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Abstract: An approach initiated in [4] is shown to unify results about the existence of (i) Nash 
equilibria in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions 
for large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games. 
A new, central notion of mixed externality is developed for this purpose. 

1 Introduction 

In [4] a new analysis of  Cournot-Nash equilibrium distributions was given by charac- 
terizing these as solutions of an associated variational inequality in terms of  transition 
probabilities. In that paper the use of  some key results from Young measure theory 
made it possible to formulate a rather powerful existence result for equilibrium distri- 
butions. This was shown to generalize equilibrium results in [15, 17] (and also those 
of  [15], as was shown recently [5]). Recall  that Young measure theory is basically a 
theory of narrow convergence for transition probabilities [2, 3, 7, 22, 23] which ex- 
tends the classical notion of narrow (or weak) convergence for probabili ty measures. 

In this paper the ideas of [4] will be expanded considerably, and it will be shown 
that a whole class of Nash equilibrium results can be obtained in this way. In itself, it 
is not surprising that Young measure theory should play an important role in equilib- 
rium existence questions for game theory. Rather, it seems surprising that the narrow 
topology for transition probabilities had not been used before for such purposes. In- 
deed, if we think of  a set of  player T, then it is standard to let each player  t E T 
choose a probabili ty measure, say 6(0, on the set of  all actions available to him/her. 
Therefore, the combined effect of  these choices of  the players is to yield a transition 
probability, viz. the mapping t ~-+ 6(t). S ince  it is evident that Nash equilibrium ques- 
tions for such games can be cast into the form of some fixed point problem for the 
~'s, one is led naturally to consider the topologization of the space of all transition 
probabilities, for which the narrow topology turns out to be an ideal candidate. As 
could be expected, when the set T of  players is finite or countably infinite, use of 
the Young measure theory adds nothing of interest, for then its topology is simply 
equivalent to the classical narrow topology for (products of) probabili ty measures. It 
is rather when T is uncountable that the. Young measure topology adds ncw insights 
to the study of Nash equilibria, and this the present paper will demonstrate. 

To make suitable use of  the Young measure topology, a key notion of mixed 
externality is formulated here. For some of the equilibrium results considered such 
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a mixed externality has a known form. For other results, phrased in terms of pure 
Nash equilibria, the mixed externality is both new and artificial. The basic pattern is 
then as follows: instead proving the existence of a pure Nash equilibrium solution 
right away, the existence question is first resolved for a mixed version of the problem. 
Once this has been done, it is easy to derive existence of a pure equilibrium solution 
from it by means of well-known methods of purification. In this way we obtain a 
new, powerful approach which simultaneously addresses several existence questions 
for classical noncooperative games. Until now, a coherent approach to these subjects 
was not available. Along the way, we shall also obtain some real improvements of 
existing results in this area. 

The setup of this paper is as follows: First, notions and terminology are es- 
tablished concerning the mixed externality notion for games in normal form. Then 
Theorem 2.1, the main theorem for mixed Nash equilibrium profiles, is stated, as 
is Proposition 2.1, the main supporting tool for purification. Next, these central re- 
sults are then used to derive the existence (i) of a mixed Nash equilibrium solution 
for a classical game (subsection 3.1), (ii) of a Cournot-Nash equilibrium distribution 
(subsection 3.2), and (iii) of pure Nash equilibria for continuum games in two es- 
sentially different situations (subsections 3.3, 3.4). As for (i), our Theorem 3.1.1 is 
rather classical. With regard to (ii), Theorem 3.2.1 coincides with the main equilib- 
rium distribution existence result of [4]. In turn, the latter result is known to generalize 
the equilibrium distribution existence results of Mas-Colell [17] and Khan-Rustichini 
[151 (as explained in [4]) and of Khan-Rustichini [16] (as explained in [5]). Further, 
concerning (iii), Theorem 3.3.1 contains a generalization of a well-known result of 
Schmeidler [21, Theorem 1]; our result also partly generalizes the extension of this 
result given by Khan in [14, Theorem 5.1]. Finally, Theorem 3.4.1, a rather different 
result, generalizes Schmeidler's [21, Theorem 2] and the recent extension of his result 
by Rath [201. 

2 Central Notions and Results 

This section starts with an introduction of the mixed externality notion for games in 
normal form. After this, the main equilibrium existence result is stated for a mixed 
version of the game (Theorem 2.1). This is followed by Proposition 2.1, the main 
purification tool. 

