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The Folk Theorem for Finitely Repeated Games 
with Mixed Strategies 

OLIV1ER GOSSNER 1 

L.S.T.A, Bo~te 158, Universit6 Paris 6, 4 Place Jussieu, 75005 Paris, France 

Abstract: This paper proves a Folk Theorem for finitely repeated games with mixed strategies. To 
obtain this result, we first show a similar property for finitely repeated games with terminal payoffs. 

1 Introduction 

The perfect Folk Theorem (Aumann and Shapley [1], Rubinstein [10]) states that any 
payoff  that is feasible and better than the minimax payoff  for any player  in a one-shot 
game is a subgame perfect equilibrium payoff  of  the corresponding infinitely repeated 
game with standard signaling and without discounting. Since then, results have been 
proved for different structures of  repeated games: mainly discounted or finitely re- 
peated games. But one should also distinguish results that rely on the assumption that 
players use only pure strategies, and results that allow them to use mixed strategies. 
We will refer to the former ones as Folk  Theorems in pure strategies, as opposed to 
Folk Theorems in mixed strategies. 

In a one-shot game, the difference between pure and mixed strategies relies es- 
sentially on the structure of  the strategy spaces (convex in one case but usually not 
in the other). In a repeated game, the signaling structures are radically different in 
both models. If  we assume that the mixed actions of  the players are revealed after 
each round, we are basically in a model  with an extended set of  pure strategies. On 
the other hand, with mixed strategies, only the action corresponding to a realization 
of their mixed moves is announced. In this case, it is therefore impossible to force 
some player  to use a mixed move by threatening him with a punishment if  he dis- 
obeys. Since most proofs of  Folk Theorems rely on some similar arguments of  threat 
and reward, proofs of  Folk Theorems in pure strategies don ' t  easily extend to mixed 
strategies. 

The Folk Theorem by Aumann and Shapley [1], Rubinstein [10] holds both in 
pure and in mixed strategies. Fudenberg and Maskin [4] and [5] show that both a 
Folk Theorem in pure strategies and a Folk Theorem in mixed strategies hold for 
discounted infinitely repeated games (see also Neyman [9] and Sorin [12]). Beno~t 
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and Krishna [2] obtain a Folk Theorem in pure strategies for finitely repeated games 
under some assumptions on the one-shot game, and exhibit some finitely repeated 
games for which it fails. Overlapping generations games - OLGs hereafter - ,  inspired 
by Samuelson's economic model, form another important class of  games. Kandori [7], 
and Smith [11] in a more general case, proved a Folk Theorem in pure strategies for 
OLGs. For the study of OLGs, Kandori introduced finitely repeated games with ter- 
minal payoffs which are interesting from a technical point of  view. These are finitely 
repeated games in which players receive an additional payoff  which depends on the 
history of the game. 

The scope of this paper is to extend the Folk Theorem for finitely repeated games 
from pure strategies to mixed strategies. To do this, we first prove a Folk Theorem in 
mixed strategies for finitely repeated games with terminal payoffs. In section 2, we 
recall the models of  finitely repeated games and finitely repeated games with terminal 
payoffs. We also review the results of  Benott and Krishna [2] and Kandori [7] for 
these games. The Folk Theorem in mixed strategies for finitely repeated games with 
terminal payoffs is presented in section 3. In section 4, we show how the terminal 
payoffs can be constructed as equilibrium payoffs of a snbgame of the repeated game. 
Using this, we finally prove that a Folk Theorem in mixed strategies holds for finitely 
repeated games. 

2 The Models 

2.1 The  One -Sho t -Game  

Let G be an /-player normal form game, the set of players being represented by 
I = { 1 ..... I}, with payoff  function g : 1-ii Ai __+ Nz. A ~ is player i's set of  pure strategies 
and is finite, and gi(a) (the i-th component of  g(a))  is his payoff  when the action profile 
is a. 

Players may use mixed strategies, and the simplex A(A ~) = S ~ represents the 
set of  mixed strategies for player i. g : I l i  S i --+/R z will also denote the canonical 
extension of g, thus g(s  1 ..... s I) is the expected payoff  when each player i uses the 
mixed strategy s i. 

