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Abstract. Various methods of implementing forward and inverse kinematics of six-axes industrial robots 
are analyzed in this paper from the viewpoint of numerical conditioning and convergence speed both close 
to a solution and away from it. Computational complexities are derived in terms of the number of arith- 
metic operations and comparisons are made by observing the actual CPU time consumption. The formu- 
lations presented make use of different sets of invariants describing the orientation of the gripper. It is 
shown that, in inverse kinematics, there is a tradeoff between numerical stability and computational speed. 
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1. Introduction 

This paper is confined to the kinematics of  open-chain manipulators  consisting o f  six 

revolute joints, a short  account  o f  which is given in [1]. Moreover ,  we discuss inverse 

kinematics only in the most  general case, when no closed-form solution is possible. 

As shown in [2], only a special class o f  manipula tor  architectures lends itself to 

closed-form solutions as a set o f  cascaded quadrat ic  equations or, as shown in [3], 

in the fo rm of  a quarat ic  equat ion cascaded with a quadrat ic  equation. Moreover ,  

Mavroidis  and Ro th  [4] have produced a comprehensive list of  solvable 

manipula tors  that  they call manipulators with simple inverse kinematics.  Since 

quart ic equat ions admit  closed-form solutions, we will call manipulators  leading 

to such a type o f  equat ions solvable. As Lee and Liang [5] showed, the most  general 

case o f  6-axes manipula tor  leads to a 16th-degree polynomial  equation, whose roots  

can be computed  only numerically. Raghavan  and R o t h  [6] proposed a procedure  to 

derive the underlying 16th-order polynomial .  Mos t  industrial manipulators  are bo th  

orthogonal and decoupled. Here, o r thogona l  means that  their consecutive axes make 

angles that  are multiples o f  90°; decoupled means that  their last three axes are con- 
current. These features allow a decoupling o f  the posit ioning and orientat ion tasks, 

which leads to either quadrat ic  or quart ic equations,  at most. While many  industrial 

manipula tors  are designed with an or thogona l  and decoupled architecture, in some 

* An abridged version of this paper was presented in the 1992 IEEE International Conference on 
Robotics and Automation, 1992 [1]. 
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cases, when high-accuracy is required, a calibration is warranted. Moreover, after 
calibration, the underlying robotic architecture is no longer orthogonal and, cer- 
tainly, neither decoupled. Hence, the inverse kinematics of calibrated industrial 
robots, even if nominally orthogonal and decoupled, calls for a numerical solu- 
tion, which is the motivation behind this work. Furthermore, when solving the 
inverse kinematics of a robot iteratively, as proposed in [3, 7-9], a fast convergence., 
to an accurate solution allows for robot simulation and control in real time. For 
example, in an interactive computer animation program, the end-effector (EE) of 
the robot can be made to follow a specified trajectory using a graphical input, and 
the motion resulting from the change of joint variables can be observed immedi.- 
ately. Moreover, quick inverse kinematics results are needed in telerobotics appli.- 
cations, where the operator may describe ongoing tasks based on the actual 
surroundings. Similarly, robots equipped with vision systems determine their tasks 
based on the information they gather about their environment; in such cases, quick 
and accurate inverse kinematics results are needed to perform the upcoming tasks. 

In this paper, methods based on numerical procedures are discussed. Below, a 
brief comparison among the numerical and closed-form solutions, when the latter 
are possible at all, is given. 

In on-line applications and path tracking, iterative procedures are attractive 
because the next solution is close to the current one. Thus, the current solution 
can be used as an initial guess, thereby allowing a quick convergence in a few 
iterations. Furthermore, in path tracking, only one solution is needed, and the 
iterative procedures do not spend extra time calculating the remaining solutions. 

The disadvantage of the numerical procedures is that they do not provide informa- 
tion about the remaining solutions, if they are needed. Moreover, for the first point 
on a given path, an initial guess has to be supplied, which might lead unpredictably 
to divergence, although the occurrence of the latter can be avoided with the use of 
continuation [7, 9]. 

For special manipulator architectures that lend themselves to a closed-form 
solution, it is preferable to use the algebraic approach, since solutions can be 
obtained faster [10]. Moreover, unlike numerical procedures, direct methods allow 
the computation of solutions in a predetermined amount of time. 

2. Forward Kinematics 

Forward Kinematics refers to the calculation of the orientation and position of the 
EE given the joint angles. The well-known Hartenberg and Denavit notation [11] 
is used throughout. 

