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Abstract. The noise effects in color images are studied from the human perception and machine perception 
point of view. Three justifiable observations are made to illustrate problems related to individual color 
signal processing. To minimize the noise effects, two solutions are studied: One is a 'rental scheme' and the 
other is a vector signal processing technique. The 'rental scheme' adopts filters originally developed for grey 
scale images to color images. A set of heuristic criteria is defined to reconstruct an output with minimum 
artifacts. The vector signal processing technique utilizes a median vector filter based on the well developed 
median filter for grey scale images. Since the output of the filter does not have the same physical meaning 
as the median defined in one-dimensional space, the search of a vector median is considered as a minimum 
problem. The output is guaranteed to be one of the inputs. Both approaches are shown to be very effective 
in removing speckle noise. Results from real and synthetic images are obtained and compared. 
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1. Introduction 

In computer  natural  scene analysis, color  images are being widely used due to the 

superior characteristics over black-and-white  images [6, 8, 9, 11]. Consider,  for 

example, several adjacent objects with different color  but identical luminosity. These 

objects may  be interpreted as a merged object in a grey level image due to the constant  

intensities, but  can be reflected distinctively in a color  image. The added color  

informat ion clarifies every possible ambiguity.  Besides carrying pictorial informat ion 

of  reflected energy, color images contain object spectral information and provide valu- 

able details for quick visual search, inspection and accurate object classification. More-  
over, the surface color  is relatively invariant  to (intensity) i l lumination changes due 

to the property o f  color constancy. Therefore, color information processing is relatively 

consistent when the environmental  i l lumination condit ions change, and provides 
more  reliable and accurate results for  machine perception and natural  scene analysis. 

A n y  image acquired by optical, electo-optical or electronic means is likely to be 
degraded by the imperfection o f  the sensing mechanisms. Potential degradat ions may  
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occur in the form of a sensor noise, photographic grain noise, blur (camera out-of- 
focus, relative object-camera motion), random atmospheric turbulence, etc. The 
presence of noise in images represents an irrecoverable loss of information. Several 
filters have been designed to remove noise from images. 

All filters proposed to process grey scale images may be classified either as linear 
or nonlinear filters. Linear type filters include inverse filters, Wiener filters, geometri- 
cal mean filters. Nonlinear type filters include the various types of median filters and 
nonlinear mean filters. Modifications have also been proposed [22-25]. Median-type 
filters perform very well and sharpen the image edges during the first few iterations. 
The operating principle is to replace the center pixel in a defined window with the 
median value of the pixels within the window. However, repeated iteration blurs the 
edges and removes thin details. Due to their superior characteristics in removing 
impulse noise, there have been several attempts to develop various median filters. For 
example, the KNN-median filter proposed by Davis et aI. [22] is similar to the 
KNN-mean filter, except that the median of the K selected pixels is substituted as the 
new value of the center pixel, instead of the mean. To some extent, this has the same 
advantages over the KNN-mean filters, as the simple median filter has over the mean 
filter; it pulls the substituted value to one side or the other of the mean, sharpens the 
edges better and smears the details less. The proposed sigma filter [24], motivated by 
the sigma probability of the normal distribution, smooths the image noise by averaging 
only those pixels in the neighborhood which have their values within a fixed sigma 
range from the center pixel. Consequently, edges are preserved and thin details are 
retained. 

Impulse noise, sometimes called 'outliers' because of the outlying observations, 
may be created during the image acquisition or transmission. The data recorded in 
this case are completely outlying due to errors in the acquisition device (e.g. in A/D 
converter), film grain, recording media, and transmission channel. They appear either 
as very high positive values or very negative values, called 'salt-and-pepper' noise. The 
mathematical expression of the noise in the spectrum domain is usually modeled as 
a long-tailed distribution. It has been shown that linear filters have poor performance 
in the presence of such noise, and quite often the neighborhood of the noise-contaminated 
pixel is affected after the images are processed; nonlinear filters are quite successful. 
Although the exact characteristics of the human visual system are not well under- 
stood, experimental results indicate that the first processing levels of the human visual 
system possess nonlinear characteristics. Various nonlinear filters have been therefore 
devised. In addition, various criteria, such as the maximum entropy criterion, lead to 
nonlinear solutions. One of the most popular families of nonlinear filters for noise 
removal are order statistic filters. Of them, the median filters which represent one of 
the simplest type of such filters were first suggested by Tukey in 1971 [26]. It has been 
proven that the median type filters are the most effective in removing impulse noise 
in grey images [23]. 

Color images, just like the formation of grey images, are gone through a series of 
noise-contamination processes. However, the noise removal problems are generally 
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not considered in most of the research related to natural (color) scene analysis and 
computer color vision [11, 14-16]. The work by Faugeras [27] represents one of the 
few papers on color image enhancement. A simple model of human color vision is 
introduced. It is shown that the perceptual space defined by the model, offers a 
meaningful way of thinking about important perceptual parameters such as brightness, 
hue and saturation. A concise formalism is also given to describe those parameters 
quantitatively. Both, color image enhancement and transmission coding are tried and 
proved to be quite successful based on the idea of structuring the perceptual space as 
a vector space, where vector addition corresponds to tristimulus values multiplication. 

Color images as raw data in most vision systems consist of red (R), green (G) and 
blue (B) components. Thus, one may argue that noise could be removed by processing 
these three single spectrum intensity images individually. This technique, called 
monochromatic-like processing [21] is being widely used regardless of the noise proper- 
ties (correlation and uncorrelation among the three intensity data). The results are, 
in general, not optimal and may be misleading because the method ignores the 
correlation among the data (tristimuli). 

The noise removal problem is ill-conditioned and most of the filters bring artifacts 
into the images. For example, the mean filters redistribute the noise error to the 
surrounding and the median filters may disorder the intensity levels [17]. For grey 
images, the introduced artifacts may not affect too much the image appearance and 
structure, but for color images, the same amount of artifacts may intolerantly distort 
the image appearance and structure to the point that subsequent image processing 
may be further complicated. These artifacts are obviously sharp in color images, i.e., 
a small disturbance in one of the three intensity data may cause a big jump in color 
perception. 

