
Journal of Intelligent and Robotic Systems 9: 5-23, 1994. 5
© 1994 by Kluwer Academic Publishers. Printed in the Netherlands.

On Rotation Representations in Computational
Robot Kinematics*

MURAT TANDIRCI, JORGE ANGELES and JOHN DARCOVICH
McGill Centre for Intelligent Machines and Department of Mechanical Engineering, McGill University,
817 Sherbrooke Street West, Montreal, Canada H3A 2K6

(Received: December 1992)

Abstract. Various methods of implementing forward and inverse kinematics of six-axes industrial robots
are analyzed in this paper from the viewpoint of numerical conditioning and convergence speed both close
to a solution and away from it. Computational complexities are derived in terms of the number of arith-
metic operations and comparisons are made by observing the actual CPU time consumption. The formu-
lations presented make use of different sets of invariants describing the orientation of the gripper. It is
shown that, in inverse kinematics, there is a tradeoff between numerical stability and computational speed.

Key words. Computational kinematics, forward and inverse kinematics, robotic manipulators, rotation
invariants.

1. Introduction

This paper is confined to the kinematics of open-chain manipulators consisting o f six

revolute joints, a short account o f which is given in [1]. Moreover , we discuss inverse

kinematics only in the most general case, when no closed-form solution is possible.

As shown in [2], only a special class o f manipula tor architectures lends itself to

closed-form solutions as a set o f cascaded quadrat ic equations or, as shown in [3],

in the fo rm of a quarat ic equat ion cascaded with a quadrat ic equation. Moreover ,

Mavroidis and Ro th [4] have produced a comprehensive list of solvable

manipula tors that they call manipulators with simple inverse kinematics. Since

quart ic equat ions admit closed-form solutions, we will call manipulators leading

to such a type o f equat ions solvable. As Lee and Liang [5] showed, the most general

case o f 6-axes manipula tor leads to a 16th-degree polynomial equation, whose roots

can be computed only numerically. Raghavan and R o t h [6] proposed a procedure to

derive the underlying 16th-order polynomial . Mos t industrial manipulators are bo th

orthogonal and decoupled. Here, o r thogona l means that their consecutive axes make

angles that are multiples o f 90°; decoupled means that their last three axes are con-
current. These features allow a decoupling o f the posit ioning and orientat ion tasks,

which leads to either quadrat ic or quart ic equations, at most. While many industrial

manipula tors are designed with an or thogona l and decoupled architecture, in some

* An abridged version of this paper was presented in the 1992 IEEE International Conference on
Robotics and Automation, 1992 [1].

6 MURAT TANDIRCI ET AL.

cases, when high-accuracy is required, a calibration is warranted. Moreover, after
calibration, the underlying robotic architecture is no longer orthogonal and, cer-
tainly, neither decoupled. Hence, the inverse kinematics of calibrated industrial
robots, even if nominally orthogonal and decoupled, calls for a numerical solu-
tion, which is the motivation behind this work. Furthermore, when solving the
inverse kinematics of a robot iteratively, as proposed in [3, 7-9], a fast convergence.,
to an accurate solution allows for robot simulation and control in real time. For
example, in an interactive computer animation program, the end-effector (EE) of
the robot can be made to follow a specified trajectory using a graphical input, and
the motion resulting from the change of joint variables can be observed immedi.-
ately. Moreover, quick inverse kinematics results are needed in telerobotics appli.-
cations, where the operator may describe ongoing tasks based on the actual
surroundings. Similarly, robots equipped with vision systems determine their tasks
based on the information they gather about their environment; in such cases, quick
and accurate inverse kinematics results are needed to perform the upcoming tasks.

In this paper, methods based on numerical procedures are discussed. Below, a
brief comparison among the numerical and closed-form solutions, when the latter
are possible at all, is given.

In on-line applications and path tracking, iterative procedures are attractive
because the next solution is close to the current one. Thus, the current solution
can be used as an initial guess, thereby allowing a quick convergence in a few
iterations. Furthermore, in path tracking, only one solution is needed, and the
iterative procedures do not spend extra time calculating the remaining solutions.

The disadvantage of the numerical procedures is that they do not provide informa-
tion about the remaining solutions, if they are needed. Moreover, for the first point
on a given path, an initial guess has to be supplied, which might lead unpredictably
to divergence, although the occurrence of the latter can be avoided with the use of
continuation [7, 9].

For special manipulator architectures that lend themselves to a closed-form
solution, it is preferable to use the algebraic approach, since solutions can be
obtained faster [10]. Moreover, unlike numerical procedures, direct methods allow
the computation of solutions in a predetermined amount of time.

2. Forward Kinematics

Forward Kinematics refers to the calculation of the orientation and position of the
EE given the joint angles. The well-known Hartenberg and Denavit notation [11]
is used throughout.