For a general six-axis manipulator, the orientation of the EE in the base frame: is 
expressed as the product of six rotation matrices, namely, 

Q = Q1Q2Q3Q4QsQ6, (1) 

where Qi = [Qi]i denotes a rotation matrix expressing the orientation of the (i + 1)st 
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frame with respect to the ith frame, in ith-frame coordinates. Because the product 

matrix is orthogonal, only three out of its nine entries are independent. Different 

methods can be employed to represent a rotation, as discussed in [12]. Here, we 
use three different sets of invariants of  the rotation matrix to express the said orien- 
tation equations [13]. These quantities are preferred over Euler angles because they 

'are invariant under a change of coordinate frame. 

Furthermore, three sets of invariants are analyzed, the first being linearly related 
to the rotation matrix, the second being linearly related to the square root of the said 
matrix. The first set is thus known as the linear invariants, whereas the second is 

known as the Euler parameters or, as suggested by Cheng and Gupta [14], the 

Euler-Rodrigues parameters. The third set is called in [13] the natural invariants, 
while, in the same reference, the Euler-Rodrigues parameters are also called the 

quadratic invariants. The linear invariants are defined from the vector and the 
trace of the rotation matrix as [13] 

t r ( Q ) -  1 
q0 - 2 - cos 6, q = vect(Q) = sin ¢~u, (2) 

where u is the unit vector parallel to the axis of rotation, and e is the angle of rota- 

tion about this axis. Both u and q5 are the natural invariants of Q The quadratic 
invariants are defined in turn as [15] 

q0 - tr(v/Q)2 - 1 = cos ~,6 q = vect(v/Q) = sin ~b u, (3) 

where x/-O denotes the proper orthogonal square root of Q. Furthermore, the first 
two sets of invariants are related as follows: 

if/1 + qo V ~  + qo) _ q0 O0 2 ' q =  q 2 (1+q0)  ( l + q 0 )  q" (4) 

From the above relations, we have: 

• a square root operation is always necessary to compute the quadratic invariants; 
o the vector of linear invariants vanishes when the rotation angle is 7r, an 

undesirable result; 

• the quadratic invariants are welt defined for all rotation angles; 
° physically, the proper orthogonal v/-Q represents a rotation about the axis of 

rotation of Q through an angle of half that of Q. 

The EE position is readily derived, as indicated below, when the rotation matrices 
expressing the orientation of the EE in all frames are available. 

r 6 ~-- 116 

For i=5 to i do 

r i +--- ai q- Qiri+ 1 

e n d d o  
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where ai is the vector directed from Oi to 0i+1, expressed in the ith frame, whereas ri 
is the vector directed from Oi to point P of the EE, expressed in the ith frame, r 1 thus 
describing the desired EE position in the base frame (Figure 1). 

2.1. DERIVATION OF THE INVARIANTS OF A PRODUCT OF ROTATIONS 

Rodrigues [16] obtained the normalized quadratic invariants, also known as the 
Rodrigues parameters, of two concatenated rotations as functions of individual 
quadratic invariants of the said rotations. The three Rodrigues parameters are nor- 
realized Euler parameters in that the former are obtained by dividing the vector 
quadratic invariant q by the scalar quadratic invariant 00. Moreover, as shown in 
Section A.2 of the Appendix, it is also possible to derive an expression for the linear 
invariants of the concatenated rotations from the individual linear invariants. An 
alternative approach is to actually multiply rotation matrices and derive the 
invariants of the product. Below, different methods are presented and their compu- 
tational complexities are analyzed. A summary of computational costs is shown in 
Table I. Henceforth, A, M, D and S denote additions, multiplications, divisions 
and square roots, respectively. 

Linear Invariants 
Method 1: Matrix Multiplications. As shown in Section A. 1, the cost of deriving the 
product of six rotation matrices is 117M and 60A. The vector product requires 6214 
and 3A, rotation while the scalar product 3M and 2A. 

P 

0 r 
6 

Z8 

Z 5 

Fig. 1. General 6-axis manipulator. 
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Table 1. Operations needed to calculate the invariants. 

Vector method Matrix method 

Linear inv. Quadratic inv. (2) Quadratic inv. (3) Linear inv. Quadratic inv. (1) 

lx 1D + 33M 1S+3D+35M 2S+2D+29M 25M+ 18A 1S+lD+25M 
+ 29A + 29A + 24A + 18A 

5x 5D+149M 1S+7D+151M 6S+6D+I25M 121M+66A IS+lD+122M 
+ 125A + 125A +96A +66A 

CPU t37.5 227.5 197.5 77.5 85.0 
(~ see) 

Method 2. Vector Compositions. Let the linear invariants of a rotation matrix A be 
denoted by qA and qA, those of a second rotation matrix B by qB and q(. Moreover, 

the linear invariants of the product AB are denoted by q and q0. Below we include 
expressions for q and q0 in terms of qA, q0 A, qO and q0 B, namely, 

n N - D  
q = ~ ,  q o -  2D ' (5) 

where 

D _= (1 + qA)(l + q0B), (6) 

X = (1 + qA)(1 + qg)(qA + qg + q~qg) + (qA. qB)(qA qB _ 2D), (7) 

n = ( D -  qA.qB)[(1 + qg)qA + (1 + qA)qB +qA × qB]. (8) 

The reader is referred to Section A.2 for the derivation of computational costs 
with this method. 

