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Abstract. Given two oriented points in the plane, we determine and compute the shortest paths of 
bounded curvature joining them. This problem has been solved recently by Dubins in the no-cusp case, 
and by Reeds and Shepp otherwise. We propose a new solution based on the minimum principle of 
Pontryagin. Our approach simplifies the proofs and makes clear the global or local nature of the results. 
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1. I n t r o d u c t i o n  

The question considered here is the following: Given two oriented points (Mi ,  0~) and 

( M r ,  Of) in the plane, determine and compute the shortest piecewise regular paths 
joining them, along which the curvature in everywhere bounded by a given 1 /R > O. 
Minimizing the length is meaningful both in the class of paths which are, C ~ and 
piecewise C 2, and in the slightly larger class of paths admitting a finite number of 
cusps. 

This question appears in many applications: for instance, Markov [3] studied the 
no-cusp case for joining pieces of railways. A three-dimensional version applies to 
planning plumbary networks, or the version with cusps to any car driver. 

Even without obstacles, characterizing the shortest paths is not simple. This was 
only done recently, by Dubins [2] in the no-cusp case, and by Reeds and Shepp [5] 
otherwise. 

Our way of solving the question here is entirely different from theirs. It is both 
much simpler and better adapted to further generalization to the case of obstacles 
limiting moves. The essential tool we use is the powerful result of optimal control 
theory known as the 'minimum principle of Pontryagin'. In Section 2 we recall 
its basic version which we will use, and refer to classical books in control theory, 
like [1], [4], and [7], for its quite delicate proof. 

In Section 3, we apply the principle to our case and deduce some general crucial 
lemmas. Section 4 is devoted to the no-cusp case, and Section 5 to the more difficult 
case with cusps. 

Our results are essentially the same as those of [2] and [5]. The interest of the 
present work lies in the method of proof, both simplified by the use of a single 
idea, and as local as the statements will allow. Indeed, we make a clear distinction 
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between local and global proofs, and we insist on local proofs in view of further 
work dealing with obstacles. 

Related results have been obtained independently by Sussmann and Tang [6]. The 

results in [2] and [5] are also deduced from the minimum principle and new lights 

on the piecewise regularity of optimal controls. 

2. The Minimum Principle: A Basic Version 

Given are: 

• two integers n and r, two points (x i) and (xY) in E~, and a compact subset U 

of l~ ~ , 

• a C O function f ( x ,  u): IR '~ x U ~ ~ ,  

* a C o function fo(x, u): R '~ x U ~ E'~. 

A 'control '  is a piecewise continuous (but not necessarily continuous) function 

u(t): [0, T] --+ U, for some T > 0. L/denotes the set of controls. We want to find a 

u E/4 which minimizes the integral 

P T 

J(u)  = Jo fo (x(t),  u(t)) dr. 

Here x(t)  = (Xl( t ) , . . . ,  xn(t)): [0,T] -+ ]R n is a solution of the differential system 

with boundary conditions 

dz~  = f j ( x ,  u ( t ) )  ( j  = 1 . . . .  , n ) ,  
dt (1) 

x(O)  -~- x i ;  x ( r )  = 2g f . 

J(u)  is called the 'cost' of  the 'path' x(t),  solution of (1), given the 'control' u(t). 
The solution x(t)  of the system with initial conditions x(O) = x i is well determined 

for a given u. This is the case, even in a much more general setting (see, e.g., [7, 

Theorem II.4.11]). We denote by/ . / [  the subset of 'admissible' controls u E/ , / such  
that the associated paths x satisfy also the final conditions x (T)  ~- x f .  The optimal 

control problem is to find controls u* E b/f satisfying 

J(u  ~) = min J(u).  
uCbt 

Such a u* is called 'optimal', as well as the associated path x. Note that here T is 
arbitrary. But in the particular case f0 =- l, J(u) = T, and we want to minimize the 

