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Abstract: According to Maschler, Peleg and Shapley (1972) the bargaining set of a convex game 
coincides with its core and the kernel consists of thc nuclcolus only. In this paper we prove the same 
properties for _P-component additive games ( -  graph restricted games in the sense of Owen (1986)) 
if/" is a tree. Furthermore, we give a description of the nucleolus of this type of games which makes 
it easier accessible for computation 
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1 Introduction 

Cooperation often requires communication. Especially if the number of players is 
large, communication lays severe restrictions on the cooperation possibilities. In the 
tradition of Owen (1986), Myerson (1977) and Van den Nouweland (1993) we model 
the cooperation and the communication aspects separately. As usual the potential 
profits from cooperation are given by a TU-game (N, v) which we assume to be 
superadditive. Communication possibilities are modeled by an (undirected) graph F = 
(N, E, c0 on the player set N. The potential profit of a coalition S can only be effected 
in as far as the player in S can communicate i.e., the actual value of a coalition S 
is 

y~ v(r) 
T ~ S / F  

where S/F is the set of connected components oJ S. So the introduction of a commu- 
nication g raph /"  defines a projection Re from the cone of superadditive games SA N 
onto a cone in the space of all games with player set N, GN: 

Rr(v)(S) := ~ v(r). 
T E S/J7 

In this paper the graph _P will be a tree i.e., each pair of points (i,j) in F is connected 
by exactly one path. Under these conditions (namely, (N, v) is superadditive a n d / "  is 
a tree) we will prove the following results: 

(a) The game (N, Rr(v))  is balanced. 
(b) The bargaining set AA(RF(v)) and the core Core(Rr(v)) coincidence. 
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(c) The kernel IC(Rr(v)) consists of  the nucleolus Af(Rr(v ) )  only. 
(d) The nucleolus of  the game R r ( v )  is the unique point x satisfying the equalities 

x(N) = v(N) and rso(x) = ~ji(x) for all (i,j) C F. The function ~0 is defined by 

~ii(x) := max{v(S) - x(S) l i E S c N \ j ,  S is connected in F}. 

Comment: In Maschler, Peleg and Shapley (1972) it is proved that convex games 
have the properties (a), (b) and (c). In Muto, Potters and Tijs (t987, 1988 a, 1988 b) 
information market games, big boss games and clan games have been shown to have 
these properties too. In fact, big boss games (and therefore also information market 
games) are games of  type Re(v)  where F is the 'spiter's web graph'. There are only 
edges between the 'big boss'  and each of  the other players). In Curiel et al. (1992) we 
considered what we called o--component additive games. These games are exactly the 
zero-normalized superadditive games of  the type Re(v)  wherein F is the 'line graph' 
cr(1)-~r(2)-..--or(n). Also for games of  this type and in particular for sequencing 
games (cf. Curiel, Pederzoli and Tijs (1988)) the results of  this paper hold. 

For the convenience of  the reader we will briefly repeat some of  the definitions 
of  the main concepts we need. This gives us also the opportunity to introduce our 
notation that may deviate at some points from the notation used in other papers in 
the field. 

Notations from Graph Theory 
An undirected graph F consists of  a finite set of nodes N, a finite set of edges E and a 
map c~ : E ---* 792(N). The set 792(N) is the set of  2-point sets in N. If  c~(e) = {i, j} for 
some edge e E E, we say that 'the edge e connects the nodes i and j ' .  We abbreviate 
the notation c~(e) = {i , j}  by (i,j) E F. 

A path from i E N  t o j E N ,  j 4= i is a sequence of  different nodes i = io, il ..... ip = j 
with (ik-I, ik) E F for k = 1 ..... p. An undirected graph is a tree if each pair of  
(different) points is connected by exactly one path. 

If F is a tree, the choice of  a root r, a node of  F ,  introduces a partial order on 
the nodes of F:  

i ~ j iff the path from r to j contains the node i. 

Moreover we can introduce F~i as the subgraph on the points {j E N I i ~ j}. The 
graph F~i is also a tree for all i E N and F~r = / - .  

Finally, the set of  connect coalitions in F is denoted by CF and the set of  
components (= largest connected subcoalitions) of  a coalition S is denoted by S/F. 

Concepts from the Theory of TU-games 
A cooperative game (N, v) is superadditive if v(S) + v(T) -< v(S U T) whenever 
S (/ T = ~. The cone of  superadditive games with player set N is denoted by SA N. 
The game (N, v) is called balanced if for every nonegative solution {Ys}sCN of the 
vector equation ~ s c u  yses = eN the inequality ~ s c u  ysv(S) <-- v(N) holds. The vector 
es are, as usual, the characteristic vectors of coalitions S i.e., Es,~ = 1 if i E S and 
es.i = 0 if E ~ S. The cone of  balanced games (with player set N) is denoted by BA N. 