Quadratic Invariants 
Method 1: Matrix Multiplications. As discussed above, the cost of computing five 

matrix products is 117M and 60A. Using the expressions below, which are derived 
using Eqs. (2) and (4), the calculation of the quadratic invariants from the product 
matrix requires 1S + 1D + 5M + 6A 

 00+1 1 
el° -= ~ '  q = ~ 0  vect(Q). 

Method 2: Vector Composition of Linear [nvariants. The method of calculation of the 

linear invariants using eqs. (5) can be extended to quadratic invariants. When eqs. (5) 
are substituted into eqs. (4), the relations shown below are found [17]: 

1 , /  N 1 x /D(N+D)  Oo 
q o = - 2 v l + ~ ,  q - 2  D(N+D)  n--U+D-- n (9) 

where D, N and n were defined in eqs. (6-8). The computational costs involved are 
included in Section A.3. 
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Method 3: Vector Composition of Quadratic Invariants. The underlying relations were 
found by Rodrigues [16]. They can be verified from the relations obtained in eqs. (4) 
and eqs. (5), namely, 

= - q A .  qB 

I~ = (]0(qBl~ A Jr- qoAq B "-F- qA X qB) 

The computational costs involved are included in Section A.4. 
The operation counts of the above methods for one and five products are reported 

in Table 1. Moreover, the CPU times to calculate the linear and quadratic invariants 
for five products are observed on an IRIS 4D/21OVGX workstation. The results are 
summarized in the same table. 

3. Inverse Kinematics 

Inverse Kinematics refers to the calculation of joint angles, given the position and 
orientation of the gripper. Three numerical procedures will be analyzed. All pro- 
cedures use vector invariants, namely linear, quadratic and natural invariants. The 
first two employ the Newton-Gauss method, while the third method employs the 
iterative scheme first proposed by Pieper [2]. 

3.1. LINEAR INVARIANTS 

Here, the vector function is seven-dimensional, consisting of the differences between 
the current and the prescribed position and orientation values. The first four entries 
of this vector are the linear invariants, whereas the remaining three represent the 
position vector. The prescribed data set consists of a 3D position vector px, and a 
rotation matrix Qg. Furthermore, to start the Newton-Gauss scheme, an initial 
guess of joint variables must be chosen. 

The problem then is formulated as 

rain II f(O)ll 2 (10) 
0 

without constraints, where 

• [ 2[vect(Q) - vect(Qg)] l 

f(O) = / tr(Q) - tr(Qg) . 

L P - Pg 

The first four components of vector f are nonlinearly dependent; in the absence 
of singularities, we have six independent equations. The factor 2 multiplying 
the first three entries is used to eliminate divisions by 2, thus saving time in 
computations. 

In order to solve problem (10), the gradient of f(0) with respect to the joint 
variables has to be calculated. As derived in [6] for a six-axis manipulator, this 
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gradient can be expressed as 

Of(O) 
J(0)_= o ~ - H K '  

where the 7 x 6 matrix H arises from the formulation of the orientation equations, 
while K, a 6 x 6 matrix, is that commonly known as the Jacobian matrix and first 
derived by Whitney [18]. Thus, K maps the joint rates into angular and translational 
velocity and takes on the form 

[ e 1 e~ e6 ] 
K -  - . (11) 

e 1 × r  1 e2 × r  2 e6 × r  6 

As derived in [6], H is given in turn as 

1 tr(Q) - Q O 

H-= -2veer(Q) r 0 r , 

O 1 

where {e/}~ are the unit vectors parallel to the axes of the joints, and {ri}~ are the 
vectors directed from point Oi to point P of the EE as shown in Figure 1. More- 
over, 0 and O denote the 3-dimensional zero vector and the 3 x 3 zero matrix, while 
1 denotes the 3 x 3 identity matrix. 

From its series expansion, a first-order approximation of function f(0), evaluated 
at the current value of 0 allows the computation of zX0 from JA0 = - f .  

Depending on the chosen initial guess, the above method yields different solutions 
upon convergence. As proven b y  Lee and Liang [5], up to 16 solutions are to be 
expected. The solution obtained will be a local minimum of the problem in eq. 
(10) that verifies the normality condition j r f  = 0. 

