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Abstract. We describe an approach to contour following unknown objects using a hand- 
eye robotic system. Relevant and sufficient feature points providing optical flow data are 
extracted from the edges of the target object. The desired motion of the end-effector is 
computed with the objective of keeping thevisual features always at the same target location 
in the image plane. A cartesian PD controller is used to perform the desired motion by the 
robot's end-effector. To address the control issues, we take advantage of the unifying robot 
control theory stated in the literature as the task-function approach [21]. To validate our 
approach, we restricted our experiments to motionless objects positioned in a plane parallel 
to the image plane: three degrees of freedom (two of translation, one of rotation) are thus 
controlled. 

Key words. Robotic visual servoing, task-function approach, control, contour following. 

1. Introduction 

The spectrum of  applications for contour following tasks includes various for- 
ce/motion control problems such as surface inspection, tracking of  seams in arc 
welding, telerobotics, contour deburring to name a few. In this paper, we describe 
an approach to automatic contour following of  unknown objects based on visual 
servoing. Our approach provides information that can be integrated in a force 
control f ramework in order to enhance the execution of  the various industrial 
applications already mentioned. For example, in seam tracking systems our 

visual servoing approach will tolerate variations in the seam by altering the robot 
trajectory as it tracks different seams. Mereover,  it can be used as an alternative to 
probing tasks usually carried before executing the hybrid force/motion tasks [ 12]. 
It can also be applied to mobile robot guidance. 

Vision sensors and image-processing systems have reached the level of  per- 
formance where they can be used in real-time to control the position, orientation 
and speed of  a robot end-effector. They allow the manipulators to carry out 
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hybrid tasks (particular case of redundant tasks) combining the regulation of 
vision sensor outputs with any other objectives, such as positioning and trajec- 
tory tracking. Therefore, accurate positioning and inspection of objects features 
(edges, comers, etc.) can be directly specified in terms of the regulation of a set 
of chosen visual features extracted from the image. 

The visual servoing approach closes the loop between vision and robot control. 
Usually the specification of the global task leads to the derivation of visual-based 
control laws. It allows, for example, the selected features (e.g. the edges) to 
remain invariant with respect to a chosen working window, and leads to the com- 
putation of the end-effector displacements, which compensate the measurement 
errors and satisfy the tracking objective. Research in this area include [8, 11, 
14-16, 19, 20, 25]. 

In [11], the authors propose a general methodology for the design of tasks 
that use a visual sensor inside the control loop. It is based on the task-function 
approach to the robot control problem proposed in [21]. This approach is par- 
ticulady attractive because it demonstrates robustness properties. Furthermore, 
although vision is recognized for its powerful sensory capabilities, proximity, 
touch and force sensing also play a significant role in the inprovement of robot 
performance. As shown in [21-23], the task-function approach can be used suc- 
cessfully to describe any sensor-based actions. Therefore, this approach offers 
a large number of advantages because of its generality: it allows homogeneous 
study of the task in vision-based control as described here and of force-based 
control as described in [5, 23]. 

In this paper, we take advantage of this approach to implement the control of 
a complex hand-eye visual servoing system: the goal consists of following the 
contour of a dark object on a white background. We restrict the scope of our 
experiments to motion of the camera parallel to the image plane, at given depth 
and given velocity. We will only consider motionless objects with differentiable 
boundaries, or with edges that are piecewise continuous. Figure 1 shows the 
system configuration, 

CMU Direcl-Drive Arm II 
(6-DOF Seam rnanil~J~t~) 

Fixed object 

display monitor 
( v ~ n  system) 

Fig. 1. Eye-in-hand configuration for robotics visual contouring. 
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The paper is organized as follows: our work is based on image motion process- 
ing which is described in Section 2. Relevant information to the estimation of 
the desired end-effector motion is computed using optical flow equations derived 
form the perspective transformation of the camera. The task-function approach 
presented in [21] is recalled in Section 3. We formulate our contribution within 
the framework of vision-based robotic servoing as described in [1 l] and briefly 
recalled in Section 4. We describe the selection of the visual feature points in 
Section 5. The robotic configuration and image processing hardware are then 
presented in Section 6. We shose a ruler and an unpolished metal part as two 
examples of objects to be tracked in 3-DOF motions parallel to the image plane 
of the camera. The experiments presented in Section 7 validate our theoretical 
approach. 