'time' to go from x ~ to x f .  
We give a more geometric interpretation to the approach by adding an extra vari- 

able xo(t), solution of dxo/dt  = fo(x, u(t)), x0(O) = O. We are therefore looking for 
a u ~ b/ such that the solution of 

dxj 
dt - f j ( x ' u ( t ) )  xj(O) = x ~ (j = 0 . . . . .  n), (2) 
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satisfies the conditions x j (T )  = x f  (j = 1 . . . .  ,n)  and J(u) = xo(T) is minimal 
(for some T > 0). A basic idea in mechanics, then, is to introduce 'dual' variabies 
~) = (~)0,  ~)1 . . . .  , ¢~): [0, T] -+ R '~+1 which are continuous, piecewise C 1, and 
solution of the 'adjoint' system 

d¢Jd~ - ~ Of) ~=0b-~(z ,~( t ) )¢  j ( j = 0 , . . . , ~ ) ,  ~ ( 0 ) = ~  ~. (3) 

For a given u ~ U f ,  x the associated solution of (2), and an arbitrary initial condi- 
tion ~ ,  (3) has a unique solution ~. 

If the 'Hamiltonian' is defined by H(¢,  x, u): !R 2n+z+r ~ It~ 
7Z 

H(~,  x, u) = (g), f )  = ~ ~j f j  (x, u), (4) 
j=0 

then, Equations (2) and (3) can be rewritten as a Hamilton-Jacobi system with 
parameter u: 

dxj _ OH i 
dt O~j'  xj(O) = xj ,  

j = 0 . . . . .  n. (5) 
d~j _ OH 
d~  Oxj '  ~j(O) = ~j, 

Finally, we define 

M(¢,  x) - min H(¢,  x, u), 
uCb/  

where ~, :c, u are considered as independent variables. The fundamental result of 
Pontryagin [4] is then: 

THEOREM 1 (Minimum principle). I f  u* is an optimal admissible control, there 
exists a nonzero adjoint vector ~, and T > O, such that, (x(t), ~(t)) being the 
solution of  (5) for  u = u*, one has 

(1) vt ~ [0, T] H ( ~ ( t ) ,  z(t), u*( t ) )  - M(¢(t) ,  z ( t ) )  

(2) Furthermore, Vt C [0, T], M(O(t),  x(t)) =- 0 and ~o(~) =- %(0)  >~ O. 

This changes the question of minimizing the functional J(u) over L/into a mini- 
mum problem for the 'scalar' function H on U. In some sense, conditions 1 and 2 
above ensure that (x(t), ¢(t)) is 'stationary' among the solutions of (5), and the prin- 
ciple asserts that the optimal paths are to be found only among these. The minimum 
principle, of course, only gives necessary conditions, and does not even assert that an 
optimal control exists. Its existence has to be proved independently, and it is usually 
done in the much larger class of controls which are only assumed to be integrable 
(see, e.g., [7, Theorem V.6.1]). The minimum principle applies just as well in this 
larger class (see [4, Chapter II]), and the following computations (Section 3) will 
then prove that the optimal controls in fact belong to our smaller class/g. This is 
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why we allow ourselves to restrict our discussion to the class b/, as well as for the 
sake of clarity, and for emphasis on applications. 

A new proof of the piecewise regularity of optimal controls can be found in [6], 
in a general setting which includes our case, based on the properties of subanalytic 
sets. 

Most theorems of existence assume that the range of controls is convex (see, e.g., 
[7, Theorem V.6.1]). This is the technical reason why we consider convex ranges of 
control in Section 3. 

3. Application to Shortest Paths of Bounded Curvature 

Let us recall that we want to minimize the length of continuous and piecewise C 2 
paths (x(t), y(t)) in the plane ~2 joining given initial and final points with given 
orientations (x i, yi, 0 i) and (x  f ,  yY, 0Y). By assumptions on the control, such paths 
are formed of a sequence of C:  paths, glued together at isolated commutation points 
t~ E [0, T], where either the curve is C 1 (called 'inflexion' points) or the orientation 
is reversed (called 'cusps'). 

Thus, the following quantities are well defined. 

• The polar angle ~(t) of the tangent to the path, considered as a globally 
continuous ~/2~--valued function by assuming its continuity at the cusps. Its 
intuitive meaning is that the tangent to the path is directed as the lights of a 
car that would follow the path, changing from front to rear gear or conversely 
at a cusp. 

