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Monotonieity and Dummy Free Property for 
Multi-Choice Cooperative Games 

C.-R. Hsiao 1 and T. E. S. Raghavan 2 

Abstract: Given a coalition of an n-person cooperative game in characteristic function form, 
we can associate a zero-one vector whose non-zero coordinates identify the players in the given 
coalition. The cooperative game with this identification is just a map on such vectors. By 
allowing each coordinate to take finitely many values we can define multi-choice cooperative 
games. In such multi-choice games we can also define Shapley value axiomatically. We show 
that this multi-choice Shapley value is dummy free of actions, dummy free of players, non- 
decreasing for non-decreasing multi-choice games, and strictly increasing for strictly increasing 
cooperative games. Some of these properties are closely related to some properties of indepen- 
dent exponentially distributed random variables. An advantage of multi-choice formulation is 
that it allows to model strategic behavior of players within the context of cooperation. 

Introduction 

Often in the modelling of  cooperative transferable utility games, the strategic aspects 
of  the players are temporarily set aside and the characteristic function is computed, 
based on the maximum utility sum attainable under cooperation. For example, in a 
market game with transferable utility [14], the characteristic function is computed 
by maximizing the total utility that a coalition can get by reallocating the initial 
bundle among the members of  the coalition. In such a formulation each player in 
any coalition has only two options: either quit the coalition or stay in the coalition 
and put in the highest levels of  cooperation to maximize the coalitions total utility. 
Any hint about how the player's relative contribution is going to be valued by the 
coalition through a point solution such as the Shapley value [13] or the Nucleolus [9] 
or any other solution restricted to the coalition might completely change the player's 
attitude and effort level [3]. Suppose a landlord can harvest 20 bags of  rice employ- 
ing one honest hardworking peasant and 24 bags employing two such peasants. As 
an alternative plan, the landlord can harvest only 10 bags o f  rice employing a leisure 
seeking peasant and can produce 18 bags employing two such peasants. I f  the honest 
peasants come to know that the Nucleolus will be used to measure their contribu- 
tion, it is clearly to their advantage to exert less, for the Nucleolus allocates only 2 
bags to each peasant in the first case inspite of  the greater effort and higher output 
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while it allocates 4 bags to each peasant with lower effort and lower output! Similar 
examples can be formulated for the Shapley value also. Thus, it may be useful to 
model cooperative games with the possibility that players have more than one way of  
acting within a coalition. 

Introduction. Let N =  {1, 2 . . . .  , n} be the set of  players. We allow each player to 
have (m + 1) actions, say ao, al, a2 . . . . .  am, where ao is the action to do nothing, 
while ak is the option to work at level k, which is better than ak-1. 

Let F =  {0, 1 . . . . .  m}. The action space of  N is defined by F ~= {(xl . . . . .  
x,) :x~eF, u  Thus (xl . . . . .  x,) is called an action vector of  N, and xi = k if and 
only if player i takes action ak. 

A multi-choice cooperative game in characteristic function form is the pair 
(F ' ,  V) defined by: V : F ' ~ R ,  such that V(O)=0,  where O = ( 0 ,  0 . . . . .  0). 

We can identify the set of  all multi-choice cooperative games by: G = R  r ' -  ~o~. 
As in [5], we define the value of  a multi-choice cooperative game as a matrix. 

Let q~: G"~Mmxn be the function such that 

and 

/61~(V) ... 
,~(V) = /%1(:V) 

\e~mx'(V) 

[4~li(V) \ 
~i(V)=(~2i(V)) ~  

~l.(V) ~ 
+~. !(v) ) = (g~(v) . . . .  , ~(v))  

~ m . ( V ) ]  

Here q~ji(V) is the power index or the value of  player i when he takes action aj 
in game V. 

Let w ' F ~ R +  be a non-negative function such that w(0)=0,  
w(0)_< w(1)_< w(2) <_... _ w(m).  Here w is called a weight of  F. In [5], we showed 
that there exists a unique 4~ satisfying the following four axioms. 

Axiom 1. Suppose w(0), w(1) . . . . .  w(m) are given. If  Vis of  the form 

V(y) = I ~ > 0  ify_>x 
otherwise, 

then q~x,. i(V) is proportional to w(xi). 