F-component Additive Games 51 

The Theorem of Shapley (1967) and Bondareva (1963) states that (N, v)  is balanced 
if and only if the core of  game 

Core(v) := {x E R N Ix(S) -> v(S) for all coalitions S C N and x(N) = v(N)} 

is nonempty. For vectors x E R N we write x(S) as a shorthand notation for ~iesXi.  A 
game (N, v) is zero-normalized if v(i) = 0 for all i E N and the zero-normalization of 
a game (N, v) is the game (N, v0) with vo(S) := v(S) - ~ i~s  v(i). As all the concepts 
in this paper are invariant under or covariant with the addition of  additive games we 
will only consider zero-normalized games. A game (N, v) is called zero-monotonic if 
vo(S) <- vo(T) whenever S C T i.e., the zero-normalization of  (N, v) is monotonic. 
Note that superadditive games are zero-monotonic. 

The imputation set of a cooperative game (N, v) is the set 

".Z-(v) :=  {X E R N Ix (N)  = V(N) and xi >- v(i) for all i E N}. 

The elements of  the preimputation set Z*(v) only satisfy the efficiency conditions 
x(N) = v(N).  

Solution Concepts 
Here we will repeat the definitions and the most characteristic properties of  the solu- 
tions from the Aumann-Maschler-Schmeidler complex. We start with the bargaining 
set (Aumann and Maschler (1964)). Suppose, (N, v) is a game with nonempty impu- 
tation set. If x is an imputation, an objection o f  player i E N against player j (with 
respect to the imputation x) is a coalition S C N with i E S C N \ j  and a vector 
y E R s such than Yk > xk for all players k E S and y(S) = v(S). If x E Z(v) and the 
objection (S, y) of player i against player j are given, a counter objection is a coalition 

T w i t h j  E T C N \ i  and a vector z E R r with z(T) = v(T) and z -> (Ylsnr, Xlr~s). If  
an imputation x can counter every objection then x is, by definition, an element of  
the bargaining set Ad(v).  As core elements don' t  allow any objection, the core is a 
subset of the bargaining set. 

If  x is an preimputation of  a game (N, v), the surplus of player i against player 
j is defined by so(x) := maxs:isSCN~j (v(S) - x(S)). The point x is an element of  the 
prekernel LS*(v) if sij(x) = sji(x) for all pairs (i,j), i 4: j .  If  x is an imputation and, for 
all pairs i 4: j ,  sij(x) > s~i(x) implies xj = v(j), then x is, by definition, an element of  
the kernel 1C(v) (see Davis and Maschler (1965) for more details). For zero-monotonic 
games (and therefore, in particular for superadditive games) the kernel and the prek- 
ernel are the same. Moreover, the kernel is a subset of  the bargaining set. 

To define the (pre)nucleolus of a game we need the following: 

(a) The excess map E : Z*(v) ~ R 2N\{O'N} defined by E(x)s := v(S) - x ( S )  =: 
exc(S, xlv).  

(b) The coordinate ordering map 0 : R i ~ R "  wherein M = 2N\  {(~, N} and 
m = I MI. By definition, O(x) = y means that there is a bijective map 7r from M 
to {1 ..... m} with Y~(s) = Xs for all S C N, S 4: ~, N and Yl >-Y2 >- "'" >-Ym. 
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(c) The lexicographic order ~<lex on R m is a complete transitive order defined by 

x, y E R m, X ~lex y iff x = y or, f o r s o m e k E { 1 , 2  ..... m}, 

xi = Yi for i < k and xk < Yk. 

The prenucleolus N'*(v) is defined as the set of points x E Z*(v) where 0 o E takes 
its lexicographic minimum in Z*(v) (Sobolev (1975)). The nucleolus Af(v) is defined 
as the set of points in Z(v) where 0 o E takes its lexicographic mimimum in Z(v) 
(Schmeidler (1969)). It is easy to prove that the (pre)nucleolus consists of  one point 
that lies in the (pre)kernel. For zero-monotonic games the nucleolus and the prenucle- 
olus are the same point in Z(v). The following property characterizes the prenucleolus 
uniquely (Sobolev (1975), cf. also Kohlberg (1971)): 

The prenucleolus is the unique point x in Z*(v) with the property that, for all 
t E R, the collection ]3t(x) :-- {S C N, S r O, N I exc(S, x) -> t} is balanced or empty. 