• The arc length along the path, which we denote by t: intuitively, the path is 

run at constant speed one. 
• The curvature u(t) = d~/dt ,  which is defined everywhere except at the com- 

mutation points. When u(t) ~ 0, its sign depends on whether the point (x, y) 
runs in a clockwise sense (u < 0) or in a counter-clockwise sense (u > 0) as 
increases. 

differential system (2) can be written as (from now on, We write ~ for dz/dt): The 

:~ = e cos ~, x(O) = x i, x ( T )  = x s, 

9 = e sin ~, y(O) = yi,  y ( T )  = y f ,  

& = u, c~(O) = ~ ,  c~(T) = ~S, 

5:0 = 1, xo(O) = O, 

with control functions (c, u) E U c II~ 2, where 

U -= ( - 1 ,  + I }  × - ~ , + ~  . 

(6) 

This means that we control the instantaneous curvature u, allowing also changes 
between front and rear gears (the sign of e). The cost we want to minimize is equal 
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to the length o f  the trajectory and defined by 

// J ( u )  = dt = T. (7) 

For  the technical reasons already ment ioned at the end of  Section 2, we should 

assume here U convex,  more  precisely 

g = [ - 1 , + l ] ×  - ~ , +  , 

that is to say - 1 ~< e ~< 1. We modi fy  (6) accordingly and consider  now the sys tem 

= e c o s  c~, x ( 0 )  - :c i, x ( T )  = x s ,  

~) = e sin c~, y(0) = yi, y(T) = yf, 

d = lelu,  c~(O) = c~ i, c~(r)  = o / ,  

~:0 = 1, z0(0) = 0. 

(8) 

In this case, t is the time, and no longer the arc length s, and we have ds = le(t)[dt. 
The express ion (7) o f  the cost remains unchanged,  al though it corresponds now to a 

m in imum t ime problem.  Calling (p, q,/3, e) a set o f  dual variables to (x, y, a ,  x0 = t), 

the m i n i m u m  principle applies here. The Hamil tonian is 

H = e + Epcos a + eqsina + leI/3u, (9) 

and the adjoint sys tem 

/ ) = 0 ,  c ) = 0 ,  ~=epsino~-eqcoso~,  ~ = 0  (10) 

with arbitrary (but not all zero) initial values. Thus, p, q, e are constant  on [0, T].  

Putting p = A cos qS, q = A sin ~b, with A = x / ~ T +  q2 /> 0, determines an angle q~ 

modulo  2~r, such that tan ~b = q/p. We rewrite (9) and (10) as 

H = e + cA cos(o~ - ~ )  + l e l3u ,  (11 )  

B -~ eA sin(c~ - {b). (12) 

As H is a p iecewise  affine function in e, it cannot  reach its min imum w.r.t, e 
e lsewhere  than at e -- 0, =L1. But e -= 0 on some interval is obviously  irrelevant, 
since it corresponds  to zero velocity which is trivially not an opt imal  control for a 

m in imum t ime problem.  Thus, condition 1 of  the min imum principle asserts that 

opt imal  controls can only be obtained for e = :kl ,  so that we set lel = 1 in the 

fol lowing of  the discussion. Hence,  the arc length becomes  equal to t, and min imum 

t ime solutions provide  min imum length paths. Moreover,  H rewrites 

H = e + e A  cos(o~ - ~) +flu (13) 

and sys tems (6) and (8) are identical. Condit ion 1 also states that for an opt imal  

control u, along any C 2 piece of  the opt imal  path, we have  

A e c o s ( o ~ - ¢ 5 ) ~ < 0  and flu<~O. (14) 



10 JEAN-DANIEL BOISSONNAT ET AL. 

Furthermore, either one of the following two cases holds: 

• OH/Ou =/3 =- O, thus/3 ~ 0, and c~ _= ¢ or c~ _= ¢ + It, and the path is a line 
segment with direction ¢, 

• or OH/Ou ~ 0 and thus, by condition 1, u = ± I / R ,  and the path is an arc of 

circle of  radius R. 

The preceding discussion leads immediately to: 

PROPOSITION 2. Any optimal path is the concatenation of arcs of circles of ra- 
dius R, and line segments all parallel to some fixed direction O. 

Also condition 2 of the minimum principle ( H  = 0 and e ) 0) implies: 

LEMMA 3. fl = 0 at the inflexion points and on the line segments. 

Proof That/3 = 0 on the line segments was already mentioned. It implies/3 -- 0 

at the inflexions between a line segment and an arc of  circle, since/3 is continuous. 

But at an inflexion between two arcs, u changes sign, and so should/3 in order that 

H =_ 0; thus the same continuity argument applies. [] 

LEMMA 4. If A = O, the optimal path is either a line segment or a sequence of arcs 
of radius R joined by cusps. 