Remark  1. The a priori weights are taken to be independent of  the players and de- 
pend only on their action levels. Suppose we also make the weights to depend on 
players. Then our Shapley value can no longer be an extension of  the classical Sha- 
pley value in the following sense. The classical games correspond to taking m = 1 and 
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different weights for different players will correspond to valueing players asymme- 
trically even for the unanimity game. While the classical Shapley value is fixed using 
only the three axioms (dummy, symmetry and efficiency) for unanimity games it will 
no more be possible with such asymmetric weights depending on the players. 

A vector x*EF n is called a carrier of  V, if V(x* ^ x)=  V(x) for all x ~ F ' .  

Ax iom 2. If  x* is a carrier of  V then, for m = (m, m . . . . .  m) we have 

Z ~ x * , i ( V )  = V ( m ) .  
x?~O 

By x* ex* we mean x* is the i-th component of  x*. 

Ax iom 3.49 ( V 1 + V 2) = 49 ( V ~) + 49 (I/2), where ( V 1 + V 2) (x) = V 1 (x) + V 2 (x). 

Ax iom 4. Given x~  ", let V(x)=0,  whenever x ~ x  ~ Then 49k, i (V)=O,  for all 
k < x  ~ and all i~N.  

Definition 1. Let (x Ix; = k) denote a vector with xi = k. Player i is said to be a dummy 
player if V((x[x i=k))= V((xlxi=O)) for all x~F  n and for all k~F.  

Definition 2. Given x ~ F ' ,  let S(x) = {i]xi~ e O, xi is a component of  x}. Given SC_N, 
let b(S) be the binary vector with coordinates bi(S) satisfying 

bi(S) = [10 i f i ~ S  
otherwise. 

Let [ S] be the number of  elements of  S. 

Definition 3. Given F" and w(0)=0,  w(1) . . . . .  w(m), for any x~F  ~, we define 

IIxllw: ~ w(x~). 
r = l  

Definition 4. Given x ~ F ' ,  and j ~ N =  {1, 2 . . . . .  n} we define Mj(x)= {i lx , .~m, 
i ~ j } .  

From theorem 2 in [5] we have 

Oil(v)= ~, ~, ~ (_l)r~l 
k = l x j = k  TC=Mi(x) [Ixllw+ ~ [W(Xr'~-I)- -W(Xr)]  

x:#O r~ T 
xEI ~n 

• IV(x ) -  V ( x -  b ({j}))]. (**) 

Given N =  {1, 2 . . . . .  n}, F =  {0, 1 . . . . .  m}, and a multi-choice cooperative 
game (F n, V), suppose 49(V)=(a~j),,• Suppose we allow a dummy player, say 
( n + l )  to join the game. Then we have a new game (F n+~, V D) such that 
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vD((xlxn+I=O)= V(X), for all xeF"  and all ieF.  (F n+l, g D) is called a dummy 
extension of (F n, V). 

Suppose d~(VD)=(bi]),,x(,+~); it is clear that bi,(n+l)=0, u Now we could 
ask whether au=b U for all ie{1, 2 . . . . .  m} and all j eN .  A solution of a multi- 
choice cooperative game is said to be dummy free of players if ao-= bij for all 
ie  { 1, 2 . . . . .  m} and all j e N ;  otherwise the solution is said to be dummy dependent 
of players. We will show that our extended Shapley value is dummy free of 
players. 

Remark 2. Though in [5] we gave the explicit formula for the multi-choice Shapley 
value, the following representation of a multi-choice game in terms of unanimity 
games is useful for proving the dummy free property. 

Theorem 1. A multi-choice cooperative game (F' ,  V) can be written as: 

V = ~ a x V  x, 
x ~ F  n 

x~O 

where ax= ~, (-1)lSIV(x-b(S)) ,  and 
S~_S(x) 

VX(z) = [I0 i f z > x  
otherwise. 

Proof. Given x ~ F ' ,  suppose S(x)= {kl, kz . . . . .  kp}. Let 

A = {y[y-<x} = { y l y < x - b ( O ) } .  

