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ABSTRACT.  We study the behavior of the ergodic singular integral T associated to a nonsingular measurable
flow {7; : t € R} on afinite measure space and a Calderén—-Zygmund kernel with support in (0, 00). We show
that if the flow preserves the measure or, with more generality, if the flow is such that the semiflow {t; : t > 0}
is Cesdaro-bounded, f and T f are integrable functions, then the truncations of the singular integral converge
to T f not only in the a.e. sense but also in the L'-norm. To obtain this result we study the problem for the
singular integrals in the real line and in the setting of the weighted L! -spaces.

1. Introduction

A function K € LIIOC(R — {0}) is a Calderén—Zygmund kernel if it satisfies the following
properties:

(1.1) There exists a constant By such that

Jocteien KGIdx| < By, for all & and N with 0 <

& < N, and there exists the limit limg_,¢ f€<|x|<l K(x)dx.

(1.2) There exists a constant B; such that | K (x)| < 15}', for all x # 0.

(1.3) There exists a constant Bz such that |[K(x —y) — K(x)| < Bs|y|lx|~2, for all x and y with
x] > 2|yl > 0.

Associated to K and for all £ > 0 we define the truncated
T,f(x) = / KO — y)dy
lyl>¢

and the singular integral 7 f(x) = limg—0 T¢ f (x).
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It is known [7] that if w is a nonnegative function that satisfies the Muckenhoupt A, condition,
1 < p < oo [12], then the singular integral Tf is defined as a pointwise limit of T, f for all
f € LP(w) and T is bounded from L?(w) into L?(w). For p = 1 we have that if w satisfies A;, then
Tf is defined in the same way forall f € L Y(w) and T is of weak type (1,1) with respect to w. These
results together with the corresponding ones for the maximal operator T* f (x) = sup,. g |1z f (x)|
give easily that if  satisfies A,, 1 < p < oo, then T, f converges to Tf in the L7 (w), for all
f € LP(w). In the same way, if ® € Ay, the weak type inequality (1,1) implies that 7; f converges
to Tf in measure for all f € L!(w). Then a natural question arises: if f € L!(w) and Tf € L!(w),
when does T, f converge to Tf in the LY(w)-norm? The answer to this question was put forth
by Calderén and Capri [4] in 1984 for w = 1 and generalized to general weights by Capri and
Segovia [5] in 1986. In [5] it is shown that if w satisfies A1, f € LY (w),and Tf € LY (w), then T, f
converges to T f in the L' (w)-norm.

In 1991 Asmar et al. [2] studied the same problem but in the setting of the ergodic theory and,
more precisely, for the ergodic Hilbert transform. Given a finite measure space (X, 90, w), it is said
that {t, : t € R}is aflow defined on X if forallt € R, 7; is a measurable map from X to X such that

(1) 1 is the identity on X,
Q) Tys=T0Tg _
(3) the map (x,?) = tx from X x R into X is 91-9t measurable, where 91 is the completion

of the product-o-algebra P ® B of M with the Borel sets, and the completion is taken with
respect to the product measure p on 97 and the Lebesgue measure on B.

We shall say that the flow is measure preserving if
4) w(uE)=u(E)forallr € Rand E € 9.

Associated to one of these flows and to a Calderén—Zygmund kernel we can define an ergodic singular
integral by

Tf(0 = lim 7, £x) = lim f K()f (nx)dt
£ e<|t|<l/e

=0

where the limit will be understood in the a.e. sense. In particular if K (¢) = -:- we obtain the ergodic

Hilbert transform
Hfx) = lil%'}{af(x) = lim fx)
£— I

g0 e<|ti<l/e t

t.

It is known (see, [8], [13] for these results) that if {z; : t € R} is a measure preserving flow, then H f
is well defined as an almost everywhere limit for all f € LP(du), 1 < p < 00, H is of strong type
(p, p) for p > 1 and of weak type (1,1). Furthermore, H, f converges to H f in the LP(du)-norm
ifl < p<ooforall f € L?(du)and H, f converges to H f in measure forall f € L(dw). Asin
the case of the singular integrals in R, this leaves open the following question: if f € L'(du) and
Hf e L'(du), does H, f converge to H f in the L'(dp)-norm? This question was answered in the
affirmative in [2] in a more general setting. In 1994 Martin—Reyes and the author [11] studied the
behavior of the ergodic Hilbert transform associated to a nonsingular measurable flow which need
not preserve the measure 4 but which is a Cesaro-bounded flow, which means the following:

(a) if E € Mand w(E) = 0, then p(r,E) = Oforallt € R and
(b) supg.g ”AefHLl(du) < ClI fllpt gy where

1 £
Aef(x) = [ flux)dt.

They proved that if {z; : ¢ € R} is a Cesaro-bounded flow, f € Li(dw), and Hf € L1(dw),
then H, f converges to . f in the L' (d1)-norm as & goes to 0. Analogous results could be obtained
for general ergodic singular integrals 7 f defined as above.
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The final aim of the paper is to study the same results for ergodic singular integrals associated
to a Calderén—Zygmund kernel with support in (0, 00), assuming that the semiflow {r; : 1 > 0} is
Cesaro-bounded. In order to prove our result in ergodic theory, the idea is to first check the problem
in the real line and then to transfer the results to the ergodic theory. Notice that we are not transferring
only maximal inequalities.

Therefore, let us go back now to the setting of the singular integrals in R. Recently, Aimar et
al. [1] have studied singular integrals associated to a Calderén—Zygmund kernel K with support in
(0, o0} or (—00, 0). These are the one-sided singular integrals. They proved that the good weights
for these operators are the one-sided A, weights (see [14]). More precisely, they proved that if the
support of X is contained in (0, 00), 1 < p < o0, % + Fi, = |, w is a nonnegative function and there
exists a constant C > 0 such that

c b , p—1
(A;) sup / w (f wl_”) <C(c—a)
a<b<cJb a

then T and T* are bounded from L7 (w) into L?(w) and, thus, T f converges to Tf in the L? (w)-
norm for all f € LP(w). With the same kind of kernels and for p = 1 they proved that if w
satisfies
1 x+e
(A7) M*Yw(x) = sup — / w()dt < Co(x) ae.
>0 ¢ Jx

for some constant C > 0, then T and T* are of weak type (1,1) with respect to w and, consequently,
T, f converges to T f in measure for all f € L!(w). This again leaves open the convergence of T, f
to Tf in the L!(w)-norm. In Section 2 we study this kind of singular integrals and we obtain the
one-sided version of the result of Capri and Segovia. This is established in the following theorem:

Theorem 1.