2. Camera and Robot Modeling 

2.1. CAMERA PROJECTION MODEL 

Our approach is restricted to eye-in-hand configurations. The camera coordinate 
system and the end-effector coordinate system are identical, the optical center 
of the camera being the origin of the coordinate system attached to the end- 
effector. We assume our CCD camera model consists of a perspective projection 
with focal length f (mm) followed by a linear scaling with factor 7 (pixel/mm). 
With no loss of generality, it is assumed the same scaling factor ~ = 7x = 7y 
for both horizontal and vertical directions on the image. Any point Mi with 
position vector Pi = (Xi, Yi, Zi) T relative to the camera frame is projected on 

camera & end-effector 

/ /  

@ z" 

coordinate system Y o 

°o o 

world (fixed) 
coordinate system 

Fig. 2. Camera coordinate system and perspective projection model. 
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the image plane as a point m~ with position vector Pi = (xi, yi) T according to 
(see Figure 2): 

Yi 
x i = T f z i  and Y i = 3 ' f z i  (1) 

2.2. MOTION MAPPING 

The camera velocity is denoted by the 6-dimensional vector Tc = (tcx, tcy, tez, 
w~x, wcy, wcz) T. The motion of the feature point Mi relative to the camera 
frame follows the well-known law of rigid motions: 

//9//camera = (t M - tc) + (w M - Wc) x Pi, (2) 

where//9//camera = (-J/i/camera, ]://camera, Z//camera) T is the 3D velocity vector of 

the feature point Mi; t M = (tMX, tMg,  tMZ )T and w M = (wMX, wMg,  WMZ) T 
are respectively the translational and rotational parts of the generalized velocity 
vector TM = (tMX, tMy,  tMZ, WMX, WMy, WMZ )T of the object with respect 
to the fixed coordinate system [O0, X0, Y0, Z0]; tc = (tcX, tog, tcz) T and w~ = 
(wox, w~y, w~z) T are respectively the translational and rotational parts of the 
generalized velocity vector T~ = (t~x, tcy, tcz, w~x, wcy, w~z) T of the camera 
with respect to the fixed coordinate system [O0, X0, Y0, Z0]. TM -- Tc represents 
the relative six-dimensional velocity vector of the rigid object with respect to the 
camera. Taking the time-derivative of equation (1) with respect to the camera 
frame yields the velocity vector of the image point mi : 

____ (Xi/camera ~ ")'f ( Xi/cameraZi -- XiZi/camera ) 
])//camera \ ~/i/camera / = ~ \ Yi/cameraZi - Y/Zi/camera " 

(3) 

In the sequel, we note ib~ =/)//camera. After elimination of J~i/camera, Y//camera, 
Zi/camera between equations (2) and (3), we obtain: 

Pi = Li(TM - To), (4) 

where the 2 x 6 matrix Li has elements depending on xi, Yi and Zi, and is given 
by: 

) Li = "/ Zi 0 - x i / Z i  - x i y i / T f  7 f  + x i / " / f  - Y i  
3'f lZ i  - y i l Z i  - ' y f  - y2i / '~f  x iy i l " / f  xi " 

In equation (4), the image velocity vector ibi is a linear form of the relative 
velocity vector TM -- To. This equation is called the optical-flow equation as- 
sociated to the i-th feature point Mi. We define the 2N-dimensional vector of 
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image positions p and velocities p by combining the N position vectors Pi, and 
the N velocity vectors Pi, i = 1 , . . . ,  N,  as follows: 

p :  . .  ( 5 )  

p =  (p~,pT,.. . ,pTN)T. (6) 