For a general six-axis manipulator, the orientation of the EE in the base frame: is
expressed as the product of six rotation matrices, namely,

Q = Q1Q2Q3Q4QsQ6, (1)

where Qi = [Qi]i denotes a rotation matrix expressing the orientation of the (i + 1)st

ROTATION REPRESENTATIONS IN COMPUTATIOI~AL ROBOT KINEMATICS 7

frame with respect to the ith frame, in ith-frame coordinates. Because the product

matrix is orthogonal, only three out of its nine entries are independent. Different

methods can be employed to represent a rotation, as discussed in [12]. Here, we
use three different sets of invariants of the rotation matrix to express the said orien-
tation equations [13]. These quantities are preferred over Euler angles because they

'are invariant under a change of coordinate frame.

Furthermore, three sets of invariants are analyzed, the first being linearly related
to the rotation matrix, the second being linearly related to the square root of the said
matrix. The first set is thus known as the linear invariants, whereas the second is

known as the Euler parameters or, as suggested by Cheng and Gupta [14], the

Euler-Rodrigues parameters. The third set is called in [13] the natural invariants,
while, in the same reference, the Euler-Rodrigues parameters are also called the

quadratic invariants. The linear invariants are defined from the vector and the
trace of the rotation matrix as [13]

t r (Q) - 1
q0 - 2 - cos 6, q = vect(Q) = sin ¢~u, (2)

where u is the unit vector parallel to the axis of rotation, and e is the angle of rota-

tion about this axis. Both u and q5 are the natural invariants of Q The quadratic
invariants are defined in turn as [15]

q0 - tr(v/Q)2 - 1 = cos ~,6 q = vect(v/Q) = sin ~b u, (3)

where x/-O denotes the proper orthogonal square root of Q. Furthermore, the first
two sets of invariants are related as follows:

if/1 + qo V ~ + qo) _ q0 O0 2 ' q = q 2 (1+q0) (l + q 0) q" (4)

From the above relations, we have:

• a square root operation is always necessary to compute the quadratic invariants;
o the vector of linear invariants vanishes when the rotation angle is 7r, an

undesirable result;

• the quadratic invariants are welt defined for all rotation angles;
° physically, the proper orthogonal v/-Q represents a rotation about the axis of

rotation of Q through an angle of half that of Q.

The EE position is readily derived, as indicated below, when the rotation matrices
expressing the orientation of the EE in all frames are available.

r 6 ~-- 116

For i=5 to i do

r i +--- ai q- Qiri+ 1

e n d d o

8 MURAT TANDIRCI ET AL.

where ai is the vector directed from Oi to 0i+1, expressed in the ith frame, whereas ri
is the vector directed from Oi to point P of the EE, expressed in the ith frame, r 1 thus
describing the desired EE position in the base frame (Figure 1).

2.1. DERIVATION OF THE INVARIANTS OF A PRODUCT OF ROTATIONS

Rodrigues [16] obtained the normalized quadratic invariants, also known as the
Rodrigues parameters, of two concatenated rotations as functions of individual
quadratic invariants of the said rotations. The three Rodrigues parameters are nor-
realized Euler parameters in that the former are obtained by dividing the vector
quadratic invariant q by the scalar quadratic invariant 00. Moreover, as shown in
Section A.2 of the Appendix, it is also possible to derive an expression for the linear
invariants of the concatenated rotations from the individual linear invariants. An
alternative approach is to actually multiply rotation matrices and derive the
invariants of the product. Below, different methods are presented and their compu-
tational complexities are analyzed. A summary of computational costs is shown in
Table I. Henceforth, A, M, D and S denote additions, multiplications, divisions
and square roots, respectively.

Linear Invariants
Method 1: Matrix Multiplications. As shown in Section A. 1, the cost of deriving the
product of six rotation matrices is 117M and 60A. The vector product requires 6214
and 3A, rotation while the scalar product 3M and 2A.

P

0 r
6

Z8

Z 5

Fig. 1. General 6-axis manipulator.

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS

Table 1. Operations needed to calculate the invariants.

Vector method Matrix method

Linear inv. Quadratic inv. (2) Quadratic inv. (3) Linear inv. Quadratic inv. (1)

lx 1D + 33M 1S+3D+35M 2S+2D+29M 25M+ 18A 1S+lD+25M
+ 29A + 29A + 24A + 18A

5x 5D+149M 1S+7D+151M 6S+6D+I25M 121M+66A IS+lD+122M
+ 125A + 125A +96A +66A

CPU t37.5 227.5 197.5 77.5 85.0
(~ see)

Method 2. Vector Compositions. Let the linear invariants of a rotation matrix A be
denoted by qA and qA, those of a second rotation matrix B by qB and q(. Moreover,

the linear invariants of the product AB are denoted by q and q0. Below we include
expressions for q and q0 in terms of qA, q0 A, qO and q0 B, namely,

n N - D
q = ~ , q o - 2D ' (5)

where

D _= (1 + qA)(l + q0B), (6)

X = (1 + qA)(1 + qg)(qA + qg + q~qg) + (qA. qB)(qA qB _ 2D), (7)

n = (D - qA.qB)[(1 + qg)qA + (1 + qA)qB +qA × qB]. (8)

The reader is referred to Section A.2 for the derivation of computational costs
with this method.