Let K be a Calderon-Zygmund kernel with support in (0, o) and let T be the singular integral
operator associated to K. Let w € A|. If f and T f belong to LY(w), then T, f converges to Tf in
the LY (w)-norm as & goes to 0.

‘We shall follow the steps of the proof of Capri and Segovia [S]. However, we point out that the
proof is more difficult in our case because the hypothesis on the weight is weaker: this is the reason
why we must work with functions with support contained in [0, c0) (see Theorem 5 for instance).

We also define the class of A]" weights, which we shall use later: we say that w € A‘ll' if there
exists a constant C > 0 such that

M~ w(x) = sup l /x w(t)dt < Co(x) ae.

>0 —&

As we said above, the final result is about ergodic singular integrals defined by a Calderén—
Zygmund kernel with support in (0, 00) and to a flow {z; : t € R}, i.e.,

1
TF) = lim T, £ (x) = lirr})fs KO f (mx)dt .

Under an additional assumption on K, we obtain the following theorem which is the one-sided
version of the result in [11].

Theorem 2.
Let (X, M, v) be a finite measure space and let {1, : t € R} be a nonsingular measurable flow
such that

sup ||A§f||L1(dv) SClflitawy »
£>0
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for all f € L'(dv), where Af f(x) = % foa f(ux)dt. Let T be a one-sided singular integral

associated to the flow and to a Calderén—Zygmund kernel K with support in (0, 00) for which there
1

exists the limit limg_, ¢ ff K@tydt. If f e LY(dv) is such that T f € L'(dv), then T, f converges to

T f in the L' (dv)-norm as & goes to 0.

1

We ask for the existence of the limit lim,_, ¢ f f K (£)dt to assure the existence of T £, at least
for f € L1(dv) which is constant on each orbit, i.e., such that f(z;x) = f(x) for all r € R and
xelX.

The result is similar to Theorem 1 and, in fact, it can be considered as Theorem 1 transferred to
the ergodic setting. Furthermore, our theorem extends the result in [2] to one-sided singular integrals
assuming that the flow is Cesaro-bounded. Three main ideas are in the proof of this theorem: the
first one is to show that the functions of L!(dv) can be approximated by a suitable class of functions
(Theorem 7); the second one is to express the action of the ergodic singular integrals in terms of the
action of singular integrals on the real line and then to use the results of Section 2; the third one is
to reduce the problem to the case in which the measure is preserved by the flow.

Throughout this paper, the letter C will always mean a positive constant not necessarily the
same at each occurrence and if 1 < p < oo, then p’ will denote its conjugate exponent, i.e., the
number p’ such that p + p’ = pp’. Furthermore, the maximal operators associated to the averages
At, A7 and to the ergodic singular integral 7~ will be denoted by M+, M~ and T*, respectively.
Therefore,

MTfx) = SUI(J)AjlfI(X), M7f) = SUI(;A;IfI(x) and T*f(x) =sup|Tc f(0)] .

£>0

2. One-Sided Singular Integrals on the Real Line: Proof of
Theorem 1

In the proof of Theorem 1 we can suppose that w > 0 a.e. We shall need some results that we
state in the following theorems:

Theorem 3.

Let ¢ > 0 be an integrable function with support in [0, 00) and nonincreasing in [0, 00). For
each e > 0, let 9;(x) = 1 (£). Then the following hold:

(1) For all nonnegative f and for almostall x € R, | f * ¢ (x)| < M~ f(x) f0°° @, where M~
is the one-sided Hardy-Littlewood maximal function M~ f(x) = sup,..o % ; _ L f(®)idr.

(2) If1<p<ooweAyandfeLPw), then ||If *¢cllLrw) < ClIfllLe Jo° @, where
the constant C is independent of f and e.

(3) flsp<oo,weA] and f € LP(w), then, for almost every x € R (in particular for all
x belonging to the Lebesgue set of f), limg—so f * @e(x) = f(x) [5° o(»)dy.

(4) If1<p<oo,we A, and f € LP(w), thenlimeso || f * ¢s — F I ellLrw =0.

Theorem 4.
Let g > 0 be a bounded function with compact support contained in [0,00). If f € LY(w)
andw € A], then f x g € LYw).

The following results show the behavior of the one-sided singular integrals acting over convo-
lutions.
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Theorem 5.

Let g > O be as before and let T be a singular integral operator associated to a Calderdn—
Zygmund kernel K such that the support of K is contained in (0, 00). Let w € A} and f € LY (w).
IfTf € LY (w), then

T(fx*2)x)=Tfxgx) ae

Theorem 6.

Let g > 0 be an integrable function with support in [0, c0), nonincreasing in [0, 00) and
suppose that g € LP(R) for some po, 1 < pp < 0. Let T be as in Theorem 5, w € A], and
f € LY(w). Then

T(fxg)x)=f+«Tgx) ae

Proof of Theorem 3. Let f > 0. For each s > 0 let h(s) = sup{t > 0 : ¢(f) > s} and
§ = sup{s : h(s) > 0}. Then, changing variables and using Fubini’s theorem, we have the following:

freo(x) = f fx—y- w( )dy—/o p() f(x — et)de
w®) 0o
= / fx —st)/ 1dsdt =/ / f(x —et)dtds
(t>0:0()=5)
h(x) eh(s)
= / / f(x —et)dtds = / / f(x —u)duds
= dyds = h(s dyd
fo 8-/x Eh(s)f(Y) yds / ()ah(s) s 8hmf(y) yds
< f ROM™ f()ds < M™ £(x) f it > 0: o) > s)lds
0 0
00 oo prelt)
= M_f(x)/ / 1dtds = M“f(x)/ / 1dsdt
0 {t>0:p(t)=s} 0 0
= M f®) /0 p(t)dt
This proves (1).

To prove (2), we first suppose that p = 1. Then, changing variables, we have

1f % el < /0 0:(») fR £ (x = Plw@dxdy

o0
fR ) fo 0 (o (x + y)dydx = fR ) e # B(=x)dx , (2.1)

where @(x) = w(—x). Taking into account (1) and the fact that w € A] we get

IA

f £ () 1s * B(—x)dx f 1F M a(—x)dx / p= / F Mo (x)dx / 0
R R Q R 0

¢ fR F Ol (x)dx fo 0 =Clflie fo 0. 22)

