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ABSTRACT. We study the behavi~r ~.the erg~dic singular integral 7-ass~ciated t~ a n~nsingular measurable 

flow {rt : t ~ R} on a finite measure space and a Calderdn-Zygmund kernel with support in (0, oo). We show 

that if  the flow preserves the measure or, with more generality, if  the flow is such that the semiflow {rt : t > 0} 
is Cesgtro-bounded, f and 7-.1' are integrable functions, then the truncations of  the singular integral converge 
to 7- f not only in the a.e. sense but also in the L l-norm. To obtain this result we study the problem for the 

singular integrals in the real line and in the setting of  the weighted L 1 -spaces. 

1. Introduction 

A function K 6 L~oc(R - {0}) is a Calder6n-Zygmund kernel if it satisfies the following 
properties: 

(1.1) There exists a constant B1 such that fE<lxl<N K(x)dx < B1, for all e and N with 0 < 

e < N, and there exists the limit limE~o fe<lxl<l K(x)dx. 

There exists a constant B2 such that IK(x)l < ~ ,  for all x # 0. (1.2) 

(1.3) There exists a constant B3 such that I K(x - y) - K (x)J < B31yllx[ -2, for all x and y with 
txl > 21y[ > 0. 

Associated to K and for all e > 0 we define the truncated 

T~f(x) = f K(y)f(x - y)dy 
aly I>e 

and the singular integral Tf(x) = lime--,0 Tef(x). 
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It is known [7] that if co is a nonnegative function that satisfies the Muckenhoupt Ap condition, 
1 < p < oo [12], then the singular integral T f  is defined as a pointwise limit of  Tef  for all 
f ~ LP(co) and T is bounded from LP(co) into LP(co). For p = 1 we have that if co satisfies A1, then 
T f  is defined in the same way for all f ~ L 1 (w) and T is of weak type (1,1) with respect to w. These 
results together with the corresponding ones for the maximal operator T* f (x )  = supe>0 [TE f (x ) [  
give easily that if co satisfies Ap, 1 < p < e~, then Tef converges to T f  in the LP(co), for all 
f ~ LP(co). In the same way, if co ~ A1, the weak type inequality (1,1) implies that Tef  converges 
to T f  in measure for all f 6 L l (co). Then a natural question arises: if f ~ L 1 (co) and r f  ~ L l (co), 
when does Tef  converge to T f  in the Ll(co)-norm? The answer to this question was put forth 
by Calderdn and Capri [4] in 1984 for co = 1 and generalized to general weights by Capri and 
Segovia [5] in 1986. In [5] it is shown that if co satisfies A 1, f 6 L 1 (co), and T f  ~ L 1 (co), then Tef  
converges to T f  in the L l(co)-norm. 

In 1991 Asmar et al. [2] studied the same problem but in the setting of  the ergodic theory and, 
more precisely, for the ergodic Hilbert transform. Given a finite measure space (X, 9Jr, IX), it is said 
that {rt : t 6 N} is a flow defined on X if for all t c R, rt is a measurable map from X to X such that 

(1) r0 is the identity on X, 

(2) rt+s = ~t o rs, 
(3) the map (x, t) ~ rtx from X x R into X is 9~t-gYt measurable, where 9~ is the completion 

of the product-or-algebra 9Jr | B of  9Yt with the Boret sets, and the completion is taken with 
respect to the product measure # on 0Jr and the Lebesgue measure on B. 

We shall say that the flow is measure preserving if 

(4) /x(rtE) = / z ( E )  for all t e 1R and E ~ 93I. 

Associated to one of  these flows and to a Calder6n-Zygmund kernel we can define an ergodic singular 
integral by 

T f ( x )  = lim Tef(x) = lim f K ( t ) f  (rtx) dt 
e ~ 0  e ~ 0  Je<Jt[< l/g 

1 where the limit will be understood in the a.e. sense. In particular if K(t) = 7 we obtain the ergodic 
Hilbert transform 

7-if(x) = lira 7-[ef(x) --- lim f f(~tX) d t .  
s-+O e--+O.Je<lt[<l/e t 

It is known (see, [8], [13] for these results) that if {rt : t 6 R} is a measure preserving flow, then 7~f 
is well defined as an almost everywhere limit for all f ~ LP(d#), 1 < p < e~, ~ is of  strong type 
(p, p) for p > 1 and of weak type (l,1). Furthermore, ~e  f converges to ~ f  in the LP (d/z)-norm 
if 1 < p < ec for all f ~ LP(d/X) and ~ e f  converges to 7~f  in measure for all f ~ LI(d/X). As in 
the case of  the singular integrals in 1R, this leaves open the following question: if f 6 L t (d/x) and 
~ f  ~ L l(dlz), does ~e  f converge to 7~f  in the L l(d/z)-norm? This question was answered in the 
affirmative in [2] in a more general setting. In 1994 Martfn-Reyes and the author [ 11 ] studied the 
behavior of  the ergodic Hilbert transform associated to a nonsingular measurable flow which need 
not preserve the measure/z but which is a CesS_ro-bounded flow, which means the following: 

(a) if E ~ gY~ and/~(E) = 0, then/x(TtE) = 0 for all t ~ R and 

(b) supe>0 II.AefllLl(dtz) <- CllfllLt(du) where 

f (rtx) dt .  Ae f (x )  = ~e 

They proved that if {rt : t E R} is a Ceshro-bounded flow, f 6 LI(d/X), and 7-Lf 6 Ll(dlz),  
then 7"/8f converges to 7~f  in the L 1 (d/x)-norm as e goes to 0. Analogous results could be obtained 
for general ergodic singular integrals "Ff  defined as above. 
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The final aim of the paper is to study the same results for ergodic singular integrals associated 
to a Calder6n-Zygmund kernel with support in (0, ~ ) ,  assuming that the semifiow {rt : t > 0} is 
Ceshro-bounded. In order to prove our result in ergodic theory, the idea is to first check the problem 
in the real line an d then to transfer the results to the ergodic theory. Notice that we are not transferring 
only maximal inequalities. 