Quadratic Invariants
Method 1: Matrix Multiplications. As discussed above, the cost of computing five

matrix products is 117M and 60A. Using the expressions below, which are derived
using Eqs. (2) and (4), the calculation of the quadratic invariants from the product
matrix requires 1S + 1D + 5M + 6A

 00+1 1
el° -= ~ ' q = ~ 0 vect(Q).

Method 2: Vector Composition of Linear [nvariants. The method of calculation of the

linear invariants using eqs. (5) can be extended to quadratic invariants. When eqs. (5)
are substituted into eqs. (4), the relations shown below are found [17]:

1 , / N 1 x /D(N+D) Oo
q o = - 2 v l + ~ , q - 2 D(N+D) n--U+D-- n (9)

where D, N and n were defined in eqs. (6-8). The computational costs involved are
included in Section A.3.

10 MURAT TANDIRCI ET AL.

Method 3: Vector Composition of Quadratic Invariants. The underlying relations were
found by Rodrigues [16]. They can be verified from the relations obtained in eqs. (4)
and eqs. (5), namely,

= - q A . qB

I~ = (]0(qBl~ A Jr- qoAq B "-F- qA X qB)

The computational costs involved are included in Section A.4.
The operation counts of the above methods for one and five products are reported

in Table 1. Moreover, the CPU times to calculate the linear and quadratic invariants
for five products are observed on an IRIS 4D/21OVGX workstation. The results are
summarized in the same table.

3. Inverse Kinematics

Inverse Kinematics refers to the calculation of joint angles, given the position and
orientation of the gripper. Three numerical procedures will be analyzed. All pro-
cedures use vector invariants, namely linear, quadratic and natural invariants. The
first two employ the Newton-Gauss method, while the third method employs the
iterative scheme first proposed by Pieper [2].

3.1. LINEAR INVARIANTS

Here, the vector function is seven-dimensional, consisting of the differences between
the current and the prescribed position and orientation values. The first four entries
of this vector are the linear invariants, whereas the remaining three represent the
position vector. The prescribed data set consists of a 3D position vector px, and a
rotation matrix Qg. Furthermore, to start the Newton-Gauss scheme, an initial
guess of joint variables must be chosen.

The problem then is formulated as

rain II f(O)ll 2 (10)
0

without constraints, where

• [2[vect(Q) - vect(Qg)] l

f(O) = / tr(Q) - tr(Qg) .

L P - Pg

The first four components of vector f are nonlinearly dependent; in the absence
of singularities, we have six independent equations. The factor 2 multiplying
the first three entries is used to eliminate divisions by 2, thus saving time in
computations.

In order to solve problem (10), the gradient of f(0) with respect to the joint
variables has to be calculated. As derived in [6] for a six-axis manipulator, this

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS] 1

gradient can be expressed as

Of(O)
J(0)_= o ~ - H K '

where the 7 x 6 matrix H arises from the formulation of the orientation equations,
while K, a 6 x 6 matrix, is that commonly known as the Jacobian matrix and first
derived by Whitney [18]. Thus, K maps the joint rates into angular and translational
velocity and takes on the form

[e 1 e~ e6]
K - - . (11)

e 1 × r 1 e2 × r 2 e6 × r 6

As derived in [6], H is given in turn as

1 tr(Q) - Q O

H-= -2veer(Q) r 0 r ,

O 1

where {e/}~ are the unit vectors parallel to the axes of the joints, and {ri}~ are the
vectors directed from point Oi to point P of the EE as shown in Figure 1. More-
over, 0 and O denote the 3-dimensional zero vector and the 3 x 3 zero matrix, while
1 denotes the 3 x 3 identity matrix.

From its series expansion, a first-order approximation of function f(0), evaluated
at the current value of 0 allows the computation of zX0 from JA0 = - f .

Depending on the chosen initial guess, the above method yields different solutions
upon convergence. As proven b y Lee and Liang [5], up to 16 solutions are to be
expected. The solution obtained will be a local minimum of the problem in eq.
(10) that verifies the normality condition j r f = 0.

3.2. QUADRATIC INVARIANTS (EULER--RODRIGUES PARAMETERS)

With this rotation representation, the formulation of the problem is similar to the
one with the linear invariants. Now the quadratic invariants are required to match
their prescribed counterparts. Thus, the problem is

min II f(0)]l 2
0

without constraints, where

[2[vect(x/~) - vec t (v~g)]

f(O)-- [t r (v ~) - t r (v ~ g)

[. P -- pg .~

As shown in [15], the gradient of f(0) is now calculated by making use of the relation
below:

o,/-q
- Ei v/-Q

00i

12

where E i is the cross-product matrix of vector ei, i.e.,

Ei : O(e i × v)
0v

for every v. Hence,

0 vect(v/-Q) _ vect(Ei x / ~) = l[tr(v/-Q) 1 - v/Q] ei
O0 i

0 t r (v ~) _ tr(Ei v/-Q) = -2[vect(v/Q)] Tei,
00¢

MURAT TANDIRCI ET AL.

where 1 denotes the 3 x 3 identity matrix. Therefore, the Jacobian matrix can now be
factored as,

j' =- HIK,

where H ' is the 7 x 6 matrix given below

! l t r (v ~) - x/-Q) O]

H ' = - 2 vec t (v~) r

O

with 0 ,0 and 1 already defined in Subsection 3.1 while K is the Jacobian as defined
by Whitney [18]. The solution is obtained using the Newton-Gauss procedure.