IA

Inequalities (2.1) and (2.2) immediately give (2) for p = 1.
Now let p > 1. Then Theorem 1 of {14] and (1) imply the following:

oS l/p o0
1f %@l L) < fo tp(y)dy(/R (M“f(x))”w(x)dx> <c fo 0Oy 1 lrw) -
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This proves (2) for p > 1.
Next, we are going to prove (3). Changing variables we obtain

xX0 o0 1 (e 0]
700 =50 [Tooir| = | [~ re-nte(2)ay- s [ oy
0 0 & & 0
- t fo FO = en)p()dy fo f(x)go(y)dyl < fo £ (x = e3) = FOOlp()dy
0o ()
- f G —ey) = F)I f 1dsdy
0 0
= / / |fx —ey) — f(x)|dyds . (2.3)
{(y>0:0(y)=s)
Let h(s) and § as before. Then
oo 5 ph(s)
f / 1f(x = ey) — f(0)ldyds = / / 1f(x —ey) — £()ldyds
{y>0:0(y)>s} 0 JO

eh(s)
/ f (= y) = F(0)ldyds

5 ch(s)
- f hs f 1f(x = ) — F)ldyds . @4
0 €h(S)

The function

1 eh(s)
86) = ho)x00 0) fo (= 9) = f)ldy

is bounded for a function of LI (R):

1 eh(s)
lg()l = gs) < hls) (%—)fo If(&x = yidy + If(X)|> X©0.5) ()

A

h(s) (M~ F) + 1 F 1) x0.56) -

Then, the dominated convergence theorem, the differentiation Lebesgue theorem, (2.3) and (2.4)

give
eh(s)
/ o Jim )/ (=) — F)Idy | ds =0,
for almost all x € R,

To prove (4) suppose first that p = 1. Then

lim ’f* Ps(x) — f(x)/
-0 0

w(x)dx

/R|fws<x)af<x)/o olo@ds = /R‘f*rps(x)—f(x)fo ”

A

fR ( fo =) — f(x)l%(y)a’y) o (x)dx
= /0 g(Me:(y)dy = g ¢ (0), (2.5)

where g(y) = fR [f(x —y)— f(x)|e(x)dx. Since g is a continuous function, then part (3) gives

Ell_rg})/o e (y)dy = g(O)f0 o(y)dy =0. (2.6)
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From (2.5) and (2.6) we get (4) for p = 1.
If p > 1, we apply (1) and obtain

f*(ﬂs(X)—f(X)fo @

’ =C (fooo¢)p (M~ f@) +1FmIP) .

The function on the right-hand side belongs to L(w) by Theorem 1 of [14]. Then the dominated
convergence theorem, together with (3), gives (4) for p > 1. O

Proof of Theorem 4. Suppose that the support of g is contained in [0, L]. Then, using the facts
thatw € A] and f € LY (w) we get

J

L L
/ Ig(t)lf lf(x)lw(X+t)dxdf=/ If(X)I/ g (x + t)dtdx
0 R R 0

L
/le*g(X)Iw(X)dx /0 fx —t)g(t)dt

L
w(x)dx Sf Ig(t)I/ |f(x = Dlw(x)dxdt
0 R

IA

1 x+L
Lilgls f @Iz f o@)dtdx < Lligl f 1f O IM* o (x)dx
R x R

IA

CL gl fR L )lo()dx < oo 0

To prove Theorem 5 we shall use the following results:

Lemma 1.
Let T be as in Theorem 1. If w € A7, then T is of weak type (1,1) with respect to w, i.e., there
exists a constant C such that for all f € Ll(w) andall X > 0,

C
w({x |\Tf(x)| > AP < N 1 F L) -
IfoeA, then T is of strong type (p,p) with respect to w, i.e., there exists a constant C such that
forall f € L? (w),
ITfllLrwy <CIfllLrw) -
The same holds for T*.
Lemma 2.
Letw € A} and R > 0. Then, for almost all x € [-R, R], the following inequality holds:
1 <C 3R
- 2
0@ " R o(dy

where C is a positive constant independent on x and R.

Proof of Lemma 2. Using that w € A[, it is very easy to see that for almost all x € [-R, R]
we have

1 2R 1 2R
— dy < dy<C ,
2| ey < [T ety = cow)

which gives the desired inequality. U
Proof of Theorem 5. By Theorem 4, f % g € L!(w). Therefore, T(f * g) makes sense. On the

other hand, since f € L(w), Tf € LY (w), andw € A7, then Theorem 4 implies that T f % ¢ makes

sense and belongs to L!(w). Suppose that supp g C [0, L]. Let {P; ‘]?°=1, Pi={tjo. tj1.....t;N;}
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be a sequence of partitions of the interval [0, L] such that P; C Pj) and the diameters decrease
to 0 as j — oo. Define

Nj tik
Sif) =Y f(x—1t;x) f g(t)dr . Q7
k=1 g

J.k—1
Claim: We claim that for each R > 0 fixed we have

lim |Sjf(x) — f*gx)|dx =0. (2.8)

j=o0 Jix|<R

First we are going to see that it suffices to prove the claim for f € L!(R). As a consequence of
Lemma 2, if f € L' (w) and m > 0, then fXl=mm] € LY(R) because

/ |f@)ldx = f f@lo0) odx < cf—z,n—"-:v f [f @l E)dx < oo
m m m wyayJ-m

Now we observe that for [x| < R,
Sif(x) = fxg(x) = S; {f x—r-L.R+L1) X — (fX[=R—L.R+L]) * 8(X)

and since fX(—R-L.R+L] € LI(R) we have seen that it is enough to prove the claim for f € LY(R).
Assuming that f € L' (R) we have

/|| . |S; F(x) — f *g(x)|dx

N .k Nipik
= fl Y f(x- t.i,k)f gtydr =y fx —g(t)dt|dx
t

ISR =i k=1 el Vtide
Nj Lk
<2 f / |f (= 154) = F&x = D] lg()\drdx
k=1 [e{<R Jj gy
Ni ot
=5 [ oo [ 1= 1) - £ ol dud 29)
k=1 Y ik~1 [x|<R

Givene > 0,since f € L1(R), by the translations lemma there exists jo € N such that forall j > jg

(x —2:2) — —-nld -
/ixlsR[f(x tik) — fx—1)| x<¥\gHLx(R)’

forall k € {1, ..., N;}. This inequality and (2.9) give (2.8).

In order to prove that T(f = g)(x) = Tf * g(x) for almost every x € R, we are going to see
that for all fixed P > O we have that T(f * g)(x) = Tf * g(x) for almost every x € [P, P]. For
fixed positive P and ¢ we shall estimate the measure of the set

xe[=P, PL:IT(f*x2)x) —Tf *g(x)| > &} .