Therefore, let us go back now to the setting of the singular integrals in •. Recently, Aimar et 
al. [ 1 ] have studied singular integrals associated to a Calder6n-Zygmund kernel K with support in 
(0, ~ )  or (-cx~, 0). These are the one-sided singular integrals. They proved that the good weights 
for these operators are the one-sided Ap weights (see [14]). More precisely, they proved that if the 

t ! support of  K is contained in (0, c~), 1 < p < ~ ,  ~ + ~7 = 1, w is a nonnegative function and there 
exists a constant C > 0 such that 

( ),a:/_ sup o9 < C ( c -  a) p 
a<b<c 

then T and T* are bounded from LP(w) into LP(w) and, thus, Tef  converges to T f  in the LP(co) - 
norm for all f 6 LP(w). With the same kind of kernels and for p = 1 they proved that if co 
satisfies 

x+e 
(AT) M+w(x) = sup 1 w(t)dt < Cw(x) a.e. 

e > 0  8 ax 

for some constant C > 0, then T and T* are of weak type (1,1) with respect to co and, consequently, 
Tef  converges to T f  in measure for all f E L 1 (co). This again leaves open the convergence of TEf 
to T f  in the L t(co)-norm. In Section 2 we study this kind of singular integrals and we obtain the 
one-sided version of the result of Capri and Segovia. This is established in the following theorem: 

Theorem 1. 
Let K be a Calder6n-Zygmund kernel with support in (0, cx~) and let T be the singular integral 

operator associated to K. Let o9 ~ A 1. If f and T f belong to Ll(co), then Te f converges to T f in 
the L t (co)_norm as e goes to O. 

We shall follow the steps of the proof of Capri and Segovia [5]. However, we point out that the 
proof is more difficult in our case because the hypothesis on the weight is weaker: this is the reason 
why we must work with functions with support contained in [0, ~ )  (see Theorem 5 for instance). 

We also define the class of A + weights, which we shall use later: we say that co 6 A + if there 
exists a constant C > 0 such that 

l f  X M-co(x) = sup - co(t)dt <_ Cco(x) a.e. 
e>O 8 - e  

As we said above, the final result is about ergodic singular integrals defined by a Calder6n- 
Zygmund kernel with support in (0, oo) and to a flow {rt : t e R}, i.e., 

1 

7 - f ( x )  = ~lrno ~ f ( x )  = s~oj~lim ! K ( t ) f  ( r t x )d t .  

Under an additional assumption on K, we obtain the following theorem which is the one-sided 
version of the result in [11]. 

Theorem 2. 
Let (X, flY(, v) be a finite measure space and let { rt : t E N} be a nonsingular measurable flow 

such that 

sup IIA+ fHLI(d~) <__ C IIf[ILt(dv) , 
e > 0  
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1 for all f ~ Ll(dv),  where ~4+ f ( x )  = ~ fo f ( r tx )d t .  Let 7- be a one-sided singular integral 
associated to the flow and to a Calderdn-Zygmund kernel K with support in (0, c~) for which there 

1 
exists the limit lime~0 f [  K (t )dt. l f  f ~ L l (dv) is such that 7- f ~ L 1 (dr), then ~ f converges to 
7- f in the L l(dv)-norm as e goes to O. 

1 
We ask for the existence of the limit lims--,o f [  K (t)dt to assure the existence of 7- f ,  at least 

for f ~ Ll(dv)  which is constant on each orbit, i.e., such that f ( r t x )  = f ( x )  for all t E ~ and 
x ~ X .  

The result is similar to Theorem 1 and, in fact, it can be considered as Theorem 1 transferred to 
the ergodic setting. Furthermore, our theorem extends the result in [2] to one-sided singular integrals 
assuming that the flow is Ces~ro-bounded. Three main ideas are in the proof of  this theorem: the 
first one is to show that the functions of  L l (dr) can be approximated by a suitable class of functions 
(Theorem 7); the second one is to express the action of  the ergodic singular integrals in terms of  the 
action of singular integrals on the real line and then to use the results of Section 2; the third one is 
to reduce the problem to the case in which the measure is preserved by the flow. 

Throughout this paper, the letter C will always mean a positive constant not necessarily the 
same at each occurrence and if 1 < p < oc, then p~ will denote its conjugate exponent, i.e., the 
number p~ such that p + p~ = pp~. Furthermore, the maximal operators associated to the averages 
.A +, ~t~- and to the ergodic singular integral 7- will be denoted by .Ad +, A t - ,  and 7-*, respectively. 
Therefore, 

M + f ( x )  = sup,A+[f l (x) ,  3 ,4 - f ( x )  = supA~-l f l (x)  and T * f ( x )  = s u p l ~ f ( x ) l  �9 
e>0 E>0 s > 0  

2. One-Sided Singular Integrals on the Real Line: Proof  of  
Theorem 1 

In the proof of  Theorem 1 we can suppose that co > 0 a.e. We shall need some results that we 
state in the following theorems: 

Theorem 3. 
Let ~o > 0 be an integrable function with support in [0, oc) and nonincreasing in [0, ~ ) .  For 

each e > O, let ~oE(x) = l x "i ~~ (7)" Then the following hold: 

(1) For all nonnegative f and for almost all x ~ N, I f .  ~oe (x)j < M - f ( x )  f o  ~o, where M -  
I x is the one-sided Hardy-Litttewood maximal function M - f ( x )  = supE>o 7 fx-~ t f (t)ldt. 

(2) I f l  < p < oo, o) E a-~ and f ~ LP(w), then ]if * ~oellrp(~o) < C[[frlLp(w) f o  ~o, where 
the constant C is independent of f and s. 

(3) I f  1 <_ p < oo, o) ~ Ap and f ~ L p (w), then, for almost every x E IR (in particular for all 

x belonging to the Lebesgue set o f f ) ,  lime-.0 f * ~pe(x) = f ( x )  f o  ~o(y)dy. 

(4) If  1 <_ p < co, o) E Ap and f E L P ( a ) ) ,  then l ime~o [ I f  * goe - f f o  ~o11Lp(~o) = 0. 

Theorem 4. 
Let g > 0 be a bounded function with compact support contained in [0, oc). l f  f E Li(co) 

anda) ~ A 1, then f . g  ~ Ll(o~). 

The following results show the behavior of  the one-sided singular integrals acting over convo- 
lutions. 
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Theorem 5. 
Let g > 0 be as before and let T be a singular integral operator associated ~'o a Calder6n- 

Zygmund kernel K such that the support o f  K is contained in (0, oo). Let o) ~ A 1 and f ~ L 1 (w). 

I f  T f  ~ L 1 (w), then 
T ( f  * g ) ( x ) = T f  . g ( x )  a.e. 

Theorem 6. 
Let g > 0 be an integrable function with support in [0, ec), nonincreasing in [0, o~) and 

suppose that g E LP~ for  some Po, 1 < Po < oo. Let T be as in Theorem 5, w ~ A-~, and 
f ~ L l(w). Then 

T ( f  * g)(x)  = f * Tg(x )  a.e. 