We will use the notations A = IJziAi, A - i  = 1] j~ iA  j, and similarly for S, S -i .  For 
every player i, we select a minimax in mixed strategies against player i for players 
other than i, mF i E S -i, and a best response m I against m;z i, SO that mi = (rrt S ,  m I) E S. 

Without loss of  generality, we normalize the payoffs so that for every i, gi(mi)  = O. 
Let the convex hull of  the set of  feasible payoffs be F = co{g(a), a EA}. V = F A N+z 
is the (closed) set of payoffs that are individually rational in mixed strategies and 
feasible. C = IIGII = m a x i ,  a tgi(a)l is the norm of G. For X E Nz and p E N+, we will 
denote by B(X,  p) the closed ball with center X and radius p. 

G being fixed, G* represents the / -p layer  normal form game in which players '  
pure strategy sets are S i, with payoff  function g. In G*, players use only pure strategies, 
that are the original mixed strategies of  G. 
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2.2 Finitely Repeated Games 

Given a game G as above, the finitely repeated game G(T) is defined as the game G 
being repeated T times, where players are observing at each stage the action profiles 
of G. A history at stage tE {1 ..... T} is an element of lit, where//t  is the set of t-tuples 
of elements of A if t > 0, and H0 = {0} for convenience. A strategy of player i is 
a sequence cr i = (cr~)l<t<r of mappings ~r I : Ht -1  --+ S i. If the history at stage T is 
(aa ..... at)  the (average) payoff vector in G(T) is: 

1 T 
gr(al ..... at)  = ~ ~ g(at) 

An I-tuple of strategies ~r = (o  "1 . . . . .  o "I) induces a probability distribution on the set 
of histories at stage T, and hence on the payoff vectors. Recall that cr is a Nash equi- 
librium of G(T) if for every player i, the strategy ~r i maximizes his expected payoff 
in G(T) given other players' strategies. Also cr is a subgame perfect equilibrium of 
G(T) when for all h E H ,  ah is a Nash equilibrium of G(T - t), where ~rh(h') is cr 
applied to the history h followed by h'. Let E(T) denote the set of (average expected) 
subgame perfect equilibrium payoffs of G(T). 

G*(T) represents the game G* repeated T times. In this game a history at time 
t > 0 is a sequence of t elements of S. The set of subgame perfect equilibrium payoffs 
of G*(T) will be denoted by E*(T). 

Note that since every player must get at least his minimax payoff in any equi- 
librium, E(T) and E*(T) are subsets of N/ .  It is obvious that E(T) and E*(T) are also 
subsets of F, therefore E(T) C V and E*(T) C V. Two Folk Theorems, one proved by 
Benott and Krishna [2], and the other which is the scope of this paper, give general 
conditions under which the converse inclusions are also true when T goes to infinity. 

The following result deals with the case of pure strategies: 

Theorem 1: (Beno~t and Krishna, 1985) Consider G*(T) and assume that: 

(i) For  every p layer  i, there exist two Nash  equilibria e i and f i o f  G such that gi(ei) > 

gi(fi) 
(ii) dim F = I 
then 

Ve > 0, 3~r E ,W, VT -- ~, Vv E V, B(v, e) A E*(T) 4:0 

Another way to state this theorem is to say that, under assumptions (i) and (ii), the 
limit for the Hausdorff topology of the set of equilibrium payoffs of G*(T) as T tends 
to infinity is the whole space V. 

The scope of this paper is to prove that Theorem 1 can be extended to the case 
where the players use mixed strategies. Now precisely we will prove: 
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Theorem A: (Main Theorem) Assume (i) and (ii), then: 

Vs > O, 3T E W, VT > T, Vv e V, B(v, e) N E(T) r 

2.3 Finitely Repeated Games with Terminal Payoffs 

Let W be a nonempty subset of j~ l  and u; a function from HT to W. The finitely 
repeated game with terminal payoffs G(T, W, co) is defined as being the game G 
repeated T times in which players receive an additional payoff at the end of the T 
stages. This terminal payoff is given by co applied to the history at stage T. W is 
called the terminal payoffs set and co is the terminal payoffs function. If the history 
is (al ..... aT) at stage T, the (average) payoff vector in G(T, W, co) is: 