Since f € L'(w) and f % g € L!(w) by Theorem 4, we can choose R > 3L + P such that

fl[ . Llf(y)lw(y)dy < g’ (2.10)
yvlzR—
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and
fu . |f *gWlw()dy < & @.11)
y[>
Now, by (2.8), we can choose j € N such that
/H . IS;f() — fxg(|dy <& (2.12)
vl
and
/H . |S; (TH) ) = Tf »g(y)|dy < £*. (2.13)
y|<

Then we have the following:
Hx € [=P, P]: T (f * @)(x) = Tf * g(x)| > &}
< [{ret-P.P1: T ¥ )0 = T ((f *)11-rm0) @] > 5|
+ {5 € =P PY: T ((F % @x0-rr) () = T (S3) xi-rorr) 0] > 5 ||

&

+ Hx € [P, P1:T((Sif) xi-r.R1) ¥) = Sj (Tf) (x)| > Z”

+ Hx e[-P,P]: ]sj (Tf) (x) — Tf # g(x) > %” —I+N4+M+IV. (2.14)
Let us estimate I, Let

E={xe[-P.PL: |[T(f +9)® ~ T ((f * Oxi-r.r)) ®)] > 7} -

Now, Lemmas 2 and 1 and inequality (2.11) give

I = /lde#———fa)(x)dx
E p w(dy JE

Co({x e (=P, P1: [T (£ x5 = (f * O11-r) )] > £ })

IA

4
C- 1(F*8) (1 = x-r1) | 11y < Ce - (2.15)

Observe that the constant C depends on P and L, but both numbers are fixed.
The estimation of II is very easy. We have to use only the weak-type inequality (1,1) of T with
respect to the Lebesgue’s measure and (2.12) to obtain

I < g |S;f(x) — f*g(x)|dx < Ce. (2.16)
[x|<R

The estimation of III is more difficult. First of all, by the definition of T and S; we have

T ((Sif) Xi-r.R1) (%) = S;(TF)(x) @.17)
N; x=tj k=0 tik
= ’}iﬁbf K (x—s—tjx) f6) (Xi-r.r) (5 +2jk) — 1) ds/ g()dr .
k=177 Y00 £ k=1

Observe thatif [s+7; ¢| < R,then x{_g rj(s+2j£)—1 = Oandif |s+; 4| > R, then |x—(s-+t; ;)| >
|s +¢tjx} — x| = R — P > 3L, hence, |x — (s + t; )| is far away from 0. On the other hand, if
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L — R <5 < x,then x_g ry(s +tj x) — 1 = 0. Therefore, we obtain

T ((S; f) xi—r.R1) ®) = SHTHH®)]

Ni L-R Lk
< Zf |K (x —s —tjx) —K(x—s)}]f(s)usf g(t)dt
2 tj k-1
Z f K(x = 5) (tiorom (5 + 1) — 1) £(5)ds f " gyar
tik—1
= I(x)+|Th(x)|, (2.18)
where
N; tk
B0 = FOY (v b+ =1) [ swar.
k=1 Ljk=1
Thus,
m < Hx €[-P,P]: I(x) > %H + l{x €[=P,P): |Th(x)| > %” . (2.19)

Acting as in the estimation of I we have that

£ C3P . g
er[ P,P].I(x)>8H < 3wa({xeL P,P].I(x)>8})
< C/ w(x)dx
{xel[-P, P11 (x)>§)
C P
< —/ I(x)w{x)dx . (2.20)
€ J-p

Observe that L — R < 0. Then, if s € (—o0, L — R), we have |s|] > |[L — R| = R — L and
|x —s| = |s| —|¥| > R — L — P > 2L > 2|t; ;|. Now we use condition (1.3) of the kernel K and

we obtain
Pf(x)a)(x)dx < CZ | LR |t4]
= g(t)ldt s 5 | o(x)dx
-P jk-1 —00 |x — 5|
LR P o@
= CLZ/ lg(®)|dt /_Oo If(S)|‘/_P (x__—s)zdxds. (2.21)

Ljke~1
Taking into account that —oo < s < L — R implies 2L < —P — 5, we get

P P—s P—s
/ ~iu—(—&dx / wlx + s)-l—z-dx = f o(—s — x)—l—z-dx
X X

—p (x —5)? —~P—s —P—s

A

/00 w(—s — x)lz—dx < foo o(—s —x)¥(x)dx , (2.22)
2 X 0

L

where v is defined by ¥ (x) = Z———)ﬂ; if0<x <2L and ¢y(x) = 2 if 2L < x. Notice that ¥ has
support in [0, o), is nonincreasing in [0, 00), and is integrable. Thus, part (1) in Theorem 3 and the

fact that w € A| give

/00 O(—s —x)Y(x)dx < M~ w(—s) /00 Y(x)dx = CMTw(s) < Co(s) (2.23)
0 0
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for almost every s € (—oo, L — R). If we put together inequalities (2.20), (2.21), (2.22), and (2.23)
and we use (2.10), we get

IA

C L—R
|{xe[—P,P]:1(x>>§H = leloe f I ()l (s)ds

C
< Slelim f )l (s)ds
£ Isi=R-L

< Celglpw - (2.24)

On the other hand, using Lemmas 1 and 2, we obtain

Hx e [=P, P]: |Th(x)| > -g-” < %%w ({x €[=P, P]: |Th(x)| > -‘;l})

<< / Ih(x)lw (x)dx
e Jr

IA

N.
C < [lik
—E f lg(t)ldt] L | x=r. 01X + 1j.4) — 1] @(x)dx
€ =t ikt R

IA

C

~ gl f |f@lo@dx < Ce llgh, @) - (2.25)

£ |x|>R—-L

Finally, let us estimate IV. Using (2.13) and the fact that if |x| < P then |x| < R we obtain
£

|6 € (=P PLIS; TN - T 3800 > 2|

< ;i/ |S{THE) = Tf *g(x)|dx < 4e . (2.26)
[xi<R

Putting together inequalities (2.14), (2.15), (2.16), (2.18), (2.19), (2.24), (2.25), and (2.26)) we get
that

eli_rﬂ)l{x E[-P, P1T(f*g)x) —Tfxgx)| > ¢} =0,

which finishes the proof of Theorem 5. O

Proof of Theorem 6. We have that w € A . Then, by the proof of the Remark (C) in [14], there
exists § > 1 suchthatw? € A] forall p,1 < p < 4. Letuschoose psuchthat1 < p < min{$, po}.
It is clear that w” is a locally integrable function and g € L?(R). Then, by part (1) of Theorem 3
and the fact that w? € Ay, we obtain that for almost all y € R

/R|g(x—y)1”w”(x)dx /O Ig(ﬁc)l”w”(y+x)dx=/0 g PP (—y — x)dx

IA

M*cb”(—y)/o 8(0)IPdx = MT 0" () gl s g,

Co? M 18I,y - (227

IA

As a consequence, by Minkowsky’s integral inequality and (2.27) we obtain

I/p
[f*gllir@ny =< fR(fng(x—y)lf”lf(y)l”w”(X)dX) dy

IA

ClghLrm /R IfFNeMdy =Cligler@ 1l - (2.28)
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On the other hand, since w? € A} C A;, by Lemma 1, we have

f ITg(x — MIPwP(x)dx < C/ lg(x = MIPoP (x)dx . (2.29)
R R

Consequently,
Nf*TgllLrwry < Cliglem I lLw) - (2.30)

Foreache > Olet Ky = K x(s,00). We have that fxg € LP (wP) by (2.28) and since ? € A7,
we have that (f % g) * K, converges to T(f = g) in the L”(wP)-norm as & goes to 0, by the result
in [1].