3.2. QUADRATIC INVARIANTS (EULER--RODRIGUES PARAMETERS) 

With this rotation representation, the formulation of the problem is similar to the 
one with the linear invariants. Now the quadratic invariants are required to match 
their prescribed counterparts. Thus, the problem is 

min II f(0)]l 2 
0 

without constraints, where 

[ 2[vect(x/~) - vec t (v~g)]  

f(O)-- [ t r ( v ~ )  - t r ( v ~ g  ) 

[. P -- pg .~ 

As shown in [15], the gradient of f(0) is now calculated by making use of the relation 
below: 

o,/-q 
- Ei v/-Q 

00i 
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where E i is the cross-product matrix of vector ei, i.e., 

Ei : O(e i × v) 
0v 

for every v. Hence, 

0 vect(v/-Q) _ vect(Ei x / ~ )  = l[tr(v/-Q) 1 - v/Q] ei 
O0 i 

0 t r ( v ~ )  _ tr(Ei v/-Q) = -2[vect(v/Q)] Tei, 
00¢ 

MURAT TANDIRCI ET AL. 

where 1 denotes the 3 x 3 identity matrix. Therefore, the Jacobian matrix can now be 
factored as, 

j' =- HIK, 

where H '  is the 7 x 6 matrix given below 

! l t r ( v ~ )  - x/-Q) O ]  

H '  = - 2  vec t (v~ )  r 

O 

with 0 ,0  and 1 already defined in Subsection 3.1 while K is the Jacobian as defined 
by Whitney [18]. The solution is obtained using the Newton-Gauss procedure. 

3.3. NATURAL INVARIANTS 

This method is different from the above two methods because it does not need any 
auxiliary matrix, such as H or H' ,  in its Jacobian. Instead, the Jacobian used is 
simply K, defined in Eq. (11). The objective here is twofold: First, we wish to 
minimize the difference between the current and the prescribed rotation matrices, 
Q and Qg. Secondly, we wish to minimize the difference between the current and 
prescribed position vectors of the EE, which are denoted below by Ap and Apg. 
The velocity Jacobian relates the incremental joint angles to the vector of the 
difference in poses, namely [2], 

K(0)A0 = [ sin AqSu] (12) 
L A p ]  

where the unit vector u and the scalar A¢6 express the difference between the current 
and prescribed orientations, Q and Qg. Thus, frame cg is carried into f¢ by a rotation 
about an axis parallel to the unit vector u through an angle Aq~, which were termed 
the natural invarhmts [13] of the rotation involved. The prescribed pose is given as the 
N-frame, the actual or current configuration as the cg-frame, and the base frame as 
the ~-f rame,  as shown in Figure 2. The rotation carrying ~ into f¢, here denoted as 
AR, is first calculated in the cg frame and then transformed into base coordinates 
using an orthogonal t ransformation carrying ~- into cg, and denoted as Q, 
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Fig. 2. General 6-axis manipulator at the current c~ and prescribed f¢ configurations. 

namely, QAR = Qg. Hence, [AR]~ = QTQg, i.e., zXR in the .~ frame is given as 

[AR]~ = Q[AR]~QT = QgQT. 

The product sin A~bu is then read.ily calculated from AR as 

sin A~bu = vect(AR) 

Once the right-hand side of the algebraic system of Eq. (12) is determined, the 
solution A0 can be obtained using the LU-decomposition [19]. The new vector of 
joint variables is then obtained as 01 = 0 ° +  A0 and, at the next iteration, 01 is 

used to compute the said right-hand side vector, as well as the Jacobian K. The 

procedure continues until A0 becomes smaller than a specified tolerance. 

3.4. COMPARISONS AMONG INVERSE KINEMATICS METHODS 

When computing inverse kinematics solutions, it is necessary to converge to a solu- 
tion quickly. Thus, we base our comparisons between three methods on three items, 
namely, 

• speed in calculation of the function f(0) and of its Jacobian matrix; 
• condition number of the Jacobian, indicating the numerical conditioning of the 

problem formulation; 
• overall performance of  the numerical procedure based on the number of 

iterations needed to converge both close to a solution and away from it. 
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3.4.1. Time Complexity in the Formulation of the Kinematic Model 

The formulation of the positioning equations is identical in all methods compared. 

The position vector rl is available upon calculation of the Jacobian K. Thus, only 
3 subtractions are needed for the difference vector between the prescribed and 
current positions. 

From the final rotation matrix product, which is calculated in Section A.1 with 

117M and 60A, the vector 2q and the trace can be extracted in 5A. Furthermore, 

7A are needed to find the difference with the prescribed pose expressions. Thus, 
the computation of f(0) requires 117M and 72A in the case of linear invariants. 