Similarly, the matrices Li are combined to form the 2N  × 6 optical-flow matrix 
L = (L~ILTI . . .  [LTN) T, SO that the N equations (4), i = 1 , . . . , N ,  can be 
written: 

p = L(TM - To). (7) 

Equation (7) shows the linear mapping between the optical flow vector p and the 
relative velocity vector of the object with respect to the camera. We also define 
p - p* as the position error vector on the image plane, p* being time-invariant 
2N-dimensional vector of desired image positions of the feature points. The 
vector p* is constant because we aim at positioning the feature points at the 
same, invariant location on the image. The desired image velocity vector p* is 
null, therefore we can rewrite equation (7) as: 

d 
d~ (p - p *) = -L(Tc  - TM). (8) 

2.3. DYNAMIC MODEL OF THE ROBOT 

We consider a rigid robotic manipulator with n joints, whose positions are given 
by the vector q. In the sequel, we assume n = 6 angular joints to comply 
with our experimental 6-DOF CMU-Direct-Drive-Arm-II manipulator; here, q = 
(01, 02 . . . .  ,06)Tis the 6-dimensional vector of angular positions. The dynamic 
equation of the robot is: 

F = M(q)~t + N(q, q, t), (9) 

where F is the vector of actuator torques, M(q) is the inertia matrix, N(q, (7, t) 
includes centrifugal, Coriolis, friction and gravity forces. Also, the jacobian 
matrix, J = J(q), of the manipulator is defined as J = Ox/Oq and verifies 

= Jq, where x is the 6-dimensional vector that denotes the position and 
orientation of the end-effector in cartesian coordinates with respect to a world 
coordinate system and ~ is the time-derivative of x. 

3. Vision-based Control in the Task-Function Framework 

3.1. THE TASK-FUNCTION APPROACH 

We now give the main ideas of the task-function approach developed by Samson 
and Espiau in [21] and [22], for robot control and sensor-based control. The 
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approach is based on the specification of a desired objective to be reached by the 
robot by defining an output n-dimensional second-order continuously differen- 
tiable vector function, e(q, t), called task function, to be regulated to zero within 
a finite horizon. Staightforward examples of task-functions include: 

• e(q, t) = q - qd(t), where qd(t) is a desired trajectory in joint coordinates, 
• e(q, t) = x - Xd(t), where xd(t  ) is a desired trajectory in cartesian coordi- 

nates. 

Tracking and following the contour of an unknown object by using a vision 
sensor requires the definition of a hybrid tracking~following task. Redundancy 
in the task-function approach allows a rigorous definition of hybrid tasks. An 
adequate choise of the task-function e allows the design of redundant tasks and 
the derivation of complex sensor-based schemes. The task-function vector is 
derived from a first control objective called primary task error function el, and 
from a secondary cost function hs to be minimized under the constraint el = 0, 
with gradient Ohs/Ox with respect to the cartesian position vector x of the end- 
effector. The general form of the global task error function e is: 

Ohs 
e = w t e l  + . ( z 6  - w t w )  oz ' (lo) 

where W is a rn x 6 rectangular matrix (m ~< 6) and o~ is a positive scalar. 
I6 - W t W  is a projection (square) matrix of IR 6 which projects the 6-DOF end- 
effector's displacement vectors onto the null space of the matrix W (because 
W([6  - W t W )  = 0). Therefore, the subspaces of R 6 spanned by the columns of 
the matrices W t and /6  - W t W  have no vector in common but the null vector, 
which guarantees the separation of the degrees-of-freedom being controlled by 
the error vector el and by the minimization of h8 in (10). 