To prove that T(f = g) = f * T g a.e. it suffices to prove the following:

lim || f*(g*Ke) — f * Tg”[,p(mp) =0.
g0

Observe that since @ < oo a.e., inequality (2.27) gives that the function gy (x) = g(x — y) belongs
to LP(w?) for almost all y € R. Then, by Lemma 1, we get

lin})/ lgy * Ke(x) — Tgy(x)|” 0P (x)dx = 0. (2.31)
e—0 /R

On the other hand, inequality (2.27) and Lemma 1 give

/R gy * Ke(x) — Tgy(0)|” @ (x)dx /ng * Ke(x — y) = Tg(x — y)I? 0 (x)dx

IA

27 / |T*g(x — )|F P (x)dx (2.32)
R

IA

c2” [ 1gtx = NI (dx < CoP () gl ey
Then, by Minkowsky’s integral inequality

Ifx(g*xKe)— fF*Tgllirwry=If*(&*Ke—Tgrrwr

r l/p
a)”(x)dx)

l/p
/R ( fR g % Ke(x — ) — Tglx — I If(y)l”w”(X)dx) dy

= (/ V (B*K:(x —y)—Tglx —y)) f(y)dy
R IR

IA

l/p
j;lf()’)l (./mz. lg * Ke(x —y) ~ Tg(x — »)I? w”(x)dx) dy .

Thus,
611_13) If*(g*Ke)— f*TgllLrwry =0, (2.33)

by the dominated convergence theorem. This finishes the proof of Theorem 6. U

Proof of Theorem 1. Lety > 0beabounded function with compact support contained in [0, 00),
nonincreasing in [0, co) and such that supp ¢ C [0, 1] and fol px)dx = 1. Let p.(x) = é(p(f)
Define

3s(x) = Tpe(x) — Ke(x) .
If g is a bounded function with compact support in R, then its least decreasing radial majorant
belongs to LY(R) N LP*(R) for pg > 1. Then, since ¢, € L!(R), applying Lemma 6 in [5] in the
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case @ = 1, we have that T (g * ¢.)(x) = Tg * ¢(x) a.e. On the other hand, since ¢, € L”(R) for
all po > land g € LY (w), Theorem 6 gives that T'(g * ¢;)(x) = g * Tp:(x) a.c. Then,

848:(x) =gxTe(x)—g*x K (x) =T (g*@e) (x) —g* Ko (x) = Tgxs(x)—g*x K:(x), ae.

We claim that
lim (g * dell 1y = 0. 2.34)
=0

We first prove thatlimg 0 ||g %8¢l 2,y = O, following the ideas in [5]. The factthatw € A] C A5
gives that 7' is bounded in L2(w) [1]. Then, both Tg and g * K belong to L2(w), since g € L*(w),
and lim, o ||Tg — g * Kellz2¢,y = 0. This, together with part (4) of Theorem 3, gives

e—0 g0 g0

To prove (2.34), we suppose that supp g C [—N, N] and we take ¢ with 0 < & < N. Then, for
x > 4N we have

X

T(g*we)(x>=f

—00

Kx—y)(g*¢:)(ydy = f K(x —y) (g *9e) (y)dy
|yl<2N

and

x—

K(x —y)g(y)dy = f

. K(x —y)gy)dy = / Kx—yedy.
yi<

lyl<2N

g * K (x) =f

bl o)

For x < —4N, one has that T'(g * ¢.)(x) = 0 and g * K.(x) = 0. As a consequence, if [x| > 4N
we have

g% 8:(x) = / K — ) (g% 0:() — g dy . 2.36)
|¥|<2N

We are going to see that flvlSZN (g * @ (y) — g(y))dy = 0. By Fubini’s theorem we have

/ gxe:(y)dy = / f 8(D)¢e(y — 2)dzdy
[yi<2N |¥|<2N Jly—z|<elzI<N
= / g(2) @:(y — 2)dydz
lzl<N |y—zl<e;ly|<2N

= f g(z)dz=/ g(z)dz .
lz{<N lz|<2N

Then, by (2.36), for all x with |x| > 4N we have
8*55(16)=/ (K(x —y) = K(x)) (g *¢:(y) —g(y))dy .
lyl<2N
Therefore, Fubini’s theorem and condition (1.3) of the kernel give

/ |g*ss(x>|w<x)dx=f le * 8:(0)] w(x)dx
|x[>4N

x>4N

IA

f ( / IK(x—y) — K<x>|w<x)dx) lg * 0:(») — g0l dy
|y|<2N x=>2|y|

C/ (/ A z“’(x)dx) g * s (y) — g()idy
<N \Jxz2iy) X — ¥l

cf g% 0s() — g )
|yl<2N

IA

IA

——dxdy . .
san G — @37
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The same argument used in (2.22) gives that

f ) 2dx < Co(y), ac.ye[—2N,2N].
x>4N x -y

This inequality, together with (2.37), gives

f g %8 ()| w(x)dx < C f 18 %90 — g w(dy . (238)
|x|=4N |¥|<2N

which converges to 0 as & goes to O by part (4) in Theorem 3.
Now;, using Hélder’s inequality, we get

12 12
(/ w(x)dx) (/ g * SE(x)lzw(x)dx)
lx|<4N |x|<4N

Cllg*dellr2wy (2.39)

IA

/ g % 80| @ (x)dx
|x|<4N

IA

which tends to 0 as e goes to 0 by (2.35). This proves (2.34) for all functions g, bounded with
compact support.

The function ¢ is nonnegative, with support in [0, 00), nonincreasing in [0, c0), and it is
integrable. If we define @(x) = (x) for x > 0 and $(x) = @(—x) for x < 0, we get that § has the
same properties as those in the proof of Theorem 1 in [5]. Then, by what it is proved in pages 28
and 29 in [5], there exists a nonincreasing, radial, and integrable function A such that

- 1~
ITGe(x) — Ke(0) < Ae(r) = -A (’é) .

Then, the function A = A X[0.,00) has support in [0, 00), it is nonincreasing in [0, 00), itis integrable,
and |8, (x)| < Ag(x) forall x.