P r o o f  o f  T h e o r e m  3. Let f > 0. For each s > 0 let h(s) = sup{t > 0 : p( t )  > s} and 
= sup{s : h (s) > 0}. Then, changing variables and using Fubini's theorem, we have the following: 

f? xIY) f5 f . p ~ ( x )  = f ( x - y )  p -~ d y =  g o ( t ) f ( x - 6 t ) d t  

= f ( x  - et) l d sd t  = f ( x  - e t )d tds  
J0 >0:p(t)>__s} 

= f ( x  - e t )d tds  = - f ( x  - u)duds  
J0  g ,/0 

f o : l f x  x fo" I f  x = - f ( y )dyds  = h (s) e - ~  f ( y )dyds  
s -eh(s )  -eh(s) 

fo fo < h ( s ) M - f ( x ) d s  < M - f  (x) ]{t > 0 : p ( t )  > s}lds 

- l d td s  = M - f  (x) l d sd t  
-- M - f  (x) >O:~o(t)>_s} ./o 

= M - f ( x ) - - ] i  ~176 p ( t ) d t .  

This proves (1). 
To prove (2), we first suppose that p = 1. Then, changing variables, we have 

f? [If  * PEllLI(w) < Pc(Y) ] f ( x - y ) l w ( x ) d x d y  

f? = I f (x ) l  p~(y)ro(x + y ) d y d x  = If(x)[PE * ( o ( - x ) d x  , (2.1) 

where &(x) = o ) ( -x ) .  Taking into account (1) and the fact that co 6 A]- we get 

L s f? s f0 [f(x)]pe * 6 ) ( - x ) d x  <_ [ f ( x ) l M - g o ( - x ) d x  qo = I f ( x ) [ M + w ( x ) d x  p 

s fo fo < C I f (x) loa(x)dx  p -= C IlfllLl(~o) p .  (2.2) 

Inequalities (2.1) and (2.2) immediately give (2) for p = 1. 
Now let p > 1. Then Theorem 1 of [14] and (1) imply the following: 

[If * ~OeHLp(w ) < p (y )dy  M - f  (x)) p w ( x ) d x  < C p ( y ) d y  [[fllLp(w) �9 
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This proves (2) for p > I. 
Next, we are going to prove (3). Changing variables we obtain 

= 

f7 f7 = f ( x  - e y ) 9 ( y ) d y  - < ] f ( x  - e y )  - f ( x ) [ ~ o ( y ) d y  

L ~176 f*~(Y~ = I f ( x  - e y )  - f ( x ) l  l d s d y  
dO 

fTf, y = [ f ( x  -- e y )  -- f ( x ) l d y d s .  
>0:9(y)>s} 

Let h ( s )  and g as before. Then 

I f ( x  - e y )  - f ( x ) [ d y d s  = I f ( x  - e y )  - f ( x ) l d y d s  
>0:~o(y)_>s} 

s  ehc*) 
= - [ f ( x  - y )  - f ( x ) l d y d s  

8 dO 

fo ~ I f eh(s) = h ( s ) e - - - ~  ao I f ( x  - y )  - f ( x ) ] d y d s .  

The function 

(2.3) 

(2.4) 

1 [shOO 
= ] f ( x  - y )  - f ( x ) [ d y  g ( s )  h ( s ) x ( o , . ~ ) ( s ) ~  do 

is bounded for a function of L l (R): 

Ig(s)i = g ( s )  < h ( s )  I f ( x -  y ) l d y +  I f (x ) l  X(o,~)(s)  
JO 

< h ( s )  ( M - f  ( x )  + I f ( x ) l )  X(0,.~)(s) �9 

Then, the dominated convergence theorem, the differentiation Lebesgue theorem, (2.3) and (2.4) 
give 

lim * qge(x) - f ( x )  ~o < h ( s )  lira I f ( x  - y )  - f ( x ) l d y  d s  = O,  
e---r g'-+O dO 

for almost all x 6 N. 
To prove (4) suppose first that p = 1. Then 

f{ = g ( y ) ~ o e ( y ) d y  = ~ �9 ~oe(O), (2.5) 

where g ( y )  = f e  I f ( x  - y )  - f ( x ) l ~ o ( x ) d x .  Since g is a continuous function, then part (3) gives 

[ lim _oc g ( y ) p e ( y ) d y  = g(O) ~o(y)dy  = 0 .  (2.6) 
e~0 J0 
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From (2.5) and (2.6) we get (4) for p = 1. 
If p > 1, we apply (1) and obtain 

* pe(x)  - f ( x )  fo ~ < C P ( ( M - f ( x ) )  p + If(x)l p) 

The function on the right-hand side belongs to Ll(w) by Theorem 1 of [14]. Then the dominated 
convergence theorem, together with (3), gives (4) for p > 1. [ ]  

P r o o f  o f  T h e o r e m  4. Suppose that the support of g is contained in [0, L]. Then, using the facts 
that co ~ A 1 and f ~ Ll(co) wege t  

1f * g(x) lco(x)dx = f ( x  - t )g ( t )d t  co(x)dx < Ig(t)l I f ( x  -- t)[co(x)dxdt 

-- Ig(t)l [f(x)lco(x + t )dxd t  = If (x) l  Ig(t)lco(x + t )d tdx  

_< L I[gll~ I f (x) l  co(t)dtdx <_ L Ilgll~ I f ( x ) lM+co(x )dx  
, / X  

< C L  Ilgll~ [ I f (x) lco(x)dx < e e .  [] 
dR 

To prove Theorem 5 we shall use the following results: 

L e m m a  1. 
Let T be as in Theorem 1. I f  co c A 1, then T is o f  weak type (1,1) with respect to co, i.e., there 

exists a constant C such that for  all f ~ L l (co) and all L > O, 

C 
co({x : l T f ( x ) l  > ~.}) ~ ~-Ilfllg,(~o) �9 

I f  co c Ap,  then T is o f  strong type (p,p) with respect to co, i.e., there exists a constant C such that 
f o ra l l  f E LP(co), 

IITflIL?(o)) <_ C IlflrLP(~o) - 

The same holds for  T*. 

Lemma 2. 
Let co ~ A~ and R > O. Then, for  almost all x ~ [ - R ,  R], the following inequality holds: 

1 3R 
- - < C  

- 2R co(x) f:~ co(y)dy 

where C is a positive constant independent on x and R. 