Let (T, T, #) be a finite measure space of players; it is convenient to suppose 
#(T) = 1. Let S be a metric space of actions. Each player t has to restrict her/his 
actions to a certain subset of S, denoted by St. Each set St is supposed to belong to the 
Borel or-algebra/3(S), i.e., the ~-algebra generated by all open subsets of S. The set of 
all probability measures on (S, B(S)) is denoted by MT(S ). On some occasions we shall 
also write ~( t )  := St, so as to emphasize the fact that Z : t ~ St forms a multifunction. 
We shall consider transition probabilities (alias Young measures) ~ : T --~ MT(S), such 
that for #-a.e. t one has 6(t)(St) = 1. Such transition probabilities will be called 
mixed (action) profiles, and the set of all of these is denoted by 7s See [18, III.2] 
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for general measure-theoretical details on transition probabilities; here we just recall 
that a function 8 : T --+ My(S) is called a transition probability if t ~-+ 8(t)(B) is 
T-measurable for every fixed set B �9 13(S). The profile 6 expresses that each player 
t has chosen 8(0 �9 MT(S) for her/his mixed action; moreover, apart from some null 
set of  players, each player t has chosen 8(0 in such a way so as to result in an action 
in the proper subset &. A special subset of 74 is made up by the pure action profiles; 
namely, a profile ~5 �9 ~ is said to be pure if it corresponds to a measurable function 
from T into S such that for all t 

8(0 = ei(t) := Dirac probability at f(t). 

It is clear that in this case the definition of  7~ forces f to belong to the set S s  of  all 
measurable a.e. selections of  the multifunction ~ : t ~-+ St. Let Pt : 7-4 --~ [ - e c ,  +oc)  
be player t 's payoff  function; Pt(8) measures t's personal benefit if the mixed profile 
6 �9 g is somehow realized. 

Naturally, for every player t it is important to distinguish the "internal" part 8(0 of 
8�9 over which t has total control, from any other part, called "external" for contrast, 
over which player t may have at most partial influence. In fact, for the notion of  a 
Nash equilibrium (see below) this distinction is vital. A canonical way to distinguish 
is obtained by requiring the following internal-external form for the playoff function 
Pt: there are supposed to exist (i) as space Y, (ii) a function U, : St x Y ~ [-oo,  +oo) 
and (iii) a mapping et : 7~ ~ Y such that Pt decomposes as follows: 

Pt((5) = fs Ut(x, et(~5))(5(t)(dx), t �9 T. 
t 

Our basic assumptions, to be encountered later, will ensure that the above integral 
expression is meaningful. For technical reasons (see section 4) we assume that the 
space Y is common to all players; this sometimes requires reformulating a little. In 
several applications, et does not really depend on the player variable t; in such a case 
we shall simply write e : ~ -~ Y, etc. The space Y will be called the space of  profile 
statistics of the game. We shall call Ut the utility function and et the mixed externality 
of player t. As a particular consequence of the internal-external form, we have for a 
pure profile e s �9 7~ that 

Pt(ey) = Ut(f(t), e,(af)), t �9 T. 

The above internal-external form of the payoffs can be found in some important 
instances: 

Example 2.1: Take T := 1 := {1, 2 ..... n} as the index set for a game with n players; 
take T := 21 and #({i}) = 1/n for each iCl (the precise nature o f #  is not very relevant, 
as long as the empty set is the only null set). Let Si denote the set of actions available 
to player i. Rather than taking the set-theoretical sum (and, later, the topological 
sum) of  the &'s, we suppose without loss that all Si are subsets (measurable by later 
assumptions) of a common set S. A mixed action profile (5 can be considered as an 
n-vector (81, (52 ..... 8n) of  probability measures 8i C MT(Si) C M~{(S), simply by setting 
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(~i : =  ~(i). Let Vi : S ~ ~ [-oc, +oe] be player '  i's ordinary (i.e., unmixed) payoff  
function for the normal form game. Then the expected payoff  for player i under the 
mixed action profile (61, 62 . . . . .  (~n) is 

Pi(6) = fs~ Ifs Vi(xi, x-i)6-i(dx-i)16i(dxi), 

where S i : =  I-Ijr ~-i := lqj~i ~Sj (product measure), etc. Since 6 -i  is a probability 

measure on S -i, it can also be regarded as a probability measure on the larger set 
S n-1. So the internal-external form obtains if we set Y := M~(S " -1)  (the set of  all 

probability measures on S"- l), Ui(xi, y) := .fs,-~ Vi(xi, x-i)y(dx -i) and 

ei(6 ) := ~-i. 

(This is slightly less straightforward than might have been expected, because of our 
intention to keep the space Y common to all players.) A game with countably infinitely 
many players can, of course, be treated in essentially the same way. 