2 Balancedness 

Let N be a finite set of  players and let F = (N, E, a) be a connected undirected graph 
on N. The graph F models the communication possibilities (restrictions) of players 
in a game (N, v). By lack of communication a coalition S C N can only obtain the 
sum of the values of  its connected components in the graph F.  So we can introduce 
the graph restricted game RF(v) by 

RF(v)(S) := ~ v(T) 
T �9 S /F  

where S/F is the set of  connected components of  S in _P. The map Re is a linear 
projection and Rr(vo) = Rr(v)o (the map Re commutes With zero-normalization). 
As Re is a projection (i.e., RF o RF = Re)  the image of  Re consists of the games 
(N, v) with Rr(v )  = v. 

Proposition 1: (cf. Owen (1986) for a more general result) 
I f  F is a tree, the image of RF is the linear space in G N generated by the 
games 

{ur I T r Or}. 

Proof:  Every game (N, v) can be decomposed into a linear combination of  unanimity 

games {UT[T C N } .  1 If  v = ~-~TcNYTUT, then Rr(v )  = ~TcNYTRF(UT) (by linearity 
of RF). Let H(T) be the intersection of  all connected coalitions containing T. As in a 
t ree/~ the intersection of  two (or any finite number of) connected coalitions is also 

A 

connected, H(T) is a connected coalition. It is clear that RF(UT) = utt(T). QED 

i The unamimity game ur is the simple game with ur(S) = 1 iff T C S. 
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In Owen (1986) it is proved that for any graph 1" the game Rr(ur)  is the mono- 
tonic simple game with 7-/(7), the collection of minimal connected coalitions that con- 
tain T, as collection of  minimal winning coalitions. Further, it is proved that R r ( v )  
is superadditive if (N, v)  is superadditive. A game (N, v) is called a 1"-component 
additive game if (N, v)  is a superadditive zero-normalized game with R e ( v )  = v. In 
case 1" is a tree it is known that R r ( v )  is even balanced. 

Proposition 2: (Le Breton et al. (1992)) F-component additive games are balanced 
if 1" is a tree 
The proof follows from the fact that the Bondareva/Shapley conditions has to be 
checked for connected coalitions only, that a balanced collection of  connected coali- 
tions is a union of  partitions and the superadditivity of  the game. 

3 The Bargaining Set 

The main result of  this section will be that, for games of  type Re(v)  where (N, v)  is 
superadditive and 1" is a tree, the bargaining set and the core coincide. 

Let 1" be a tree on the player set N and let (N, v)  be a F-component additive 
game i.e., (N, v) is superadditive, zero-normalized and v(S) = ~Tcs /cV(7)  for all 
coalitions S C N. 

Let x be an element of  Z(v)/Core(v). The construction of  a justified objection 
(an objection without counter objection) with respect to x will be the result of  the 
following Lemma. 

Lemma 3: l f  x is an imputation of  a 1"-component additive game and x is not in the 

core, there is a coalition So and a vector z E R N with the following properties: 

(a) zj = 0 i f j  ~ So. 
(b) z(So) = exc(S0, x). 
(c) z(S) >- exc(S, x), S E Cr. 
(d) exc(T, x) < 0 if T f-) So = O. 

Proof:  The construction of  z E R ff and So requires two steps. 
The construction of  z. First we construct the vector z and a coalition To containing 
the nodes where z~ > 0. Choose any node r in 1" as root and start with To = 0. 
The coordinates zi are defined inductively going from the extreme nodes of 1" to r. 
If  k is an extreme node of  1", we take zk = 0. Further, we put the node k into To 
iff exc({k}, x) = 0 (i.e., xk = 0). The coordinate zi can be defined as soon as the 
coordinates zj with j > i have been defined. If  so, we put 

zi := max{exc(S, x) - z (S \  i) IS cr ,  i E s c F~i} 

and zi = ~i V 0. We extend To with i iff zi -> 0. Otherwise, To doesn't  change. Notice 
that i E To if zi > 0 but also if zi = zi = 0. For each point i C To there is a connected 
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coalition Se with i E Si C ]"~ with z(Si) = exc(S~, x). After finitely many steps we 
have defined the vector z -> 0 completely. We have z(S) >- exc(S, x) for all S E Cr  and 
equality for at least one coalition S~ with i E Si C Fei if i E To. 

The construction of  So. The collection {Si}isr0 may be a redundant covering 
of the set To i.e., it is possible that a coalition Sj can be skipped without loosing 
the covering of To. In order to obtain an irredundant covering of To we investigate 
whether the coalitions Si are necessary to cover To. We start this scanning procedure 
with the coalitions Si with the property that the path from r to i does not contain 
a point of To, r i. We give these coalitions a label * ( S  i ----+ S ' i ) .  E.g., if r is in To, 
only the coalition Sr obtains immediately a label. Proceeding inductively, if a node 
j E S~ for some i < j we skip the coalition Sj. If  all nodes i E To with i < j have 
been investigated and coalition Sj has not been skipped, we give the coalition Sj a 
label (Sj -+ S j). After a while all remaining coalitions are labeled and we have a 

collection {S~}ierl, T1 C To, still covering the set To. We prove that the coalitions 
S~ are mutually disjoint. Suppose that k E S~ N Sj. The path from r to k contains the 
nodes i and j. Let us assume w.l.o.g that i < j. Then the path from i to k contains 
the point j and as S~ is connected and i, k E S] we have j E S~. Then the coalition Sj 
would have been skipped. 