P r o o f  o f  L e m m a  2. Using that w 6 A]-, it is very easy to see that for almost all x 6 [ - R ,  R] 
we have 

1 s 1 ix 2R 
3--R w ( y ) d y  <_ 2 R -  x w ( y ) d y  <_ C w ( x )  , 

which gives the desired inequality. [ ]  

P r o o f  o f  T h e o r e m  5. By Theorem 4, f �9 g 6 Ll(co). Therefore, T ( f  �9 g) makes sense. On the 
other hand, since f 6 L 1 (co), T f  ~ L 1 (co), and co 6 A1, then Theorem 4 implies that T f  �9 g makes 
sense and belongs to L 1 (co). Suppose that supp g C [0, L]. Let { Pj }~=l, PJ = {tj,o, t j, 1 . . . . .  tj,Nj }, 
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be a sequence of  partitions of the interval [0, L] such that Pj C Pi+I  and the diameters decrease 
to 0 as j --+ e~. Define 

Nj [tj,k 
Sj f ( x )  = ~ f (x -- tj,k) g(t)dt . (2.7) 

k=l dtj.k-I 

Claim: We claim that for each R > 0 fixed we have 

lim f I s j f ( x ) -  f , g ( x ) l d x = O .  (2.8) 
J~~176 dlxl<R 

First we are going to see that it suffices to prove the claim for f 6 L I(R).  As a consequence of 
Lemma 2, if f 6 L1(w) and m > 0, then fX[-m,m] E LI(R) because 

if. f_. 3m f_. I f (x) ldx = ]f(x)lw(x) dx < C 2m I f (x) lw(x)dx < oc. 
m m f~n oo(y)dy m 

Now we observe that for !xl < R, 

si Y(x ) - f * g(x) = Sj ( f  x[-R-L,R+L]) (X) -- ( f  x[-R-L,n+L]) * g(x) 

and since fX[-R-L,R+L] E L I(R) we have seen that it is enough to prove the claim for f ~ L I(R). 
Assuming that f 6 L ~ (IR) we have 

x [ S j f ( x ) -  f . g ( x ) l d x  
I<_R 

Nj tj,k Nj tj,k 

~ f  ftj .k <- I f  (x -- tj,k) -- f ( x  -- t)[ Ig(t)tdtdx 
k=l dlxl<R dtj,k-I 

= Ig(t)} I f  (x - t./,k ) -- f ( x  -- t)l dxd t .  (2.9) 
= , k - 1  I <R 

Given e > 0, since f E L 1 (R), by the translations lemma there exists J0 e N such that for all j > j0 

[f f(x-t)ldx < 
I<R [Ig[tLt(R) 

for all k E { 1 . . . . .  N/}" This inequality and (2.9) give (2.8). 
In order to prove that T ( f  * g)(x) = T f  �9 g(x) for almost every x ~ R, we are going to see 

that for all fixed P > 0 we have that T ( f  �9 g)(x) = T f  �9 g(x) for almost every x ~ [ - P ,  P] .  For 
fixed positive P and e we shall estimate the measure of the set 

{x E I - P ,  P] : ]T( f  �9 g)(x) - T f  * g(x)J > e} . 

Since f E L l (oa) and f * g E L 1 (w) by Theorem 4, we can choose R > 3L + P such that 

~I[>R_ L I f(y)lw(y)dy < e 2 (2.10) 
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and 

fly I f  * g(y)lw(y)dy < e 2 (2.11) i 

�9 I>R  

Now, by (2.8), we can choose j ~ N such that 

~ I s j f ( y ) -  f ,  g(y)ldy < e 2 (2.12) 
�9 I_<R 

and 

Isj ( r f )  (y) - r f  �9 g(Y)l dy < e 2 . (2.13) 
. I<_R 

Then we have the following: 

I{x e [ - P ,  PI : l T ( f * g ) ( x )  - T f , g ( x ) l  > ell 
8 < 

+ {x ~ t-P,.,'J : I~ ( ( I .  ~)~,_...,) (x ) -  ~- ( (s ; i )~- , , . .0  (x)l > 4} 

+ x e I - P ,  P] : r ( ( S j f )  Z~-R,m) (x) - Sj ( r f )  (x)l > 

{ s, ~] + x ~ [ - P , P ] :  ( T f ) ( x ) - T f * g ( x ) >  ~ = I + I I + I I I + I V .  (2.14) 

Let us estimate I. Let 

E =  x e [--P, Pl : l T ( f  * g)(x) -- T ( ( f  * g)Xt_R.el) (x)[ > -~ . 

Now, Lemmas 2 and 1 and inequality (2.11) give 

I = ldx < w(x)dx 
- f2pP w(y)dy 

({ = Coo x e [ - - P , P ] : l T ( f * g - - ( f * g ) x t _ g , R ] ) ( x )  [ >-~ 

c~ --- t [(f* g)(  1 - Z t -R,R~)I IL , (~)  -< C~.  (2 .15)  
8 

Observe that the constant C depends on P and L, but both numbers are fixed. 
The estimation of  II is very easy. We have to use only the weak-type inequality (1,1)  of  T with 

respect to the Lebesgue's measure and (2 .12)  to obtain 

C ~ I s j f ( x )  - f ,  g(x ) ldx  < Ce.  (2.16) II _< ~ I-<R 

The estimation of  III is more difficult. First of all, by the definition of  T and Sj we have 

r ((S j f )  X[--R,R])  (X) - -  8j (T f ) (x )  (2.17) 

= lim fx  , , k .  x (x - s - tj,k) f ( s )  (X[-R,R] (s + tj,k) - 1) ds f i 'j'k g(t)dt . 
rl"'+O J--oo atj,k-I 

Observethatifls+tj,k[ < R, then X[_R,Rl(S+tj,l~)--I = Oandifls+tj,kl > R, then lx--(s+tj,k)l > 
Is + t j , ~ l  - Ixl ___ R - P > 3L, hence, Ix - (s + tj,k)l is far away from 0. On the other hand, if 
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L - R < s < x, then XI_R,RI(S -t- tj,k) -- 1 = 0. Therefore, we obtain 