3.2. HYBRID TASK-FUNCTION FOR VISION-BASED CONTOUR FOLLOWING 

Here, the first control objective corresponds to the positioning of the camera in 
end-effector's coordinates: 

e : X - -  X d .  (11) 

The primary task error function el integrates the displacements computed from 
the position error vector p - p* in the image. The scalar function hs represents 
the objective of following the contour of the object at a desired velocity. 

The 2N-dimensional vector p - p* of the feature points' position errors in the 
image carries the visual measurements that link the end-effector camera to the 
target object. It has been shown in Section 2 that the time-derivative of p can 
be expressed as a function of the relative velocity vector T M  --  Tc  of the object 
with respect to the camera. Equation (7) shows that the relation between p and 
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Fig. 3. Left: Two-DOF cartesian displacements of the end-effector necessary to position 
the camera on the contour. Right: Contouring velocity V. 

TM -- Tc is a linear mapping of matrix L. In the general framework of sensor- 
based control developed in [21], L is called the interaction matrix and is used 
to model any control involving sensor information that depend on the robot's 
position (radar, ultrasonic, vision, etc.). In our case, L is a 2N x 6 rectangular 
matrix. 

Given a contour measured in the image, we need to find the 2-DOF cartesian 
displacement on the end-effector that compensates for the contour error: the 
two degrees-of-freedom consist of translational motions along the X-axis and 
rotational motions around the Z-axis of the end-effector's coordinate system as 
shown in Figure 3. 

Moreover, it is assumed that the error vector p - p* remains small during the 
servoing task. Thus, we can use the integral form of equation (8) to estimate 
the 6-DOF relative camera displacement that would yield the same displacement 
p - p* of the feature points in the image. The optimal camera displacement (in 
the least squares sense) is then the 6-dimensional vector: 

el = - L t ( p  - p*) (12) 

The vector - e l  = L t ( p -  p*) represents the 6-DOF end-effector displacement 
that would optimally compensate for the image error p - p* if it were directly 
performed by the manipulator. The matrix W t projects the 6-DOF vector e] 
on the subspace spanned by the 2-DOF displacements to be controlled, which 
are the translation along the X-axis and the rotation around the Z-axis of the 
end-effector: 

W = diag (1, 0, 0, 0, 0, 1), W t = W,  1 6 -  w t w  = diag(0, 1, 1, 1, 1,0). 

The remaining four degrees-of-freedom are controlled by minimizing the sec- 
ondary cost function hs. The corresponding projection matrix if the diagonal 



8 EVE COSTE-MANII~RE ET AL. 

matrix /6 -- W t W .  Here, the objective is to follow the contour of the object 
at a constant desired velocity V. Under the constraint el = 0, the contour of 
the object is parallel to the Y-axis of the camera's (or end-effector's) coordinate 

system. Therefore, the cost function to be minimized is hs = ½ ( Y -  Y ( O ) -  V t )  2, 

and the gradient vector O h ~ / O x  = (0, Y - Y(O)  - V t ,  O, O, O, O) T has only one 
non-zero component that corresponds to a translation along the Y-axis. We also 
let a = 1 in (10). The global task-function error e = x - Xd is then computed 
from el and O h s / O x  by applying equation (10); then the task-function vector e 
becomes input to the robot control law (13) as explained later. 

3.3. REMARKS ABOUT THE INTERACTION MATRIX L 

The choice of a perspective projection model and the associated in teract ion ma-  

trix L are detailed in Section 2. In the experiments, we assume that the initial 
depth Zi is perfectly known and is kept constant for every feature point M i  of the 
object. With this simplifying assumption, no identification scheme is required 
to estimate the values of Zi with appear in the matrix L. More sophisticated 
algorithms make use of adaptive estimation and control techniques [14, 19, 20] 
to overcome this simplifying restriction. Recursive indentification algorithms 
can be incorporated in our framework. Our assumption about the knowledge of 
every depth Z~ does not impact the generality of our scheme. 