Observe now that, by Theorems 5 and 6, || f * K¢l 110y < 1Tf * @ell iy + 11 *8ellLiw)-
Since f € LYw), Tf € LY ), and w € A7, part (2) in Theorem 3 gives ||Tf * @ellp1(m) <
CHTfll1wy and [1f * 86l < I * Aelipi@) < CllfllLiw) Joo A =Cl|flip1 () In partic-

ular, we have obtained thatforalle >0, F*x K, =T f € Liw).
Given n > 0, let us choose g bounded with compact support such that || f — gllp 1,y < 7.

Then

ff = Ke — Tf“Ll(w) SHITf*ee— TfHLl(w) + I — @) * el + llg *%“Ll(w) . (240)
By Theorem 3 and condition (2.34) we have

lim |7 # g: = Tf gy + 18 % el iy = 0.
On the other hand,
WS — @) * 8l S WS — gl * Aellpiwy SCISf —gliLi@w) = Cn .

Since this inequality is valid for all > 0 we have

Eh_g%) N f*Ke— Tf“z,l(w) = ;l_fﬂ) \T, f ~ Tfllu(w) =0.

This finishes the proof of Theorem 1. Ul
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3. One-Sided Singular Integrals Associated to a Flow
Cesaro-Bounded to the Right: Proof of Theorem 2

We begin by stating the boundedness of the maximal operator.

Theorem 7.

Let (X, 9, v), {1, : t € R}, K and T be as in Theorem 2. Let T* and M™ be the maximal
operators defined as in Section 1. Let 1 < p < co. Then M and T* are bounded from LP(dv)
into LP(dv) if p > 1 and they are of weak type (1,1) in L' (dv).

As a consequence of this theorem we obtain the following corollary.

Corollary.

Under the same assumptions as that in Theorem 7 we have the following:

(1) Ifp=1tand f € L'(dv), then AT f converges in the LY (dv)-norm as ¢ goes to infinity
and Te f converges in measure as € goes to 0.

(2) If1 < p <ocand f € LP(dv), then At f converges in the L7 (dv)-norm as & goes to
infinity and T f converges in the LP (dv)-norm as ¢ goes to 0.

We omit the proof of Theorem 7 because it is almost the same as the one in {11] (the proof
follows standard arguments as the truncation of the maximal operators and transference methods
(see [3] and [6]) to use the valid results in R; in the case of M7 we use the results in R for the one-
sided Hardy-Littlewood maximal function M*; in the case of 7* we use the results of Section 2).
The difference yields in the fact that when we define the measure p equivalent to v such that the
flow preserves the measure u, and dv = wdu then we obtain that the functions @* : R — R,
w* () = w(tx), satisfy A; for almost every x € X with the same constant. The proof of the
corollary follows from the weak type inequalities of M™ and 7* and the fact that the convergence
holds for functions f € L1(dp) N LP(dv) which is dense in LP(dv).

For f € L(dv) and ¢ € LY(R) we define the convolution of fand p by f x p(x) =
fR S (m:x)p(t)dt (it makes sense by the same reason as in [11]). The following result is about the
behavior of the convolution.

Theorem 8.
Under the same assumptions as that in Theorem 2, if f € L'(dv) and g > 0 is a function with
support in [0, 00), nonincreasing in [0, 00) and g € LY(R), then

() 1f %! < gl @M* f(x) ae.
(2) 1f *ellpiay < Cllellpig A1l

As in [2] and [11] the proof of Theorem 2 requires to approximate the functions in L!(dv) by
suitable functions. This is the next result.

Theorem 9.
Assume that we are under the same hypothesis as that in Theorem 2. Let

A = {f eL'@v): f(x)= f(ux) forallteR andae. x eX] :
o0
B = {f eL'@v): f=foxe: foeL®@v),pc Cl[0, o) and / (p:O} ,
0
where CCl [0, o) is the set of functions of class I and compact support in [0, c0) and

By = {feLl(dv):f=f0*rp:foeL°°(dv) and(peL(I)[O,oo)] :
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where L(l)[O, 00) is the set of functions with support in [0, 00), with f0°° le] < o0 and fooo ¢ =0.

Denote by —_liand B, the L V(dv)-closure of the linear manifold generated by B and B, respectively.
Then A® B, = A® By = L' (dv).

We shall need a result similar to Theorem 6 in [11]:

Theorem 10.

Under the same hypothesis as that in Theorem 9, if f € By is such that T f € LY(dv), then
TfeB

Proof of Theorem 8. Denote by f* the function f*(¢) = f(t,x) and by g the function g(¢) =
g(—t). Then, by well-known results in R,

fre)] < /R \f @)l lg®ldt = fR (=) g

= /R'FX(—OO.O](”t” gydt = IFX(—OO.OJI * g(0)
gl MTf(x),

IA

as in the proof of (1) in Theorem 3. This proves (1).

To prove (2) observe that if g has support in [0, 00) and it is nonincreasing in [0, 00), then g
has support in (—oo, 0] and it is nondecreasing in (—oo, 0]. As in [11], there exists a measure u
equivalent to v such that the flow preserves the measure p. If we define w = j—;li’ then w € AT.

Therefore,
f!f f (ux) g(t)de
X 1J/0

0
fX 1] / o (0x) FOddpE) < 1E L@ fx £ )IM 0 () du(x)

Ilf*glliLiawy

oM du(x) < fo ¢(®) /X )@ () dpa(x)

IA

C ”g”Ll(R) -/;( [f(Dwx)dux) =C HgIan(R) l]f”z,l(du) .

This completes the proof of Theorem 8. O

Proof of Theorem 9. It is clear that By C B; and then B] C B,. Observe that it suffices to
prove that A @ B, = L!(dv) by (2) in Theorem 8 and the fact that C}[0, 00) N L}[0, 00) is dense
in L(l)[(), oo) implies that By = B, in L}(dv).

Let us see that A N By = {0}. Itis clear that lim; 00 AT f(x) = f(x) for f € A. If f € By,
then f = fo * ¢, where fy € L®(dv)and ¢ € L(l)[O, o). Observe that since f(;x’ ¢ = 0 we have

1 £ [v.¢] o0 1 £
AT ) =+ f f 0(5) fo(trssx)dsdt = f o) f (o (5r%) — fo (mx)) dtds
g Jo Jo 0 € Jo

Now, the dominated convergence theorem and the fact that lim,—, o0 AF fo(x) = limg— 0 AL fo(tix)
give that lims— o0 A f(x) = Oand thus AN B, = {0}. The inequality II.AQ'fHLx(dV) < ClIf Lt @w
and the fact that this limit is a limit in the L' (dv)-norm give that A N B, = {0}.