3.3. NATURAL INVARIANTS

This method is different from the above two methods because it does not need any
auxiliary matrix, such as H or H' , in its Jacobian. Instead, the Jacobian used is
simply K, defined in Eq. (11). The objective here is twofold: First, we wish to
minimize the difference between the current and the prescribed rotation matrices,
Q and Qg. Secondly, we wish to minimize the difference between the current and
prescribed position vectors of the EE, which are denoted below by Ap and Apg.
The velocity Jacobian relates the incremental joint angles to the vector of the
difference in poses, namely [2],

K(0)A0 = [sin AqSu] (12)
L A p]

where the unit vector u and the scalar A¢6 express the difference between the current
and prescribed orientations, Q and Qg. Thus, frame cg is carried into f¢ by a rotation
about an axis parallel to the unit vector u through an angle Aq~, which were termed
the natural invarhmts [13] of the rotation involved. The prescribed pose is given as the
N-frame, the actual or current configuration as the cg-frame, and the base frame as
the ~-f rame, as shown in Figure 2. The rotation carrying ~ into f¢, here denoted as
AR, is first calculated in the cg frame and then transformed into base coordinates
using an orthogonal t ransformation carrying ~- into cg, and denoted as Q,

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS 13

Fig. 2. General 6-axis manipulator at the current c~ and prescribed f¢ configurations.

namely, QAR = Qg. Hence, [AR]~ = QTQg, i.e., zXR in the .~ frame is given as

[AR]~ = Q[AR]~QT = QgQT.

The product sin A~bu is then read.ily calculated from AR as

sin A~bu = vect(AR)

Once the right-hand side of the algebraic system of Eq. (12) is determined, the
solution A0 can be obtained using the LU-decomposition [19]. The new vector of
joint variables is then obtained as 01 = 0 ° + A0 and, at the next iteration, 01 is

used to compute the said right-hand side vector, as well as the Jacobian K. The

procedure continues until A0 becomes smaller than a specified tolerance.

3.4. COMPARISONS AMONG INVERSE KINEMATICS METHODS

When computing inverse kinematics solutions, it is necessary to converge to a solu-
tion quickly. Thus, we base our comparisons between three methods on three items,
namely,

• speed in calculation of the function f(0) and of its Jacobian matrix;
• condition number of the Jacobian, indicating the numerical conditioning of the

problem formulation;
• overall performance of the numerical procedure based on the number of

iterations needed to converge both close to a solution and away from it.

14 MURAT TANDIRCI ET AL.

3.4.1. Time Complexity in the Formulation of the Kinematic Model

The formulation of the positioning equations is identical in all methods compared.

The position vector rl is available upon calculation of the Jacobian K. Thus, only
3 subtractions are needed for the difference vector between the prescribed and
current positions.

From the final rotation matrix product, which is calculated in Section A.1 with

117M and 60A, the vector 2q and the trace can be extracted in 5A. Furthermore,

7A are needed to find the difference with the prescribed pose expressions. Thus,
the computation of f(0) requires 117M and 72A in the case of linear invariants.

As shown in Section 2.1, the quadratic invariants 2q and 00 can be computed
with 1 S + 1D -4- 122M+ 66A, while the trace can be computed from q0 in 1 M + 1A.
In the case of quadratic invariants, the computation of f(0) requires 1S + 1D +

123M + 74A.
In the case of the method based on the natural invariants, we have first the relation

[AR].~ = QgQr, which requires 24M and 12A, using a matrix-product scheme
similar to the one outlined in Section A.1. Furthermore, vect(AR) requires 3M

and 3A, and thus, the derivation of the left-hand-side vector requires 144M and
78A. Table II shows the operations needed to calculate the orientation equations

with all three methods.

3.4.2. Time Complexity in the Formulation of the Linear Algebraic System

The Jacobian K is needed in all three formulations. The computational cost of the

velocity Jacobian is calculated in Section A.5 as 12T, 81M and 49A, where T
denotes trigonometric operations such as sine and cosine. The current position

vector r 1 is readily available from the computation of K. The computation of the
Jacobians of the methods based on the invariant vectors requires deviations of the
auxiliary matrices and their products with K. With linear invariants, the first three
rows of K are multiplied by a 4 × 3 matrix L, defined as

l t r (Q) - Q]

L = _ 2 v e c t (Q) r] .

Moreover, the Jacobian expression can be written as,

[[1 tr(Q) - Q]A]
J= [LA] = [-2[vec Q)]rA 1,

Table II. Computational cost of the vector function.

Linear inv. Quadratic inv. Natural inv.

Operations 117M + 72A 1S + 1D + 123M + 74A 144M + 78A

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS

Table III. Computation of Jacobian J and vector function f.