As shown in Section 2.1, the quadratic invariants 2q and 00 can  be computed 
with 1 S +  1D -4- 122M+ 66A, while the trace can be computed from q0 in 1 M +  1A. 
In the case of  quadratic invariants, the computation of f(0) requires 1S + 1D + 

123M + 74A. 
In the case of the method based on the natural invariants, we have first the relation 

[AR].~ = QgQr,  which requires 24M and 12A, using a matrix-product scheme 
similar to the one outlined in Section A.1. Furthermore, vect(AR) requires 3M 

and 3A, and thus, the derivation of the left-hand-side vector requires 144M and 
78A. Table II shows the operations needed to calculate the orientation equations 

with all three methods. 

3.4.2. Time Complexity in the Formulation of the Linear Algebraic System 

The Jacobian K is needed in all three formulations. The computational cost of the 

velocity Jacobian is calculated in Section A.5 as 12T, 81M and 49A, where T 
denotes trigonometric operations such as sine and cosine. The current position 

vector r 1 is readily available from the computation of K. The computation of the 
Jacobians of the methods based on the invariant vectors requires deviations of the 
auxiliary matrices and their products with K. With linear invariants, the first three 
rows of K are multiplied by a 4 × 3 matrix L, defined as 

l t r ( Q)  - Q ] 

L = _ 2 v e c t ( Q ) r  ] .  

Moreover, the Jacobian expression can be written as, 

[ [1 tr(Q) - Q]A ] 
J= [LA] = [-2[vec Q)]rA 1, 

Table II. Computational cost of the vector function. 

Linear inv. Quadratic inv. Natural inv. 

Operations 117M + 72A 1S + 1D + 123M + 74A 144M + 78A 



ROTATION REPRESENTATIONS IN COMPUTATIONAL ROBOT KINEMATICS 

Table III. Computation of Jacobian J and vector function f. 
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Method Operation count CPU times (#sec) 

Linear lnvariants 12T 270M 172A 325.0 
Quadratic Invariants 1S 12T 2D 291M 184A 345.0 
Natural Invariants 12T 225M 127A 310.0 

where A and B denote, respectively, the upper and the lower 3 x 6 parts of K, as 

given by Eq. (11). 
It is noted that Q, tr(Q) and 2q are available from the derivation of the 

function f(0). Hence, the construction of L takes 3A for the upper three rows and 
no operations for the fourth row. The product of L with A requires in turn 72M and 
48A. Thus, an additional 72M and 51A are needed for J, once K is derived. 

In the case of the quadratic invariants, t r ( v ~ ) ,  2,] and 00 are available from the 
derivation of f(0), and v/-Q can be computed from the quadratic invariants q and c)0 
in 1D + 12M+ 10A, as shown in Section A.6, whereas q is derived from 2q in 3M. 

Furthermore, j / i s  calculated sinfilar to the above case with 72M and 51A. 
On the other hand, using the natural invariants, the Jacobian is K itself, and Ilo 

additional operations are needed. The number of operations and the observed 

CPU times needed to compute J and f are reported in Table III. 
From Table III it is apparent that all three methods are comparable for the 

evaluation of  J(0) and f(0). However, there is one more consideration: In the case 
of natural invariants, the Jacobian is of 6 x 6, and the LU-decomposition is used 
to solve the system of  equations. The other two methods involve a 7 x 6 Jacobian 
matrix, and use Householder Reflections [20]. Because the array size is smaller 

and because the LU-decomposition is computationally less expensive than House- 
holder reflections, in comparison with the other two, the third method is expected 

to be even less time consuming. In Table IV, the total CPU times observed for the 
derivation of the same solution are reported. 

3.4.3. Comparison of the Condition Numbers of the Jacobians 

The major disadvantage of the linear invariants is that the underlying Jacobian 
becomes singular when the angle of rotation ~ is 7r. This type of singularity is known 
as Jormulation or algebraic singularity, since it arises only because of the way the 
rotation equations are formulated. The first three rows of matrix L defined above 

will be linearly dependent for 4~ = 7r, and ~ = 4-7r/2. However, the overall matrix 

Table IV. Overall CPU times per iteration. 

Linear inv. Quadratic inv. Natural inv. 

CPU times (#sec) 835.0 850.0 747.5 



16 MURAT TANDIRCI ET AL. 

L is of full rank for q5 = --ir/2, as shown in [15]. If L is rank-deficient, then the 
matrix factor H will also be rank-deficient. The product of a rank-deficient matrix 
with any other matrix being also rank-deficient, J will be in turn rank-deficient, 
and a solution cannot be obtained with the underlying numerical procedure. 