For Sc_S(x), S r 0 define 

A(S)=  {yly-<x, Yk,<Xk,, VkieS} = { y l Y < x - b ( S ) } .  

Then by the inclusion-exclusion principle we have: 

{x} =A - A  ( { k l } ) - A  ({k2} ) - . . .  - A  ({kp}) +A ({k~, k2}) 

+.. .  +A({kp-i ,  kp})-A({kl ,  k2, k 3 } ) - . . .  

+ ( - 1)ISlA (S) + . . .  + ( -  1)Is(*)LA (S(x)).  

Given the real function a, on the finite set Fn one can associate a signed measure 
p(E)---~.x~Ea,. The additivity of this signed measure gives 

a x - - X a y -  a y - . . . -  a, 
y~<x y ~ x - - b ( { k l } )  y--<x - -b  ({Rp}) 

+ . . . + ( - 1 )  Isl Z a , + . . - + ( - 1 )  p Z 
y- -~x - -b (S )  y--< x - -  b (S(x))  

ay. 
(1.1) 
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In [5] Theorem 1, we have proved that V can be written as 

V= Z a~V ~. 
y ~ O  
y ~ F  n 

Since VYx = 1 when y_< x it is clear that 

V(x) = ~. ay, for all xeF ,  x r  (1.2) 
y ~ x  

Namely V(x) is simply the sum of all the coefficients ay where y is any vector domi- 
nated by x. By (1.1) and (1.2) we have: 

a~= V ( x ) -  V ( x - b ( { k a } ) ) - . . . -  V(x-b({kp}) 

+ V ( x -  b ({ka, kz})) + . . .  + ( -  1)ISl V ( x -  b(S)) 

+ v ( -  l)" V(x-  b (S(x))). 

Therefore ax = ~. ( -1) ls lv(x-b(S)) .  
S~_S(x) 

Theorem 2. The Shapley value for a multi-choice cooperative game is dummy free of  
players. 

Proof. Given a multi-choice cooperative game (F ~, V) and its dummy extension 
(F" +~, vD), suppose player (n + 1) is the dummy player. 

Now V can be written as: 

V = ~ , a x V  ~. 
x ~ O  
x ~ F  n 

Also, V D can be written as: 

V D = ~ c,, V ~. 
x : ~ O  

x ~ F  n+l 

Given x e F  ~, define (xlk)=(x~ . . . . .  Xn, k). It is easy to observe that: 

VD= ~. ~ c(~lk)~ ~jk). 
R = O  x ~ O  

XEF n 

Now, for any k r  k e F ,  given x e F  ~, consider C(xlk). By Theorem 1 we have: 

C(xtk) = ~. (--1) rsj VD((x lk ) -h (S) ) .  
s_=S( (x lk ) )  
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Since k r  0, we have (n + 1)eS((xlk)).  Thus we can rewrite c(~tk ) as: 

c(~tk ~ = ~. (-111sl vD((xlkl-b(S))  
(n + 1)~ S 

s~-S((xlk)) 

+ ~, ( - 1 )  Isl vD((xlk)-b(S))  
(n+  I )~S  

S~--S((xlk)) 

- Z ( - 1 )  Ist [VD((xlk)-b(S)) 
(n+  1)~S 

S~--S((xlk)) 

- VD((x[k)-b(Su {n+  1})11. 

But vD((xlk)-b(S))  - VD((x lk ) -b (Su  {n+  1}))=0,  for all x e F "  and all k r  
Therefore c(~lk)= 0, for all k:b 0 and all x e F  ". Thus 

V ~ = ~. C(xlo) V (~l~ 
x ~ O  
x~F  n 

Now it is easy to see that c(~lm = a, for all x e F  ~, and by axiom 1, it is also clear 
that q~o(V(~lm) =~b;j(V ~) for all i~ {1, 2 . . . . .  m} and j e N .  