This paper considers mainly the median type filtering in spatial domain which 
possesses some attractive properties for impulse noise removal in color images, and 
investigates the applicability of a 'rental scheme' for noise removal in color image 
processing. By the nature of the filters, the 'rental' scheme adopts original filters 
developed for grey scale images to color images. This is part of the general problem 
that deals with the applications of nonlinear monochrome image processing operators 
to color image data, in an attempt to minimize color artifacts. In reality, there will 
always be color artifacts, therefore, the objective is to minimize them. Although the 
basic idea may not be new, the application of median filters (edge preservation, 
smoothing) to color images is new. A set of criteria is derived and accounted for in 
order to apply existing 'grey' filters for color image noise removal. As an alternative, 
a median vector filter is studied. Thus, the results from both filters, given the same 
inputs, are obtained and compared. In addition, a mean type filtering operation 
is proposed by incorporating and utilizing the correlation information between 
color image data channels. A conclusion is made that is not trivial to apply tech- 
niques devised for grey scale images to color images without considerable modi- 
fications. The effectiveness of the criteria is determined both subjectively and 
experimentally. 
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Applications of the proposed method to robotics include: robot navigation systems, 
automated guided vehicles (AGVs) for undersea and space exploration and assembly 
line inspection operations. Nonrobotic applications include prepressing industry, 
medical imaging and marine science and biology. The proposed method has already 
been applied to underwater photographic analysis to monitor population structure 
and growth of living organisms [21]. 

Section 2 of the paper describes the conventonal use of median filters and justifies 
the proposed modifications. The third and fourth sections present scalar and vector 
median filters, respectively. Two algorithms are outlined and results one included and 
compared in Section 5. The sixth section introduces mean type filtering. Section 7 
concludes the paper. 

2. The Conventional Use of Median Filters: Justifications for the Proposed 
Modifications 

Median filters are widely used for noise suppression in early stages of a vision system 
due to the following properties [9]: 

(1) They preserve the ramp edges and boundaries of the objects, 
(2) They suppress impulses of short duration without significantly modifying 

other components, and, 
(3) They may be implemented easily and fast. 

The first two properties are most important. Preservation of object edges or 
boundaries in a scene is important because all subsequent operations in a vision 
system depend critically on it. Preservation of information related to object edges 
or boundaries requires that noise removal occurs without smearing out the sur- 
rounding. Due to those properties, and because color is primarily used as an inherent 
object feature in a scene (thus the preservation of the surface color on objects of 
interest is highly desirable), it is natural to investigate the efficiency and applica- 
bility of median filters to remove noise of short duration in color images. The 
conventional use of median type filtering in color image processing is shown in 
Figure 1. 

Since three monochromatic signals are digitized simultaneously, at any point (pixel 
in image) color is determined by the intensities of reflected illumination at that point 
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Color G Images Filter 

Filter 

Color I 
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Fig. 1. The conventional use of filters in color image processing. 
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in terms of the RGB intensity signals, and is expressed as follows: 

r(i, j )  1 c(i,j) = g(i , j)  , (1) 

b(i, j )  

where c(i, j )  is the vector pixel at (i, j )  in a color image C of size N × N, r(i, j) ,  g(i, j )  
and b(i, j )  are the pixel values in the corresponding spectrum image obtained through 
spectral integration and sampling. A frame of color image may be expressed as 

C = G , (2) 

B 

where 

C = 

R = 

G = 

B = 

{c(i,j); i, j 6 N, c(i,j) ~ ~R3}; 

{r(i,j); i , j  ~ N, r(i,j) ~ 9~); 

{g(i,j); i , j  ~ N, g(i , j)  ~ ~R}; 

{b(i,j); i , j  ~ iV, b(i , j)  ~ 9~}; 

In monochrome image analysis, noise from different sources (electronic sensor, film 
grain, thermal sources) is always assumed to be random and uncorrelated from pixel 
to pixel. But, in chromatic image analysis, there may be noise correlation among the 
three monochromatic images (although they remain uncorrelated from pixel to pixel 
in a single intensity image due to the way the images are formatted). The noise cor- 
relation indicates that the correlation matrix Rn may not be necessarily a diagonal 
matrix. Generally, noise introduced before the electron guns is correlated among the 
three monochromatic images (for example noise from film grain, spurious effects and 
random scattering in a scene). Noise introduced from the electron guns or circuitry 
boards may be treated as in grey images, mostly interpreted as additive independent 
random noise. Such noise may be removed in a similar way to processing grey images 
or by using Kalman filters for correlated noise. 

Consider that rm(ir,L), gm(ig,.~) and bm(ib, Jb) represent the medians of each 
intensity (channel) data. Then C(ir, L), C(ig, L)  and C(ib, Jb) are vectors with only one 
median element in the corresponding RGB channels. They can be expressed as 

C(ir,jr) = medr{c(ir,jr), i, j E  W),  (3) 

C(ig,L) = m e d ~ { c ( i g , L ) ,  i , j  E W),  (4) 

c(ib,jb) = medb{C(ib,jb), i , j  ~ W.), (5) 

where W is a selectable odd-size image window of any shape, (it, A), (i s, jg), and (ib, 
Jb) are the coordinates of median values of the corresponding channels within the 
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window W, medr{. . .} ,  medg{. . .}  and medb{.. .} are the median functions to 
process the RGB signals, respectively. For example, the output with the median value 
rm(ir, Jr) through the red channel must satisfy by definition the probability relation 

r) dr = r) dr - 1 - ~ - ,  ( 6 )  

where r is considered as a variable andf ( r )  is the distribution function. Equation (6) 
may be simply rewritten as 

P(r <<. rm)  = P(r >~ r,,) - 1 (7) 

Alternatively, in the discrete case, a similar expression may be written as 

rm(i,j~ = min{~lri--S~N rjl}, (8) 

where min{. . .}  is a function of choosing the minimum of N values of distance 
measurement. Since each time only one element of a vector is produced from a single 
data channel, combination of the three vectors (median element and two associated 
elements) forms a 'median matrix' represented as 