Example 2.2: Consider T = [0, 1] as the set of  players, equipped with the Borel or 
Lebesgue ~r-algebra T and the Lebesgue measure ),. Let S be a separable Banach space 
E; suppose that for every t the set ~ ( t )  :-- St C E is closed and convex. Suppose 
also that there exists an integrable function ~b : [0, 1] --~ R such that Ilxll -< ~(t) 
for all x C St (here Ilxl[ denotes the norm on E). By definition, each 6 in ~ is a 
transition probability from 6 : [0, 1] ~ M~(E) such that 6(t)(SD = 1 for A-a.e.t.  By 
the integrable boundedness condition it follows that 

So in the first place we conclude that fs, [txll6(t)(dx) < + e c  for a.e.t .  By [23, 1.4.29] 
this guarantees for a.e. t the existence of the barycenter 

bar ~5(t) := fs x6(t)(dx) 
t 

of the probability measure 6(t), and by [23, 1.6.3] this point lies in the closed convex 
subset St of E. 

On the exceptional null set involved here, we set bar 6(0 := 0. It is easy to see 
that t ~-+ bar 6(0, thus defined, is integrable. Therefore, a mixed externality mapping 
e from 7~ into Y := L~[0, 1] is well-defined by 

e(~5) := 7r(bar 6), 

where 7r"/2~e[0, 1] --, Lf[0, 1] is precisely defined by 7r(f) := {f'cL;a[0, 1] : f ' ( t )  = f(t) 
for a.e. t} (observe that 7r(bar 6) is independent of the way in which we redefined bar 
6 on the exceptional null set above). Recall that s 1] is the space of all Bochner- 
integrable functions from [0, 1] into E [23, 1.4.29], that L~[0, 1] is exactly defined as 
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the space of all equivalence classes with respect to the equivalence relation f -- f '  
a.e. on the latter space, and that L~[0, 1] is defined by L~[0, 1] := 7r(S E fq s 1]). 

The reader 's  attention is called to the following notational rule, which is obeyed 
throughout: prequotient spaces are denote by script's ~ 's ,  and quotient spaces by 
straight L's. So as to have internal-external form with respect to the above specification 
of e, the payoff  Pt must be as follows: 

P t ( ( 5 )  = fs Ut(x, 7r(bar 8))~5(t)(dx). 
! 

In particular, for pure profiles ef this entails 

P(ef) = Ut(f(t), 7r(f)), 

and this coincides with the form of the payoff  postulated in Schmeidler 's article [21]. 

Example 2.3: In Example 2.2 one can, by way of alternative, also consider the 
following mixed externality mappings e: for r fixed Lebesgue-measurable subsets 
7"1, T2 ..... T, of  [0, 1] define 

e((5) :-- bar ~5(t)A(dt , 
/ i =  1 

and set Y := U .  For pure profiles e I this gives 

(, P,(e s) = u, (t), ~ , 
i = 1  

which is the form considered in Rath's article [20]. Alternatively, one could consider 
r measurable functions gl, g2 ..... gr : D ---* R and set Y :-- IR r and 

e((5) := ( f  [fstgi(t,x)~5(t)(dx)] #(dt))i= 1 

Nonstandard examples of  the internal-external form can also be given: 

Example 2.4: Consider in Example 2.2 the situation where half of the players, say 
for t E [0, �89 act in complete isolation from all their opponents. In this case one can 

model et(~5) to be a constant (say identically equal to o~) for all t E [0, �89 and keep 

et(~5) := 7r(bar (5) for t E (�89 1]. Of  course, the point oe should now be added to the 

space of profile statistics: Y := L~[0, 1] LJ {oo} (topological sum). 

Our main concern will be with the following classical notion, which is due to 
Nash; for the games with payoffs in the above internal-external form it runs as follows: 
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Definition 2.1: A mixed profile 8, E ~ is said to be a mixed Nash equilibrium profile 
if 

8,(t)(argmaxUt(x, et(8,))) = 1 for #-a .e .  t in T. 
xESt 

The fact that a null set of players is allowed to escape the above requirement might 
be less desirable for certain models; however, we stress that the present analysis is 
strictly tied to the definition as given above. We shall now prepare our main Nash 
equilibrium existence result by listing the assumptions that must be satisfied. 

Assumption 2.1: Y is a Suslin metric space. 

Assumption 2.2: S is a Suslin metric space. 
Recall here that a metric space is Suslin if it is the continuous image of  a Polish (i.e., 
complete separable and metric) space [9, III]. 

Assumption 2.3: St is nonempty and compact in S for every t E T. 

Assumption 2.4: Ut : St x Y ~ [ -c~ ,  +cx~) is upper semicontinuous on St x Y for 
every t C T. 
Together with the previous assumption, this guarantees that Ut(., et(~5)) is bounded 
from above on St by a constant; therefore, the integral in the internal-external form 
representation of  Pt(~5) is well-defined. 

Assumption 2.5: D := {(t, x) E T • S : x ~ St} is T x/3(S)-measureable. 
Observe that, together with Assumptions 2.2 and 2.3, this guarantees the nonemptiness 
of  7~: By the von Neuman-Aumann measurable selection theorem [8] there exists at 
least one measurable a.e. selection f of  ~ (i.e., f E SE); correspondingly, ef then 
belongs to ~ .  