IT ( (S j  f )  X[-R,R]) (X) -- Sj(Tf)(x) I 
Nj L-R  

E f_ 
k = l  ~ Jtj,k-1 

Nk~=lf_ f g ( t ) d ,  
x t j ,  k 

+ K(x  - s) (Xt-R,R] (s + (/,k) -- 1) f ( s ) d s  
oo tj,k-I 

= I(x)  + ITh(x) l ,  (2.18) 

where 

Thus,  

III < 

Nj 

h(s) = i(~) ~ (x~-R . ,  (s + ~j,~) - 1) [ " '  ~(,)d, . 
k = l  "ltj'k-I 

{ x E [ - P , P ] ' I ( x ) >  8 }  + { x E [ - P , P ] : J T h ( x ) I >  8}  " (2.19) 

Act ing  as in the est imation of I we have that 

< e-72-fi---co x e [ - P ,  P] " I (x )  > 
Jp co 

f x  co (x )dx 
C E[-P,PI:I(x)>~) 

< -- l (x)co(x)dx . 
8 p 

(2.20) 

Observe t h a t L - R  < 0. Then,  i f s  E ( - o o ,  L - R), we have Isl > I L - R I  = R -  L and 
Ix - s l  >__ [sl  - Ix l  > R - g - P > 2L > 2[tj,lc[. Now we use condi t ion  (1.3) of  the kernel  K and 

we obtain 

f_ P I(x)co(x)dx 
P 

< C a  ' [g(t)[dt I f ( s ) [  co(x)dx 
k = l  tj,k-I P - -  

Nj 

Ig(t)ldt I f ( s ) l  - - d x d s  
k = l  J t j , k - I  O0 p (X - -  S)  2 " 

(2.21) 

Taking into account  that -cx)  < s < L - R implies 2L _< - P  - s, we get 

: f?  : f ?  p (X - -  S )  2 dx P-s w (x + s) dx P-s d) ( -s  x) dx 

< ~ ( - s  - x dx < ~ ( - s  - x)gr(x)dx , (2.22) 
L 

where gr is defined by gr(x) = ~ if 0 < x < 2L and ~p(x) = if 2L < x. Notice that ~p has 

support  in [0, cx~), is nonincreas ing in [0, oc), and is integrable. Thus,  part (1) in Theorem 3 and the 

fact that co 6 A]- give 

fo fo (o(-s  - x ) ~ ( x ) d x  <_ M - c S ( - s )  ~ ( x ) d x  = CM+ co(s) <_ Coo(s) (2.23) 
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for almost every s 6 ( - - ~ ,  L - R). If we put together inequalities (2.20), (2.21), (2.22), and (2.23) 
and we use (2.10), we get 

x ~ [ -P ,  P] : l (x)  > _< --IlgllLl(m If(s)lco(s)ds 
6 ex) 

-< --IIglILI(R) If(s)lco(s)ds 
e I>_R_L 

<_ Ce IlgllL~(~) - (2.24) 

On the other hand, using Lemmas 1 and 2, we obtain 

x E 

<_ 

[ - P , P ] : I T h ( x ) I > - ~  < Z - i - ~  x ~ [ - P , P ] ' [ T h ( x ) l >  
#co 

C ]~ Ih(x)lco(x)dx 
e 

C tT,k 
< -- [g(t)ldt If(x)[  IX[-R,R](X q- tj,k) -- 11 co(x)dx 

e dtj,k-1 

ix _< --IlgllLl(N) ]f(x)[co(x)dx < r e  IIg[[LI(N) �9 (2.25) 
e I>R-L  

Finally, let us estimate IV. Using (2.13) and the fact that if Ixl ~ P then Ixl ~ R we obtain 

E [ - P , P ] : I S / ( T f ) ( x ) - T f * g ( x )  > _~e il {x 

4s 
<_ - I s j ( r f ) ( x )  - T f  �9 g(x)] dx _< 4e .  

e [<R 
(2.26) 

Putting together inequalities (2.14), (2.15), (2.16), (2.18), (2.19), (2.24), (2.25), and (2.26)) we get 
that 

lim I{x 6 [ - P ,  P]  : ] T ( f . g ) ( x )  - T f . g ( x ) ]  > e}l = 0 ,  
e--+0 

which finishes the proof of Theorem 5. [ ]  

P r o o f  o f  T h e o r e m  6. We have that co 6 A]-. Then, by the proof of the Remark (C) in [ 14], there 
exists 3 > 1 such that cop ~ A 1 for all p, 1 < p _< 3. Let us choose p such that 1 < p < min{& P0}. 
It is clear that cop is a locally integrable function and g ~ LP(]~). Then, by part (1) of Theorem 3 
and the fact that cop 6 Ai-, we obtain that for almost all y 6 IR 

]g(x - y)lPwP(x)dx f0 fo = [g(x)fcoP(y -I- x)dx = Ig(x)lPffJP(-y - x)dx 

f; < M - & P ( - y )  Ig(x)IPdx = M+coP(y)IlgllPp(~) 

<_5 CcoP(y) IIgllPp(~) . (2,27) 

As a consequence, by Minkowsky's integral inequality and (2.27) we obtain 

l[f  * gl[Lp(cop) <_ s ( s  Ig(x - y)lPlf(y)l:~coP(x)dx) l /pdy 

C IlgllLp(ne) L If(y)lco(y)dy = C Ilg[lLP(~)IlfllLa(~o) �9 (2,28) 
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On the other hand, since cop ~ A-{ C A-~, by Lemma 1, we have 

fR l T g ( x -  y)lPcoP(x)dx <_C s lg(x--  y)lPcoP(x)dx. 

Consequently, 

(2.29) 

Thus, 

Then, by Minkowsky's  integral inequality 

I l f  * (g * Ke) - f �9 Tgllzp(o~p) = IIf  * (g * Ke - Tg)llLp(o:) 

= (f~ L (g * K~(x - y ) -  Tg(x-  Y)) f(y)dY P~OP(x)dx) I/p 

(s )l/p 
f.l~ ]g * Ke(x - y) - Tg(x - y)lP [f(y)[PcoP(x)dx dy < 

: f (f 

lim I lf  * (g * Ke) - f �9 TgltLp(~o?) = 0 ,  (2.33) 
6-+0  

by the dominated convergence theorem. This finishes the proof of  Theorem 6. [ ]  

P r o o f  o f  T h e o r e m  1. Let ~o > 0 be a bounded function with compact support contained in [0, ~ ) ,  
1 x nonincreasing in [0, c~) and such that supp ~0 C [0, 1] and fo ~o(x)dx = 1. Let ~oE(x) = ~q)(~). 

Define 
3e(x) = T~oe(x) -- Ke(x) .  