M = [e(ir, Jr) e(ig, •) e(ib, Jb)] 

r(ir, Jr) r(ig, L)  r(ib, Jb) 1 

= g(ir, fi) g(ig, jg) g(ib, Jb) 1" (a) 

b( i ,  fi ) b( ig, jg ) b( ib , jb ) 

Each column in M represents a real vector pixel in the original image with 1 ~< rank 
(M) ~< 3. The conventional use of median filters in color image processing (individual 
R, G, B channels), gives a new vector median [r(i,,L) g(ig, L)  b(ib,jb)] ~, the 
diagonal elements of the median matrix M. By looking at M, observe the following: 

Observation 1: The vector [r(i, fi ) g(ig, L)  b(ib, jb)] r is the real vector median 
that represents one of the vector pixels to be filtered in the window W only under the 
condition that each pixel value in the vector is simultaneously the median value of all 
corresponding three data channels. Thus, rank (M) = 1, hence, i~ = ig = ib; j~ = 
Jg = Jb ; a real vector median which is one of the inputs is extracted. Therefore, it may 
be argued that the pixel values in each data channel are strictly balanced, or that the 
number of values less than the vector median and the number of values greater than 
the vector median are the same in all different data channels. 

'As an example, visualize a two-channel median filtering process. Figure 2 shows 9 
vector pixels to be median-filtered individually. Apparently pixel 5 is the median value 
of both data channels, which means that the output of the filter is one of the input 
data. A close look at the data structure shows that the set of data is strictly balanced, 
namely the elements of the output are medians in all data channels. 
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Fig. 2. (Observation 1). A two channel Fig. 3. (Observation 2). A two channel 
median filtering process, median filtering process, x is the new pixel. 

Observation 2: If the vector pixel sequence in one data channel is not strictly 
balanced, i.e., 2 ~< rank (M) ~< 3, the diagonal elements [r(i,,L) g(ig, L) b(ib,jb)] ~ 
in the median matrix do not represent one of the original vectors. The output becomes 
unpredictable, hence artifacts may be introduced which sometimes distort the color 
appearance if the output is not restricted within a certain range. For example, the 
created median vector may lie somewhere in between if there are two clusters. 
Consider again a two-channel median filtering process as shown in Figure 3 in which 
pixel 5 is the median value of  channel 1, but pixel 2 is the median value of  channel 
2. A new vector pixel is introduced labeled by x in Figure 3. The output of the filter 
is no longer a member of the input family. 

To be more specific, consider a median matrix with the following entries: 

M = 

100 85 80]  

90 100 95 

80 80 100 

Any column in M represents a color with a valid hue. Individual R, G, B channel 
processing creates a new vector pixel [100 100 100] r which obviously distorts the 
color appearance and makes it impossible to process color information in subsequent 
operations because the hue is totally lost (hence the undefined saturation). An 
achromatic spot is introduced and shows an ugly grey spot in a color image. On the 
other hand, there is hardly a way to recover the original color information from this 
pixel, and the side effects of  this singular spot may complicate further processing. If 
vector pixel [85 95 80] Tis used instead, and the reconstructed vector pixel does not 
bring too much offset in chromaticity, then the problems with the diagonal selection 
may be vanished. This suggests that hue preservation is highly desirable. 

Observation 3." If rank (M) ~ 1, besides introducing artifacts, conventional pro- 
cessing may shift edges, called edge jitter, thus distorting the scene structure and 
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Fig. 4. (Observation 3). The edge jitter problem. 

making pixel or edge-based measurements inaccurate. Figure 4 illustrates this problem 
using a one-dimensional vector signal with only two entries. Since there are two 
distinctions at n~ and n2, respectively, the original signal represents three segments, left 
band bounded-right by nl, the middle band bounded-left by nl and bounded-right by 
n2, right band bounded-left by n2. Both entries are contaminated by impulse noise, for 
example, one at n~ - 1 and the other at n2 + 3, as shown in Figure 4(a). The overall 
picture shows two spots. The result of individual processing with a window size of 5 
pixels shows that a new-painted impulse at n~ is generated and the distinction which 
separates two segments in the original image is shifted by one pixel position. The same 
thing happened at n2 + 1, too. From this observation, one may conclude that 
individual processing does not remove the impulse noise, instead, it moves the noise 
position to contaminate its neighbor values in the image. 

3. Scalar Median Filters 

Color image smoothing by monochromatic-like processing has the drawback that a 
vector pixel may be painted unexpectedly due to the order of intensity values of its 
neighbors. Pixel classification of the processed image (spectral information) may 
produce significant errors. It is therefore necessary to devise a strategy to minimize the 

color distortion. 
Observe that the median matrix M consists of at most three different candidates for 

vector medians through median filtering of the three data channels. Each of the vector 
medians is a real vector in the image to be filtered, though only some entries of the 
vector may be degraded due to noise. However, the nondegraded entries contain 
the partial faithful information of original color which is the clue one should use 
to predict or reconstruct a vector pixel to replace the degraded one. Additional 
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information may be also extracted from the neighbors because the pixels are spatially 
and spectrally correlated. 

From Observation 2, it may be deduced that a two-channel median filter gives two 
new combinations of processed pixels plus the two original vector pixels, to form a 
median matrix for a possible output vector median. The diagonal vector median is the 
output of individual signal/channel processing. Accordingly, if we median-filter a 
color image through the three data channels, there are 27 candidates for a vector 
median computed as follows: 

(:) n 

m! x ( n -  m)! 

is read as 'n choose m'. Three are the original, one is the output from monochromatic- 
like processing, and the other 23 are the remaining possible vector medians. The focus 
of removing noise utilizing the 'rental scheme' is to reconstruct an optimum output 
from the median matrix with respect to both human perception (color fidelity) and 
subsequent operations (edge/boundary preservation). One way to do so is to use the 
concept of median filters along with a set of criteria derived from human visual 
experiences, such that the result satisfies the human visual perception. That is, we are 
looking for the heuristic perceptually optimum output with minimum artifacts. 