Proof (13) and condition 2 imply /3u _= - e .  If  e = 0, /3 cannot vanish, since 
= (p, q,/3, e) would then vanish, which is forbidden by the principle. Thus, u ~ 0 

and the whole path is one line segment. If  e > 0, then neither/3 nor u can vanish 

and, by Lemma  3, the path contains neither line segments nor inflexions. [] 

In the following, we assume X ¢ 0. 

LEMMA 5. e > 0. 
Proof Assume that e = 0. Then, by (13),/3u + eA cos(c~ - ¢) - 0. But the two 

parts of  the sum are of the same sign by (14) so that they have to be zero. Since 

lel - -  1 and A ¢ 0, this implies (i) cos(c~- ¢) = 0 and (ii)/3u = 0. By (i), ct = ¢:~7r/2 

is constant, and this path is a line segment along which, necessarily,/3 = u = 0 and 

/) =- 0. This implies ~ -- ¢ or ~x = ¢ + 7r, and leads to a contradiction. Hence, e ¢ 0 
and the result follows from condition 2 (e 1> 0) of Theorem 1. [] 

LEMMA 6. /3 - py + qx is constant along any optimal path. Consequently, all the 
points of an optimal path where /3 takes the same value are on the same straight 
line of direction d). 

Proof According to (6) and ( 1 0 ) , / / - p ~ + q : f  =- 0 and, thus,/3 - p y + q x  ~ c for 
some c ¢ R, on the whole optimal path. [] 

Lemma  6 has the two following consequences: 
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L E M M A  7. On any optimal path, the line segments and the inflexion points are all 

on a straight line Do with direction 95 (of equation py - qz + c = 0). 

Proof  Apply  L e m m a  6 wi th /3  = 0. D 

L E M M A  8. All the cusps of  any optimal path are on two straight lines D± parallel 

and equidistant to Do, of  equation py - qz + c = :FUR. Furthermore, (a) there are 

no cusps between a line segment and an arc of  circle, (b) the 'positive' cusps (that 

is where u > 0 both before and after) are on D+, and the others on D_,  (c) the 

half-tangent at a cusp is perpendicular to D±.  

Proof  By condit ion 2 of  the principle, 0 - e + s)~ cos(c~ - 95) + /3u .  Near  a 

cusp, u remains constant  and equal to ± l / R ,  while s changes f rom +1 or - 1  or 

the converse.  Hence,  by (14), cos(c~ - 95) = 0; thus c~ = 95 i ~r/2 and /3 = ± e / L  

The  first assertion follows f rom L e m m a  6, then (a) and (c) f rom L e m m a  7, and (b) 

f rom (14). [] 

Moreover ,  we have the fol lowing Iemma.  

L E M M A  9. Any C 2 arc of  circle of  an optimal path, between two points where 

/3 = O, has length > rcF¢. 

Proof  Assume  the length of  such an arc, between ~ = ~1 and ~ = ~2, to be ~< 7rP~. 

As /3 ( t l )  = /3( t2)  = 0, we have by (13) and since H -= 0, 

e 
cos 95) = c c o s  , )  -- - X  (15) 

/3 iS U 1 on [~1,~2] and, by (14), it keeps a constant sign on an arc. So, [3 reaches 

an ex t r emum at some point t3 E]t l ,  t2[ where ) ( t3 )  = sA sin(c~(t3) - 95) = 0 by (12). 

Now, scos(c~(t3) - 95) = - 1 ,  by (15) and since the sign of  cos(a(t3)  - 95) cannot  

change on It1, ~2], according to our assumption on the length. But then 

0 - H = e - ), +/3(t3)u(t3) <~ e - A, 

by (14), and thus e / k  ~> 1, which compared  with (15) implies e = A. Since lu*(t3)] = 

1 / R  > 0, 3(t3) = 0. H e n c e / 3  ___ 0 on [tl,t,2]; this means by (12) that this piece of  

paths would be a line segment ,  not an arc of  circle. [] 

We remark  now that we may  simplify our equations by using obvious symmetr ies .  