Let us point out that uncertainties about the target's depth Z and sensor's 
characteristics (7, f )  alter the knowledge of the elements of L. During task ex- 
ecution we approximate the elements of L by their initial value computed at 
the goal image p = p*- Thus, the opticalflow matrix L and its pseudo-inverse 
L t are approximated by constant matrices throughout the tracking process. Do- 
ing so, significant computation time is saved at each iteration. The approxi- 
mation is valid under the assumption of good tracking-performance, or equiva- 
lently when the image error vector p - p* remains small. In practice, only the 
first and sixth rows of L t need to be computed since the position error term is 
W t  e l = - W t  L t (p - p *) = ( L W )  t (p - p * ). More precisely, the pseudo-inversion 
is better performed on the 2N x 6 matrix L W  which has all columns zero except 
the first and sixth columns. The computation of (LW) t is done after a singu- 
lar value decomposition of the two non-zero columns of the rectangular matrix 
L W .  In addition, the N feature points must be carefully selected on the object 
so that the two relevant columns of the corresponding matrix L W  are linearly 
independent [7]. A low condition number for L W  is also desirable for the sake 
of numerical stability. 

4. Robot  Control 

The overall organization of the visual servoing system is shown in Figure 4. 
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Fig. 4. Schematic organization of the visual servoing system. 

4.1. GENERAL CONTROL SCHEME 

Once computed, the task-error vector e = x - x d is used as input to the robot 
controller. It is shown in [21] that a control law that ideally decouples and ensures 
a linear behavior of the task error vector e follows the general expression: 

F = M  [ - k G ( # D e + ~ ) ] + N - M  ~q f ,  (13) 

where F is the vector of applied actuator torques introduced in equation (9), 
f comes from terms in the second-order time-derivative of e, + = (Oe/Oq)it + 
(Oe/Ot) = Jil+(Oe/Ot), G and D are positive matrices, and k and # are positive 
scalars. In practice, the control in (13) is implemented by using model-based ap- 
proximations or recursive estimates of the different parameters M(Oe/Oq)-1, N ,  f .  
Equation (13) covers most of existing schemes: computed torque, resolved mo- 
tion rate or acceleration control, indirect adaptive control and so forth. The theory 
also provides sufficient conditions of the parameters to ensure the stability of the 
control. 

4.2. CARTESIAN PD CONTROLLER 

We experimented with a cartesian PD robot control scheme with gravity com- 
pensation, the mathematical model of which is now recalled. Given a desired 
cartesian position Xd(t), velocity ~cd(t) and acceleration ~d(t) for the end-effector, 
the cartesian PD controller computes a torque vector F and sends it to the joint 
actuators. The torque vector F is computed as follows [17]: 

F = j T F  + g with (14) 
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F = Kp(Xd -- x) + Kd(2d -- 50 + Y~d, (15) 

where g accounts for gravitation forces, F is a 6-dimensional vector of virtual 
generalized force expressed in cartesian Coordinates, Kp and Kd are diagonal 
gain matrices. 

Let us identify the parameters M(Oe/Oq) -1 , N ,  D,  G, f ,  k, #, which appear 
in the general control law (13) with the parameters Kp, Kd, 9, actually used for 
implementing the cartesian PD controller with gravity compensation as described 
by equations (14)-(15). In our experiments, the control inputs are restricted to 
end-effector position errors e = x - Xd computed from visual measurements and 
to joint angular velocities 0. Therefore, we must let Xd--X = --e, 5:d = O, Xd =- O, 
and J: = Jq  in equations (14)-(15) which give: 

F = - j T K p e  - J T K d J  O + g. (16) 

From the expression for the gradient Ohs/Ox of the chosen secondary cost func- 
tion hs, we obtain IOe/Otl = o~lV ] = IVI. The approximation Oe/Ot = 0 neces- 
sary to simplify ~ = Ji t+Oe/Ot  in (13) is valid under the assumption that the con- 
touring velocity V is small, which is the case in our experiments IVI < 2cmJs). 
Thus, the different parameters in the general control equation (13) are easily 

identified as follows *: M(Oe/Oq) -1 = j T  with an obvious breach of notation. 

