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Abstract. An intelligent control system for an agricultural robot which performs in an uncertain and 
unstructured environment was modelled as distributed, autonomous computing modules that communi- 
cate through globally accessible blackboard structures. The control architecture was implemented for a 
robotic harvester of melons. A CAD workstation was used to plan, model, simulate and evaluate the 
robot and gripper motions using 3-D, real-time animation. The intelligent control structure was verified 
by simulating the dynamic data flow scenarios of melon harvesting. Control algorithms were evaluated 
on measured melon locations. 

Picking time was reduced by 49% by applying the traveling salesman algorithm to define the picking 
sequence. Picking speeds can be increased by a continuous mode of operation. However, this decreases 
harvest efficiency. Therefore, an algorithm was developed to attain 100% harvest efficiency by varying 
the vehicle's forward speed. By comparing different motion control algorithms through animated visual 
simulation, the best was selected and thereby the performance improved. 

Key words. Intelligent control, simulation, agriculture, robotics, melon harvesting, intelligent systems, 
planning. 

1. Introduction 

The advent of intelligent machines in agriculture has the potential to raise the quality 
of fresh produce, lower production costs and reduce the drudgery of manual labour 
(Sistler, 1987). Robots are perceptive machines that can be programmed to perform 
a variety of agricultural tasks such as spraying, cultivating, transplanting and 
harvesting. However, a robot acting in the agricultural environment must contend 
with an uncertain and unstructured environment that requires development of tech- 
nologies to solve difficult problems such as 

• Mobile operation in a three-dimensional, changing track; 
® Random location of targets, i.e., fruit; 
• Variability in fruit size and shape; 
o Delicate products; and 
® Hostile environmental conditions like dust and extreme temperature and humidity. 
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To achieve fast and robust operation in such a complex and dynamic environment, 
the agricultural robot must be equipped with sensing, scheduling and adaptive plan- 
ning capabilities. An intelligent sensor-based control system must be structured for 
efficient planning, coordination and control of these tasks (Kak et al., 1986, Ish- 
Shalom, 1987; Waldon et al., 1987). The control system must be capable of: moni- 
toring and interpreting data from multiple sensors; transforming the multitude of 
data to information; planning tasks and controlling task execution while dynami- 
cally making conclusions about the environment and reevaluating the intermediate 
targets as additional data are acquired (Nagdhy et al.,.1988; Cox and Gehani, 1989). 

The objective of this work was to develop an intelligent control system for an agri- 
cultural robot. Specific objectives were to: define how to organize sensory data; define 
how information is represented, coordinated and communicated; and develop 
methods for on-line integration of sensed data with dynamic motion planning and 
execution. The intelligent control system developed in this work was implemented 
for robotic melon harvesting. Melons (Cucumis melo L., McGlasson and Pratt, 
1963) do not ripen uniformly and therefore must be selectively harvested. There is 
no current machine available for harvesting melons (Lenker, 1984). Melons were 
selected as an example for using robotics with other delicate and high-value horticul- 
tural products. 

The data flow and plan execution must be verified before implementing it on 
actual hardware to confirm that the control architecture performs effectively and 
to ensure that the algorithms and computer programs execute as intended. Since 
the intelligent control architecture involves functional and logical flow of data, 
which are of qualitative nature, it could not be verified using numerical algorithms 
and thus, conventional simulation methods were not suitable for model verifica- 
tion. In the agricultural environment, simulation is essential because of the variabil- 
ity of crop conditions (Miles and Tsai, 1987). Experiments are difficult to reproduce 
since crop conditions change with time and vary spatially in the field. Performance 
differences caused by changes in the control algorithms are often impossible to dis- 
tinguish from those caused by changes in crop conditions. 

In this work, recent developments in graphic simulators that have been developed 
to design robotic systems (Nof, 1991) were applied to verify the intelligent control 
system. Using computer graphics, operations were programmed, animated and 
observed through a dynamic, realistic, three dimensional visualization of the robot 
mechanisms. Incorporating environmental changes into the simulation model was 
necessary to verify dynamic planning and execution. Algorithms for real-time sensory 
interpretation are beyond the scope of this study. On-line data acquisition and proces- 
sing are prerequisites to implementation of a sensory-based control system and the 
necessary hardware and software are commercially available. This work develops a 
sensor-based control system and ensures that the proposed intelligent control system 
performs correctly and consistently for sensory data supplied on-line. 