The rectangular  coordinate  system in R 2 is arbitrary. So, we can assume 95 = 0 by 

a rotation of  axes, A = 1 or 0 since the change f rom ~b/A to ~b leaves the min imum 
principle invariant  when A > 0, and the constant  e in L e m m a s  6, 8 to be zero by a 
translation of  the origin in IR 2. Under  these assumptions,  we have p = 1, q = 0. The 

lines Do, D ±  have  now the equations y = 0 and y = qzeR, and/3  - y is the signed 

distance of  a point on the path to Do. Furthermore,  we have  

H : e + s c o s c e +  ~/3 = 0. (16) 
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Consider now an arc of circle with a cusp at one of its endpoints. If this endpoint is 

on D_,  u = - 1 / R  and, since at a cusp c~ = :krr/2, by (16), 0 ~</3 = eR+eRcosc~  <<. 

eR since e cosc~ ~< 0 by (14). The same argument shows that on an arc with a cusp 

on D+, one has 0 >7 fl >>. - e R .  Summarizing this discussion, we get: 

PROPOSITION 10. For any optimal path with ), ¢ O, there exists a rectangular 

coordinate system in 1~2 such that (see Figure 1) 

• all the line segments and inflexion points on the path lie on the first axis 

Do: y - - 0 ,  

• all the cusps where u > 0 lie on the line D+: y = - e R ,  

• all the cusps where u < 0 lie on the line D_: y = +eR, 

• an arc of  circle with a cusp as one of  its endpoints on D+ (D_) lies be- 

tween D+ and Do (between Do and D_),  

• (16) is satisfied at any point on the path. 

Remark 1. (a) Outside the three lines Do, D+, D_ there can be no commutation 

and no line segment. A piece of an optimal path not intersecting these lines c a n  

only consist of one arc of circle, and is contained in one of the strips [D+, Do] and 

[Do, D_]  as soon as it is not an initial or final arc. 

(b) By (16) and since u ¢ 0 outside Do, the geometric angle of the tangent line 

to an optimal path with Do at a point (x, y) is almost determined by the 'distance' y 

of the point to Do. Indeed, a satisfies 

Y e c o s a  = :t=~ - e ~< 0 (17) 

which gives only two possible values of c~ for any piece of path with no commutation 

(that is for given e and u'). 

(c) As soon as an optimal path contains a line segment, the tangent at the inflexion 

points is Do itself. Indeed, at a point on a line segment, y = 0, c~ = 0 mod 7r by 

C~ D_ 

fJ oo 

ccw 
D+ 

Fig. 1. D O , D + ,  D _ .  
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Proposition 2, thus by (16) e = +e  : 1 and (17) then gives cosc~ = ±1 at any point 

on Do. 

Proposition 10 and Remark 1 invite us to classify the different possible kinds of 

optimal paths according to whether e > 1, e = 1, or 0 < e < 1. We will denote 
each concatenation of segments and arcs by a word like, for instance, 'C[CSCIC', 
each C meaning an arc of circle of radius R, S a line segment of direction ¢ = 0, 

and [ a cusp; Cv will mean an arc of circle of length Rv. 

4. T h e  G '1 (No C usp )  Case  

The preceding study applies to the characterization of C 1 shortest paths between 
given initial and final positions and orientations in the free plane. It is enough to 

set e to be 1 and allow no cusps in all the statements above (but here cos o~ can take 
arbitrary sign as we do not minimize anymore with respect to e). 

As soon as an optimal path contains a line segment, it has to be of CSC type 

(or the degenerate forms CS, SC, S). Indeed, since S is on Do, any other event 

would mean another commutation on Do, thus a full circle, which is obviously not 

optimal. 

That an optimal path without segment is necessarily of the CCC kind (or the 

degenerate forms CC or C) is a consequence of the remark that a portion of an 
optimal path is itself an optimal path, and from the following lemma: 

LEMMA 11. No path of type CCCC is optimal. 

We give a direct local proof of this lemma, by showing that there is always a 

strictly shorter path arbitrarily close to the initial one, having the same endpoints 

and of the same type CCCC. 
Proof The notations being clear on Figure 2, let Us write uo for the unitary vector 

of polar angle 0, and assume • = 1 for simplicity. 