Then we take So : =  Ui~T1S ~ and we have: 

z(N) = z(So) = ~ z(S~) = ~ exc(ST, x) - exc(S0, x) <- z(So). 
iET 1 iET 0 

Hence, z(So) = exc(S0, x) and z(S) >- exc(S, x) for all S c Cr.  
So, the pair (z, So) satisfies the conditions (a), (b) and (c). I f  T is a connected 

coalition with T n So = 0, we have z(T) = 0 -> exc(T, x). If  exc(T, x) would be zero 
and i E T is the point of  T closest to the root r, the node i would be in To C So (see 
definition of zi and To). Hence also condition (d) is satisfied. QED 

After these preparations the proof of  the main theorem is easy. 

T h e o r e m  4: For ]"-component additive games (N, v)  the bargaining set .All(v) and 
the core Core(v) coincide, i f  1" is a tree. 

Proof:  Let x be an imputation of (N, v) outside the core. Let So C N and z E R+ u be 
as in Lemma 3. Take i E So with zi > 0 and j ~ So. Notice that x(S) + z(S) >- v(S) 
for all coalitions S C N and that therefore, the vector z cannot be the zero-vector. 
This implies that So r N and z(So) = z(N) > 0. An objection (So, y) of  player i 
against player j is defined as follows. For k E So and k ~ i, take the coordinate 
Yk := x~ + zk + SolZi and the coordinate Yi := xi + SolZi, So = [S01. Then (So, y) is 
an objection of player i against player j. Let T be a coalition with j E T C N \ i. If  
T n So = 0, the excess exc(T, x) < 0 (see condition (d)) and if T N So ~ (3 we have 
z(T n So) = z(T) >- exc(T, x) and therefore, y(T n So) + x (T \So)  > v(T). There is no 
counter objection for (So, y). The point x is not in the bargaining set. QED 
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In this section we prove the properties (c) and (d) of the introduction. 

Theorem 5: I f  F is a tree on the player set N and (N, v)  is a F-component  additive 
game, the kernel 1C(v) consists o f  the nucleolus N" (v) only. 

Proof." Let x E K;(v). From Theorem 4 we know that x E Core(v). We prove that for 
each t E R, the collection 13t(x) is balanced or empty. 

(a) If  S C Bt(x), then also S/1" C Bt(x) as all excesses are negative or zero and (N, v)  
is F -component  additive. 

(b) If  S ~ Bt(x) is connected and i E S C N \ j  with (i,j) E F,  there is also a connected 
coalition T E Bt(x) with j E T C N \ i. This is because so(x) >- t implies that 

s ii(x) >- t (here we use that /C(v)  - E*(v) and (a)). 

From (a) and (b) we infer that each connected coalition S E 13t(x) can be extended to 
a partition of  N included in Bt(x). Then also each not-connected coalition S E 13t(x) 
is element of  a balanced collection in Bt(x). From Sobolev 's  theorem we find: x = 
N'*(v) = N'(v) .  QED 

R e m a r k :  In the proof  of the Theorem we only used the fact that so(x) = s j i ( x  ) for 
(i,j) E F and x E Core(v). 

Further, for x E Core(v), we have 

sij(x) = Ycij(x) := max{v(S) - x(S) IS E Ceandi  E S C N \ j} .  

Coro l l a ry :  I f  1" is a tree on N and (N, v)  is a F-component  additive game, we 
have 

x E Z*(v) and v~ij(x ) = vsji(x)forall(i,j) E F 4:~ x = N'(v).  

Proof." Suppose that a preimputation x satisfies the equalities 3o(x) = 3j~(x), (i,j) C 1" 
and x ~ Core(v). Let B be the collection of  all connected coalitions with positive 
excess. The col lect ion/3 is not empty. So take S E/3 with exc(S, x) maximal.  

If  (i,j) E F with i E S C N \ j ,  we have ;sij(x) > 0 and therefore 3ji(x) > 0. Hence 
there is a coalition T E B with j E T C N \ i. As S and T are connected in the tree F ,  
the coalition S VI T = 0 and S U T is connected. Then S U T is clearly a connected 
coalition with a larger excess (at least exc(S, x) + exc(T, x)). So outside the core no 
preimputation x satisfies 3~j(x) = ~ji(x) for all (i,j) C F and inside the core only the 
nucleolus does. QED 
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