The intelligent controller model developed for agricultural robots is presented in 
the following section. The implementation of the intelligent control model for 
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robotic melon harvesting is presented in the third section which describes the model, 
software, database utilized and implementation. This chapter also presents methods 
for verifying the control model prior to implementation in the realworld including 
modelling of dynamic environmental changes. Planning algorithms are next 
described and include sequence planning, motion planning and local guidance algo- 
rithms. The last section includes the summary, conclusions and future trends. 

2. Control System Architecture 

A robot performing in the uncertain and unstructured agricultural domain must be 
equipped with sensors. Multiple and different types of sensors are required to extract 
accurate information on the robot's surroundings because of the variability and dis- 
turbances in the agricultural environment and limitations intrinsic to any kind of 
sensor. This multitude of data must be sensed and processed in real-time to form 
information and knowledge such as existence and location of the fruit. Based on 
this knowledge, tasks and motions must be planned, executed and modified using 
on-line sensory information. The major architectures for real-time control of com- 
plex systems are: hierarchical control, message based and blackboard systems 
(Saridis, 1983, 1988; Brooks, 1986; Elfes, 1986; Nii, 1987; Meystel, 1988). The intel- 
ligent controller for the agricultural robot was based on the blackboard model since 
it provides a flexible framework for complex and unstructured problems (Nii, 1987; 
Barrett and Jones, 1989). A blackboard is a globally accessible database where dif- 
ferent processes that are cooperating toward the solution of a certain problem can 
share data and results, suggest hypotheses to be examined, communicate the state 
of their own computation, etc. (Nii, 1987). The blackboard model uses opportunis- 
tic reasoning as its problem solving model, i.e., the knowledge module applied is 
determined dynamically, one step at a time, rather than in a fixed and systematic 
sequence (Engel et al., 1990). Pieces of knowledge are applied in the most appro- 
priate manner and at the most opportune time. This is important for robust operation 
in the dynamic agricultural environment where for example, changes in light con- 
ditions because of clouds, or shades require different image processing routines; 
and fruit distribution variations imply activating different motion control 
algorithms. For each part of the problem and at each stage of the solution forma- 
tion, the best knowledge representation and solution strategy can be selected. More- 
over, qualitative (rule-base, heuristic) and quantitative methods (numerical 
solutions) can be coupled (Engelmore and Morgan, 1988). Therefore, various types 
of sensory data and diverse information can be integrated. 

To reduce complexity, the intelligent controller of the agricultural robot was 
divided into two hierarchies: a high-level planning blackboard and a low-level con- 
trol blackboard (Figure 1): Sensing, task planning, and action were distributed 
between independent modules that communicate asynchronously over globally 
accessible blackboards at the highest possible level, i.e., each module transfers 
only essential information. 
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Fig. 1. 
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Intelligent control system for an agricultural robot. 

2.1. VISION MODULE 

Vision provides the most important source of information about the robot's envir- 
onment. Because of complexity, vision is independent and distinguished from other 
sensory systems. In general, vision provides navigation and object recognition and 
classification capabilities that involve two distinct processes: global path planning 
and local guidance. A hierarchy of sensors is introduced for the planning (far- 
vision) and control (near-vision) levels. Each system updates a blackboard and is 
divided into two levels: the sensor control (i.e., the data acquisition algorithms, 
the executable programs that obtain the data), and the processing level (i.e., the 
image processing algorithms that transform the data into information). The input 
to these modules are the acquired images, the output is the extracted information. 
Simulation of the vision module is achieved either by execution of the actual image 
processing routines derived for the specific application or by a process that presents 
the required information at distinct time intervals. The time intervals should repre- 
sent typical image processing times. To ensure that data flow is consistent and inde- 
pendent of the image-processing duration, these time intervals should be varied 
between consecutive loops. Different environmental conditions should be simulated 
by executing a process that changes its status inconsistently, i.e., at random intervals 
to randomized conditions. The vision module should select the preferable image 
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processing algorithm based on the current environment conditions. Thus, the execu- 
tion of different algorithms according to different conditions can be tested. 