1 T 1 
gzw, w(al ..... aT) = ~ ~-~g(at) + ~aJ(al ..... aT) 

t=l  

The set E(T, W, ~) of subgame perfect equilibrium payoffs of G(T, W, co) is defined in 
the usual sense. Since our terminal payoffs function ~ will vary, we are interested in 
the study of E(T, W) = U~E(T, W, w), that we call by extension the set of subgame 
perfect equilibrium payoffs of G(T, W). A history hr will be called an equilibrium 
path of G(T, W) if it is an equilibrium path of G(T, W, w) for some ~. 

When the one-shot game is G*, we also define the finitely repeated game with 
terminal payoffs G*(T, W, aJ*) (w* is a function from H~. to W) and the sets of equi- 
librium payoffs E*(T, W, co*) and E*(T, W) = U~,E(T, W, co*). 

We present here a version of Kandori's Folk Theorem [7] for finitely repeated 
games with terminal payoffs played in pure strategies. 

Theorem 2: (Kandori, 1992) I f  F f) tRs++ is nonempty, for any e > O, there exists a 

finite set W C IR ~ and To ~ W such that: 

VT > To, Vv e V, B(v, e) n E*(T, W)  4: I~ 

In the next section, we extend this result to mixed strategies, and use some particular 
spaces of terminal payoffs. 

3 A Folk Theorem for Finitely Repeated Games with Terminal 
Payoffs 

In this section, we prove a "robust" Folk Theorem for finitely repeated games with 
terminal payoffs with mixed strategies, where in fact, the points in the terminal payoffs 
set may vary up to some p without affecting the results. 
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3 . 1  S t a t e m e n t  o f  t h e  R e s u l t  

We denote by REW (like rewards) the subset {0, 1} 1 U {(-1 ,  - 1  ..... -1 )}  of ~ i .  For 
(W, p ) c N  2, 0 w'p is the correspondence from REW to Nx with compact values defined 
by Ow'p(r) = B(Wr, p). A selection 0 of O w'p picks for every r E REW a point O(r) in 
the ball OW'P(r). 

Theorem B: If  F F1 ~1+ is nonempty, 

Vp -> O, Ve > O, 3Wo c~, 3To c~V, 

VT >- To, VW >- Wo, Vv E V, and for every selection 0 of Ow.p 

13(% s) n E(T, O(REW)) r 0 

Note that in Theorem B, as in Theorem 2, the set of terminal payoffs does not depend 
on T. The game can be repeated as long as we want without increasing the size of 
the terminal payoffs set. 

As a corollary we get an equivalent to Theorem 2 in mixed strategies: 

Corollary 1: I f  F M ~l+ is nonempty, for every e > O, there exists a finite subset W 
of N t and To in ~g such that for every T >- To and every v in V: 

B(v, s) n E(T, W) 4:0 

We will first prove Theorem B for a fixed v E V. Since F F1 N/+ is nonempty and 
convex, v can be approximated by payoffs that are in F F/N+~+. With the notation 
g(lA) = 1 I 7{~1 g(ak), (aa ..... at) C Hi}, l C hV, the set Utg(lA) is dense in F and ~R/+ is 

open, thus Uig(lA) (-1 N+t+ is dense in F f] NI++. Therefore to prove the theorem for v, 
it is enough to prove that for every sequence of action profiles gt = (aa, a2 ..... at) E H~ 

1 l such that 7 ~k= 1 g(a~) >> 0, the path consisting of repeated cycles of this sequence 

is an equilibrium path of G(T, O(REW)) for any selection 0 of O w'p, when W and T 
are big enough. 

For a such sequence and a given selection, we will now construct equilibrium 
strategies having the following properties: 

- Players conform with the path above when the history is consistent with it. 
- If  player i deviates "long enough" before the end of the game, other players will 

punish him, i.e. they will use for some number P of stages a strategy near mS;  
that is what we will refer to as a punishing period. 

- The players who effectively punish (effective punishers) will receive a reward as 
terminal payoff. 