If such a path of the CCCC kind were optimal for some values of a, b and for 

c~ = a0, /3 = /30, 7 = 70, Lemmas 7 and 9 would imply /30 = 70 and that the 

M ~ 
b 04 

Fig. 2. The case C C C C .  
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intermediary arcs are each o f  length > 7r. Thus 

04 = O1 + 2 v ~  + 2V~o_~o + 2v~o_~o+.~o, (18) 

Lo = a + (Tr +/3o) + (Tr + 7o) + b, 

where Lo is the length of  the path. We can deform this path into a similar one with 

the same endpoints but slightly different angles a,/3, % and we get in the same way 

(noting L its length) 

04 = O1 + 2Va + 2u~_~ + 2v~_~+.~, 

L = a + (c~ - ao) + (Tr +/3o) + Or + 7o) + b+ (19) 

+ ( a  - /3 + ' ~  - ao  + /3o - " / o )  

so that 

L - Lo = 2 (a  - ao) + 2 ( ' - / -  7o), thus dL = 2(da  + d"/) (20) 

cos a + cos(c~ - / 3 )  + cos(~ - / 3  + 7) 

= cos o~o + cos(ao - rio) + cos(ao - /30  + 7o), 
(21) 

sin a + sin(a - /3 )  + sin(a - / 3  + 7) 

-- sin o~o + sin(~o - /30)  + sin(ao - /30  + 70). 

The Jacobian of  (21) with respect to /3  and 7 is equal to - sinT, thus not zero near 

(ao,/3o,'Yo), since 0 < /30 = 70 < It. So system (21) implicitly defines /3 and 7 as 
functions of  a in a ne ighborhood of  (o~o,/30, 7o), which proves that such a deformation 

is possible. Differentiating twice (21) with respect to a ,  we get 

d_flfl = sin(/3 - 7) - sin 7 d_7 = sin(/3 - 7) + sin fl 

do~ - s in7  ' d a  - sin 7 ' 

d2-y 
-/cos + co (, - + + cos  - 

doz 2 sin 7 L da  Y 

d/3 dT"~ 2] 
+ + cos )(1 - 

~ + d,~/ J 
= - 1  and, thus, ( dL /da ) ( ao )  = 0, by (20) as expected. In particular, (dT/dc0(c~o) 

But further 

d2L d27 ca0) 1 + cos/30 _ - 4 c o t ~  
~---~a2(c~o) = 2~Za2 ~ = - 4  sin/3o 

< 0, 

and this proves L ( a )  < Lo in a neighborhood of  c~o. [] 

Thus we get the result of  [2]: 

T H E O R E M  12 (Dubins). Any C l and piecewise C 2 shortest path of  bounded curva- 

ture in the free plane between given endpoints and orientations is either of  type CSC,  

or of type CCvC with v > ~r, or a degenerate from of these. 
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Remark 3. Dubins [2] (and Reeds and Shepp [5] in case of cusps) seem to get a 
more general result, as they minimize the length in a larger class of paths. Bat our 

conclusion amounts to the same, as we already explained at the end of Section 2. 

5. The General Case (Allowing Cusps) 

We go back to the general statements and results in Section 3. The case of an 

optimal path for which A = 0 has already been settled by Lemma 4. Notice that, 
in this case, any path of type S is obviously optimal, as well as any path of type 

C~1 ICy21..- [C~p [ . . .  when vl + . . .  + v p + . . .  ~ ~r, since all these paths have the same 
length 

+ + +.. .)  : R I  - 

but the number of cusps is unbounded and may even be infinite, since we can always 

replace a sequence Cvl ICy2 IC~3 by C~ [C, IC~ [C~ tC~ with 

vl + v2 + v3 = v~ + v + v~ + w + v~. 

It can be shown that the converse is also true. Thus, there are in this case infinitely 
many shortest paths, in striking contrast to Section 4. Notice, however, that there 

always exists one with at most two cusps, as proved by [5]. 
In the following, we focus on the case of an optimal path for which A :~ 0, 

where the whole of Section 3 applies and, in particular, Proposition 10 (with A = 1, 

¢ = e = 0). We assume that there is at least one cusp on the path (the no-cusp case 
being already settled) and we lead the discussion according to the values of e > 0. 

5.1. e >  1 
No arc of circle of radius R perpendicular to D~: can reach Do. Thus, there is no 
inflexion, and the path is of a type C[(C~I)kC for some k ~> 0. 

5.2. 0 < e < l  

Any circle of radius R centered on D+ intersects Do at angles satisfying cos a = 
- c e  # 0. Thus, the possible values for ~ are i v ,  :i:v + 7r for some 0 < v < 7r/2. 