Assumption 2.6: Ut(x, .) is continuous on Y for every t E T, x E St. 

Assumption 2.7: (t, x) ~-+ Ut(x, y) : D -+ [-cxD, +cxz) is 79-measurable for every y C Y. 
Here 79 stands for the or-algebra on D, formed by all 7- x/3(S)-measurable subsets of 
D. 

Assumption 2.8: For every t E T and ~5 E 7~ the mapping t ~-+ et(~5) is T-measurable. 

Assumption 2.9: For every t E T the mixed externality mapping et : ~ ~ Y is 
continuous for the narrow topology. 
Recall from [2, 3] that, given Assumptions 2.3 and 2.5, the narrow topology (alias 
weak or Young measure topology) on ~ is defined as the coarsest topology for which 
the integral functionals ~5 ~-+ fv[fst g(t, x)8(t)(dx)]#(dt) are lower semicontinuous, for 
all ~D-measurable g : D ~ ( -oc ,  +oc]  such that g is integrably bounded from below 
(i.e., infxEst g(t, x) >- ~(t), for some ~b E Z;~(T)) and g(t, .) is lower semicontinuous on 
St for every t E T. 
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Theorem 2.1: (mixed Nash equilibrium existence result) If  Assumptions 2 .1-2.9  hold, 
then there exists a mixed Nash equilibrium profile. 

Section 4 is devoted to the proof of Theorem 2.1, which follows essentially the 
approach of [4]. The usefulness of this existence result will become apparent in the 
next section, sometimes in conjunction with the following sufficient condition for the 
existence of a pure Nash equilibrium profile. 

Proposition 2.1: (sufficient conditions for purification) Suppose that Assumptions 2.1 
-2 .9  hold. Let & be the mixed Nash equilibrium profile (guaranteed to exist by 
Theorem 2.1). Suppose that a pure profile el, C ~ satisfies 

et(ef,) = et(&) fo r / z -  a.e. t 

and that either 1 

f [ s  arctan Ut(x, et(r #(dt) = f arctan Ut(f,(t),et(~5,))/z(dt) (2.1) 

or, equivalently, 

UtO~,(t), e,(&)) = fss U,(x, et(&))&(t)(dx) f o r / z -  a.e.t .  
t 

(2.2) 

Then el, is a pure Nash equilibrium profile, i.e., 

f ,( t)  E argmax Ut(x, et@f,) f o r / z -  a.e. t in T. 
x E S t  

Proof." First, let us establish that the function u : t ~ maxxss, g,(t, x) is measurable 
with respect to the/z-completion T~ of the a-algebra 7-. Here g,(t, x) := Ut(x, et(&)) 
is D-measurable on D by the assumptions (the composition of measurable functions 
is measurable). Now set ~ -~ g, on D and ~ - - o c  on (T • S)\D. By Assumption 2.5 
and the above, ~ is 7" x B(S)-measurable. Evidently, we have u(t) = maxxes~,(t,x), 
so T~-measurability of u follows by [8, III.39], in view of Assumption 2.2. By a 
well-known property of the completion [9, II.15], the above fact also implies that 
there exists a "/ '-measurable function v : T ~ ' R  such that v(t) = u(t) for/z-a.e,  t in 
T. 

Since 8, is mixed Nash, it must be that for/z-almost  all t the probability measure 
8,(0 is carried by the set arg maxxes, Uz(x, et(&)). Hence, taking arctangents, it is clear 
that 

fr [ fs, arctan Ut(x' et(&))&(t)(dx)] #(dt) = jTarctan v(t)#(dt). (2.3) 

1 The arctangent is used here to ensure boundedness - whence integrability - of the integrands; this 
avoids making unnecessary additional assumptions. 
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By the hypotheses for f , ,  this gives 

f r  arctan G(f,(t), et(ey,))#(dt) = fr  arctan v(t)#(dt), 

and since G(f,(t),  e,(ef,)) -< v(t) a.e., this implies that G G ( t ) ,  e,(ef~)) = v(t) a.e. This 
proves that ef, is a Nash equilibrium profile. 

Finally, note that the equivalence of (2.1) and (2.2) follows immediately from 
(2.3) and the definition of the maximum functions u and v. Q.E.D. 

3 Applications 

We shall now consider essentially four different applications of  Theorem 2.1. The 
first application addresses the rather classical situation considered in Example 2.1. The 
second one works with Mas-Colell 's  notion of a Cournot-Nash equilibrium distribution 
[17]. The third application places additional convexity and quasiconcavity conditions 
on the basic ingredients of the game, in a setting for continuum games which is 
somewhat more general than the one used by Schmeidler [21] (see Example 2.2). 
The fourth application, formulated for continuum games in the same setup, is based 
on the requirement that Y, the space of profile statistics, is finite-dimensional and the 
measure # is nonatomic. 