- If  any player deviates in the last stages of the game, the terminal payoff will be 
bad for every player. 

The elements of 0({0, 1} I) are payoffs that will reward players who were effective 
punishers. 0 ( -1  ..... - 1 )  is a collective punishment to prevent from "late" deviations. 
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The major difficulty one encounters when dealing with mixed strategies is to 
determine whether a player is an effective punisher or not. This will depend on 
the observation of action profiles issued during the punishing period, and thus we 
introduce the "test functions" a~ J as below. 

3.2 The Test Functions 

Suppose that after some period of the game, we want to check if players have used 
some mixed strategies "near" a fixed strategy in sES. The history during the considered 
period gives us some probability distribution on the action profiles, and one could 
simply compare this distribution with the distribution induced by s on A. Here we want 
to determine what players j have used the mixed strategy s j, therefore we introduce 
a different test for each player by the following way: 

For a history of the game during some period be expressed as a t-tuple h = 
(hto+l . . . . .  hto+t ) E Ht, let n(a) be the number of occurrences of a E A. Also n(a -j) is 
the number of times that players others than j issued the action a -j E A -j, n(a -j) = 
~b&AJ n( a-j, b J) �9 A distance between player j ' s  observed strategy during some history 
h and the repetition of s j is defined by: 

DJ(h ' sj ) = 1_ ~ in(a ) _ n (a_ j )p ( s j  = aj)t 
t aEA 

where P(s i = # )  represents the probability for player j to issue the action a j while 
using the strategy s j. 

After a punishing period, we want to compare each player's strategy and a mini- 
max strategy, so when the history during a punishing period against player i is h E lip, 
some test functions are given for ~7 > 0 by: 

a~ j =  10 i f D J ( h , m ~ ) < r  1 

otherwise 

An effective punisherj against i will be a punisher so that a~ j = 1. The two following 
lemmata show that if P is large enough, and ~ small enough, when all punishers are 
effective the deviator receives an average payoff which is less than the payoff in the 
normal path. Conversely, players who play the minimax strategy are usually effective 
punishers. 

Lemma 3.1: For every ~ > O, and ~1 > O, there exists Po in ~V such that if P >- Po, if 
any player i r j uses the strategy m~ during P stages where the history is h C Hp, the 
probability that ai~J(h) = 0 is less than ~ whatever are the strategies used by players" 
other than j. 

Proof." This proof uses the approachability theory, cf Blackwell [3], or Mertens, Sorin 
and Zamir [8]. 



The Folk Theorem for Finitely Repeated Games with Mixed Strategies 101 

For any player j fixed, we consider the game G with two players I and II, strategy 
sets A j for player I and A -J for player II, and vector payoff  ~(a) in NA with 1 in its 
component indexed by a and 0 elsewhere. For h = (hi, h2 ..... ht) E/-/t, xt = 2t(h) = 
1 ~ t  ~(hk). xt, a is the component of  xt indexed by a. Note that: t k = l  

DJ(h, s j) = ~ [2t, a - ~ 2t,(a-j,bj)P(s j = aJ)l 
aEA bJ EAJ 

Thus we can write D j as a function from [0, l ]  A X S j to ~ defined by the above 
formula, that we will still denote by D/. 

When player I uses the strategy m~, the convex hull R(m{) of the set of  points 

{~(s -j, m~), s -j  c A  -j} is equal to the set of  all 2 C [0, 1] A such that DJ(2, m{) = 0. The 
approachability theory tells us that this set is approachable for I by using the constant 

strategy m{. This means that for all el > 0, there exists an integer P0 such that for 
every strategy of  player II, the probability P(supt_>e0 6t <- el) is greater than 1 - el, 

where 6t is the distance between :~t and R(m~). 
In particular, since the function D J ( . ,  m~) is continuous, for el sufficiently small, 

the probability that DJ(2t, m~) >- r l is smaller than e. [] 

Lemma 3.2: For  every e > O, there exists ~7 > 0 such that fo r  every i, and every 
ht = (hi, h2 ..... hz) E fit  i f  f o r  j 4= i o~J(h) = 1 then: 

1 •  gi(hk) < e 
k = l  

Proof." First we reorder the players such that the player to be punished is called player 
L Consider an history h = (hb h2 ..... ht) and ~7 > 0 such that for all j r I, a~J(h) = 1. 