Hence by axiom 3, we conclude that 4~o(V)= ~bu(V D) for all ie  { 1 . . . . .  m} and 
all j eN .  Moreover 4~, (,+ 1)(V 9)  = 0 u { 1 . . . . .  m}, and the proof  is completed. <> 

Remark 3, If  a solution of  a game is dummy dependent ofaplayer, then the dummy 
player acts like a catalyst, and those who are not dummy will invite him to join the 
game if he can make their income bigger. Conversely, they will reject the dummy 
player joining the game if he will make their income smaller. 

Definition 5. Given (F ' ,  V) and given x e F  n - {O}, let Ai(x) = {j[xy= i}. We call the 
action ai a dummy action if V(x)= V ( x - b ( T ) ) ,  for all Tc_Ai(x) and all x e F  n. 

Given (F ' ,  V), where F = {0, 1 . . . . .  m}, and given r e F ,  allow players to have 
one more choice at,, such that at, has a level which is in between or and (rr+l. When 
r=m, we assume r '=m+ 1. 

Thus we have a new action space F~,, where F .  = {0, 1 . . . . .  r, r ' ,  ( r+  1) . . . . .  
m}. Let (F$, V A) be the game such that VA(x)= V(x) whenever xeF~,c~F" = F  ". If  
at, is a dummy action of  V A, then we call (F$, V A) a dummy action extension of  
(r" ,  V). 

After extending Fn to F~,, we encounter a notational difficulty with F . =  
{0, 1 . . . . .  r, r ' ,  r +  1 . . . . .  m}, where r '  denotes an action whose level is no lower 
than r and no higher than r +  1. Here r '  is just a number but not necessarily a natural 
number. We decide to leave r '  alone, and make the following modification: Given 
x~Fg  with At, = {j[xj=r'}, for any SC_A~,(x), we have x - b ( S ) = y ,  where y~=x~ if 
i~S and yi=r (one level lower than r ' )  if ieS. Similarly, for any T~Ar+I(x), we 
have x - b  (T)=  z, where z~ = xi if i~ T and z~ = r '  if i e T. 

Suppose 4~ is a solution of  (F n, V), and ~ ( V ) =  (aij)m• suppose after a dummy 
action extension, 
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~ ( v  A) = 

blm 
br~l 

... bln~ ) 
bfn �9 
b!n 

Then the solution $ is said to be dummy free of action if au=bi j for all 
i~ {1, 2 . . . . .  m} and all j ~ N .  Otherwise, ~b is said to be dummy dependent of ac- 
tion. 

Theorem 3. The Shapley value for multi-choice cooperative game is dummy free of 
action, and the value for a player using the dummy action is same as the value using 
the action, one step lower. 

Proof.  Given (F n, V) and its dummy action extension game (F$, V A) with the 
dummy action am,, by Theorem 1.1 we have: 

V= ~ axV  x, where a~= ~ ( - 1 ) r s l v ( x - b ( S ) )  
x ~ O  S_~S(x) 
x ~ F  n 

and 

vA = Z d* V*, where dx= ~, 
x ~ O S_~ S(x) 
x ~ F g  

( -  1)ISl vA ( x - b ( S ) ) .  

It is easy to see that xeF"  if and only if A, ,(x)= 0, Now given xeFg ,  consider 
the following two cases. 

Case 1. When Ar,(X)=0 and A~§ then V ( x - b ( S ) ) =  V A ( x - b ( S ) )  for all 
Sc_S(x). Hence dx=a~. 

Case 2. When A~,(x)=0 and Ar+l(X)~0, it is clear that Ar+1(x)_CS(x). Since 
Ar,(X)=0, we may consider x = y ,  yEF n. Now, since ar, is a dummy action we 
have: 

V D (x - b (S)) = V D (x - b (S) - b (S n Ar + 1 (X))) 

= V ( y - b ( S ) ) =  V ( x - b ( S ) ) ,  for all Sc_S(x )=S(y ) .  