At q~ = ~r, the matrix M, defined as 

M = l t r ( Q ) -  Q 

becomes 

M(rc) = -2uu r 

which is a rank-one matrix, and vect(Q) vanishes by virtue of its symmetry. As 
shown in [15], the condition number of L takes on the form, 

2 
~ ( L )  - 1 + c o s  

from which the singularity at q5 = 7r can be verified. 
Unlike the linear invariants, in the case of quadratic invariants, the matrix M '  

defined below 

M ' =  1 t r ( v ~ )  - 

remains of full rank for all possible values of the angle of rotation ~ [15]. Therefore, 
the matrix L/, defined as 

L ' =  [ l t r ( v ~ )  - v ~  1 

L - 2  vect(x/-Q) T J 

is always of full rank and the quadratic invariants do not lead to formulation 

singularities. 
In the case of the natural invariants, formulation singularities do not exist, since 

the Jacobian K does not appear multiplied by any other matrix. 
In order to assess the conditioning of the numerical schemes for inverse kinematics 

associated with each of the three rotation representations, experiments were done 
using closed path tracking applications with 100 data points. The said points are 
obtained on the intersection of two cylinders. Furthermore, Frenet-Serret frames 

2 

are used [21] to specify the orientation of the EE. The maximum condition numbers 
encountered along the above paths are shown in Table V. 

Table V. Condition number frequencies. 

Range of nmax Linear inv. Quadratic inv. Natural inv. 

/~max ~ 10 0 18 0 

10 < t~ma x ~ 20 50 73 29 

20 < t';ma x ~ 100 33 8 71 

100 < ~rnax ~ 1000 16 1 0 

e;ma x > 1000 1 0 0 
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Table VI. Convergence speed in the vicinity of  the solution. 
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Linear inv. Quadratic inv. Natural  inv. 

Total CPU (msec) 340.0 2500.0 290.0 

From Table V it is observed that the quadratic invariants allow more occurrences 
of lower condition numbers in the 100 points traced, whereas the linear invariants 
lead to high condition numbers in a large number of data points. Moreover, in 
this example, the natural invariants never lead to condition numbers higher than 100. 

3.4.4. Comparison on the Basis of Convergence Speed 

Since all three methods are based on approximations, convergence properties cannot 
be predicted theoretically. The first two methods rely on the series expansion of the 
function frO) and employ the Newton-Gauss method. The third formulation is 
derived from the relations between joint rates and Cartesian velocities. 

Convergence in the Neighbourhood of a Solution. Experiments were made in order to 
investigate the convergence properties of the algorithms studied. The foregoing set of 
data points are approached in the neighborhood of the solution, such that [[ f]l < 1.0 
at the initial guess, the convergence speeds thus obtained being summarized in Table 
VII. Furthermore, total times spent to traverse the above three paths are measured 
on an IRIS 4D/21OVGX workstation. These times are reported in Table VI. From 
Table VII it is observed that the natural invariants always converge in less than 
five iterations. Similarly, the linear invariants also converge very quickly, whereas 
the quadratic invariants converge much more slowly in the vicinity of the solution. 

Convergence Away From the Solution. The above observations are valid if the initial 
guess is in the vicinity of the solution. Now observations are made when the initial 
guess lies far away from the prescribed set of data points. Five arbitrarv sob~'tion 
points are selected, and two quantities are observed: (i) n, the number of iterations 
till convergence is reached, (ii) Nmax, the maximum conOtion number encountered. 
The results of this observation are displayed in Table -, ~1i, which shows a clear 
correlation between ~max and n. 

Table VII. Number  of  iterations to convergence. 

Iterations: n Linear inv. Quadratic inv. Natural  inv. 

n ~< 5 93 0 100 
5 < n ~ < 1 0  7 0 0 
10 < n ~< 20 0 32 0 
20 < n ~< 40 0 65 0 
n >  100 0 3 0 
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Table VIII. Convergence speed and conditioning away from the solution. 

Linear inv. Quadratic inv. Natural inv. 

Test n Nmax t'/ Nrnax ft /'Zma x 

1 7 26.0 21 14.0 7 39.0 
2 5 9.0 19 8.0 5 14.0 
3 19 60316.0 28 3407.0 26 607.0 
4 5 10.0 21 10.0 5 15.0 
5 4 9.0 20 8.0 4 14.0 

4. Concluding Remarks 

The forward kinematics problem has been solved using two different rotation 

representations in terms of invariants, which allow the implementation of rotation 

calculations with four scalar quantities and vector operations only. On the other 
hand, rotation calculations based on matrices require nine entries and involve 

matrix products. Although invariants are more elegant, they lead to more time- 
consuming algorithms, as shown in the computational complexity analysis. In 

on-line robot kinematics, it is always preferable to minimize the overhead in orienta- 
tion calculations. In fact, at each iteration of the numerical procedure, the invariants 
have to be recalculated. Because of the significant time advantage, matrix calcula- 
tions are recommended over invariant calculations for calculations pertaining to 

forward kinematics. 
The inverse kinematics problem was solved here using three different sets of 

invariants. Although linear invariants are computationally less time consuming, 

they have the disadvantage of causing numerical instabilities in the Jacobian when 
the angle of rotation is close to 7r. On the other hand, quadratic invariants arc 