Then for every a E A and every j r I: 

l ln (a)  - n(a-J)P(mj = a;)l < 

In particular for every a = (a 1, a 2 ..... a I) C A: 

~ ln(a)  - ~ n(b 1, a 2 ..... al)p(m~ = al)l < 

b 1 EA I 

Since for every b 1 C A 1, 

~ ln(b 1, a2 ..... al)  - ~ n( bl, b2, a3 ..... al)p(m~ = a2)t < ~7 

b 2 EA 2 

for every a we get: 
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l ln(a) - ~ n(b ~, b 2, a s ..... a')P(m', = a')IP(m~ = a2)[ < 2~7 
( b l , b 2 ) E A  1 xA 2 

Repeating the same procedure 1 - 1 times leads to the formula: 

Va E A, l ln(a)  - 
1 - 1  

n( bl, b2 ..... b ' - l ,  at) 1-[ P(mJ = aJ)l < (I - 1)r/ 
( b l , b 2 , . . . , b l  I ) E A - 1  j = l  

l~b - l eA- ln (b -1  ,aI), w e  get that ~alEA Ir(a 1) = 1, so that If  we write r(a I) = 7 

{r(al), a l E A t} defines a point r I E S 1 and: 

1 
7 g'(hk) = t ~ n(a)g'(a) <- gZ(m~-', r') + (I - 1)C~ -< (I - 1)C~7 

k = 1 a E A  

This proves that when ~/is small enough, if all punishers are effective punishers, the 
payoff of  player I during the punishing period is less than e. [] 

3.3 P r o o f  of  T h e o r e m  B 

Fix v E V,p > 0, and a = (al ..... at) such that v '  1 i - -  = 7 ~t= 1 g(a,) >> 0. We will fix the 

parameters r/, P and Wo such that for any W > W0, T > P and any selection 0 of  0 w'p, 
the following algorithm defines a terminal payoffs function w and strategies that are 
a subgame perfect equilibrium of G(T, O(REW), ~), with equilibrium path repetitions 
of ~. 

Init ia l izat ion:  
Put rj = 0 for  all j E I, and t = 1. 

N O R M  (Normal path): 
Play a~ at stage t = k [mod l] until t = T, then go to End. 

I f  player i deviates from N O R M  at stage to < T - P, go to P(i). 
I f  any player deviates from N O R M  at stage to >- T - P, go to LI). 

P(i) (Punishment o f  player i): 
Play in G during P siages then redefine 

rj = oJj(hto+l ..... hto+P) for  all j r i 
and keep ri unchanged. 

Then go back to NORM. 
LD (Late Deviations): 

Redefine rj = - 1 for  all j E L play in G until t = T and go to End. 
End:  

Players receive O(q ..... rl) as terminal payoff. 

We first choose *7 fixed by Lemma 3.2 so that for every i and every P, if for all 
j r  i i,j c% (hi ..... he) = 1 then: 
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gi(h 0 < vi 
2 

Also let/31 > 0 and P1 be so that for any P > PI,  and for each i: 

1 2 v ~  -fi( p + 2C) + 2IeiC < -~ 

Lemma 3.1 gives for ~ and 81 a value P0, we now fix P = kl, P > max{Po, Pi}.  
The algorithm does not define explicitly what the strategies of  the players during 

a punishing period are, but we will prove that: if W is large enough, the strategy p{ of  

player j consisting of  playing m{ repeatedly during the P stages of  a punishing period 
of  player i dominates any altemative strategy a j for which P(a~ j = 0) > 2~1. 

In fact, playing a strategy that gives P(a~ J = 0) > 2el leads to a maximum 
expected payoff which is the sum of: 

- PC during the punishing period. 
- Some payoff, call it U j, during the intermediate period between the end of  the 

punishing period and the last s t ageof  the game. 
- The terminal payoff is at most W + p if a~ j = 1, and at most of  p if a~ J = 0, 

thus the expected terminal payoff is less than (1 - 2eI )W + p. 