3.1 Classical n-Person Games 

In this subsection we consider the situation of Example 2.1. 

Assumption 3.1.1: Si is a nonempty compact metric space for every i C I. 

Assumption 3.1.2: Vi is upper semicontinuous and bounded above on fIj Sj for every 
iEI .  

Assumption 3.1.3: Vi(xi, .) is bounded and continuous on fIj ~iSi for every xi E Si and 
iEI .  

Theorem 3.1.1: Suppose that Assumptions 3.1.1-3.1.3 hold. Then there exists an n- 
vector 6, := (6,1, 6,2 ..... 6,n), consisting of probability measures 6,i E M~{(Si), such that 
for each i E I 

Pi(&) >- Pi(ti x 6 ,  i) for every 6g E M~I (S/). 

Proof." As in Example 2.1, rather than taking S to be the topological sum of the Si's 
(which is now obviously compact and metrizable by Assumption 3.1.1), we suppose 
without loss of  generality that all Si's are subsets of  a compact metric space S. We 
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apply Theorem 2.1 to Y := M~{(S n- 1), equipped with the classical weak topology. As 
in Example 2.1, we set 

fi(xi' Y) := fss-i Vi(xi' x-i)y(dx-i)" 

Assumption 2.1 holds by compactness and metrizability of M~{(S "- 1) for the classical 
weak topology [9, III.60]. Assumption 2.2 is evidently fulfilled. Also, Assumption 
2.3 is contained in Assumption 3.1.1. The measurability assumptions hold trivially. 
Further, Assumption 2.4 holds by Assumption 3.1.2 and well-known facts about weak 
convergence (combine, [9, III.48] and [6, Theorem 3.2]). Also, Assumption 2.6 holds 
by the definition of weak convergence, in view of the continuity hypothesis for the 
Vi. Assumption 2.8 holds trivially. Finally, in this case the narrow topology on 7r 
coincides with the product topology, obtained when Mr(S) (whence each subspace 
M~(Si), i E / )  is equipped with the classical weak toPology. Therefore, Assumption 
2.9 is evidently valid. The Nash equilibrium profile ~5. E Tr guaranteed by Theorem 
2.1, gives the desired 6,i := 6,(i) for each i. Since ei(~, ) : ~Ijr ~*i for each i E I, the 
obvious identity 

sup Ui(xi, ei(6,)) = sup f Vid(6i • 6~ i) 
x i C S i ~i E M~ (Si) J ]7"jSj 

immediately implies the desired result. Q.E.D. 
Observe that in standard textbooks on game theory Assumptions 3.1.2-3.1.3 are 

replaced by the somewhat more stringent continuity condition for the functions V~, iEI; 
e.g., cf. [11, Theorem 4.1.1]. 

3.2 Large Anonymous Games 

Again, let MR(S) stand for the space of probability measures on S, equipped with the 
classical narrow (or weak) topology. Recall that this is the coarsest topology for which 
the functionals u H fs cdu are continuous for all bounded continuous c : S --+ R. For 
any ~ E 7-r # | ~51s denotes the marginal on S of the product probability # | ~ on D 
[18, III.2]. That is, 

/~ | 6is(B) := L tS(t)(B)#(dt), B E 13(S). 

We shall now use the mixed externality e : ~ ~-+ # | ~Sls. Observe how this has the 
effect of mixing the individual probability measures 6(0, t E T, which means that in 
a certain sense the players influence their opponents only anonymously. 

Theorem 3.2.1: (equilibrium distribution existence result) Suppose that Assumptions 
2.2-2.7 hold for Y := M~{(S). Then there exists a 6, E Tr such that 

&(t)(argmax Ut(x, # | ~,ls)) -- 1 for a.e.t. 
xESt 
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Proof" By [9, III.60] it follows from Assumption 2.2 that Y = Mr(S) is metrizable 
and Suslin for the classical narrow topology. Evidently, all that has to be done is to 
check Assumption 2.9. This amounts to verifying that for any continuous bounded 
c : S ---, R the functional ~ ~-+ fs cd(# | (Sis) is continuous from 7-r equipped with the 
Young measure (alias narrow) topology, to Mr(S), equipped with the classical narrow 
topology. Since 

using g(t, x) := c(x) in the definition of narrow convergence on 7-4 shows that said 
functional is lower semicontinuous. In the same way, upper semicontinuity follows 
from substituting g(t, x) := -c(x)  in that same definition. Q.E.D. 

As a consequence of the above result, the probability measure p.  E M~(D), given 
by p,  := # | ~5,, satisfies 

p,({(t, x) E D : x C arg max Ut(x, p, Is)}) = 1 and p,  I r  = # .  
xr 

Therefore, p,  is a Cournot-Nash equilibrium distribution in the sense of [17, 15, 
4]. Theorem 3.2.1 constitutes the main result of  [4]. As shown there and in [5], it 
generalizes existence results for equilibrium distributions in [17, 15, 16]. 