However, since the noise removal problem itself is an ill-conditioned problem as 
such, it lacks a unique solution. There may exists an extremely large set of candidate 
solutions to the problem. All possible solutions may sound mathematically valid. But 
a valid mathematical solution may not give the same results compared to the per- 
ceptually optimum results. The criterion of choice for a candidate solution is not only 
the mathematical validity of the solution (which is necessary but not sufficient for 
visual quality of the result), but also the extent to which a solution meets some 
appropriately chosen optimum criteria which is felt to affect the visual quality of the 
result. 

Hue (H), intensity (I) and saturation (S) may be used to describe a color. These 
terms are abstracted from complete visual experiences and used to represent dimen- 
sions along which color may vary. They are functionally related to many factors, for 
example, the spectral characteristics of the stimulating energy E, the spectral matching 
functions of a particular observer (~, ~,/7), the observer's memory M for similar 
objects, the surround S, adaptive state of the observer A, neighboring objects O, the 
observer's attitude at the moment T and so on. In general, a color may be described 
by 

Color = (H, I, S) 

= . ~ ( E , M , S , A , O , T , f , ~ , 6 , . . . ) ,  (11) 
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where ,3( ) is an abstract function used to represent a color. The three dimensions of 
hue, intensity and saturation are the summary of these aspects which, although may 
not necessarily comprise a unique coordinate system, represent a widely accepted one. 
To reconstruct an output from the median matrix in terms of human perceptual 
satisfaction, the three functions widely used in color science to judge these items are 
adopted: 

h = H ( r , g , b ) ,  i = I ( r ,g ,b ) ,  s = S ( r ,g ,b ) ,  (12) 

where H, I and S are definable functions but not necessary monotonic, h, i and s are 
the abstract quantitative values of each single vector pixel that combine all the effects 
of the original raw data. Different r, g, b values may result in identical h, i, s values 
since these functions are primarily human oriented. The advantage of using hue, 
intensity and saturation, defined in an empirically derived color space, is that the color 
judgement on which the space is based, is performed in perceptual terms; a natural 
aligning of perceptual variables, therefore, results. However, in practice, is is noted 
that the transformation from the image data represented in RGB to the human 
oriented function h, i and s is ill-conditioned [12]. The transformation has a non- 
removable singularity and spurious gaps. For example, no hue and saturation can be 
defined when the values in red, green and blue channels are identical. This situation 
is called perturbations which are annoyingly significant and not easily avoidable [12]. 
In order to reduce the possibility of perturbation occurrence, the evaluation of h, i and 
s may be obtained as follows: 

h = H(~,~,b) ,  i = I(~,~,6) ,  s = S(~,~,b),  (13) 

where r, g and 6 are the average values for red, green and blue channel within a 
window, respectively. Note that 

H(f, ~,, 6) ~ h = f h(x, y) dx dy, 

I(?, ~,, b) ~ ~ = f i(x, y) dx dy, 

In order or minimize the distortions in color appearance when an image is pro- 
cessed, the following criteria are proposed: 

(1) The hue changes should be minimized, 
(2) The shift of saturation is made as small as possible and it is better to increase 

than to decrease the saturation, and, 
(3) It is desirable to maximize the luminance contrast. 

The criteria are listed in order of importance with respect to the sensitivities of the 
human perceptual system. Due to the fact that the three signal components have 
different effects on the image appearance, it is not a wise idea to combine all three 
criteria to remove the spurious effects in a color image. Therefore, while reconstructing 
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an output with minimum artifacts from the median matrix, the initial candidates are 

initially filtered in accordance with the first criterion: 

[rt gm bn] r = [r, gj bk]r; if min{g(r i ,  gj, b k ) -  h}, (14) 

where l, m, n ~ i,j ,  k, a subset and i , j ,  k = 1, 2, 3. Notat ion min{ } means the mini- 
mum value of the difference measurement. Those data which may hit the singularity 

in the transformation are excluded. Since hue is judged separately from the other two 
terms, it is likely that there are more than one possible candidate for an optimum 

output after this criterion. Several possible vector medians may possess the same hue 
and be close to the overall average hue/7 in the region. If the number of [r g b] r 
is larger than one, then the second criterion applies to reduce the number of candidates: 

[rx gy bz] r = [rt gm b,] r i f m i n { S ( r ~ , g m ,  b , ) -  s}, (15) 

where x, y, z ~ l, m, n and l, m, n = l, 2, 3. Thus, those vector medians with the same 
hue are sorted out if other vector medians are closer to and more saturated than the 
mean s. If the number of the candidates is larger than one, it is still possible for very 
few vector medians to have identical hue and saturation. Then the application of the 

last criterion will produce a unique output, namely the vector median with the highest 

intensity value is selected. The optimization procedures in the above order to search 
for a heuristic perceptual-opt imum output based on the outputs of the median filters, 
preserve the properties of  a median filter and do not introduce very dispersive color 

pixels. The reconstruction of the output which is closest to the overall hue and 
saturation guarantees that the neighbors are not smeared out when moving the 
median windows. 

The RGB color space used in most machine vision systems is solely machine-orient- 

ed. The transformation from the raw data to other spaces is not recommended due 
to the non-removable singularity and instabilities induced by the existence of  noise in 
the raw data. Nevertheless, the human oriented color respresentations are good clues 
to evaluate the human visual effects of  the RGB values. Local measurement using hue, 

saturation and intensity after the raw data is preprocessed reveals the applicability of 

the proposed method. The optimum vector pixel median obtained through the 
criteria, is perceptually acceptable in terms of  chromaticity preservation and is more 
conformable with human color vision. 