Hence d, = a,. 
From Case 1 and Case 2 we can conclude that 

dx=a,, for all xEF.,$nFn=F ". (3.1) 

When x e F ~ - F  ~, then A~,(x)r Choose j*~Ar,(x). Since Ar,(X)C__S(x)we 
have: 
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d~= Z ( -1 ) lS l v '4 (x -b (S ) )  
S~_S(x) 

= ~. ( - 1 1  Isl V A ( x - b ( S I )  
j*~S 

S~_S(x) 

+ ~, ( -1 ) l s l+~VA(x -b (Su{ j*} ) )  
j*eS 

s_=s(x) 

= ~, ( - 1 )  I s / [VA(x-b(S) )  - VA(x-b(Sk.) {j*}))]. 
j*~S 

s_=S(x) 

But VA(x--b(S)) - VA(x-b(S•  {j*}))=0 for all Sc_S(x). Therefore, 

d~=O for all x e F ~ , - F  n. (3.2) 

Given w (0) = 0 < w (1) < w (2) < . . .  < w (r) < w (r ')  < w (r + 1) < . . .  < w (m), by the 
proof  of  Theorem 1 in [5] we have: For x e F  n, 

1-st 

4;j(V ~) = xj-th 

m -th 

(3.3) 

and for xeF~, with r ' > x  s, 

~ j ( v  *) = 

x s-th 
wcxJ) l 

w(x~) [ r ' - th  /Ixllw ] 

" I l x l l ~ -  

(3.4) 

By (3.1), (3.2), (3.3), (3.4) and axiom 3, we conclude that 4~is(V)=4~ij(V*), for all 
iCr '  and all j e N .  Moreover, ~ r , , j ( V ) = ~ r , j ( V ) ,  for all j e N .  <> 

Remark 4. When players are playing a multi-choice cooperative game, until and un- 
less the solution is dummy free of  action some players could claim to be playing the 
game (F n, V), while some other players could say we are playing (Fg, V) and as a 
result the Shapley value for a specific action can be changed by introducing spurious 
actions. 
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Remark 5. Since the extended Shapley value is dummy free of action, in many cases 
we can insert some dummy actions to make the calculations of the Shapley value 
easier. For example, if w(0)=0, w(1)= 1, w(2)--3, F =  {0, 1, 2}, then we may in- 
sert a dummy action a, ,  such that w(0)=0, w(1)= l ,  w ( l ' ) = 2 ,  w(2)=3, and 
F .  -- {0, 1, 1 ' ,  2}. Then F .  has the property that when the level of action increases, 
the weights also increase at a fixed rate, and this property can make the calculation 
easier. See formula (4.1) below. 

Remark 6. Given a game (F n, V) if we can make w(i) = i without inserting too many 
dummy actions, then using formula (4.1) is easier than using formula (**) for the 
following reason. If  we use a computer program to calculate the Shapley value using 
formula (**), since w ( r + l ) - w ( r )  is not a constant for all r e T  in (**), we must 
write a computer program that writes out all the elements in T and all the 
T 'seMj(x) .  If  we use formula (4.1), all we have to do is to consider the number of 
elements in T. 

Lemma 1. Let f(z) ~, k m 1 = (-- 1) ( k ) ' ~  then 
k=O 

m! 
f ( z )  - 

~I (z + k) 
k=O 

Proof. 

0 k=O 

= ! x~-I ~=o ~' ( - 1 ) k  "xkdx 

' m !  
= I x z - I (  1 --X) m + l - l d x  = <> 

o ~I (z+k) 
k=O 

Theorem 4. Given (F", V) if w(0)=0, w(1)= l ,  w(2)=2 . . . . .  w(m)=m, then the 
Shapley value is: 

k-IMAx)I ! 

x§ x~+t 
xEI~ t=O r = l  

[ V ( x )  - V ( x  - b ( { j } ) ) ] .  (4.1) 
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Proof. When w(t)=i,  v ieF ,  we have [[x[lw= ~ x .  Since w ( i + l ) - w ( i ) = l ,  
r = l  

Vie{0, 1 . . . . .  m - 1 } t =  ~ [ W ( X r + I ) - - W ( X r ) ] =  ITI. By Lemma 1 applied to the 
r ~ T  

formula (**) we get (4.1). 

Remark 7. Given a game (F' ,  V) if we can make w(i) = i without inserting too many 
dummy actions, the formula (4.1) looks somewhat simpler to calculate the Shapley 
value. 

Definition 6. A multi-choice cooperative game (F' ,  V) is said to be non-decreasing, 
if x>_y= V(x)_ V(y). 