If  g is a bounded function with compact support in ll~, then its least decreasing radial majorant 
belongs to LI (R)  N LPO(II~) for P0 > 1. Then, since ~oe 6 LI(N) ,  applying Lemma 6 in [5] in the 

IIf  * Tgllgp(~op) ~ C IIgIILp(R) [Ifllgl(~o) . (2.30) 

For each e > 0 let Ke = KX(e,oo). We have that f . g  ~ L p (o) p) by (2.28) and since cop 6 Ap,  
we have that ( f  �9 g) * Ke converges to T ( f  * g) in the LP(coP)-norm as e goes to 0, by the result 
in [1]. 

To prove that T ( f  * g) = f * Tg a.e. it suffices to prove the following: 

lim IIf  * (g * ge) - f * TgllLp(cop) = O. 
~---~0 

Observe that since co < oo a.e., inequality (2.27) gives that the function gy(X) = g(x - y) belongs 
to LP(co p) for almost all y 6 IR. Then, by Lemma 1, we get 

lim f ]gy �9 g~(x) - Tgy(x)l p coP(x)dx = 0 .  (2 .31 )  
e--+O dR 

On the other hand, inequality (2.27) and Lemma 1 give 

.~ IgY * Ke(x) - Tgy(X)lP coP(x)dx = fo Ig*  Ke(x - y ) -  Tg(x - y)lP coP(x)dx 

2P L Ir*g(x - y)Ip ~ (2.32) < 

C2P l Ig(x -y)lPcoP(x)dx < CcoP(y) [Igllfr(~) < 
D 

dN 
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case w = 1, we have that T(g  �9 ~oe)(x) = Tg �9 ~oE (x) a.e. On the other hand, since ~oe 6 L po (~) for 
all P0 > 1 and g 6 Ll(w),  Theorem 6 gives that T(g  �9 ~oE)(x) = g * T~oe(x) a.e. Then, 

g*•e(x)  = g , T ~ o ~ ( x ) - g . K ~ ( x )  = T (g * ~ o e ) ( x ) - g * K ~ ( x )  = T g * ~ p ~ ( x ) - g * K E ( x ) ,  a.e. 

We claim that 
lim IIg * N~lltt(o~) ---- 0 .  (2.34) 
e--+0 

We first prove that l ime~0 I Ig* 3E I IL2(o,~ = 0, following the ideas in [5]. The fact that 09 ~ A 1 C A 2 

gives that T is bounded in L2(~o) [1]. Then, both Tg and g �9 Ke belong to L2(o9), since g ~ L2(w), 
and l i m ~  0 IITg - g * KeJlL2(~o) = 0. This, together with part (4) of  Theorem 3, gives 

lim IIg * 6~ ItL2(,ol < lim IITg * ~o~ -- TgllL2(,o) + lim I[Tg - g * K~IIL2(o,) = 0 .  (2.35) 
e-+0 -- s--~O e---~ 0 

To prove (2.34), we suppose that supp g C I - N ,  N] and we take e with 0 < e < N. Then, for 
x >_ 4N we have 

F i, T (g �9 ~o~) (x) = K(x  - y) (g �9 ~o~) (y)dy  = K(x  - y) (g �9 ~o~) (y)dy  
cc I<2N 

and 

g ,  K~(x) = K (x - y )g (y )dy  = K (x - y )g (y )dy  = K (x - y )g ( y )dy  . 
oo . [ _ ~ N  . 1<2N 

For x < - 4 N ,  one has that T(g  �9 tpe)(x) = 0 and g �9 Ke(x)  = 0. As a consequence, if Ix] > 4 N  
we have 

P 

�9 3e(x) = I K (x  - y) (g �9 ~oe(y) - g(y))  d y .  (2.36) g 
�9 I_<2N 

We are going to see t h a t  flyl<_2 N (g * qge(y ) -- g(y ) )dy  = 0. By Fubini's theorem we have 

f y  g . ~oe(y)dy = j 
1<2N 

--j 
--j 

Then, by (2.36), for all x with Ix l >__ 4N we 

r 
,~JIv-zl ~e; Izl<_N g(z)cPe (y -- z ) d z d y  r 

g(z)  f < ~oe(y - z )dydz  
, . I<N dly-zJ_e;Jyl<2N 

g(z)dz  = [ g ( z ) d z .  
'I<N dlzl<2N 

have 

l "  
�9 BE(x) = ] (K(x  - y) - K (x ) )  (g �9 ~Oe(y) - g(y) )  d y .  g 

Jly I<2N 

Therefore, Fubini's theorem and condition (1.3) of the kernel give 

f x  l g * 8 e ( x ) l w ( x ) d x  = fx >4N 

< fy l<2N (fx>21Yl I K ( x - y ) - K ( x ) l ~ ~  I g * ~ ~  

< C ~ v  ( f x  JYI 2 c ~ 1 7 6  
--  . J<2g >_21yj IX - -  y / 

< C flY , g * ~ o ~ ( y ) -  g(Y)l fx _W(X)_ . d x d y .  
- -  I < 2 N  > 4 N  ( x  - y)Z 

(2.37) 
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The same argument used in (2.22) gives that 

f o)(x) , (x _--~)2ax < Cw(y) ,  a.e. y ~ [ - 2 N ,  2 N ] .  
>4N 

This inequality, together with (2.37), gives 

fix [g * 8 e ( x ) l w ( x ) d x  <_ C f l  v [ g ,  ~oe(y) - g ( y ) l c o ( y ) d y ,  
1>_4N . [<2N 

which converges to 0 as e goes to 0 by part (4) in Theorem 3. 
Now, using H61der's inequality, we get 

flxl<_4N [g * 8s(x)i co(x )dx  

(2.38) 

):(ix ): < co(x)dx Ig * 8~(x)l 2 w ( x ) d x  
I<4N 1<4N 

_ C IIg*~llt2(co) , (2.39) 

Then, the function A = AX[o,~) has support in [0, oe), it is nonincreasing in [0, cx~), it is integrable, 
and IN~(x)I _< A~(x) for all x. 

Observe now that, by Theorems 5 and 6, II f * Ke II Ll (co) < II T f  * ~oe II Z* (co) + II f * 8e II Z~ (co). 

Since f ~ Ll(co), T f  ~ Ll(co), and w E A 1, part (2) in Theorem 3 gives I I T f  * ~0~llL~(co) -< 

CllZfllLl(co) and l l f  * SEIILI(CO) < IIIfl  * Ael[Ll(co) < Cllfllz~(co) fo  • = C l l f l  ILl(co) �9 I n  partic- 
ular, we have obtained that for all e > 0, f * Ke = T ~ f  ~ L t (co). 