15

Method Operation count CPU times (#sec)

Linear lnvariants 12T 270M 172A 325.0
Quadratic Invariants 1S 12T 2D 291M 184A 345.0
Natural Invariants 12T 225M 127A 310.0

where A and B denote, respectively, the upper and the lower 3 x 6 parts of K, as

given by Eq. (11).
It is noted that Q, tr(Q) and 2q are available from the derivation of the

function f(0). Hence, the construction of L takes 3A for the upper three rows and
no operations for the fourth row. The product of L with A requires in turn 72M and
48A. Thus, an additional 72M and 51A are needed for J, once K is derived.

In the case of the quadratic invariants, t r (v ~) , 2,] and 00 are available from the
derivation of f(0), and v/-Q can be computed from the quadratic invariants q and c)0
in 1D + 12M+ 10A, as shown in Section A.6, whereas q is derived from 2q in 3M.

Furthermore, j / i s calculated sinfilar to the above case with 72M and 51A.
On the other hand, using the natural invariants, the Jacobian is K itself, and Ilo

additional operations are needed. The number of operations and the observed

CPU times needed to compute J and f are reported in Table III.
From Table III it is apparent that all three methods are comparable for the

evaluation of J(0) and f(0). However, there is one more consideration: In the case
of natural invariants, the Jacobian is of 6 x 6, and the LU-decomposition is used
to solve the system of equations. The other two methods involve a 7 x 6 Jacobian
matrix, and use Householder Reflections [20]. Because the array size is smaller

and because the LU-decomposition is computationally less expensive than House-
holder reflections, in comparison with the other two, the third method is expected

to be even less time consuming. In Table IV, the total CPU times observed for the
derivation of the same solution are reported.

3.4.3. Comparison of the Condition Numbers of the Jacobians

The major disadvantage of the linear invariants is that the underlying Jacobian
becomes singular when the angle of rotation ~ is 7r. This type of singularity is known
as Jormulation or algebraic singularity, since it arises only because of the way the
rotation equations are formulated. The first three rows of matrix L defined above

will be linearly dependent for 4~ = 7r, and ~ = 4-7r/2. However, the overall matrix

Table IV. Overall CPU times per iteration.

Linear inv. Quadratic inv. Natural inv.

CPU times (#sec) 835.0 850.0 747.5

16 MURAT TANDIRCI ET AL.

L is of full rank for q5 = --ir/2, as shown in [15]. If L is rank-deficient, then the
matrix factor H will also be rank-deficient. The product of a rank-deficient matrix
with any other matrix being also rank-deficient, J will be in turn rank-deficient,
and a solution cannot be obtained with the underlying numerical procedure.

At q~ = ~r, the matrix M, defined as

M = l t r (Q) - Q

becomes

M(rc) = -2uu r

which is a rank-one matrix, and vect(Q) vanishes by virtue of its symmetry. As
shown in [15], the condition number of L takes on the form,

2
~ (L) - 1 + c o s

from which the singularity at q5 = 7r can be verified.
Unlike the linear invariants, in the case of quadratic invariants, the matrix M '

defined below

M ' = 1 t r (v ~) -

remains of full rank for all possible values of the angle of rotation ~ [15]. Therefore,
the matrix L/, defined as

L ' = [l t r (v ~) - v ~ 1

L - 2 vect(x/-Q) T J

is always of full rank and the quadratic invariants do not lead to formulation

singularities.
In the case of the natural invariants, formulation singularities do not exist, since

the Jacobian K does not appear multiplied by any other matrix.
In order to assess the conditioning of the numerical schemes for inverse kinematics

associated with each of the three rotation representations, experiments were done
using closed path tracking applications with 100 data points. The said points are
obtained on the intersection of two cylinders. Furthermore, Frenet-Serret frames

2

are used [21] to specify the orientation of the EE. The maximum condition numbers
encountered along the above paths are shown in Table V.

Table V. Condition number frequencies.

Range of nmax Linear inv. Quadratic inv. Natural inv.

/~max ~ 10 0 18 0

10 < t~ma x ~ 20 50 73 29

20 < t';ma x ~ 100 33 8 71

100 < ~rnax ~ 1000 16 1 0

e;ma x > 1000 1 0 0

R O T A T I O N REPRESE NT AT IONS IN C O M P U T A T I O N A L ROBOT K I N E M A T I C S

Table VI. Convergence speed in the vicinity of the solution.

17

Linear inv. Quadratic inv. Natural inv.

Total CPU (msec) 340.0 2500.0 290.0

From Table V it is observed that the quadratic invariants allow more occurrences
of lower condition numbers in the 100 points traced, whereas the linear invariants
lead to high condition numbers in a large number of data points. Moreover, in
this example, the natural invariants never lead to condition numbers higher than 100.

3.4.4. Comparison on the Basis of Convergence Speed

Since all three methods are based on approximations, convergence properties cannot
be predicted theoretically. The first two methods rely on the series expansion of the
function frO) and employ the Newton-Gauss method. The third formulation is
derived from the relations between joint rates and Cartesian velocities.

Convergence in the Neighbourhood of a Solution. Experiments were made in order to
investigate the convergence properties of the algorithms studied. The foregoing set of
data points are approached in the neighborhood of the solution, such that [[f]l < 1.0
at the initial guess, the convergence speeds thus obtained being summarized in Table
VII. Furthermore, total times spent to traverse the above three paths are measured
on an IRIS 4D/21OVGX workstation. These times are reported in Table VI. From
Table VII it is observed that the natural invariants always converge in less than
five iterations. Similarly, the linear invariants also converge very quickly, whereas
the quadratic invariants converge much more slowly in the vicinity of the solution.