Given a non-decreasing multi-choice cooperative game (F n, V), and its Shapley 
value 4~i,j(V), naturally we expect that 

O = O o , j ( V ) ~ . ~ 9 1 , j ( V ) ~ ) 2 , j ( V ) ' ~ . . . ~ - ~ - ) m , j ( V ) ,  for all j ~N .  

Before proving this expected result, we would prove the following inequality, 
due to shapley [12]. 

Theorem 5. Given a set M =  {1, 2 . . . . .  m}, and scalars x > 0 ,  y~___0, i= 1 . . . . .  m 
let 

f (x ,  Yl . . . . .  Ym) = Z ( - 1 )  Isl - -  
S~_M X+ ~,Yi" 

i~S  

Then f (x ,  Yl . . . . .  Ym) >-- O. 
We would like to present the following elegant proof which replaces shapley's 

inductive proof [12]. Also see [6]. 

Proof. (R. B. Bapat) We will temporarily assume that the yi's are positive. Let y(S) 
denote the sum ~.~sY~. Consider the integral 

1 

f p ~-~ f i  (1-pYOdp>_O. 
0 i = 1  

This reduces to 

1 

fP  ~-~ Z (-1)lSlp '(S)dp 
0 S g M  

which when integrated gives the required inequality. Since x > 0 ,  for each S, the 
1 

function gs(Yl, Y2 . . . . .  Yn) = - -  is continuous at all yi's nonnegative. Thus 
x +  ~,Yi 

i~S  

the general case follows by continuity. 
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Remark 8. Consider independent exponential random variables X, Y~, i = 1, 2 . . . . .  m 
with parameters x, y;, i=  1, 2, . . . ,  m respectively. We will assume that all the pa- 
rameters are positive. Then the above inequality is precisely the same as the expecta- 
tion inequality 3 

E{max(X,  Y1, 112 . . . . .  Ym)-max(Y1, Y2 . . . . .  Ym)}-0 .  

The same inequality can also be proved 4 by expanding the inequality P ( u A 3  -< 1 via 
the inclusion-exclusion principle. Here the events Ai = { X -  < Y,.}, i = 1, 2 . . . .  and the 
events AeAj = {X___ min { Yi, Yj} } and so on. Since the minimum of two independent 
exponential random variables is exponential with its parameter as the sum of  their 
parameters [1], the inequality follows from 

I>_P(uAi) = ~i x Z x +. . .  
�9 X + Y i  i , j x + y ~ + y j  

Definition 7. Let x, y e F  n, we say that x is strictly greater than y, denoted by x > y ,  if 
there exists a j ~ N  such that xj <yj .  A multi-choice cooperative game (F ", V) is said 
to be strictly increasing if V(x)> V(y) whenever x > y. 

Theorem 6. Given a non-decreasing multi-choice cooperative game (F n, V) and its 
Shapley value ~e(V),  we have 

O= ~ o , j ( V ) -  4~ l , j (V) -4~z .+(V)- . . . - -  q~m,AV), 

for all j eN.  In case the multi-choice cooperative game is strictly increasing, then we 
have 

O=4~oj(V)< 4~,j(V)< 4~zj(V)<... < r for all j eN .  

Proof. Since V is non-decreasing, [ V(x) - V(x - b ({j}))] _ 0 for all x e Fn in equation 
(**). Moreover, by Theorem 5 we have 

~. ( _ l ) l r  I w(xj) _ 0 ,  VxeF n. 
,-~_~<~ Ilxll~+ Z [w(x~+a)-w(x01 

r E T  

Therefore, the conclusion follows. The second case follows easily the same 
way. <> 

Remark 9. Suppose we know that a multi-choice cooperative game is strictly in- 
creasing. Then a desirable property for a solution is to have increased payments to a 

3 This was pointed out by Ravindra Bapat at the First Game Theory and Economics Con- 
ference, 1990 at I.S.I., New Delhi. 

4 This was pointed out by E1-Neweihi. 
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player for higher levels of  his action. Theorem 7 shows that  the Shapley value for 
multi-choice cooperat ive games has this property .  
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