Whereas using the strategy p{ gives as minimum expected payoff the sum of: 

- - P C  during the punishing period. 
- The same payoff U j during the intermediate period. 
- As above, we see that the expected terminal payoff is greater than (1 - e)W - p. 

Therefore the only condition that is needed is W > W0 with: 

2CP + 2p 
W o  > _ 

We now check that for such a P, el, ~l, and W no player has incentive to deviate from 
N O R M  at stage to -< T - P. 

A player who deviates from N O R M  at stage to -< T - P can expect as payoff no 
more than the sum of: 

- C maximal payoff during the stage of  the deviation. 

- During the punishing period, the payoff is ~ =  0 gi(hto +,) < P ~  if all punishers 
are effective punishers, which has a probability greater than 1 - 2Iel to occur, 
and if not the payoff during this period is less than 2CP. Therefore a upper bound 

of  the expected payoff is 2IelCP + ~P .  
- Some payoff  U i during the intermediate period. 
- The terminal payoff can raise from some wi up to a maximum of wi + 2p due to 

a change of  the parameter r. 
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By following the path N O R M  player i would receive: 

- At least - C  at stage to. 
- Pv; during the punishing period. 
- U ~ during the intermediate period. 
- w; as terminal payoff. 

Thus we need only to check that the following condition is satisfied: 

C + 21elPC + - ' P  + 2p <- - C  + v~P 
2 

The validity of  the inequation above is a consequence of  the definition of 61 and P. 
To prevent any late deviation, i.e. a deviation occurring at a stage t -> T - P, we 

assign to W0 a value that is greater than 2PC + 2p. For these values of  the parameters, 
the algorithm above defines a subgame perfect equilibrium of G(T, O(REW)) with as 
equilibrium path repeated cycles of  ~. 

Thus we proved so far that the theorem holds for any v E tOzg(IA) fq fl~++, and 
hence for any fixed v E V. Now, see that for any p -> 0 and e > 0, since V is 
compact, it is included in a finite union of balls tA~K/3(uk, ~), uk E V. We just pointed 
out that for every k E K, there exist Wk and T~ such that for T > Tk, and W > 
W~,/3(uk, ~) f3 E(T, O(REW)) 4: ~) for any selection 0 of  ~9 w'p. It is easy to check 

that if 0 is a selection of  69 w'p with W -> max~ Wk and if T >- maxkTk, for any 
v E V/3(v, 6) N E(T, O(REW)) 4= ~. 
This completes the proof of  Theorem B. [] 

4 P r o o f  o f  t h e  M a i n  T h e o r e m  

To prove Theorem A for a fixed game G, we first prove the existence of some T1 such 
that co(E(T1)) has dimension I (Lemma 4.1). Using this, we show how to construct T2 
and payoffs in T2E(T2) that define a selection 0 of O w'o as in Theorem B (Lemma 4.2). 
Theorem A then appears as a consequence of the fact that the repeated game G(T+ T2) 
can be viewed as the repeated game with terminal payoffs Tf~2 G(T, T2E(T2)), where 

is a renormalization factor due to different averaging of  payoffs in the factor 

G(T + T2) and in G(T, TzE(T2)). 

Lemma 4.1: Under hypothesis (i) and (ii), there exists T1 E LW such that 

dim(coE(T1)) = L 

Proof" Let (Ao, A1 . . . . .  A t )  b e / +  1 action profiles of  G so that dim(co{g(Ai), i E l} )  = I, 
and consider the strategies defined for j E I by: 

- Play Aj, then P times e l, then P times e 2 ..... then P times e I. 