This is justified since the matrices product (Oe/Oq).  (Oe/Oq) -1 = j ~ - I j T  
is strictly positive, and therefore the stability of the control is ensured. Also, 

= g , f  = O,k = # = I , G  = Kd and D = K d l K p .  

5. Feature Points Selection 

We now discuss the extraction of the characteristic parameters to be used in 
the control. Frequent approarches encountered in the literature consist of using 
contour primitives (like points, comers, segments, rectangles, general ellipses) [3, 
9, 10, 13] or region primitives (like areas, centroids and central moments, etc) [11, 
25]. Here, feature points are chosen. We do not assume any a priori knowledge 
of the geometric structure of the 3D scene to analyze. The approach presented 
above in general enough to perform robust contour following on lines, curves, 
burrs and so on. 

5.1. PRE-POSITIONING 

Before carrying out thee contour-following task itself, we wish to pre-position the 
end-effector along the edge of our target object. The user characterizes the edge 
by setting, in the image plane, a working window 'on' the edge of the object. N 
feature points are automatically extracted on the object's edge, as local maxima 

* We use carets to denote the model estimates of the true terms. 
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. feature points 

(A) [] target points (B) 

Fig. 5. (A): Line detection; (B): Gradient computation. 

of the gradient magnitude in the gradient direction on N equidistant horizontal 
lines. The 2N-dimensional vector of image positions p is thus defined. As 
illlustrated in Figure 5-(A), the N target points are defined on the y axis of the 
window's frame by rotation and translation of the N features points. The 2N- 
dimensional vector p* of desired image positions (x*, y~), i = 1 , . . . ,  N,  is thus 
introduced in the control scheme. The cartesian displacement of the end-effector 
can then be computed to compensate for the position error vector on the image 
plane p - p*, as detailed in Section 3. 

5.2. CONTOUR FOLLOWING 

The local maxima of the gradient magnitude in the gradient direction is now 
computed along the local z axis of the window frame defining a feature point 
on the edge of the object. The corresponding target point is the center of the 
window. A sub-window of fixed size is automatically generated and centered 
around the feature point. The average image gradient vector is computed in this 
area. This vector is normalized, and its end-point defines a feature point. The 
corresponding target point is positioned on the local z axis, and define a unit 
vector. The end-effector displacement is then generated (cf. Section 3). 

5.3. REMARKS 

® Instead of using two points to represent the gradient vector, that is to say 
four redundant scalars while three are enough, we could have used the 
relevant components for the straight lines as mentioned in [11]. Choosing 
points ease the understanding of the equations. 
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We chose the tracked edge to be vertical in the image. The problem of 
locating the edge is then reduced to one dimension (along the z axis of the 
window frame). This simplification reduces the processing time required 
by the vision process. It also improves the robustness and the speed of the 
image point detection process (disturbances in the image not parallel to 
the edge can be avoided). This constraint is restrictive since if may lead 
to joint limits on the end-effector. It must be understood as a first step to 
contour following task in the force control framework. 
Because of noise in the measurement of the image error vector p - p*, 
the desired end-effector's motion must be filtered before they are fed to 
the robot controller. The two non-zero displacements of the primary task- 
error vector We1 (translation along X and rotation about Z) are filtered in 
parallel by two independent LQG regulators (see [1] and [8] for details). 
More precisely each displacement measurement passes through a recursive 
Kalman filter with a constant linear feedback on the optimal state estimate. 
The displacements may as well be controlled in parallel by PID regulators. 
However, we obtained the best results using the steady-state solution of 
the LQG problem. 

