.e. on u~"(N).

Step 3. Finally, in Step 3 we complete the proof of Theorem A. Consider the
function f,=J,f—(J,f)(0), where J, is the Friedrichs mollifier, then f,e C*(IR¥)
N % (R*; R) satisfies
fI=0/) £0)=0
VLX) =JFNx), xeRNIL e<dist(x,I).

Moreover f,—f pointwise on IR* and Ff,—Ff pointwise on R*\I’ By Step 1 we
know f,oueW?(Q) and

|feeul=[f]1u]
10,(fiew)|=|(Ffou)-0,u| P S [culdul<[f]|0;ul.
As g=Ff on R"\I and since d,u=0 ae. on u '(I') by Step2, we have
f.eu—fou as well as

0,(fiowy=(Ffow)d;u—~(gou)-d;u ae. in Q as ¢-0.

Thus by Lebesgue’s dominated convergence theorem we get f.ou—fou in
WP(Q) and d;(fou)=(gou)d;u for any 1=j<m. To show the continuity of Ty,
we consider a sequence (u,)c W4?(Q;R)* such that u,—~u in W?(Q By
looking at a suitable subsequence (denoted hereafter again by (u,)) we may
assume in addition u,—u, J;u,—d;u, |u,/+|0;u,|<w ae in Q with suitable
welf(Q). Now we have

fou,—fou, |fou |S[f]lw,|S[f]w ae in@Q
and similarly (looking at @\u~*(I') resp. u~*(I))

0i(fou)=(gou,) J;u,~(gou)-d;u=0d,(fu)
10,(feu)l=l(gon) 0;u,|<[f]10;u,|=[fIw ae inQ

where g: R¥— IR satisfies g=Vf on R*\I" and g=0 on I Thus we conclude by
Lebesgue’s dominated convergence theorem, that T,u,—~T,u in whr(Q). O
Let us now give two applications of Theorem A, often used in this note.

Corollary 1. Let ueW,%:1(Q). Then |ujeW,:*(Q;R) and

loc loc
U
6.|u|=Re(—6.u) (1<j<m).
J [u| 7

Proof. Considering a bounded open subset ' with Q' <Q we may assume
ueWh1(Q). Clearly u, =Reu and u,=Imu belong to W1(Q;R). Thus, con-
sidering the function fe %A(R*;R)n CH(R\{0}), given by f(x)=|x|, we con-
clude by Theorem A, that

lul|=fo (ul,u2)eW1’ HQ)
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and
Uy 0;uy +u,0;u, 40
8, ul= Jul ’
0, u=0

since Re(it0;u)=u, 0;u, +u,0;u,, we have shown Corollary . []

Corollary 2. Let ue Wh?(Q; R). Then u =max(u,0) resp. u_ =min(u,0) belong to
W(Q;R) and

0, uz=0

Vu, = Vu, u>0 res Vu =
e = P- ~ T Pu, u<O.

0, uz0

Proof. Consider the functions f,, f_e%4#(R;R)n CH{IR\{0}) given by f,(x)
=max(x,0), f_(x)=min(x,0). In view of Theorem A we have uy,
=fix,°oueWhH?(Q) and

(flyew)Vu, u=+0

V(ﬁi)°”)={0’ u=0. [
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