Far-vision: The machine vision sensor scans scenes ahead of the robot's current 
position. For autonomous mobile vehicles, it provides guidance directions and infor- 
mation about obstacles. For robotic harvesters, this system recognizes and classifies 
object information such as position, orientation, visual texture, colour, shape and 
size of fruit. A certainty factor indicates the degree of confidence in the validity of 
the information. 

Near-vision: The machine vision sensor is mounted on the end effector of the robot 
and provides visual feedback for motion control and updates of exact position and 
orientation of the target. Simulation of this module should incorporate changes of 
the information supplied by the far-vision system to verify the adaptive planning 
capabilities of the intelligent control system. 

2.2. TASK PLANNER 

The task planner defines the tasks to be performed, divides them into subtasks and 
determines the appropriate sequence. It contains global strategies that optimize the 
planned sequence of tasks to minimize performance criteria such as the time to pick 
all the fruit. The input to this module is the information supplied by the sensory 
systems such as locations of fruit to be picked, orientation and position of the robot 
end-effector, etc. Simulation of this module is achieved by implementing the actual 
task planning algorithm. 

2.3. TRANSFER CONTROLLER 

This module transfers information from the planning blackboard to the control 
blackboard. In addition, it assigns task priorities based on local strategies that 
may modify the plan according to new information obtained from real-time proces- 
sing of sensed data. The transfer controller provides error recovery and replanning in 
case of system failure, unexpected events or alarm occurrences. The input to this 
module is the sequence of tasks to be performed and sensory data. The output is 
the next task to be performed. Transfer of information and local strategies should 
be simulated as intended to be implemented. Alarm occurrences should be 
simulated by a process that occurs at random time intervals simulating unpredict- 
able conditions. 

2.4. TRAJECTORY PLANNER 

This planner generates trajectories to move the robot arm from its current position 
to the intended target. Strategies to determine where the arm should move, when it 
should stop and wait for new sensory data, and how it should revise its original plans 
have been developed. This level is horizontally decomposed into concurrent 
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processes for planning the reaching and wrist/grasping motions. Reach planning 
provides the coarse coordinates of the trajectory. Near-vision and sensor data 
provide information to plan wrist orientation and grasping motions. The inputs 
are the robot 's current position and the location of the next target. The outputs 
are then positions, velocities and accelerations of the robot 's joints that form the tra- 
jectory that the robot's arm should follow. This module is simulated by a process 
that executes the intended trajectory planner algorithm. 

2.5. TRAJECTORY CONTROLLER 

The trajectory controller senses the position of each actuator and signals each motor 
to comply with the planned path. Deviations and position data are communicated to 
the trajectory controller. The inputs to this module are the current location of the 
robot and the target. The outputs are control signals to the robots actuators. Since 
the trajectory controller is usually incorporated into the robotic system using closed- 
loop control, there is no need to simulate this module for verification of the intelli- 
gent control system. Thus, only the actual execution of the trajectory should be simu- 
lated. Verification of the dynamic control of the robot manipulator is beyond the 
scope of this work. 

2.6. GRIPPER CONTROLLER 

The gripper controller modifies the wrist and grasp motions based on proximity 
information derived from near vision and other sensors. It communicates fine correc- 
tions to the trajectory controller to accurately reach the target with the required 
orientation. The inputs to this module are the current location and orientation of 
the gripper and the target. The outputs are control signals to the robot and gripper's 
actuators. The gripper controller should be simulated by implementing the actual 
algorithms. 