6 .  H a r d w a r e  I m p l e m e n t a t i o n  

Our experimental hardware consists of the CMU-DiretDrive-Arm-II manipula- 
tor and a vision processing system, both integrated under the Chimera-II [24] 
real-time operating system. The CMU-DDARM-II is a six degrees-of-freedom 
Scara-like manipulator, whose joints are actuated by direct-drive DC-brushless 

Innovision-IDAS environment Chimera-II ~ m e n t  

I I 

I 1 
l F,m-~.,, I 

I I .... 

I I ~ 

bus 

t, 'ff3 

M68020 L ~ I I n n n ~  six O.O.F. )~a¢~k 
e-~ii- 

r ~ 

• Mue~m 

Fig. 6. Robotic and vision systems architecture. 
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motors [17, 18]. 
following units: 

The controller architecture shown in Figure 6 includes the 

® six Texas-Instruments TMS-320 processors each controlling one joint of 
the robot. 

• one Mercury-3200 floating-point processor which supports the computa- 
tional requirements of advanced model-based control schemes like com- 
puted torque. 

• one M68020 Ironics unit for executing and sequencing robotic tasks. In- 
tegrated sensing devices include a force-torque sensor and a six degree- 
of-freedom joystick. 

• one Sun 3/260 workstation which serves as a programming environment 
to develop, down-load and monitor programs executing on the above pro- 
cessing units. 

All units are connected through a VME-bus and run the Chimera-II real-time 
multiprocessor operating system. A VME-to-VME bus adapter connects the 
Chimera-II environment to the vision system. Figure 6 also shows the vision 
system architecture. We mounted a CCD camera (Panasonic CCD color camera 
model GP-CD1H) of focal length f = 7.5 mm in the end-effector of the robot. 
Full 492 × 512-pixel images can be acquired at video rate (30 Hz), each pixel is 
quantized into 256 gray levels. Image processors, frame-buffers, ALU and acqui- 
sition units are organized into a pipeline architecture (Innovision IDAS/ITEX-150 
vision system). Control and sequencing are perfomed by an M68030 Heurikon 
processor running the OS-9 operating system (Microware Systems OS-9 operat- 
ing system). All code for control and image processing has been written in C 
under Chimera-II and OS-9/IDAS programming environments. 

The experiments were performed in conjunction with a cartesian PD controller 
with gravity compensation at a frequency of 500 Hz. The dynamic equations and 
control algorithms are recalled in Section 2. The desired and-effector motions are 
updated every 100-200 ms (5-10 Hz). Because the CMU-DDARM-II can move 
very fast, the reference inputs must be extrapolated by a linear ramp between 
two consecutive vision measurement inputs. Extrapolated data are then sent to 
the cartesian PD controller every 2 ms (500 Hz). As a result, the trajectories of 
the robot are significantly smoothed. 

7. Experimental Results 

In this section, we present the results of two experiments performed in real-time 
with the robotic equipment described in Section 6. Two dark objects on a white 
background, in a plane parallel to the image plane, offered a maximum contrast 
and were observed under regular lighting condition: 

® a dark ruler provides straigh line reference trajectories necessary to check 
the good following of linear contours, 
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• an unpolished industrial metallic object (a brake for heavy truck vehicle) 
is used to verify the performance when following curves. 

In all experiments, the working window is first selected manually. With a 
mouse device, the user selects a window which includes a portion of the bound- 
aries of the object. Then the N feature points are automatically generated as 
explained in Section 5; they provide the reference position vector p* in the im- 
age. The user must specify the desired number N of feature points as well as the 
desired contouring velocity V. It is clear that N must be greater than or equal 
to 2 in order to allow the 2-DOF motion of the object (translation along X and 
rotation about Z) to be detectable and computable. The targets are observed at a 
known distance of 70 cm from the camera. The maximum contouring velocity at 
this distance is about V = 2 cm/sec. The experimental setting and the unpolished 
brake for heavy trucks vehicle are shown on Figure 7. 