Convergence Away From the Solution. The above observations are valid if the initial
guess is in the vicinity of the solution. Now observations are made when the initial
guess lies far away from the prescribed set of data points. Five arbitrarv sob~'tion
points are selected, and two quantities are observed: (i) n, the number of iterations
till convergence is reached, (ii) Nmax, the maximum conOtion number encountered.
The results of this observation are displayed in Table -, ~1i, which shows a clear
correlation between ~max and n.

Table VII. Number of iterations to convergence.

Iterations: n Linear inv. Quadratic inv. Natural inv.

n ~< 5 93 0 100
5 < n ~ < 1 0 7 0 0
10 < n ~< 20 0 32 0
20 < n ~< 40 0 65 0
n > 100 0 3 0

18 MURAT TANDIRCI ET AL.

Table VIII. Convergence speed and conditioning away from the solution.

Linear inv. Quadratic inv. Natural inv.

Test n Nmax t'/ Nrnax ft /'Zma x

1 7 26.0 21 14.0 7 39.0
2 5 9.0 19 8.0 5 14.0
3 19 60316.0 28 3407.0 26 607.0
4 5 10.0 21 10.0 5 15.0
5 4 9.0 20 8.0 4 14.0

4. Concluding Remarks

The forward kinematics problem has been solved using two different rotation

representations in terms of invariants, which allow the implementation of rotation

calculations with four scalar quantities and vector operations only. On the other
hand, rotation calculations based on matrices require nine entries and involve

matrix products. Although invariants are more elegant, they lead to more time-
consuming algorithms, as shown in the computational complexity analysis. In

on-line robot kinematics, it is always preferable to minimize the overhead in orienta-
tion calculations. In fact, at each iteration of the numerical procedure, the invariants
have to be recalculated. Because of the significant time advantage, matrix calcula-
tions are recommended over invariant calculations for calculations pertaining to

forward kinematics.
The inverse kinematics problem was solved here using three different sets of

invariants. Although linear invariants are computationally less time consuming,

they have the disadvantage of causing numerical instabilities in the Jacobian when
the angle of rotation is close to 7r. On the other hand, quadratic invariants arc

well defined for all rotation angles and never admit formulation singularities, but

their convergence rate is much slower than that of linear invariants. The third set
of invariants studied here, which we call the natural invariants, consists of the
unit vector parallel to the axis of rotation and the angle of rotation. Using the
natural invariants, the associated Jacobian takes on a much simpler form than in
the previous cases, thus reducing the overhead in the set-up time of the linear

algebraic system. Secondly, because this Jacobian is square, in fact of 6 x 6, a faster
solution technique can be employed, such as LU-decomposition. Moreover, the
Jacobian used relates the joint rates and joint accelerations to the twist vector and
to its time derivative, which allows not only for displacement, but also for velocity
and acceleration inverse kinematics using the same Jacobian. One more advantage
of the natural invariants is that they do not entail formulation singularities, the
stability of the numerical procedure thus being dependent only on the configuration
of the manipulator. Because of both time and stability advantages, the natural
invariants are preferred in the implementation of inverse kinematics.

Further improvements in this research area should address the handling of

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS 19

kinematic singularities during the numerical iterations of the displacement inverse
kinematics. Although any of the above three inverse kinematics methods would
come out of a singularity due to the robustness of the Newton-type methods used,
a branch switching is very likely to occur. Definitely, a branch switching has to be
avoided in on-line applications, for they lead to jump discontinuities in velocities
and infinite discontinuities in accelerations.

A p p e n d i x

A.I. PRODUCT OF THE ROTATION MATRICES

Given the rotation matrices Q1, Q2, .~. , Q6 for a six-axes manipulator, the computa-
tional cost of the first product of those matrices is calculated below, an asterisk
indicating a nonzero entry, while M and A denote multiplications and additions,
respectively,

Ei ilr**!] r2 +lA3 +2A3 +2Ai • • => [2 M + I A 3 M + 2 A 3 M + 2 A = > 2 1 M + I 2 A .
• _ [0 * [_ 1M 2 M + I A 2 M + i A

Therefore, the above product requires 2 I M and 12A, each of the remaining four
products requiring three additional multiplications which thus leads to 96M and
48A. Hence, the computation of Q requires l17M and 60A.