2.7. SENSORS AND ACTUATORS MODULES 

These modules control the necessary sensors and actuators. Each module consists 
of two processes that communicate directly through messages: a master and a 
slave. The master retrieves necessary information from the blackboard, distributes 
it to its slave and updates relevant information provided by the slave. The slave 
monitors the sensors and controls the actuators. Since time is critical this is a 
stand-alone process that may reside in a different processor or include special 
purpose electronic circuits or mechanics. The input for the sensor modules are 
the environmental data and conditions that define when to execute the data acquisi- 
tion programs such as time constraints and interrupts. The output is the derived 
information such as speed, position, steering angle of the vehicle or location and 
ripeness of fruit. The input for the actuator modules are the necessary control 
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commands, e.g., move to location X, Y and the conditions on when to move. 

The outputs are control commands, e.g., move the robot arm and steer the vehicle. 
These modules should be simulated in a similar manner as the aforementioned vision 
module and gripper controller. 

2.8. PERIPHERAL CONTROLLERS 

These modules control complex high-level devices such as additional robots perform- 
ing similar tasks in parallel or performing secondary tasks. 

3. Robotic Melon Harvesting 

3.1. MODEL 

The robotic melon harvester model is based on a prototype field crops robotic 
machine (Benady et al., 1991) and consists of  a robot connected to a tractor that 
advances along the row in two different modes: step mode and continuous mode. 
In the step mode, the tractor advances along the row and stops at each grouping 
of fruit. Then the robot arm approaches each fruit and picks the ripe ones. Once 
all ripe fruit are picked, the tractor advances. In the continuous mode, the robot 
arm picks the fruit while the tractor is moving. The far-vision system is mounted 
ahead of the current position of  the vehicle and robot and determines melon loca- 
tions. A fan directed on the foliage exposes the melons that may be hidden by the 
canopy. A combined brightness and texture algorithm is used to detect the melons 
(Cardenas-Weber et al., 1991). The near-vision system is mounted on the robot 
end effector and provides local guidance of  the arm to the next fruit to be picked. 
Algorithms for supplying 3-D information of the scene are being developed 
(Benady et al., 1991). A gripper (Wolf et al., 1990) is attached to the vertical axis. 
Contadt sensors are mounted on the gripper to avoid collision with the ground. 
The gripper is attached to the robot in a flexible joint to absorb side loads caused 
by horizontal motion. 

3.2. SOFTWARE DESCRIPTION 

Animated motions of the robot and gripper were displayed using IGRIP (Interactive 
Graphics Robot  Instruction Program version 1.6, Deneb Robotics, IGRIP, 1988) on 
a Silicon Graphics, Personal Iris 4D/20 workstation (Silicon Graphics, 1988).* The 
IGRIP software is a computer graphics based package for robotic workcell layout, 
simulation and offtine programming. A workcell is composed of  devices 
and robots, positioned relative to each other. Devices in the workcell are pro- 

* Mention of a particular manufacturer and products are for informational purposes only and does not 
imply endorsement by the authors or Purdue University. 
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grammed using the high level GSL language (Graphics Simulation Language, Deneb 
Robotics, GSL, 1988). GSL provides the ability to construct programs for individual 
devices in a simulation to govern their actions and behavior. Several devices can be 
simulated simultaneously and are synchronized through Input/Output signaling. 

3.3. DATABASE 

To evaluate the performance of the control structure based on realistic input, exact 
field coordinates of melons, cultivar 'Superstar' (Cucumis melo, L. var. reticulatus 
Set., McGlasson and Pratt, 1963) were collected on 859 melons in 29 rows at the 
Southwest Purdue Agricultural Center, 7 km north of Vincennes, Indiana, in the 
summelr of 1989 (Edan and Miles, 1991). These data served as the input to all 
simulations performed. A statistical study (Edan, 1990) indicated that the 
average distance between adjacent fruit along the row (X) was 34cm with a 
standard deviation of ~10cm. The average distance between fruit across the row 
(Y) was 23.6cm with a standard deviation of 14.2cm. The histogram of distance 
between fruit clusters best-fits the Gamma distribution curve. This distribution 
was used to generate additional simulation datasets corresponding to common 
horticultural practices. Melon locations were obtained by changing plant distances 
between 25 and 125cm which are common horticultural practices (Edan, 
1990). The number of fruit per plant were computed using the equations derived 
by Bhella (1984). For each planting distance, three different random seed numbers 
were used to generate the data using the inverse transformation method (Pritsker, 
1986), 