3.3 Continuum Games with Convexity 

As in Example 2.2, we suppose in this subsection that the space of actions S is 
a separable Banach space (E, II " II)- This Banach space is equipped with a locally 
convex topology co which is not stronger than the norm topology and not weaker than 
the weak topology. Unless the contrary is explicitly mentioned, topological references 
to S := E are understood to be with respect to aJ. Observe already that (E, co) is a 
Suslin space, since (E, H" It) is Polish. 

Assumption 3.3.1: ~( t )  := St C E is convex for a.e. t .  

Assumption 3.3.2: There exists an integrable function ~b from T into R such 
that 

sup I]xl] -< qS(t) for a.e.t .  
xcSt 

Assumption 3.3.3." U(t, ., y) is quasi-concave for every y C L~[O, 1] for a .e . t .  
Clearly, Assumption 3.3.1 causes the set $ T of measurable a.e. selectors of  ~ to be 

equal to the set s  1] of all integrable a.e. selectors of Z .  

Theorem 3.3.1." (continuous game equilibrium existence result) Suppose that Assump- 
tions 2 .3-2.7  and Assumptions 3.3.1-3.3.3 hold. Then there exists f ,  C Z;~[0, 1] such 
that for a.e. t 

Ut(f,(t), 7r(f,)) >- U~(x, ~r(f,)) for all x E S,. 
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Proof" First, note that the Banach space Ll[O, 1] is separable for the Ll-norm; therefore, 
it is a Polish space. So for the relative weak topology cr(L~[0, 1], L~, [E]([0, 1])) the 
space Y := L~[0, 1] (which is certainly closed and convex) is Suslin. So Assumption 
2.1 is valid; Assumption 2.2 was already seen to hold. Recall here [12, IV] that 
L~ [E] ([0, 1]), the set of all (equivalence classes of) scalarly measurable and essentially 
bounded functions b : [0, 1] ~ E*, is the topological dual of L~[0, 1]. Here E* is the 
topological dual of (E, I1" I[). Also, by the definition of e in Example 2.2 it follows easily 
that Assumption 2.8 holds. Finally, to ensure validity of Assumption 2.9, it is enough to 
establish that 8 ~ 7r(bar 8) is continuous from ~ ,  equipped with the narrow topology, 
into L~ [0, 1] (still equipped with the relative weak topology). Let b C L~ [E]([0, 1 ]) be 
arbitrary. Define two normal integrands g and g', both integrably bounded from below, 
by setting g(t,x) := (x, b(t)) and g'(t,x) := -(x,  b(t)) on D. Then the definition of 
the narrow topology on ~ implies that 8 ~ rio, ll[fs( x, b(t))8(t)(dx)]A(dt) is narrowly 
continuous, which is to say that 8 H f[0,1j(bar 8, b)d.\ is narrowly continuous. So 
Assumption 2.9 holds. Theorem 2.1 may be applied, and this gives existence of a 
mixed Nash equilibrium profile 5,. We finish by applying Proposition 2.1: Let f,  := 
bar 5.; then the first condition of the proposition holds trivially. It remains to show 
that its third condition (being equivalent to the second one) holds: By Assumptions 
2.4 and 3.3.3 the set arg maxx~s, Ut(x, e(8.)) is closed and convex. By Theorem 2.1, 
8.(0 is carried by this set. Therefore, f.(t), the barycenter of 8.(0, also belongs to it 
for a.e.t .Q.E.D. 

Theorem 3.3.1 generalizes a well-known theorem of Schmeidler [21, Theorem 
1] completely and its extension by Khan [14, Theorem 7.1] partly in the following 
sense: Khan supposes U(t,., .) to be continuous on St x L~, which is certainly more 
than Assumptions 2.4-2.6 ask for. Also, Khan requires all St to lie in one fixed 
weakly compact subset of E, which is much heavier than Assumption 3.3.2 (a fair 
portion of [14, section 7] is spent on attempts to improve on this). On the other 
hand, although the above result can almost automatically be extended to a setup 
where an abstract measure space (T, T, #) replaces ([0, 1], T, A) (indeed, Theorem 2.1 
naturally deals with this situation), the Suslin Assumption 2.1 for Y := L~(T) forces 
certain restrictions on the measure space (T, T, #). For instance, if T were countably 
generated, then LI(T) is a Polish space for the Ll-norm topology, so L~(T)becomes 
Suslin for the weak topology. Even though this restriction might seem fairly weak, it 
should be observed that [14] requires nothing of this kind. 