well defined for all rotation angles and never admit formulation singularities, but 

their convergence rate is much slower than that of linear invariants. The third set 
of invariants studied here, which we call the natural invariants, consists of the 
unit vector parallel to the axis of rotation and the angle of rotation. Using the 
natural invariants, the associated Jacobian takes on a much simpler form than in 
the previous cases, thus reducing the overhead in the set-up time of the linear 

algebraic system. Secondly, because this Jacobian is square, in fact of 6 x 6, a faster 
solution technique can be employed, such as LU-decomposition. Moreover, the 
Jacobian used relates the joint rates and joint accelerations to the twist vector and 
to its time derivative, which allows not only for displacement, but also for velocity 
and acceleration inverse kinematics using the same Jacobian. One more advantage 
of the natural invariants is that they do not entail formulation singularities, the 
stability of the numerical procedure thus being dependent only on the configuration 
of the manipulator. Because of both time and stability advantages, the natural 
invariants are preferred in the implementation of inverse kinematics. 

Further improvements in this research area should address the handling of 
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kinematic singularities during the numerical iterations of the displacement inverse 
kinematics. Although any of the above three inverse kinematics methods would 
come out of a singularity due to the robustness of the Newton-type methods used, 
a branch switching is very likely to occur. Definitely, a branch switching has to be 
avoided in on-line applications, for they lead to jump discontinuities in velocities 
and infinite discontinuities in accelerations. 

A p p e n d i x  

A.I. PRODUCT OF THE ROTATION MATRICES 

Given the rotation matrices Q1, Q2, .~. , Q6 for a six-axes manipulator, the computa- 
tional cost of the first product of those matrices is calculated below, an asterisk 
indicating a nonzero entry, while M and A denote multiplications and additions, 
respectively, 

Ei ilr**!] r2 +lA3 +2A3 +2Ai • • => [ 2 M + I A  3 M + 2 A  3 M + 2 A  = > 2 1 M + I 2 A .  
• _ [0 * [_ 1M 2 M + I A  2 M + i A  

Therefore, the above product requires 2 I M  and 12A, each of the remaining four 
products requiring three additional multiplications which thus leads to 96M and 
48A. Hence, the computation of Q requires l17M and 60A. 

A.2. VECTOR COMPOSITION OF LINEAR INVARIANTS 

Using vector calculations, the computational cost in the derivation of the linear 
invariants of the first product QIQ2 is determined below in terms of the number 
of multiplications and additions required. 

q~l) t r ( Q 1 ) -  1 
- 2 I M +  3A, 

q~2i t r ( Q 2 ) -  1 
- 2 IM+ 3A, 

q(I) = vect(Q~) 3M + 2A, 

q(2) = vect(Q2)  3M + 2A, 

(1 + q 2/t4'/ 3M+ IA, 

(1 + q~l/)q/:/ 3M+ 1A, 
q(1) x q(2) 6 M  + 3A, 

D ~ (1 + q~l))(1 + q~2)) 1M, 

D - q(l), q(2) 3M + 3A, 

1 1 
- - -  1D + 1M, 

2D D + D  
n ~ (D - q('). q(2))[(1 + q~2))q(,) + (1 + q~l))q(2) + q(1) × q(2)] 3M + 6A, 
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n 

q-=2D 

Thus, calculating q takes 1 more multiplication for a total of 1 division, 29 multipli- 
cations and 24 additions. To find the trace, one further needs to compute N: 

(1) (2), N'  - (q~l) + q~Z) + qo qo ) 1M+2A, 

1112 ~- (11(1). 11(2))(11(1), 1t(2) _ 2D) 1M + 1A, 

DN' 1M. 

N = DN' + q12. 

Thus, N takes 3 more multiplications and 4 more additions after the derivation of 11. 
Finally, 

N - D  
q o -  2D ' 

Thus, q0 will take 1 more multiplication and 1 more addition for a total of 
1D + 33M + 29A for the computation of the linear invariants of the first product 
with the proposed method. 

To compute the linear invariants of the matrix representing the orientation of the 
EE, four more products are required. For subsequent products PiQi+2 ,  for 
i = 1, . . . ,  4, the linear invariants of the first rotation matrix in the product is known 
from the previous step, and this will save 4M + 5A. Therefore, the total cost with the 
proposed algorithm will be: 

(1D + 33M+ 29A)÷4[(1D + 33M+ 2 9 A ) - ( 4 M ÷  5A)] = 5D + 149M+ 125A 

A.3. QUADRATIC INVARIANTS FROM THE COMPOSITION OF LINEAR INVARIANTS 

The proposed method of vector calculations can be extended to derive the quadratic 

invariants, namely, 

1 ~ + N  qo 
O0 = ~  z) q -  - -  n. 