3.4. IMPLEMENTATION 

Each module of the intelligent controller was connected to a different device in the 
IGRIP workcell and had a separate GSL program (Figure 2). All programs were 
executed concurrently. All information was exchanged through blackboards that 
were irrlplemented by globally accessible data files. Lists of observations from the 
sensory systems arrive at the blackboard asynchronously. All references to the black- 
board are part of a transaction. Each module keeps track of its current status by 
storing time flags in a dedicated control file. Data obtained at different times are 
saved in sequentially numbered files. To ensure access of relevant data, each module 
checks tthe time flag in its own control file and the control file of  the module respon- 
sible for deriving the required data before accessing data. 

Initially, the far-vision system was implemented by executing the image processing 
routines that were developed for melon detection (Cardenas-Weber, 1991). These 
algorithms determine the location and size of fruit and a certainty factor for detec- 
tion. The image processing strategy consists of two main functions: an analysis 
operation and a knowledge directed evaluation (Cardenas-Weber et al., 1991). The 
analysis; operation provides the positions of the melons in the area of interest based 



SIMULATION OF AN AGRICULTURAL ROBOT 275 

Fig. 2. Description of the IGRIP simulated modules. 

on object brightness, size, area, shape, distance between objects and distance between 
plants. However, the disparities of the information (inconsistencies and contra- 
dicting values) requires a knowledge-based strategy to improve the detection correct- 
ness. These knowledge rules represent and utilize information about the application 
domain and specific situations such as characterizing melons under different bright- 
ness conditions and occlusion. An example for such a rule is comparing the detected 
object size (width, height, radius) with the reference values for maximum, minimum 
and average melon size. 

However, since these algorithms weredeveloped for feasibility and not optimized 
for real-time application, the actual execution of these algorithms was time con- 
suming (i.e., all robot motions were stopped while waiting for the image pro- 
cessing routines to be executed which interfered with the continuous and dynamic 
flow of motions). Thus, they were deleted from the simulation process and were 
simulated by adding a delay loop into programs called by the camera device. To 
validate that the data flow between computing modules does not depend on the 
vision rate, the delay between consecutive loops was varied. Fruit locations 
are read from data files that contain the measured melon coordinates. The 
real-time issues of vision data interpretation are being approached by imple- 
menting these algorithms on real-time pipeline image processing architecture which 
increases the processing speeds (Benady et al., 199 l). More sophisticated algorithms 
thaat~adapt to changing environmental conditions have not been developed yet, 
however their simulation was demonstrated: A random number was entered 
into a file that represented the environment. Different image processing routines 
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simulated by different delay loops were executed according to this number. 
Once the s imula ted  vision program is completed, melons are displayed in the 

workcell: 

• a green melon indicates that it is unripe (small or green as detected by the far- 
vision system); 

• an orange melon indicates that it is ripe (and has to be further investigated by 
the far-vision system to determine exact ripeness stage). 

Based on these locations, the task planner determines the stopping point of the 
vehicle and the sequence of fruit to be picked. The transfer module transfers infor- 
mation from the planning blackboard to the control blackboard. Based on this list 
of fruit and new fruit detected by the near-vision system, it defines the next fruit to 
be picked. The robot controller guides the arm to this fruit. Once the robot arm 
is located above a fruit to be picked, it starts moving and is guided by the near-vision 
system that also determines the ripeness stage. Based on local guidance heuristics, 
the arm is positioned above the fruit and waits for a signal from the near-vision 
system. Once the fruit has been detected by the near-vision system and depending 
on its ripeness stage, the robot either picks the fruit or restarts the picking cycle 
with the next fruit. The near-vision system is implemented by simulating a process 
that generates various random conditions to simulate the following dynamic 
conditions: 

• Detecting the fruit at the location indicated by the far-vision system. 
• Random changes in the fruit locations (simulates inaccuracies in the far-vision 

system detection). 
• Displaying new fruit into the workcell that were not identified by the far-vision 

system (indicated by changing the melon's colour to white). 
• Deleting existing fruit from the workcell (that were falsely detected by the far- 

vision system - this is displayed by changing the melon's colour to purple and 
then its display to invisible). 