A.2. VECTOR COMPOSITION OF LINEAR INVARIANTS

Using vector calculations, the computational cost in the derivation of the linear
invariants of the first product QIQ2 is determined below in terms of the number
of multiplications and additions required.

q~l) t r (Q 1) - 1
- 2 I M + 3A,

q~2i t r (Q 2) - 1
- 2 IM+ 3A,

q(I) = vect(Q~) 3M + 2A,

q(2) = vect(Q2) 3M + 2A,

(1 + q 2/t4'/ 3M+ IA,

(1 + q~l/)q/:/ 3M+ 1A,
q(1) x q(2) 6 M + 3A,

D ~ (1 + q~l))(1 + q~2)) 1M,

D - q(l), q(2) 3M + 3A,

1 1
- - - 1D + 1M,

2D D + D
n ~ (D - q('). q(2))[(1 + q~2))q(,) + (1 + q~l))q(2) + q(1) × q(2)] 3M + 6A,

20 MURAT TANDIRCI ET AL.

n

q-=2D

Thus, calculating q takes 1 more multiplication for a total of 1 division, 29 multipli-
cations and 24 additions. To find the trace, one further needs to compute N:

(1) (2), N' - (q~l) + q~Z) + qo qo) 1M+2A,

1112 ~- (11(1). 11(2))(11(1), 1t(2) _ 2D) 1M + 1A,

DN' 1M.

N = DN' + q12.

Thus, N takes 3 more multiplications and 4 more additions after the derivation of 11.
Finally,

N - D
q o - 2D '

Thus, q0 will take 1 more multiplication and 1 more addition for a total of
1D + 33M + 29A for the computation of the linear invariants of the first product
with the proposed method.

To compute the linear invariants of the matrix representing the orientation of the
EE, four more products are required. For subsequent products PiQi+2 , for
i = 1, . . . , 4, the linear invariants of the first rotation matrix in the product is known
from the previous step, and this will save 4M + 5A. Therefore, the total cost with the
proposed algorithm will be:

(1D + 33M+ 29A)÷4[(1D + 33M+ 2 9 A) - (4 M ÷ 5A)] = 5D + 149M+ 125A

A.3. QUADRATIC INVARIANTS FROM THE COMPOSITION OF LINEAR INVARIANTS

The proposed method of vector calculations can be extended to derive the quadratic

invariants, namely,

1 ~ + N qo
O0 = ~ z) q - - - n.

' N + D

The computation of q0 requires 1S + 1D + 1M + 1A, and that of ,~ requires an
additional 1D + 3M. It is also recalled that the derivation of n, N and D requires
1D + 31M÷ 28A, which is 2M and 1A less than the derivation of q and q0. Thus,
the total cost for deriving the quadratic invariants for the first product is

1S÷ 3D + 35M÷ 29A.

Furthermore, the derivation of n, N and D for the aforementioned orientation
matrix requires 5D + 147M + 124A, which is again 2M and 1A less than the number
of operations required by the linear invariants of the final product. Thus, the total
cost for deriving the quadratic invariants of the final product is

1S+ 7D + 151M÷ 125A.

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS 2 l

A.4. VECTOR COMPOSITIONS OF QUADRATIC INVARIANTS

The quadratic invariants of the end product of two rotation matrices can be derived

from the quadratic invariants of the individual matrices, namely,

qO (̂i) ̂(2) _ i~(I), i~(2)
= q0 q0

I~ = q0(q~2)t] (1) -~- q~l>q(2> + 1~(1) X q(2)).

The derivation of q0 requires 4M and 3A, while q requires 15M and 9A. Further-

more, the derivation of each set of quadratic invariants requires 1S + 1D + 5M + 6A.

Thus, the total cost for the first product is 2S + 2D + 29M + 24A.

For the five products we then have

(2S + 2D + 29M + 24A) + 4[(1S + 1D + 5M + 6A) + (19M + 12A)],

which gives a total of 6S + 6D + 125M + 96A.

A.5. COMPUTATIONAL COST OF THE JACOBIAN K

Assuming that the product matrices expressing the orientation of the EE in each

frame are known, we proceed to calculate the Jacobian K defined in Eq. (11).

Since the product of a rotation matrix with the vector [0, 0, 11 r amounts to the

third column of that matrix, this product does not require any operation, and the

unit vectors ei, for i = 1 , . . . , 6, are calculated at no cost. The computat ion of ri,

for i = 1 , . . . , 6, is discussed next. Since we have

r 6 ~-- a 6

For i=5 to 1 do

ri +-- a i + Qiri+i

e n d d o

we first need to calculate a i for i = 1,.. .~ 6, defined as,

ic°sOiai]
ai =- [sin Oi ai |

L b; J

each of which requires 2 T + 2M, for a total of i 2T and 12M. Next, r 6 does not

require any operation but r i +-- a i + Qiri+ 1 requires 8M + 7A each, for a total of
40M and 35A for the remaining five vectors.

Thus, the calculation of ri, for i = 1 , . . . , 6, requires 12T, 52M and 35A.

To calculate [ei x rill, for i = 1 , . . . , 6, we proceed as follows. First we have

× ry =
1 r z

22 M U R A T TANDIRCI ET AL.

and, hence, the cross products do not require any operation. However, to compute

[e 2 × r2] 1 we have,

[e 2 × r2] 1 = Ql[e2 × r2] 2 ---+ , , ~ 2 M + 1A

• , 1M

and for [ei x ri]l, for i = 3 , . . . , 6, we have

• ~ 2 M + 1A

• 2 M + 1A

thereby totalling 5M + 2A + 4[(6M + 3A)] = 29M + 14A. Therefore, for the compu-

tation of the velocity Jacobian we add the cost of ri, for i - 1 , . . . , 6, and that of

[ei x rilt, for i = 1 , . . . ,6, which yields a total of 1 2 T + 8 1 M + 4 9 A .