3.4 Continuum Games with Nonatomieity 

In this subsection S is once more supposed to be a metrizable Suslin space. However, 
we now need to assume that the probability space (Z T, #) is nonatomic. Except for 
the fact that this probability space now replaces [0, 1], our present model will be as 
in Example 2.3 in all other respects. 

Assumption 3.4.1: The probability space (T, 7-, #) is nonatomic. 
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Assumption 3.4.2: The functions gl ..... gr : D --+ R are D-measurable, integrably 
bounded and such that gi(t, .) is continuous on St for each t, i = 1 ..... r. 

Theorem 3.4.1: (nonatomic game equilibrium result) Suppose that Assumptions 2 .2-  
2.7 and 3.4.1-3.4.2 hold. Then there exists f~ E 8 2 such that 

f,(t) E arg max Ut(x, d(f,)) for a.e. t, 
xESt 

where 

)r 
d~)  := gi(t,f(t))#(dt) , f  E 8~. 

i = 1  

This result will be proven by means of Lemma III of [2]; remarks on this possibility 
can be found in [4, p. 353]. Here we recall this lemma in slightly simplified form: 

Lemma 3.4.1: ([2, Lemma III]) Suppose that Assumptions 2.2-2.3 and 3.4.1 hold. 
Let gl ..... gn : T x S ~ ( - e c ,  +eo] be T x B(S)-measurable, integrably bounded from 
below and such gi(t, .) is lower semicontinuous on S for each t, i = 1 ..... n. Then for 
every 8 E 7~ there exists f E $ ~  such that 

fT gi(t'f(t))#(dt) <-- fr [fS, g~(t' s)~5(t)(ds)l #(dt), i = l ..... n. 

Compared to [2, Lemma III], we have already substituted h(t, s) := 0 if (t, s) E D 
and h(t,s) := +oo if (s , t )r  (T x S ) \D .  Then h belongs to the class 7-{(T;S) 
of  [2] (by Assumptions 2.3-2.5),  and for any ~ E 74 the finiteness condition 
fr[fsh(t,s)~5(t)(ds)]#(dt) = 0 < +cx~ is automatic. Such finiteness then causes [2, 
Lemma III] to give a function f which belongs to $ 2 ,  in agreement with what was 
stated in the lemma above. 
Proof of Theorem 3.4.1: Clearly, Assumptions 2.1-2.7 are fulfilled. Let us de- 
fine 

e(~5) := ( f  [ f  g,(t,x)6(t)(dx) 1 #(dt))i=l 

Then it follows that Assumptions 2.8-2.9 are also valid [apply the defini- 
tion of  narrow convergence to both 8 ~ fr[fsgi(t,x)~5(t)(dx)]#(dt) and ~ ~+ 
-fr[fsgi(t, x)~5(t)(dx)]#(dt)]. So by Theorem 2.1 there exists a mixed Nash equi- 
librium profile ~5, E 74. Now we can apply Lemma 3.4.1 to the collection 
gl ..... g , - g l  ..... --gr, gl, g2. Here the integrands gl, g2 : D --+ ( -oo ,  +ec]  ae defined 
by 

gj(t, x) := ( -  1) j -  1 arctan Ut(x, d(6.)). 

for j = 1, 2 (by Assumptions 2.5-2.7 they may be included). Application of Lemma 
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3.4.1 gives the existence of a function f,  E SE such that e(6,) = e(ef,) = d(f,) 
and 

fr  I f  gJ(t'x)6*(t)(dx)l #(dt) >- fr  gj(t,f,(t))#(dt) 

for j = 1, 2. This implies 

f IJi, arctan Ut(x, e(6,))6,(t)(dx) 1 #(dt) = JT arctan Ut(f~(t), e(6,))#(dt). 

By e(6,) = e(ef,), this is precisely (2.1). By Proposition 2.1 it therefore follows that 
el, is a Nash equilibrium profile. From this the stated result follows directly. Q.E.D. 

Theorem 3.4.1, as contained in the remarks on [4, p. 353] and worked out above, 
substantially generalizes the main result of Rath's recent paper [20, Theorem 2, Re- 
marks 6-8]. The latter also requires Assumption 3.3.2 to hold. If we also adopt 
Assumption 3.3.2, then Rath's result follows by substituting S = R r and g i ( t ,  X) : =  X i 

(i-th coordinate). In fact, from combining subsections 3.2-3,3 it is evident that Rath's 
result remains valid for S := E (our separable Banach space of section 3.3) if we 
set 

(fT(f(~) ))r d(f) := t), s #(dt , i~l 
where s~ ..... s*~ are r elements from the dual space E*. Observe that this corresponds 
to having for the mixed externality 

Of course, the Assumptions 2.3-2.7 and also 3.3.2 (but not the earlier Assumptions 
3.3.1 and 3.3.3) must still hold. For yet another obvious but relevant way to purify in 
quite general situations the reader is referred to [4, p. 353]. 