After the arm reaches the target, a gripper is activated and picks the fruit up 
from the ground, detaches it from the vine and transfers it to a conveying system. 
This time is denoted as the picking time. Once all the fruit in the current group 
have been picked, the vehicle advances to the median of the next cluster of 
fruit that have been detected. This process continues until all fruit along the row 
have been picked. The sequence of animated motions shown in Figure 3 is 

(a) the robot arm approaches the fruit, picks it up, transfers the picked fruit to the 
nearby intermediate conveyor; 

(b) the robot arm places the fruit on the intermediate conveyor; 
(c) the robot arm approaches the next fruit while the intermediate conveyor con- 

veys the fruit to the main conveying system; and 
(d) the robot arm picks the next fruit. 
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Fig. 3. A sequence of the robot 's  motions. 

3.5. P E R F O R M A N C E  E VAL UAT ION 

The logical flow of the data was ensured for various scenarios by varying the follow- 
ing parameters: 

o maximum velocity and acceleration of the robot actuators (varied by changing 
robot parameters in the IGRIP workcell: velocities of 500, 1000, and 2000cm/ 
sec and accelerations of 0.5, 1.0, and 2.0 g were simulated); 

• sensor execution time (adding a delay between 1 and 500 msec in the vision pro- 
gram); 

® planning execution time (could only be increased; a delay loop was added into 
the task planner program); 

• number of ripe fruit; 
a distribution of fruit; 
• environmental conditions; and 
o detection certainty factors. 

A different test case was produced for each simulation, by assigning random num- 
bers (generated from a uniform distribution) to the number of ripe fruit and detec- 
tion certainty factors. Percentage of ripe fruit versus unripe fruit were varied by 
assigning different thresholds to the random numbers that were assigned to simulate 
these parameters. Fruit that received a number larger than the setup threshold were 
simulated to be ripe, others unripe. Distribution of fruit was varied by changing the 
input data to consist both of measured field data and stochastically generated data 
(corresponding to different planting distances). Thus, for each simulation test, a 
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different row of melon coordinates was simulated. An additional random number 
was assigned to each fruit at the ripeness detection stage and simulated dynamic 
changes in the sensory information provided by the near-vision system, (e.g., 
changes in fruit location, and detection of fruit). Simulation of different environ- 
ment conditions is achieved by assigning a random number at random times to a 
file. The vision module checks this file to decide which algorithm it should exe- 
cute. Thus, the adaptive planning algorithms were evaluated for simulated real- 
time changes in the sensory data. 

3.6. RESULTS 

The control architecture was verified by observing the motions of  the robot on the 
screen and ensuring the following criteria: 

• All ripe fruit were picked and conveyed to the correct conveyor according to 
their ripeness stage; and 

• All unripe fruit were left in the field. 

Through an interactive process of simulating and visualizing the motions, all algo- 
rithms were verified and it was ascertained that each submodule has the necessary 
information at the right time for all conditions and the programs performed cor- 
rectly. This ensured that all program codes were tested before being implemented 
in the real-world robot. Since the performance criteria were met for all simulated 
parameters, for all field conditions tested and for dynamic changes in the sensory 
data, the implemented control architecture is considered verified. 

4. Planning Algorithms 

4.1. SEQUENCE PLANNING ALGORITHM 

To increase the system's throughput, the sequence of robot motions before the begin- 
ning of the picking process was preplanned. The minimum-time sequence to pick all 
the fruit was obtained by applying the Traveling Salesman Problem (TSP) algorithm 
(Edan, 1990). The TSP involves routing a salesman through a sequence of known 
locations so as to minimize the time or any other well defined function (Reingold 
et  al., 1983). The cost function for the TSP was calculated as in Drezner and Nof  
(1984) to be the distance to move the empty arm from the place on the conveyor 
to the next fruit. Whenever the robot arm was ready for the next target, the search 
was halted and the current best solution defined the next sequence of fruit to be har- 
vested. Thus, at each point in time the best solution was obtained. The algorithm was 
evaluated by simulations performed for a Cartesian robot with actuator speeds of 
1 cm/sec on locations of measured melon data. Figure 4 shows the difference 
between the minimum-time traveling salesman solution (optimum) and a solution 
received from the first evaluated sequence (regular). The total time was reduced by 
49.44%. 
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4.2. M O T I O N  P L A N N I N G  A L G O R I T H M S  