The vision process computes the desired motion of the end-effector (two trans- 
lational DOF along X and Y, and a rotational DOF around Z) with a period 
of At = 70 ms (~  14 Hz) when the N-points are extracted, and a period of 
At = 170 ms (~  6 Hz) when the image gradient is computed. 

Fig. 7. Experimental setting and the unpolished brake for heavy trucks vehicle. 
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Fig. 8. Top: End-effector position vs. time as the robot is following a line (cartesian PD 
controller). Bottom End-effector trajectory in the X-Y plane. 

The plots in Figures 8 and 9 show the measured end-effector positions in 
world-frame coordinates at a desired speed of 1.5 cm/s (the desired trajectories 
are drawn with dot-dashed lines). The first trajectory follows a portion of the line 
a X + b U -  1 = O, from point (Xs, Ys =)(0.77 m,-0 .26  m) to point Xe, Ye =(0.85 
m,-0 .10) .  The second trajectory shows a portion of the circle (X - X0) 2 + (Y - 
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contour (cartesian PD controller). The oscillations are due to uncompensated friction in the 
robot's sixth joint. Bottom: Roll angular displacement of the end-effector vs. time. 
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Fig. 12. End-effector position in the X-Y plane as the robot is repeatidly following the 
same cirsular contour. 

I/0)2 _ 1~2 = 0, with (X0,1/0) ~ ( 0 . 5  m, 0.01 m), and R = 200 mm. The target is 

positioned in the horizontal plane at Z = - 7 0  cm, so that the desired trajectory 

of  the end-effector remains in the plane Z = 0. The tracking error remains within 

-t-3 mm or + 1 0  pixels. The oscillations are partially due to the low accuracy 
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of the cartesian PD control scheme, which does not take into account the full 
dynamics of the robot arm. Further experiments could be carried out with a 
computed-torque control scheme (running at 350 Hz) to outline the difference in 
performance. In addition, friction was not totally compensated on the sixth joint 
of the manipulator. 

During the experiments, the proposed method was found to be very robust and 
accurate. Significant perturbations done by moving the object or experimenting 
on a patterned background were successufully rejected (cf. Figure 10). Following 
the contours of small details (like burrs on the molded object, see [6] for a detailed 
study) has been carried out successfully. An example of burrs following is riven 
Figure 11. The repeatability offers good results for industrial applications, given 
the accuracy of the DDARM (cf. Figure 12). 

8. Summary 

We have presented theoretical aspects and experimental results of a contour 
following scheme in the framework of robotics visual servoing with a hand- 
eye camera. The contribution of this work is new and original because our 
method is presented using the generality of the task-function approach with all 
its theoretical advantages. The experimental results achieved on a real-time 
robotic environment demonstrate the feasibility, performance and robustness of 
the proposed approach to perform contour following of unknown objects. 

Future research issues include the implementation of adaptive control tech- 
niques in order to evaluate and control the distance between the camera and the 
object. Also, we restriced our study to the formal specification in continuous 
time of the control law. However, the discrete-time, event-driven behavior of the 
sensor-based task, associated with the logical structure of its execution, could be 
defined using synchronous programming languages like ESTEREL [2] as advo- 
cated in [4, 5]. It would facilitate the handling of exceptions and conditions like 
joint limitations, feature points occlusion or obstacle avoidance. As mentioned in 
the Introduction, the contour following task carried out with a hand-eye system 
can be used as a preliminary step before a hybrid force/position exploration task 
of the same object. Dynamic reconfiguration of the computational modules asso- 
ciated to the necessary control algorithms allows both tasks to be performed in a 
row. Particular attention must be paid to handle comers: it is necessary to detect 
comers wheneven the object has sharp contours. Comers (or discontinuities) can 
be handled using the same proposed approach, provided that the desired motion 
is smaller than the maximum rotation allowed by the end-effector. An alternate 
solution would be to define a 'spy'window ahead of the work window, where 
an accurate comer detection algorithm [10] is implemented. Once detected, it is 
possible to pass through the discontinuity at a given speed. 
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