ALGORITHM IMPLEMENTATION 

Step 1: 
Step 2: 
Step 3: 
Step 4: 
Step 5: 
Step 6: 
Step 7: 

Individual processing of each component. 
Form the median matrix. 
Remove the data set hitting the singularity. 
Apply Equation (13). 
Get initial candidates based on Equation (14). 
Narrow down the candidates according to Equation (l 5). 
Obtain the output from Equation (15). 
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E X P E R I M E N T A L  D A T A  

Real and synthetic color images are processed with either impulse noise of short 
duration or Gaussian noise. It is observed empirically that under very few circumstances, 
the diagonal elements of the median matrix M are selected as a vector median if a 
noisy image is given without prior knowledge about the noise. The choices are usually 
among the other 26 possible vectors, including the three original vector pixels. Also, 
it is observed that the fixed points in raw data are more stable when the perceptual 
optimum criteria are followed, than in the simple diagonal selection. 

The optimization of the output is entirely image-and-region-dependent, thus error 
analysis becomes mathematically complicated. Since median filters are nonlinear, this 
complicates the mathematical analysis of their performance even for a scalar image. 
It is even more difficult to analyze the errors when filtering the vector signals. The 
main difficulty lies in the fact that it is not possible to separate signal effects and noise 
effects as may be done in linear filtering analysis. 

To illustrate the processing results, a one-dimensional sequence of vector signals, 
extracted from an image, is used. Since the quantitative evaluations are too complicated 
to by physically meaningful, we used the hue measurement with respect to the human 
color perceptual system to evaluate the effect of noise removal. Hue is generally 
considered in colorimetry and human color vision as a single measurement of color 
experience, and represents the most sensitive direction of the three dimensional space 
in color image analysis. Figure 5 shows a set of noise-free original vector signals used 
for experiments. The utilization of the hue measurement (normalized) shows that 
there are two quite different segments (regions), the left part falls in the blue region 
(190 ° ) and the right part in the green region (80°), in the hue chart shown in Figure 
5(b). The edge between them is apparent if the intensity and saturation are appro- 
priate. Figure 6(a) shows the signals contaminated by noise of short duration. The 
noise appears unpredictably colorful and very perceivable in a color image, while 
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in grey images the noise affects only the grey levels and some of them may not be 
visible at all. Figure 6(b) shows the results performed by the conventional simple 
method in which each element of the vector is processed individually. The output 
comes out from the diagonal elements of the median matrix which ignores the 
interdependent information. Figure 6(c) shows the result of optimizing the median 
matrix using the proposed criteria. The output is the best reconstruction of the 
elements of the median matrix with respect to human color perception. Since it is 
difficult to visualize the significance from the one-dimensional RGB data, we adopt 
the hue measurement which is shown in Figure 7. Observe that the measurement of 
the noisy signals indicates that two color regions break into several unstructured 
pieces. The simple median processing scheme does suppress part of the noise but, mean- 
while, introduces some fatal effects which make subsequent operations impossible. 
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Fig. 7. The hue measurement .  

For example, all color information that vector pixel at 3 carries, is virtually lost 
because the hue at that pixel is undefined (hence the saturation). The effect may be 
clearly seen in Figure 6(b) in which the vector pixel contains the identical elements 
caused by the diagonal selection form the median matrix. But the optimization 
procedure avoids the 'grey' spot, selecting the best elements to form a vector median 
according to the surroundings which theoretically eliminates the possibility of losing 

chromaticity information. 

4. Vector Median Filters 

One of the most important properties of median filters is that they do not introduce 
any sample values that are not present in the input data and the output is always one 
of the inputs. However, the method proposed in the previous section cannot generally 
guarantee that the reconstructed output is one of the inputs. Therefore, an alternative 
design complying with the original idea of median filters is introduced. 

In the scalar case, the search for the median values is based on order statistics of 
the measured samples. This idea cannot be (directly) extended to vector cases, because 
when dealing with vector functions concepts such as 'greater than' or 'less than', 
necessary for finding the sample order statistics, do not have the same meaning. 
Moreover, it is known that the concepts of the mean and mode may be extended 
without any ambiguities to vector signals. However, this is not the case for the 
median. Observe that Equations (7) and (8) are used to define a median, but they have 
a physical difference. Since they happen to be identical in values in the scalar case, they 
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are used indistinguishably. To be more specific, Equation (7) defines an arithmetic 

median while Equation (8) defines a geometric median. When one considers the vector 

case, these two definitions arer apparently no longer equivalent. It is essential to 
distinguish the two different median operations for the vector case. The arithmetic 
definition cannot guarantee that the output be one of  the inputs, the geometric 
definition does. The search is to find an output which is one of the inputs. The vector 

median operation is defined as a geometric vector median. The definition follows 

directly: 

D e f i n i t i o n . "  Oiven a sequence of vectors cl, c2, . • • , cN, a vector median Cm must 
be an element of the same sequence and satisfy the condition: 

C m =  m i n { ~ [ l c , -  C / I I , } , j E N  . (16) 

where Cm is the vector median to be found. The norm subscript n is a nonnegative 
constant which is normally chosen from the constants [1, 2, c~] to achieve certain 

objectives. For  instance, if Cm is unreliable, n = 1 tends to put relatively small weight 
on the so-called data outlier, namely outlying observations in statistics. On the other 
hand, minimization of the largest model residual requires n = oo. In the sequel, 
n = 2 is chosen; it represents the Euclidean distance. This choice has been made to 
explain the vector median graphically, known as 'the point of minimum aggregate 

distance (travel)'. Thus, Equation (16) becomes an extended version of a scalar 

median; a vector in a multidimensional space. The search for the vector median is a 

m i n i s u r n  problem. 

The vector median filtering is also a nonlinear and shift invariant operation. 
Without loss of generality, assume that a and fl are two scalars which scale the 

elements of  a set of vectors c l ,  c2,  • . • CN. Then, the vector median after being scaled, 
may be defined, respectively, as 

while 

_- r a i n  J c , -  
j~N 

The result is based on the fact that Ic~ + flf ~< Ic~l + JC]t for any constants ~ and 
ft. Clearly, the shift of  a set of  data does not  affect the median, hence, shift-invariance. 
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Fig. 8. The search of vector median. 