Step mode: Integration of qualitative and quantitative methods was demonstrated by 
implementing the following heuristics and optimization algorithms to define the trac- 
tor's motions along the growing bed in the step mode: For each fruit cluster, the 
median location is calculated and the tractor is stopped to align the robot's base 
with the median of the fruit. If the distance between sequential fruit is less than 
100 cm and if the number of ripe fruit is less than 5, the stopping point is the median 
of these fruit. Otherwise, a cluster analysis was performed on all available data to 
determine the number of fruit clusters. The cluster analysis algorithm (Pal and 
Duda, 1987) was implemented by iterative optimization to minimize the sum-of- 
squared-error (Edan, 1990). The median is derived for each cluster. 

The heuristic planning algorithms were implemented by rules in a CLIPS (1989) 
program that is called from the GSL program. CLIPS is a rule-based, forward- 
chaining expert system shell and was selected since it is highly portable, easily inte- 
grated with external software and easily embedded into other systems. Optimization 
algorithms were implemented by integrating CLIPS with external functions written 
in the C programming language. 

Continuous mode: To improve the robot harvester's performance, the fruit should 
be picked while the vehicle advances along the row. However, if the robot is slow and 
the tractor's forward speed is high and constant, the harvest efficiency is reduced 
since many fruit are missed by the robot. The continuous mode algorithm was eval- 
uated for a Cartesian robot with actuator speeds of 100 cm/sec on the measured field 
data. As the forward speed and picking time increase, fewer fruit are picked (Figure 
5). Increasing the forward speed from 22 to 66 cm/sec decreases the percentage of 
fruit picked from 100 to 30 for a picking time of 0.5 sec and from 45 to 1 for a pick- 
ing time of 2.0 sec. 

To increase field capacity (i.e., acres/hour) and attain a high percentage of picked 
fruit, an algorithm was developed to vary the vehicle's forward speed so that the 
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Fig. 5. 
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robot has just enough time to pick all the fruit. According to the number of fruit in 
the next cluster, the vehicle speed changes: when fruit density is low the forward 
speed is increased and when many fruit are clustered together the vehicle decele- 
rates, giving the robot more time. 

Figure 6 presents the effect of picking time on the total time to harvest a row for 
constant and variable velocities of 11 and 66 cm/sec. For constant velocities, the total 
time decreases as the picking time increases since fewer fruit are picked. For variable 
velocities all fruit are successfully picked and thus, as the picking time increases the 
total time increases. 

Figure 7 shows the effect of the picking time on cycle times for constant and vari- 
able velocities of 11 and 66 cm/sec. The time per fruit increases as the forward speed 
decreases and the picking time increases. The variable velocity mode is faster than 
the constant velocity mode by 3.3%. 

0,5 1.0 1.5 2.0 
PU,,~ ~ (sec) 

Fig. 6. Effect of picking time on total time for variable and constant velocities. 
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Fig. 7. Effect of  picking time on cycle times for variables and constant  velocities. 