Let us now prove that A @ B; = L'(dv). Let f € LY(dv) and denote F = limz— oo AT f. Tt
is obvious that F € A. Then it suffices to show that f — F € B,. Suppose that & € L>°(dv) and
[y kGdv = 0 for all functions G € B,. Then

/ h(x) /oo g (tsx) p(s)dsdv(x) =0 (3.1)
X 0
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for all functions g € L®(dv) and all ¢ € L}[0, c0). Letnow g € L'(dv) and ¢ € L{[0, o).
Then, given & > 0 there exists go € L>°(dv) such that ||g — gollz1(4y) < €. Therefore, by (3.1) and
part (2) of Theorem 8§,

‘ / ho) / " g (5) o(s)dsdv(x)
X 0

IA

Uxh(x)/o (8 (tsx) — 80 (Tsx)) (s)dsdv(x)

+ ‘f h(x)/ 80 (tsx) p(s)dsdv(x)
X 0

< h(g —go) * ol 14y
< Mallpeo@ny g — gollLiawy Il 1wy < Ce s

where ¥ is the least majorant nonincreasing in [0, o0) of ¢. Then, equality (3.1) is valid for
gelLl(dv)andg € L(l)[O, 00). Applying this equality to g = f and ¢ = (1/8) x(0.ey — (/M X 0.7
we get

/ hx)2 f " f (x)dsdv(x) = / h(x)~ f " f (5yx) dsdv(x)
X € Jo X nJo

Since (1/7) fon f(tyx)ds converges to F in the L!(dv)-norm as 5 goes to 0o, by the corollary and
(1/8) fos f(xsx)ds converges to f in the L(dv)-norm as & goes to 0, by Wiener’s theorem and the
fact that IlAijILl(du) < ClIf1l L1 (gpy> We obtain fx(f — F)hdv = O for the functions & € L™ (dv)
as above. This means that f — F € B,. O

Proof of Theorem 10. We start by proving this theorem, assuming that the flow preserves the
measure v, and we call the measure p instead of v in this case. We shall need the following result,

which gives the existence of a bounded approximation of the identity in L(l)[O, o0). The proof is
given at the end of the section.

Lemma 3.
There exists a sequence {52, C L0, 00) such that

(i) [ ¥n=0, forallneN.
(i) ¥allpjo,00) < 2 foralln e N.
(it)) iy oo llf * ¥n — fllzig0.00 = O for all f € L10, o0).

Let f € By besuchthat 7 f € L!(du). Then, by Theorem 9, there exists F; € Aand F, € By
such that 7 f = Fy + Fy. Let {yy }2"=1 as in Lemma 3. Let us see that

nll)rfolo I * F2 — F2”Ll(d#) =0. (3.2)

Assume first that F, € By, i.e., Fo = F x ¢, for some F € L®(du) and ¢ € CCl [0, o0) with
Jo* ¢ = 0. Therefore,

N¥n* F2 = Fallpigpy = l(¥nx @) F —px Fllpiguy < 1¥n*xé — dllpiwy 1 F L1y

which converges to 0 as 7 tends to infinity by Lemma 3. It is clear that (3.2) holds for all F; in the
linear manifold generated by B;. Now let F, € B;. Then, fixed ¢ > 0, there exists G in the linear
manifold generated by B; such that || F2 — G||11¢g,) < €. Therefore,

Vn*F2— Fallpiyy < W¥nllpiw 1F2 = Glipige + 1¥n * G — Glipig,
+1F2 = Glipiae <28+ 1Yn * G = Gligig, +e.
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Since G is in the linear manifold generated by Bj, we can use (3.2). Consequently, {, * F»}
converges to Fy in the L!(du)-norm as n tends to infinity. On the other hand, ¢, * Fi(x) =
Jr Vn(®Fi(nx)dt = Fi(x) [g ¥a()dt = 0. Then Y x Tf = Y % Fi + Y x Fy = Y % Fa.
Therefore, {1, * T f} converges to F; in the L!(du)-norm. By Corollary 3.15 in [2] with 7 instead
of the ergodic Hilbert transform, we have that ¥, * T f(x) = T (¥, * f)(x) a.e. and therefore
{T (Y * f)} converges to Fy in the L (dp)- norm On the other hand, since f € Bj, applying (3.2),
we have that {y,, * f} converges to f in the L!(d)-norm, which implies that {7 (¥, * f)} converges
to 7 f in measure. Then F, = T f a.e. and thus 7 f € By.
In order to prove Theorem 10 for general measures, we need the following result:

Lemma 4.

Assume that we are under the same hypothesis as that in Theorem 9, but with a measure
W which is preserved by the flow. Let T be a one-sided singular integral associated to the flow
and to a 1Calderén—Zygmund kernel K with support in (0, 00) for which there exists the limit

lime—o ff K@)dt. If f € B; is such that Tf € Li(duw), then there exist go € L(l)[O, o) and
foe By such that f = go * fo.

Proof. Let .
={feBz:7'feL1(du)] .

We claim that if g € L[0, 00) and f € C, then g % f € C.

We first suppose that f € By, ie., f = h* fp for some fy € L®(du) and h € L(‘)[O, o).
Theng* f = (gxh)*x foand gxh € L(l)[O, c0). Consequently, g x f € B and, since T f €
L(dw), we obtain by Corollary 3.15 in [2] with 7 instead of the ergodic Hilbert transform, that
Texf)=gxTfelLl L "(du). Thus, g x f € C. We obtain the same for f in the linear manifold
generated by B,. If f € By, then there exists a sequence { Jn}oo; in the linear manifold generated by

B, such that f = lim,_, f, in the L' (dp)-norm and, since g * fn belongs to the linear manifold
generated by Bj, for all n € N, it follows that g * f belongs to By, since g * f = limy—o0 g * fy in
L'(du). Furthermore, T(g * f) = g * T f € L (du).
If we define
I flle =1Ly + 0T Fllpyay

then || - ||c isanormin C and (C, || - ||¢) is a Banach space. Now, by Theorem 32.22 of [9] we have
that L(l)[O, o0) * C is a linear subspace closed in C. If we prove that it is dense in C, we will get that
C= L(l)[O, oo) * C and this will complete the proof of Lemma 4.

Let f € C and let {¥,}°2, be the approximation of the identity given by Lemma 3. Let us
consider {y, * 172, C LO[O oo) * C. By what we have proved in the case that the flow preserves
the measure, we have that if G € B; = Bs, then ¥, * G converges to G in the L!(dx)-norm and
T (Y * f) converges to T f in the L!(du)-norm as n tends to infinity. As a consequence,

nlggo N¥n* f— flle= nlggo Wn * f = Fllpiau +nli>ﬁéo NT (Y * ) —Tf“Ll(du) =0.