Snorm 

~ d2i 

Based on the distance measurement, the search for vector median becomes straight- 
forward• Figure 8 illustrates the search for such a vector median. The norm-2 distance 
di~ (i = 1, 2, . . . , N) must be zero and d o = ~ i  (i,  j = 1, 2,  . . . , N ) .  The minimum 
value S ,  orm corresponds to the vector median: 

Cm = m i n ( ~ d j i , j =  1 , 2 i = ~  . . . .  , N ) .  (20) 

Although the above definition shows that there should be at least one solution 
(existence), it does not guarantee that the output of the vector median filter produces 
a unique answer (non-uniqueness). Very often, there are more than one vectors 
satisfying the vector median conditions and all may be a valid vector median• Figure 
9 shows a possible distribution of a sequence of two-dimensional vector signals. Both 
vectors c, and c2 may be the outputs of the filter• If the candidates are distributed 
symmetrically, either one may be selected as the output; but preference is given to the 
one whose original is closer to the position of the vector median• If  the distribution 
is not symmetric, the best solution may be the output of an enlarged window. In other 
words, the output may be determined from a window of size 5 × 5 if the output of 
a window size 3 × 3 is not unique• 

Fig. 9. 

¢,q 

e., 

.'-c2 

C 1 

channe l  1 

A possible symmetric distribution. 
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Fig. 10. The result of vector median operation. 

ALGORITHM IMPLEMENTATION 

Step 1: 
Step 2: 
Step 3: 
Step 4: 
Step 5: 

Distance computation between all the pairs. 
Store all results in a vector. 
Sort the elements. 
Find the minimum distance value. 
Determine the vector median based on Equation (20). 

v 
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EXPERIMENTAL DATA 

The vector median filter is implemented in the same way as the scalar median filter. 
A window of certain size is placed on each vector sample and the sample remains the 
same if its median is within the window, or is replaced by a new value which is a 
median in the window (note that the definition of vector median does not require odd 
window size). The data for observation 3 (Figure 4) is used for testing the vector 
median operation. For a complete filtering, we append to the beginning of the signal 
2 additional constants equal in value to the first sample of the signal. Similarly, 2 
constant samples are appended to the end of the signal. By doing so, we assure that 
when the initial signal's first or last sample is in the center of the window, the median 
filter output equals this sample value. When a signal passes through the median filter 
unchanged, this means that the central sample value for each window position is itself 
the median of the samples within the window. If  all the signals are assigned a 
numerical value, the distance can be calculated and the minimum one which cor- 
responds to the vector median is searched within a one-dimensional window of 5 
elements. The result is shown in Figure 10. It may be observed that the edges which 
separate the two segments are preserved and there is no artifact introduced using the 
vector median operation. 
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5. Comparisons of the Two Median Type Filters 

The performance of median filters varies with the shapes of the chosen window. It also 
depends on the contents of the images as well as the sizes of the operator windows. 
These variations make the comparisons between the results of the two proposed 
median type filters difficult. In the following experiments we use both synthetic and 
real images with 8 bits per pixel processed through a conventional 3 x 3 square 
window. A mean squared error measurement is used for comparison purposes. To get 
an accurate picture of the proposed techniques, results are also obtained via mean 
filters (on top of median filters). 

Figure 11 shows a synthetic image of a color cube. The image contaminated by 
impulse noise is displayed in Figure 12. For monochromatic-like processing the color 
images are decomposed into the RGB individual intensity signals and then the mean 
and median filter is applied to each one of them. The final results are obtained by 
combining the three individual outputs. Figures 13(a) and (b) show the results of 
individual processing in the RGB space. Both, mean and median filters, are used to 
process each component individually. Then the output is formed directly from the 
three medians; no correlation information between the data channels is utilized. 
Observe that the error pixels are redistributed by the averaging operations while some 
'crisp' noise in the original image has not been removed but 'blurred' by individual 
median operations. This phenomenon is the result of edge jitter. For illustration 
purposes only, the results in other two color descriptive spaces are shown in Figures 
13(c), (d), (e) and (f). These two spaces are the HIS and CIE L .  a .  b *. Although 
there are many other popular spaces used in different applications, these two seem to 
be of interest to visual signal processing. One is the analogic description of human 
color perception and the other one is the approximation to perceptual uniform color 
space. The transformation from the HIS space to the RGB space or vice versa is 
neither stable nor a one-to-one conversion. There are non-removable singularities 
(notably when R = G = B) as well as spurious effects. Different combinations of 
RGB may give the same hue, intensity or saturation. Nevertheless, this is one of the 

Fig. 11. Synthetic Image. Fig. 12. Noise-contaminated image. 
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Fig. 13(a). Result of mean filter in 
the RGB space. 

Fig. 13(b). Result of median filter in 
the RGB space. 

Fig. 13(c). Result of mean filter in the Fig. 13(d). Result of median filter in 
HIS space, the HIS space. 

Fig. 13(e). Result of mean filter in the 
L * a , b *  space. 

Fig. 13(f). Result of median filter in 
the L • a * b * space. 

very few co lor  spaces represent ing the way the h u m a n  visual  system perceives color.  

F igures  13(c) and  (d) show the results which are  ob ta ined  f rom the ind iv idua l  

process ing o f  the hue, in tensi ty  and  sa tu ra t ion  componen t .  As the t r ans fo rma t ion  

f rom R G B  to H I S  extracts  all the co lor  in fo rma t ion  into one c o m p o n e n t  (hue), the 

newly fo rmed  c o m p o n e n t  inevi tably  becomes ext remely  sensitive to any d a t a  changes,  

the e r ror  red i s t r ibu t ion  f rom the averaging  opera t ion ,  therefore,  ac tual ly  changes the 
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color appearance as observed in Figure 13(c). Due to the data arrangement in 
generating the color cube, the error changes in the hue component, happen to alter 

abruptly the color variations; a diagonal 'line' along the data R -- B can be perceived. 
The phenomenon is much alleviated in the result of  median filter because the error is 
not redistributed to the surrounding pixels. The color appearance is altered only by 
the wrong combination of the data due to the individual processing. Comparison to 
the results obtained in the RGB space as well as the consideration of the problems 

with the transformation, may conclude that the HIS space should not be used for 

noise removal problems, especially for mean operations, because the result in the hue 
cannot be predicated. 