- If  player i deviates at stage 1, play P times f i  instead of  e i later. 
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These strategies define a subgame perfect equilibrium of G(IP + 1) when P is large 
enough, since the gain from deviating at first stage is compensated for by the loss 
due to the repetition of "bad" equilibria later. 
Therefore for every k, ~ e  ~ =  1 g(el) + le-~g(Ak)  E E( IP  + 1), thus dim(co E(IP  + 1)) 
= 1 . [ ]  

L e m m a  4.2: Under hypothesis  (i) and (ii): 

3pO ~-- O, V W  E J~, ~]T 2 E ff~, 7 q u E l l  

Vr E REW, 30(r) E TzE(T2), O(r) - U E 13(Wr, Po) 

Proof." Let T1 be given by Lemma 4.2, and (Uo, U1 .... .  U1) E E(Tx) 1+1 be such that 
dim(co (U1 - U0 ..... /-/i - U0)) = I, and let Vi = Ui - Uo, so (Vi)iel is a basis of  ~1,  
and put P0 = ~[=1 ]lVil[ �9 

For every W E 97 and every r E R E W ,  there exist integer numbers (cq (r) ..... C~l(r)) 
such that: 

1 

II ~ ~  - Wrll < m 
i = l  

In fact every ball of  radius p0 contains at least one point of  the lattice of/t71 gen- 
erated by {V1, V2 .... .  V1}. Put s ~ = infi, rC~i(r), and/3i(r) = oti(r) - C~o, therefore we 
have: 

I I 

Vr ~ R E W  II ~ fli(r)Vi - (Wr - ce ~ ~ Yi)ll < po 
i = 1  i = 1  

and let be " / =  SUpr ~-~i ~ i ( r )  . For every r E R E W ,  

1 I 1 

II fl,(r)U~ + @ / -  ~_, ~i(r))Uo - (Wr + 7Uo - ce ~ y ~  vi)lt < po 
i = 1  i = l  i = 1  

Note that, if for i E {1, 2}, o- i is a subgame perfect equilibrium of G(ti) with total 
vector payoff  zi, then the strategies (~rl, or2) consisting of following ~rl then or2 define 
a subgame equilibrium of G(tl + t2) with total vector payoff  Zl + z2. Hence for every r 
in R E W ,  ~-~i ~i(r)Ui q- (")t -- ~-~i /~i(r) )Uo is in ~/T1E(3'T1). This proves Lemma 4.2 with 
T2 = "77"1, O(r) = ~i /3 i (r )Ui  + (7 - ~ i  fli(r))Uo and U = 7U0 - a ~ ~ i  Vi. [] 

P r o o f  o f  Theorem A: Let Po -> 0 be fixed by Lemma 4.2. For all e > 0, let W0 be 
given by Theorem B for P0 and ~(F fl N+1+) is nonempty from assumption (i)), then 
choose U and T2 that fit Lemma 4.2 for W0. 

Lemma 4.2 shows the existence of elements O(r) E T2E(T2) that define a selection 
0 of O w0,po + U. Since any translation of vector U of the terminal payoffs has no 
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effect on the strategies of  the players, from Theorem B we get the existence of  To 
such that: 

VT > To, Vv E V, 13(% ~) f') E(T, O(REW)) r 0 

Therefore 

vT  > To, Vv c V,,13(v, ~) n E(T, T2E(T2)) r 0 

Every subgame perfect equilibrium of G(T, T2E(T2)) extends to a subgame perfect 
equilibrium of G(T + T2), moreover for every T > 0, E(T + T2) = r-~r2E(T, T2E(T2)). 

Since T2 is constant and T goes to infinity, this implies the existence of  T such 
that: 

VT > T, Vv E V, B(v, e) ffl E(T + T2) 4= 0 

which completes the proof of  Theorem A. [] 

5 Conclusion and Possible Extensions 

Thus we proved a Folk Theorem in mixed strategies for finitely repeated games. In 
this theorem, the limit set of  average equilibrium vector payoffs is V. We already 
noticed that E(T) and E*(T) are always included in V. Therefore Theorem A gives 
a full characterization of  l i m r ~  E(T) when (i) and (ii) hold. Theorem A may fail 
without the assumption (i) that implies the existence o f  at least two Nash equilibria 
of  G, as the counterexample of the prisoner's dilemma shows. We also know that 
Theorem 1 fails without the "Full Dimensionality" assumption (ii) by an example 
given by Benoit and Krishna ([2], example 3.2). The method used to prove Theorem 
A might be extended to other classes of  games, like games with signals, and can 
be used to prove a Folk Theorem in mixed strategies for Overlapping Generations 
Games [6]. 
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