4.3. LOCAL G U I D A N C E  A L G O R I T H M S  

The flowchart of the robots motions is given in Figure 8: The robot arm moves down 
to a point 35 cm above the next fruit to be picked and waits for information from the 
near-vision system. If  the far-vision system indicated detection with high accuracy, 
the robot arm moves down 30cm and waits for ripeness information from the 
near-vision system. If  lower certainty has been indicated, the arm moves down 
only 10cm, to a distance of 25 cm from the fruit, to provide the near-vision system 

Move 35cm above fruit , j 

I /7 
by far vision 

Heir vision fizz~nzd / 

----~/ r~ / /  

b 
by f~ vmi~ / N 

l 
Next 

Fig. 8. Flowchart of the robot 's  motions. 
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with a larger field of view. False detections of the far-vision system were simulated by 
changing the fruit to invisible, i.e., the fruit disappeared from the workcell. If the fruit 
disappears while the arm approaches the fruit and the accuracy of detection of the 
far-vision system was high, the arm stops and moves up and asks the near-vision 
system to recheck, and waits for an acknowledge signal for continuation. If the fruit 
disappears while the arm moves toward it and the accuracy of detection was low, the 
arm proceeds to pick the next one. The execution of these modified plans are visua- 
lized on the screen, i.e., actions of the robot arm change according to the simulated 
dynamic environmental conditions, 

5. Summary, Conclusions, and Future Development 

An intelligent controller capable of interfacing sensors and control devices has been 
designed, simulated and verified for a robot acting in the unstructured and uncertain 
agricultural environment. The agricultural robot control system consists of a hier- 
archical control architecture that activates through multiple blackboards. Each level 
consists of independent modules that communicate through their corresponding 
blackboard. The blackboard was implemented by sharing data through files. The 
blackboard provided a flexible and modular structure that facilitated modifications 
and addition of modules and coupling of different problem-solving methods. This is 
essential for the complex agricultural domain. All stages of the data flow have been 
simulated: starting with input from the sensors, through transformation to informa- 
tion and plans, and to final execution of tasks and control. Dynamic changes of sen- 
sory data have been simulated, and algorithms, heuristics and optimization methods 
incorporated into the planning and execution of the motions for the robotic melon 
harvester. The intelligent control structure proved to provide efficient and robust 
operation of the agricultural robot for a variety of simulated environmental condi- 
tions and for a range of sensory processing, task planning and motion control execu- 
tion durations. 

By observing the robot's motions for various sets of system parameters and field 
conditions, the control architecture was verified and the logical flow of the data 
proved to be correct and consistent for a variety of conditions prior to implementa- 
tion in the realworld robot. Animated, visual simulation provided an important and 
powerful tool for verifying the control model, debugging all sensor, planning and 
robot control computer programs and evaluating motion control algorithms. Simu- 
lations of dynamic changes of sensory data was essential to ensure robust operation. 

Evaluation of planning algorithms on measured melon locations indicated that the 
traveling salesman algorithm decreases the cycle times required to pick the fruit by 
finding a minimum-time sequence by 49% and therefore should be implemented. 
A continuous mode of operation decreases cycle times. Variable speed control 
improves performance significantly as compared to a constant velocity mode where 
many fruit are missed at high forward speeds. By controlling the velocity, all fruit are 
successfully picked and the overall speed is increased. 
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The evaluation of these algorithms prior to prototype testing ensures improved 
performance and reduces the amount of experimental research. Prior to implemen- 
tation on an operational system, the intelligent controller must be extended and 
implemented on a real-time system. Real-time sensory interpretation must be 
achieved by utilizing dedicated custom-made hardware. Multiple processors should 
be incorporated to enable concurrent execution of sensing, planning and control. 
However, the blackboard implementation on a distributed computing system which 
consists of multiple processors is not straightforward and must be developed 
(Benady et  al., 1991). Since time is critical for real-time control, the blackboard 
should be implemented by shared memory. Interprocess communication can be 
achieved using semaphores. Due to associated memory and computational time, 
expenses related with the blackboard the final implemented structure should be 
reanalyzed and optimized. 

In this paper, a structure to organize the necessary multitude of sensors has been 
proposed, modeled and simulated. However, these sensors must be defined, i.e., what 
kind of sensors and how many of each type are required to provide adequate infor- 
mation. Once the sensors have been defined, strategies to decide when and what 
sensors should be deployed must be formulated. Moreover, algorithms must be 
developed to fuse the information available from the diverse sensors. The develop- 
ment of the intelligent controller structure presented in this paper is an essential pre- 
requisite to development of a mobile, autonomous field robotic harvester which is 
currently under development (Benady et  al., 1991). 
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