Figure 13(e) and (f) show the results in CIE L • a • b • uniform color space. Since 

the transformation from the RGB representation to L * a • b * representation is better 
defined, there is no distortion in color appearance. As far as the effects of  noise 

removal are concerned, it may be seen that there is almost no difference between the 
results obtained in the RGB and L • a * b • spaces. This proves that there is no need 
to transform the RGB data into other spaces where the images are filtered and 
transform the data back to the RGB format. An efficient approach to the noise removal 
in color images is to process the data in the RGB space. 

Figure 14 shows the results using the 'rental' scheme which is apparently better than 

that of all the individual processing. But there are still some spots which have not been 

removed using only one pass of  the filter due to the limited candidates for reconstruc- 

tion of  a final result. The searching of vector median shows the dramatic improvement 
as demonstrated in Figure 15. 

Since the comparison among various techniques is performed on unbiased images, 
with a priori knowledge of the input, it is possible to quantitatively measure the noise 

cleaning power using a MSE measurement as follows: 

J(C, C') = ! I I [C(x, y) - C'(x, y)]2 dx dy, (21) 

where s is the image area or the total number of pixels, C and C' are the original and 
processed images, respectively. The measurement is by no means accurate but gives 

Fig. 14. Result of the scalar median Fig. 15. Result of the vector median 
filter, filter. 



NOISE REMOVAL FROM COLOR IMAGES 

Table I. The mean squared errors for the synthetic 
image 

Images MSE values 

Original Image (Fig. 11) 0.00 
Noisy Image (Fig. 12) 14334.08 
Mean Result (Fig. 13.a) 4665.40 
Median Result (Fig. 13.b) 1434.38 
Mean Result (Fig. 13.c) 8991.26 
Median Result (Fig. 13.d) 1629.71 
Mean Result (Fig. 13.e) 4719.23 
Median Result (Fig. 13.f) 1435.83 
Scalar Median (Fig. 14) 946.01 
Vector Median (Fig. 15) 292.67 
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a comparison benchmark. This is a global measure of degradation that treats all 
spatial frequencies and intensity levels in the image uniformly. 

Table I shows the mean squared errors of all filtered images compared to the 
original image. Obviously the noise-contaminated image has the highest errors. 

Although it is difficult, from the pictures, to compare the performance of the scalar 
median filter to the vector median filter, the quantitative measure on both filters shows 
that the result of the vector median filters produce the best/closest to the original, for 
this particular image. 

Figures 16 to 20 show the results of a real image. Similar comparisons may be 

observed. The MSE comparison is listed in Table II. The quantitative measurement 

of  MSE again indicates that the results in the L ,  a ,  b space is quite similar to that 
obtained in the RGB space. 

Figures 21 to 25 show another set of results of  a real image taken under the water. 
Similar comparisons may be observed. The MSE comparison is listed in Table III. 

It may be noticed that based on the MSE criterion, the result of  using a vector 

median filter (in the previous two examples) seems to be better than the scalar median 
filter. However, this example shows the opposite, namely the scalar median filter 

Fig. 16. The original image of Man- Fig. 17. The noise-contaminated 
drill face. image of Mandrill face. 
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Fig. 18(a). Result of  using individual 
mean filter in the RGB space. 

Fig. 18(b). Result of using individual 
median filter in the RGB space. 

Fig. 18(c). Result of using individual 
mean filter in the HIS space. 

Fig. 18(d). Result of using individual 
median filter in the HIS space. 

Fig. 18(e). Result of  using individual Fig. 18(f). Result of  using individual 
mean filter in L * a * b * space, median filter in L * a * b * space. 
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Fig. 19. Result of using scalar 
median filter. 

Fig. 20. Result 
median filter. 

Table II. The mean squared errors for the Mandrill- 
face image 

Images MSE values 

Original Image (Fig. 16) 0.00 
Noisy Image (F~g. 17) 12200.66 
Mean Result (Fig. 18.a) 3829.84 
Median Result (Fig. 18.b) 2424.06 
Mean Result (Fig. 18.c) 6050.44 
Median Result (Fig. 18.d) 3224.26 
Mean Result (Fig. 18.e) 3902.24 
Median Result (Fig. 18.f) 2435.12 
Scalar Median (Fig. 19) 2005.47 
Vector Median (Fig. 20) 2001.29 

of using vector 

seems to be quant i ta t ively bet ter  than  the median  vector  filter for this picture. This 

reflects the fact that  there is no universally acceptable  best filter. The results are not 
only noise-dependent but also signal content-dependent. 

6. On Mean Type Filtering 

A mean  type filter is generally considered to be bet ter  when removing  additive white 

noise (Gauss ian  or non-Gauss ian) .  To  extend f rom the median  vector  opera t ion  to the 

mean  vector  operat ion,  a mean  vector  filtering technique is p roposed  using a linear 

combina t ion  of  inputs. Al though  Wiener  filters can be used to restore the original 

images,  the p roposed  app roach  requires much  less compu ta t i on  (for par t icular  
applications).  The  idea o f  using linear combina t ion  of  inputs  m a y  not  be new, but  it 
is believed tha t  the use for  a vector  signal as an input  is challenging. 

Mean  type filters, if  not  well designed, m a y  distort  crucial details needed to interpret  
the image (such details once lost can never be recovered). Corre la t ion  o f  informat ion  
between da ta  channels must  be utilized in order  to effectively remove  noise. Color  

images as vector  signals should not  be decomposed ,  individually processed and then 
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Fig. 21. Original Image of  a Medusa under 
the sea. 

Fig. 22. A noise-contaminated image. 

Fig. 23(a). Result of  individual mean filter 
in the RGB space. 

Fig. 23(b). Result of  individual median filter 
in the RGB space. 

Fig. 23(c). Result of  individual mean filter in 
the HIS space. 

Fig. 23(d). Result of  individual median filter 
in the HIS space. 

Fig. 23(e). Result of  individual mean filter in Fig. 23(f). Result of  individual median filter 
the L • a * b • space, in the L * a • b * space. 
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Fig. 24. Result of scalar median filter. Fig. 25. 