4 P r o o f  o f  T h e o r e m  2.1 

In this section Theorem 2.1 will be proven. The proof is virtually the same as that of 
[4, Theorem 1]. It is based on fundamental features of Young measure theory [2, 3, 
22] and on Ky Fan's inequality. The first result deals with compactness for the narrow 
topology on 7~. This can be found in [4, Lemma 3]. It follows thanks to Assumptions 
2.2, 2.3 and 2.7. 

Lemma 4.1: ~ is a compact convex subset of a certain topological vector space. 
The vector space is specified in the proof of Proposition 4 in [4]. In analogy to [4, p. 



92 E.J. Balder 

350], let us define p " ~ • 7~ -~ R by 

p(8, ~) := f r  [fs, arctan Ut(x, e~(~5))r/(t)(dx) 1 #(dt). 

Here the double integral is well-defined by Assumptions 2.5, 2.6, 2.7 and 2.9 (use 
[8, III.14] and [18, III.2]). Our next result could also have been proven by the same 
method as used to prove Lemma 5 in [4]; here we opt for a somewhat more transparent 
proof. 

Lemma 4.2: i. p is upper semicontinuous on ~ x 7~. ii. p(., r/) is continuous on ~ for 
every r/E ~ .  

Proof" i. Let dr and ds stand for the metrics on Y and S; we may suppose dy -< 1 
(else take min(1, dy(y, y')) as a new metric, equivalent to the old one). Let ((6~, r/a)) 
be a generalized sequence, converging in ~ x 7~ to (~0, r/0). Define g : T x S x 
Y --+ ( - e c ,  +oc]  by setting g(t, x, y) := - arctan U(t, x, y) for (t, x) c D, y C Y, and by 
g(t, x, y) := +oo for (t, x) ~ D, y E Y. By Assumptions 2.3-2.6,  g is a normal integrand 
on T x (X x Y), so by the approximation procedure of  [3, p. 268] (and thanks to 
Assumptions 2.1, 2.2) there is a nondecreasing sequence (gn) of  T x B(S)-measurable 
functions g~ : T x S --~ ( -oo ,  +ac]  such that for a.e. t,-[ gn(t, x, y) - g,,(t,x',y') I <- 
nds(x, x') + ndy(y, y') for all x, x' E S and all y, y' E Y (Lipschitz property). So to 
prove 

l iminf  JT I f  s, g(t,x, et(r/a))(Sa(t)(dx)] #(dt) >- 

>- fr [fs, g(t'x'et(r/~176 #(dt)#(dt), 
(4.1) 

it is enough to prove the same inequality with g replaced by gn for any n (indeed, 
an application of the monotone convergence theorem then easily implies the above 
inequality). So fix n; note that 

gn(t, x, el(r/a)) -> g~(t, x, et(r/0)) - ndy(et((Sa), et(80)), 

by the Lipschitz-property of g,z. Integrating successively over ~5~(t) and # 
gives 

fr [ fs, g"(t' x' et(~7~) )6a(t)(dx)] #(dt) >- fr I f  st g~(t'x' et(r/~ t~(dt) - p~ 

where p~ := n fr dr(et((5~), et(8o))#(dt). By the dominated convergence theorem and 
Assumption 2.9 it follows that Pa --~ 0. Applying [3, Theorem 2.2] now easily gives 
(4.1). 

ii. Using Assumption 2.6, this follows immediately from [3, Theorem 2.2] by a 
simpler argument than the one above. Q.E.D. 

Lemma 4.3: For every ~5. E 7~ the following are equivalent: 
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a. (5. is a mixed Nash equi l ibr ium profile. 
b. p((5,, (5,) >- p((5., 7) for all r /E  74. 

Proof." The proof  runs precisely as the one for [4, Corollary 1]. It is based on using 
[4, Proposi t ion 3] (essentially a measurable  selection argument).  

Proof  o f  Theorem 2.1: By Lemmas  4 . 1 - 4 . 2  we can apply Ky Fan ' s  inequal i ty  (for 
which no Hausdorff  condit ions are needed [10, p. 501] - observe that the narrow 
topology is non-Hausdorff)  to the funct ional  q : T4 x 74 -+ R, defined by 

q((5, r]) := p((5, rl) - p((5, (5), 

just  as was done in proving [1, Theorem 5]. Indeed,  74 is compact  and convex (Lemma 
4.1) and it was already seen to be nonempty.  By L e m m a  4.2, q(., rl) is lower semicon- 
t inuous for every r] E 74. Finally,  q((5, .) is trivially affine. So by  Ky Fan ' s  inequal i ty  
it follows that';there exists (5, C 74 satisfying b in L e m m a  4.3, whence  a of I ~ m m a  
4.3. Q.E.D. 
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