A.6. ROTATION MATRIX FROM THE QUADRATIC INVARIANTS

The rotation matrix x/-Q can be computed from the quadratic invariants as

1
001 + 1--T 0 qq +R

where [i is the cross-product matrix of q. The individual entries of the above matrix

can be expressed with the aid of the auxiliary variables c, u, v, w, x, y, z as

The

1D + 1A,
1

C - - - -

1 +00
b/ = C0102 2M,

V = C0103 2M,

W = C0203 2 M ,

x = ¢0101 2M,

Y = ¢0202 2M,

z = c0303 2 M ,

so that

011 = 0 0 -~-X 1A,

012 = u - 03 1A,

013 = v + q2 1A,

021 = u + 0 3 1A,

022 = q0 @ Y

6)23 = W -- 01

031 = b/ - - q2

032 = W @ 01

q33 = q0 -}-Z

total cost for the

1A,

1A,

1A,

1A,

1A.

above calculations thus being 1D + 12M + 10A.

ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS 23

Acknowledgements

The research work reported here was made possible under NSERC (Naturai
Sciences and Engineering Research Council of Canada) Research Grants A4532,
STR0100971 and EQP00-92729. The partial support of IRIS (Institute for Robotics
and Intelligent Systems) is highly acknowledged.

References

1. Tandirci, M., Angeles, J. and Darcovich, J., The role of rotation representations in computational
robot kinematics, Proc. 1992 IEEE Int. Conf. Robotics and Automation, Nice, May 12-14, 1992,
pp. 344-349.

2. Pieper, D. L., The kinematics of Manipulators Under Computer Control, PhD Thesis, Stanford
University, 1968.

3. Takano, M., A new effective solution to inverse kinematics problem of a robot with any type of
configuration, J. Faculty of Engineering, The University of Tokyo, Vol. B(2), i07 135 (1985).

4. Mavroidis, C. and Roth, B., Manipulators with simple inverse kinematics, Proc. Ninth CISM-
IFToMM Symposium on Theory attd Practice of Robots and Manipulators Romansy 9, Udine, 1-4
September 1992.

5. Lee, H.-Y. and Liang, C.-G., Displacement analysis of the general spatial 7-1ink 7R mechanism,
Mechanism and Machine Theory 23(3), 219-226 (1988).

6. Raghavan, M. and Roth, B., Kinematic analysis of the 6R manipulator of general geometry, in
H. Miura and S. Arimoto (eds), Proc. 5th Int. Sympos. Rob. Res., MIT Press Cambridge, Mass, 1990,
pp. 263-269.

7. Angeles, J., On the numerical solution of the inverse kinematics problem, Int. J. Robotics Res. 2,
21-36 (1985).

8. Goldenberg, A. A., Benhabib, B. and Fenton, R. G., A complete generalized solutions to the inverse
kinematics, of robots, IEEE J. Robotics Automat. RA-1, 14 20 (1985).

9. Ysai, L. W. and Morgan, A. P., Solving the kinematics of the most general six and five-degree-of-
freedom manipulators by continuation methods', ASME J. Mech. Transmissions Automat. Design
107(2), lg9 200 (1985).

10. Eppinger, M. and Kreuzer, E., Evaluation of methods for solving the inverse kinematics of
manipulators, Meerestechnik II - Strukturmechanik Technical report, Technische Universit~it
Hamburg, Hamburg (1990).

11. Hartenberg, R. S. and Denavit, J , Kinematic Synthesis of Linkages, McGraw-Hill, New York (1964)~
t2. Funda, J. and Paul, R. P., A computational analysis of screw transformations in robotics, IEEE

Trans. Robot. Automat. 6(3), 348-356 (1989).
13. Angeles, J., Rational Kinematics, Springer-Verlag, New York (1988).
14. Cheng, H. and Gupta, K. C., An historical note on finite rotations, ASMEJ. Appl. Mech. 56, 139-t42

(1989).
15. Angeles, J., Die theoretischen Grundlagen zur Behandlung algebraischer Singularit/iten der

kinematischen Koordinatetenumkehr in der Robotertechnik, Mech. Mach. Theory 26(3), 315-322
(1991).

16. Rodrigues, O., Des lois g6om&riques qui r6gissent les ddplacements d'un syst6me solide dans l'espace,
et la variation des coordonn&s provenant de ces d6placements consid6r6s ind6pendamment des causes
qui peuvent les produire. J. Math. Pures Appl. 5, 380-440 (1840).

!7. Tandirci, M., Contributions to on-line robot kinematics, MEng Thesis, Dept of Mechanical
Engineering, McGilt University, Montreal (1991).

18. Whitney, D. E., The mathematics of coordinated control of prosthetic arms and manipulators, A S M E
J. Dyn. Sys. Meas. Contr. 94(14), 303 309 (1972).

19. Press, W. H., Flannery, B. P., Tenkolsky, S. A. and Vetterling, W. T., Numerical Recipes in C,
Cambridge University Press, Cambridge (1988).