Table III. The mean squared errors for the Medusa 
image 

Images MSE values 

Original Image (Fig. 21) 0.00 
Noisy Image (Fig. 22) 12162.18 
Mean Result (Fig. 23.a) 3393.10 
Median Result (Fig. 23.b) 1774.57 
Mean Result (Fig. 23.c) " 5239.34 
Median Result (Fig. 23.d) 2074.27 
Mean Result (Fig. 23.e) 3392.97 
Median Result (Fig. 23.f) 1783.34 
Scalar Median (Fig. 24) 1499.66 
Vector Median (Fig. 25) 1563.17 

Result of vector median filter. 

composed.  Instead, a vector signal should be the direct input to a filter in which all 

correlations between vector elements are utilized to produce an op t imum output.  

Consider  a vector signal C corrupted by zero-mean additive r andom noise. The 

input data  to the filter under considerat ion is o f  the form 

Ci = Ci + ni, (22) 

where ~ are the original signals corrupted by noise n~; it is assumed that n~ are r andom 

vector variables satisfying E{ni } = 0. The correlat ion matrix o f  the noise ni, R,,, is 

defined as 

LR3  e:  2 R. 

where 

R 0 =  

with (i, j = 

(23) 

e{ni4}, 
1, 2, 3) ~ (r, g, b). Because o f  symmetry,  R~ is identical to R~. With the 

windowing operation,  the element vectors may  be expressed as ci = c + n~ (i = 1, 
2, . . . N~) if the window size is small enough such that  the original vectors are 
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constant.  Based on the definition o f  mean vector, one may  write the output  ? o f  a 

vector mean filter as 

Nw 
= ~ aici, (24) 

i=1 

where ai are the weight coefficients. I f  we choose 

1 
ai - (i = 1, 2 . . . . .  Nw), 

Nw 

we end up with individual  mean filtering. The vector median filter, after the input is 

sorted, may  be also considered as a special case in which one o f  the a~ is 1 with the 

rest equal to zero. Fo r  example: al = 1, if a set o f  vectors as inputs is 'ordered '  in an 

increasing order  based on the distance measurement.  Here, we intend to find a set o f  

op t imum coefficients a~ such that  the output  ~ is closest to c. The bound  of  ai must  

satisfy the following unbiased condi t ion for the output  

Uw 

~. ai = 1. (25) 
i = l  

The MSE criterion to minimize the difference between c and g is 

error  = e -- E { l l c -  ~]la}. (26) 

The sum 

N., 

= 2 aici = alcl + a2c2 + " ' '  + aN~CNw 
i = I  

is a vector in the subspace o f  the space defined by ci. F r o m  the projection theorem, { 2} 
= E C --  2 aici 

i=1 

= E c -  ~ ai(c + ni) 
i=1 

= E {  i~=laini 2}. 

This equat ion is in quadrat ic  form and may  be rewritten as 

e = E{IIANTIIZ}, 

where A is a coefficient vector 

A = [ a l a 2 . . . a ,  w] 

and 

N = [ ? / i l n i 2 . . .  niNw]. 

(27) 

(28) 

(29) 

(30) 
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Then 

s = E { I A N r N A T [ }  

= I A R N A T [ .  (31) 

Equation (31) establishes the relationship between the MSE and the coefficients. 
The determination of the ai ,  a2, • • . aN., which minimize the error is subject to 
the unbiased condition Equation (25). This becomes a constrained minimization 
problem. In order to utilize the regular differential techniques, we may form a new 
unconstrained problem by appending the constraints to with a Lagrange multiplier 2. 
The new function becomes 

L ( A ,  2)  = t A T R x A [  + 2(1 -- e A r ) ,  (32) 

where, e = {1 1 . . .  1}, and note that 

Nw 

ai = 1 = e A  r . (33) 
i=1 

Since the problem defined by Equation (32) is now unconstrained, the first derivative 
with respect to A yields 

d L ( a ,  2) 
- ( 2 [ A R N e r [ ) .  (34) 

d A  

Setting this expression equal to zero and factoring out 2, we obtain the root of the 
equation 

2 = 2 [ A R u e T [ ,  (35) 

from where 

e r R n e  T 

A - R n e V  , (36) 

which determines the coefficients needed to linearly combine the input vectors in order 
to produce an optimum output. 

It is not difficult to see the difference between the Weiner filter solution and the 
solution derived in Equation (36). To get an optimum result through the Weiner filter, 
requires a significant amount of prior knowledge on the degradation function, the 
covariance of the original image Rs and the noise RN. To obtain an accurate estimate 
of the covariance, an ensemble of many samples of the ideal image (as random 
variables) is required. However, in practical applications it is unlikely that there will 
be an ensemble of ideal image samples (that is a set of prototype images) available for 
the estimation. Therefore, spatial averages are often used in place of ensemble 
averages in implementation. Hence, the covariance estimated from the single copy of 
the degraded image is far from the true covariance of the ideal image which is required 
by the MSE estimate. For these reasons, it is postulated that the Wiener filters, 

283 
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in our applications, are no longer optimal because of the lack of accurate prior 
information. 

The solution derived here requires only the estimation of the noise model which the 
Wiener filters require, too. Moreover, the computation involved compared to the 
Weiner filters is dramatically reduced. Equation (36) shows that the coefficients may 
be optimally determined if the noise correlation is known. To obtain the noise 
correlation, we have to model the noise. Theoretically, we may remove any additive 
nonimpulsive noise with minimum color artifacts. The practical results, however, may 
depend on how accurately the noise is modeled. 

7. Conclusions 

It has been illustrated that monochromatic-like processing fails when applied directly 
to resolve noise problems in color images. 

To overcome noise removal problems in color image processing, two median type 
filters are studied: scalar and vector filter. Quantitative measurements and subjective 
comparisons of the outputs have been performed. 

A mean type filtering technique is also introduced, incorporating vector signals as 
inputs. 

Results are obtained and compared using, both, real and synthetic images. 
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