But then part (c) of Remark 1 asserts that the path contains no line segment and 

an arc of circle starting at a cusp A, on D+(D_),  can only 

(1) either be final: I C, 
(2) or end at an inflexion point I1: [C~C.. .  or 172.: [C~_vC . . . .  
(3) or end at a cusp: IC~[. 

An inflexion at 12 (the inflexion point farthest from A) is impossible, since the 
arc I1 12 would be an arc between two points where/3 : y : 0 and shorter than ~R, 
contrary to Lemma 9. The third case is also impossible by the same argument since 
the arc intersects Do in two points. Thus, we are left with only IC or IC~C, the last 
arc being again either final or ending at a new cusp on D_(D+)  and, thus, also o f  
length YR. 
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We conclude that any portion of an optimal path starting at a cusp is of one of 
the three following types [C, IC~C or IC C l... with 0 < v < 7r/2, and the same v 
along the whole path. 

Hence, the possible types of optimal paths in the case 0 < e < 1 are 

GiG, cIc~c, ccvlc, CC~lC~C, cIc~c~lc 

with 0 < v < 7r/2 (compare to the list in [5]), and also others of type 

...CC~ICvCvLC... or . . .CIC~C~lC~C...  

The following lemma shows that the two last cases cannot be part of an opti- 
mal path by computing a local deformation of the paths, similarly to the proof 

of Lemma 11. 

LEMMA 13. No path of type CCvlC~CvIC (or ClC CvlC C) with 0 < v < 7r/2 
can be optimal. 

Proof We consider only the case CC~IC~Cv[C, the computations for the other 
one being identical. The notations being clear on Figure 3, let again uo denote the 

unitary vector with polar angle 0 and L the length of the path. Assume R = 1 for 

simplicity. 

For any nearby path of the same type and with the same endpoints CC~ IC~C~lC, 
O1 and 05 are unchanged and we can take O105 as the x-axis, so that 

05 = 01 + 2v~_~ + 2u_~+~ + 2u,r-~+~+-r + 2v-~+t~+-r-~, 

L = a + ( a - v ) + / ~ + 7 + 5 + b - ( a - / 3 - 7 + 5 )  

i 

Fig. 3. The CCvlCvCvlC case. 
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whi le  for the init ial  path c~ = / 3  = 3, = g --  v by  Proposi t ion  10. Hence,  

05 = O1 + 2U~_v + 2u0 + 2u~r+v + 2u0, 

L0 = a + v + v + v + b for some posi t ive  a, b. 

This y ie lds  

L - L0 = 2(13 - v) + 2(3` - v), thus dL  = 2dfl + 2d7,  (22) 

- cos o~ + cos (3  - o~) - cos(/3 + 3, - oz) + cos (3  + 3, - o~ - ~) 

= 2 - 2 cos v, (23) 

sin o~ + sin(C7 - c~) - sin(fl + 3, - o~) + sin(C/+ 3, - ~ - ~) = 0. 

N o w  we look  for  shorter  paths assuming  fur thermore  8 = 3`. EQuations (22) and (23) 

b e c o m e  

L - L0 = 2(/3 + 3, - 2v), (24) 

- cos c~ + 2 cos(/3 - c~) - cos(fl  - c~ + 3`) = 2 - 2 cos v, 

sin c~ + 2 sin(/3 - c~) - sin(fl - a + 3`) = 0. (25) 

The Jacobian  o f  (25) with respect  to/3 and 3, is equal  to - 2  s i n 7  ¢ 0 for 3' sufficiently 

c lose  to v, s ince 0 < v < 7r/2. So (25) impl ic i t ly  def ines /3  and 3, as funct ions o f  

in a ne ighbo rbhood  of  (v, v, v). This proves  that such a deformat ion  is poss ib le  and 

di f ferent ia t ing (25) w.r.t. ~ y ie lds  

dfl _ 1 sin(/3 + 3`) and d__7_7 = 
d~  2 sin 3, dc~ 

In part icular ,  

d L - 2 ( ~ - - ~ + d d - ~ )  = 0 d o l  at f l = 3 , = v .  

But further, 

d2L cos v 
dot2 (0) = - 4  s i - ~ v ( l  - c o s y )  < 0, 

which proves  L < L0 for any small  enough ~ ¢ 0. 