Therefore, ¥, * f converges to f in the C-norm, which implies thatC = L(l)[O, oo} *C. This finishes
the proof of Lemma 4. J
Consider as in [11] the sets

X, = {x €eX:2" < supa)'1 (x) < 2"“},
teR

where w = d is as above. Since L1(X,, dv) C L'(X,,du), we have that f € B] = B, (working
inX,)and T f € LY(X,,duw). Then f € C, defined as in the proof of Lemma 4 (in X,). Therefore,
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for each n € N, there exist F, € C and ¢, € L(l)[O, oo) such that f = F, = ¢, in X,,. Since F,, € C
we have that TF,, € L!(X,, dpt). Then we can apply the theorem in the case that the flow preserves
the measure to obtain that 7 f = T F,, * ¢, in X,,. On the other hand, it follows from Theorem 9
that T f = fi + f», where fi € A and f, € By. Then,

Jim AZ(Tf) = lim (ASfi+ A7 f2) = lim AT fi=fi.
Since the limits of the averages are constant on each orbit and f0°° ¢n = 0, we have that
lim AF (T f) = lim A} (TF, x¢,) =0
E—>00 E—> 00

in X, which implies that fi = 0 in X,, and therefore f; = Oin X. Thus, T f = f» € Bj. O

Proof of Theorem 2. Let f € L'(dv) such that 7 f € L'(dv), then, by Theorem 9, there exist
fi € Aand f> € By suchthat f = f; + f». We know that 7; f; converges to 7 f; a.e. and in the
L'(dv)-norm. Thus, we can suppose that f € B;. Then, let f € Bj such that Tf € L'(dv). By
Theorem 10, 7 f € Bj. Let us consider a function ¢>0,0c¢ CC1 [0, o0), nonincreasing in [0, 00)
and such that [ ¢ = 1. For each £ > 0let ¢, (t) = 19 (1) and define

8e(x) = T (x) — K X(e,00)(%)

where T is the singular integral associated to K inR. Let K, = K Xe 1y Then

Ke=T (§0£ - ‘Pl/e) + 0176 — 8 . (3.3)

Let A; = 81/ — ;. Then A, € LY(R) forall ¢ > 0 and ||A£HL1(R) < C, where C does not depend

on . Since K, € L!(R) it follows from (3.3) that T(p: — @1/e) € L'(R). Observe that 8, and A,
have both support in [0, co) and that the least majorant nonincreasing in [0, 00) of A, belongs to
L1(R). Then Theorem 8 gives that

lAs * Flipiawy < CIFlL1@ay) >

forall F € L(dv).
Let y > 0. Choose g in the linear manifold generated by By such that || f — g||,1 @ < V-

Notice that Lemma 4 holds for f € L!(dv), since it suffices to restrict to X n. Therefore, using this
fact and Corollary 3.15 of [2] with 7 instead of the ergodic Hilbert transform (again restricting the
things to X,;) we obtain

WTe f — Tf”Ll(du) = ||Ke*f— Tf”Ll(du)

|Ae* £+ T (0 —0rss) » f - Tf”LI(dv)

JAe*x(f —@)+Ackg+0s xTf —rse*Tf =T Fl L1
NAg * (f - g)”Ll(du) + [|Ag * g”L‘(dv)

+llge x TF =T Fllipiany + o1 * Tf"Ll(zlu)
I+II+II41V. (3.4)

TR

1A

I

For the first term we have

I < lAellpimy 1f — gliLigny S Cv . (3.5)
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Notice that By C L%(dv), then g € L3(dv) which implies that Tg € L%(dv) c L (dv). We have
the following:

II

1&g * gl 1 (g

"(01/9 * Tg||u(,h,) + 1 Teg — TgllLiwy + lige * Tg ~ Tgll L1

lers * Te "Ll(dv) +CTe8 — Tgllr2wy + lee * Tg — Tl L1y

V4 VI4 VII. (3.6)

IA A

The corollary of Theorem 7 gives
=0

Finally, it is clear that the proof will be complete if we show that

Iim(II+IV4+V+VID)=0. (3.8)
g0

This is a consequence of the following result and the fact that, by Theorem 10, both, 7 f and 7'g
belong to Bj.
Lemma 5.

Suppose that we are under the same hypothesis as that in Theorem 9. Letg > 0, ¢ € C Cl [0, c0),
nonincreasing in [0, 00) and such that [° ¢ = 1. For each e > 0 let s (t) = %(p (&)

(a) If f € L'(dv), then f * ¢, converges to f in the L' (dv)-norm as € goes to 0.
(b) If f € By, then f @1/ converges to 0 in the LY(dv)-norm as & goes to 0.

The proof of this theorem follows the same pattern as the proof of Theorem 5 in [11]. Therefore,
we omit it. U

Proof of Lemma 3. Consider a continuous function ¢ with support contained in [0, 1], ¢ > 0
and such that fol ¢ = 1. Foreachn € N let

1 1
Ynlt) = —p (5> -~y (5 - 1) .
n n n n

Itis very easy to see that the sequence {1/, }7° | satisfies (i) and (ii). To prove (iii) it is sufficient to show
that the second convolution tends to 0, 1.e., limy— o0 || f*¢nl 110,00y = 0, Where ¢, (1) = %(p (£ -1),
for f € L(l)[O, o0). If f = 0 a.e, then there is nothing to prove. Suppose that || f|[,11g o) > 0- Let

& > 0, then there exists k > 0 such that |, k°° If| < §. Therefore, using the fact that fooo f =0and
Fubini’s theorem we obtain

If *bnllzioee < /0 fo O fnx = 1) — (x| didx

k o0
/0 lf(l‘)lj(; [@n(x — 1) — Pn(x)| dxdt
+/k lf(t)lfo |$n(x — 1) ~ ¢n(x)|dxdt = A+ B .

It is obvious that
o0 £
B < 2|¢nllL110,00) A Il < 5
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To estimate A, observe that for all ¢ € [0, k] and for all natural n > k we have that
2n+t 1 X —t X
- —1)—p(=-1
[
1 t 1 t
/ mm—w0+~)dx=f wn—¢G+—)
= n 1 n

Now using that ¢ is uniformly continuous, we have that there exists § > O such that |u — y| < §
implies that |@(u) — @(y)| < W. Choose N € N such that N > k and % < §8. Then, for all
L[0,00]

n > N we have that

A b (x — 1) — du(x)] dx dx

dx .

L t i
/_1 ca(x)-¢>(x+;> & oo
This gives that
Affﬂﬂm——i““m<i'
A 20l 2
Thus, || f % ¢nllL1j0.00) < § + § =&, foralln > N. This completes the proof of Lemma 3. -
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