Given rl > O, let us choose g bounded with compact support such that I l f  - gilD(co) < r/. 
Then 

IIf  * Ke - Tf[tD(co) <- I tT f  * ~o~ - Tf l tL,(w) + II(f  -- g) * ~e[tL~(co) + ]lg *~ellL~(w) �9 (2.40) 

By Theorem 3 and condition (2.34) we have 

lim [[Tf ,q% - Tf[[D(co ) -[- [Ig* ~E[[Lt(co) = 0 .  
E--~0 

On the other hand, 

l l ( f  - g) * ~ellLl(w) <-- l l l f  -- gl * AellL~(co) < C l i f  -- gilL'(w) < C O .  

Since this inequality is valid for all r / >  0 we have 

lim [If * Ke - TfllLl(,o) = }irn ~ [ITef -- Tfllg~(co) = O. 
,s--*-O 

This finishes the proof of Theorem 1. [ ]  

= 

which tends to 0 as E goes to 0 by (2.35). This proves (2.34) for all functions g, bounded with 
compact support. 

The function ~o is nonnegative, with support in [0, oe), nonincreasing in [0, cx~), and it is 
integrable. If  we define ~(x)  = ~o(x) for x > 0 and ~(x)  = go(-x)  for x < 0, we get that ~ has the 
same properties as those in the proof of Theorem 1 in [5]. Then, by what it is proved in pages 28 
and 29 in [5], there exists a nonincreasing, radial, and integrable function 7~ such that 
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3. One-Sided Singular Integrals Associated to a Flow 
Cesfiro-Bounded to the Right: Proof  of  Theorem 2 

We begin by stating the boundedness of the maximal operator. 

T h e o r e m  7. 
Let (X,  flY[, v), {zt : t E ~}, K and 7- be as in Theorem 2. Let 7"* and A4 + be the maximal 

operators defined as in Section 1. Let 1 < p < o0. Then .M + and 7-* are bounded from LP(dv)  
into LP(dv)  if  p > 1 and they are o f  weak type (1,1) in L l(dv).  

As a consequence of this theorem we obtain the following corollary. 

Corol lary .  
Under the same assumptions as that in Theorem 7 we have the following: 

(1) I f  p = 1 and f E L l(dv),  then ~4+ f converges in the L l (dv)-norm as e goes to infinity 
and ~ f converges in measure as ~ goes to O. 

(2) I f  1 < p < c~ and f �9 LP(do),  then .A+ f converges in the LP(dv)-norm as ~ goes to 
infinity and ~ f converges in the L P (dv)-norm as ~ goes to O. 

We omit the proof of  Theorem 7 because it is almost the same as the one in [11] (the proof 
follows standard arguments as the truncation of the maximal operators and transference methods 
(see [3] and [6]) to use the valid results in R; in the case of .A4 + we use the results in ~ for the one- 
sided Hardy-Lit t lewood maximal function M+;  in the case of  7-* we use the results of  Section 2). 
The difference yields in the fact that when we define the measure/z  equivalent to v such that the 
flow preserves the measure/z ,  and dv  = wdtz then we obtain that the functions w x : ~ --> R, 
coX(t) = o~(rtx), satisfy A + for almost every x �9 X with the same constant. The proof of  the 

corollary follows from the weak type inequalities of .A//+ and 7-* and the fact that the convergence 
holds for functions f �9 L l (dl z) f) L e (dv) which is dense in L P (dv). 

For f �9 L l ( d v )  and ~o �9 LI (R)  we define the convolution of f and ~o by f �9 r = 
f e  f ( r tx)~o( t )d t  (it makes sense by the same reason as in [11]). The following result is about the 
behavior of  the convolution. 

T h e o r e m  8. 
Under the same assumptions as that in Theorem 2, i f  f �9 L 1 (dr)  and g > 0 is a function with 

support in [0, c~), nonincreasing in [0, oo) and g �9 L 1 (~), then 

(1) I f *  g(x)l __% [[gllLl(~t).hd+ f ( x )  a.e. 

(2) [I f  . glltl(dv) < CIIgllLl(R)llfllzt(du). 

As in [2] and [11 ] the proof of Theorem 2 requires to approximate the functions in L ~ (d r )  by 
suitable functions. This is the next result. 

T h e o r e m  9. 
Assume that we are under the same hypothesis as that in Theorem 2. Let 

a = { f � 9  f o ra l l  t � 9  anda.e, x � 9  

{ f/ I B1 = f � 9  f = fo*~o:  f o � 9 1 4 9  cx~) and ~ o = 0  , 

where Clc [0, ec) is the set o f  functions o f  class I and compact support in [0, c~) and 

B2 = { f  �9 L l ( d v )  : f = fo * ~o : fo �9 L~176 v) and cp �9 L~[0, oo)} , 
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where LI[0,  c~) is the set of functions with support in [0, cxD), with f o  Iqgl < ~ and f o  P = O. 
Denote by-~l and-~2 the L 1 ( d v )-closure of the linear manifold generated by B! and B2, respectively. 
Then A ~ B--~ = A ~ B-"-] = Ll(dv). 

We shall need a result similar to Theorem 6 in [11]: 

Theorem 10. 
Under the same hypothesis as that in Theorem 9, if f c B---~ is such that 7- f E L 1 (dr), then 

T f  E B1 

P r o o f  o f  T h e o r e m  8. Denote by f x  the function f x ( t )  = f ( r t x )  and by ~ the function ~(t) = 
g( - t ) .  Then, by well-known results in R, 

[f * g(x)l 

= s ITxr g(t)dt = ITx -o ,0 l �9 g ( O )  

-< Ilgllo<~) .Ad+f(x),  

as in the proof of  (1) in Theorem 3. This proves (1). 
To prove (2) observe that if g has support in [0, cx~) and it is nonincreasing in [0, ~ ) ,  then 

has support in ( - o 0 ,  0] and it is nondecreasing in (-cx~, 0]. As in [11], there exists a measure/z  
equivalent to v such that the flow preserves the measure/z.  If  we define o9 = a~-~, then w E A +. 
Therefore, 

IIf  * gllO(d~) 

s f] = I f (x ) l  oJ (ztx) ~,(t)dtdlz(x) < IlgllLt(~) I f (x) lM-~o(x)dlz(x)  
O0 