' N + D  

The computation of q0 requires 1S + 1D + 1M + 1A, and that of ,~ requires an 
additional 1D + 3M. It is also recalled that the derivation of n, N and D requires 
1D + 31M÷ 28A, which is 2M and 1A less than the derivation of q and q0. Thus, 
the total cost for deriving the quadratic invariants for the first product is 

1S÷ 3D + 35M÷ 29A. 

Furthermore, the derivation of n, N and D for the aforementioned orientation 
matrix requires 5D + 147M + 124A, which is again 2M and 1A less than the number 
of operations required by the linear invariants of the final product. Thus, the total 
cost for deriving the quadratic invariants of the final product is 

1S+ 7D + 151M÷ 125A. 
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A.4. VECTOR COMPOSITIONS OF QUADRATIC INVARIANTS 

The quadratic invariants of the end product  of  two rotation matrices can be derived 

from the quadratic invariants of the individual matrices, namely, 

qO (̂i) ̂(2) _ i~(I), i~(2) 
= q0 q0 

I~ = q0(q~2)t] (1) -~- q~l>q(2> + 1~(1) X q(2)). 

The derivation of q0 requires 4M and 3A, while q requires 15M and 9A. Further- 

more, the derivation of each set of  quadratic invariants requires 1S + 1D + 5M + 6A. 

Thus, the total cost for the first product is 2S + 2D + 29M + 24A. 

For  the five products we then have 

(2S + 2D + 29M + 24A) + 4[(1S + 1D + 5M + 6A) + (19M + 12A)], 

which gives a total of  6S + 6D + 125M + 96A. 

A.5. COMPUTATIONAL COST OF THE JACOBIAN K 

Assuming that the product  matrices expressing the orientation of the EE in each 

frame are known, we proceed to calculate the Jacobian K defined in Eq. (11). 

Since the product  of  a rotation matrix with the vector [0, 0, 11 r amounts to the 

third column of  that matrix, this product  does not require any operation, and the 

unit vectors ei, for i = 1 , . . . ,  6, are calculated at no cost. The computat ion of ri, 

for i = 1 , . . . ,  6, is discussed next. Since we have 

r 6 ~-- a 6 

For i=5 to 1 do 

ri +-- a i + Qiri+i 

e n d d o  

we first need to calculate a i for i = 1,.. .~ 6, defined as, 

ic°sOiai] 
ai =- [ sin Oi ai | 

L b; J 

each of which requires 2 T +  2M, for a total of  i 2T  and 12M. Next, r 6 does not 

require any operation but r i +-- a i + Qiri+ 1 requires 8M + 7A each, for a total of  
40M and 35A for the remaining five vectors. 

Thus, the calculation of ri, for i = 1 , . . . ,  6, requires 12T, 52M and 35A. 

To calculate [ei x rill, for i = 1 , . . . ,  6, we proceed as follows. First we have 

× ry = 
1 r z 
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and, hence, the cross products do not require any operation. However, to compute 

[e 2 × r2] 1 we have, 

[e 2 × r2] 1 = Ql[e2 × r2] 2 ---+ , , ~ 2 M +  1A 

• , 1M 

and for [ei x ri]l, for i =  3 , . . . ,  6, we have 

• ~ 2 M +  1A 

• 2 M +  1A 

thereby totalling 5M + 2A + 4[(6M + 3A)] = 29M + 14A. Therefore, for the compu- 

tation of the velocity Jacobian we add the cost of  ri, for i - 1 , . . . ,  6, and that of  

[ei x rilt, for i = 1 , . . .  ,6, which yields a total of  1 2 T +  8 1 M + 4 9 A .  

A.6. ROTATION MATRIX FROM THE QUADRATIC INVARIANTS 

The rotation matrix x/-Q can be computed from the quadratic invariants as 

1 
001 + 1--T 0 qq +R 

where [i is the cross-product matrix of  q. The individual entries of  the above matrix 

can be expressed with the aid of the auxiliary variables c, u, v, w, x, y, z as 

The 

1D + 1A, 
1 

C - -  - -  

1 +00  
b/ = C0102 2M, 

V = C0103 2M, 

W = C0203 2 M ,  

x = ¢0101 2M, 

Y = ¢0202 2M, 

z = c0303 2 M ,  

so that 

011 = 0 0  -~-X 1A, 

012 = u -  03 1A, 

013 = v + q2 1A, 

021 = u + 0 3  1A, 

022 = q0 @ Y 

6)23 = W -- 01 

031 = b/ - -  q2 

032 = W @ 01 

q33 = q0 -}-Z 

total cost for the 

1A, 

1A, 

1A, 

1A, 

1A. 

above calculations thus being 1D + 12M + 10A. 
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