2 sin/3 - sin(fl + 7) 

- 2  sin 7 

[] 

5 . 3 .  e = l  

Any  circle  o f  radius  R centered on D~: is tangent  to Do. Thus, any arc of  an op t imal  

path start ing at a cusp, say A on D +  

• ei ther  is final: IC, 

• or  ends at a cusp on D+:  IC~I, 

• or  has length (~r/2)R and ends at an inflexion point  B,  and is fo l lowed  by  

- ei ther  a segment  B B  I of  Do. I f  segment  B B '  is not  terminal ,  then B ~ 

is another  inftexion point,  fo l lowed  by  an arc o f  circle  which,  again,  is 
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either terminal or of length (~/2)R and ends at a cusp on either D+ 
or D_,  

- or a final arc of circle, 
- or another C~/2 ending at a cusp A' on D_. 

We conclude that any portion of an optimal path starting at a cusp is of one of 
the four following types IC, IC~/2SC, o r  IC~/2SC~/2[... and its degenerate cases 

IC~I.. .  and [C~/2C~r/2l. . .  
Hence, any optimal path, in the case e = 1, is of one of the following types 

(together with their degenerate forms): 

G i g ,  C l C w / 2 S C ,  CSC~r/2IC, "~lCTr/2SC~v/2[C 

(compare to the list in [5]), plus others of the type 

. . . CSC~/2[C~/2SC. . . ; 

for instance 

• .. CwSC~r/2ICTr/zSC~r/2]. . . ,  . . .  CTr/2SC~r/2]CTr/2SCw . . . .  

Summarizing the above discussion, we state the following theorem. 

THEOREM 14. Any shortest path in the plane, piecewise C 2, and either C 1 or with 
cusps at junction points, between two given oriented points, is of one of the types 
listed below, together with their degenerate forms: 

CSC, CC~C (with v > ~r), 

CICI . . . ]C, CICvC, CCvIC, CCvICvC, CIC, CvlC (with 0 < v < ~/2), 

CSCw/2lC~r /2SC , C](CTr/2SCTr/2)[kC (with k >>. 0). 

It is worth noticing that all the arguments used so far were of a local nature. In 
the sequel, we will use global arguments and further restrict the number of possible 
types of shortest paths. 

LEMMA 15. A path of type CSC~/21C~/2SC~/2IC (or CIC~/2SC~/2IC~/2SC ) can- 
not be optimal. 

Proof. We consider only the c a s e  CSCTr/Z[C~r/zSCTr/2lC, the computations for 
the other one being identical. The four possible cases of type CSC~/21C~/2SC~/21C 
(see (1) to (4), Figure 4) can be discarded by global arguments. We apply the 
following length-preserving transformation to any of the paths (1) to (4). First, if the 
two cusps are not already on the same line (case (2) and (4)), reverse a CTr/ZlCTr/2 
portion, in order to get the two cusps on the same line, say D+. Now, transform 
SC~/21C~/2SC~/21 into SC~/21C~I, by sliding a cusp along D+. Finally, reverse IC~] 
in order to remove the cusp. By this transformation, we obtain a path without cusp, 
which is of the same length than the initial one, and which contains a SC~/2C~ 
section. Then, Lemma 9 applies to prove that such a path is not optimal. [] 
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(1) 

(2) 

(3) 

(4) "z 
Fig. 4. The CSCTr/2ICTr/2SCTr/21C case. 

Finally, observe that a path of type CCvC with v > rr is no longer optimal. Indeed, 
by reversing C~, one obtains a path of type CIC~tC where w = 27r - v  < rr, so that 
it is shorter than the initial path. 

We conclude with the following theorem: 

THEOREM 16 (Reeds and Shepp). Any shortest path in the plane, piecewise C 2, 
and either C 1 or with cusps at junction pointsl joining two given oriented points, is 
of one of the types listed below, together with their degenerate forms: 

CSC, 

clcr.. Ic, clcvc, cc~lc, CCvlCvC, ClCvCvlc (with 0 < v < rr/2), 

cSc~/21C~/2SC, C lC,~/2sc,~/alc. 
Furthermore, the only two cases where there is an infinity of shortest paths are 

CICI... IC and CSC~/2]C~/2SC. But one of them can always be found of the type 
CICtC, or CIC,/2SC (or CSC~/21C), respectively. This is Reeds and Shepp's result 
in [5]. 
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