_< C Ilgllo(R) fx If(x)lo)(x)dlz(x) -- C Ilgllo(~) Ilfllo(du~ �9 

This completes the proof of Theorem 8. [ ]  

P r o o f  o f  T h e o r e m  9. It is clear that B1 C B2 and then B1 C B2. Observe that it suffices to 
prove that A ~ B--~ = Ll(dv) by (2) in Theorem 8 and the fact that C~[0, cx~) fq L01[0, cx~) is dense 

in LI[0,  cx~) implies that B1 = B2 in Ll(dv).  
Let us see that A A B2 = {0}. It is clear that limE~oo A + f ( x )  = f ( x )  for f 6 A. If  f E B2, 

then f = f0 * r where fo ~ L~(dv)  and r ~ L01[0, ~x~). Observe that since f o  P = 0 we have 

lfo /o /o 'fo = - p(s)fo(rt+sx)dsdt = p ( s ) ~  (f0 (~:t+sX) - fo (ztx)) d tds .  
8 

Now, the dominated convergence theorem and the fact that l i m e ~  ,4 + f0 (x) = l ime~ ~ .4 + fo (rtx) 
give that l i m e ~  A + f ( x )  = 0andthus  ANB2 = {0}. The inequality IlA+fllz~(d~ < CllfllLl(d,) 
and the fact that this limit is a limit in the L 1 (dv)-norm give that A A ~ = {0}. 

Le tus  now prove that A ~ B--~ = Lt(dv).  Let f c Ll(dv) and denote F = l i m E ~  ~A+f. It 
is obvious that F 6 A. Then it suffices to show that f - F 6 B2. Suppose that h ~ L~176 and 
f x  hGdv = 0 for all functions G 6 B2. Then 

fo h(x) g (rsX) p(s)dsdv(x) = 0 (3.1) 
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for all functions g E L~176 and all r ~ Loll0, oo). Let now g E Ll(dv) and ~o E LI[0,  oo). 
Then, given e > 0 there exists go ~ LeO(d v) such that fig - g011L~(dv) < e. Therefore, by (3.1) and 
part (2) of  Theorem 8, 

fxh(X)fo~176 

< --.[y h(x) --.[~~176 (g (rsx) - go (E~x)) ~o(s)dsdv(x) 

_< Ilh (g - go) * ~OllL~(d~) 

<_ IthllL~(au) IIg - goIILl(dv) 117tlILa(R) < r e ,  

where ~ is the least majorant nonincreasing in [0, oo) of  ~0. Then, equality (3.1) is valid for 
g ~ Ll(dv) and ~o ~ L0~[0, oo). Applying this equality to g = f and ~o = (1/e)x(o,e) - (1/r/)X(0m) 
we get 

f x h ( X ) { f o e f ( r s x ) d s d v ( x ) = f x h ( x ) ~ f o O f ( r , ~ x ) d s d v ( x ) .  

Since (1/~) f~  f (rsx)ds  converges to F in the Ll(dv)-norm as r/goes to oe, by the corollary and 

(1/e) fo f (rsx)ds converges to f in the L l(dv)-norm as e goes to 0, by Wiener's theorem and the 
factthat IIA+fllL~(a~) < CII f l lL~(do) ,weobtain fx( f -F)hdv  = 0for  the functions h ~ L~176 
as above. This means that f - F ~ B-~. [ ]  

P r o o f  o f  T h e o r e m  10. We start by proving this theorem, assuming that the flow preserves the 
measure v, and we call the measure/z instead of  v in this case. We shall need the following result, 
which gives the existence of  a bounded approximation of the identity in L01[0, oo). The proof is 
given at the end of  the section. 

L e m m a  3. 
I ~1, n }e~z There exists a sequence tv, n=l C LI[0,  oo) such that 

(i) f o  ~Pn = O, for all n ~ N. 
(ii) II~PnllLlt0,o~) < 2,foral ln 6 N. 

(iii) l i m n ~  I I f  * r  - f l lL~t0 .~)  = O, forall  f 6 Lol[0, oc). 

Let f ~ B--q be such that "-/-f ~ L 1 (d/z). Then, by Theorem 9, there exists F1 ~ A and F2 ~ Bll 
I ,I, n }oo such that 7- f  = F~ + F2. Let tv, n=l as in Lemma 3. Let us see that 

lim II~n * F2 - F211L~(d~) : 0 .  ( 3 . 2 )  
n - - ~  o o  

Assume first that F2 6 B1, i.e., F2 = F �9 q~, for some F ~ L~ and q~ 6 Ccl[0, ~ )  with 
f o  q~ = 0. Therefore, 

II~n * F2 - F2l[Z'(d~) = II(V~n * q~) * F - 4) * Fllz~(d~) ~ [l~n * q6 -- ~11/~1(~) I[FIILl(dt~) , 

which converges to 0 as n tends to infinity by Lemma 3. It is clear that (3.2) holds for all F2 in the 
linear manifold generated by B1. Now let F2 ~ B1. Then, fixed e > 0, there exists G in the linear 
manifold generated by B1 such that liE2 - GIIL~(a~) < e. Therefore, 

II~Pn * F2 - F2l[Ll(dtz) < [laPnllL~(~) liE2 - GllLa(a~) + II~P, * G -- GIILI(,~) 

+ liE2 - GIIL~(du) < 2e + II~Pn * G - GIIL~(du) + e .  
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Since G is in the linear manifold generated by B1, we can use (3.2). Consequently, {~n * F2} 
converges to F2 in the L~(d/z)-norm as n tends to infinity. On the other hand, ~n * FI(x) = 
f~ On(t ) f l (r tx)dt  = Fl(X) f~. o~(t)dt = 0. Then ~n * 7- f = ~kn * El + ~Pn * F2 = ~n * F2. 
Therefore, {~n * T f }  converges to F2 in the L l(dix)-norm. By Corollary 3. t5 in [2] with T instead 
of the ergodic Hilbert transform, we have that ~n * T f ( x )  = T(~kn . f ) ( x )  a.e. and therefore 
{T(~n * f )  } converges to F2 in the L 1 (dix)-norm. On the other hand, since f ~ B'-T, applying (3.2), 
we have that {~Pn * f}  converges to f in the L J (dix)-norm, which implies that {T(gen * f )}  converges 
to 7 - f  in measure. Then F2 = T f  a.e. and thus T f  ~ B1. 

In order to prove Theorem 10 for general measures, we need the following result: 

Lemma 4. 
Assume that we are under the same hypothesis as that in Theorem 9, but with a measure 

tx which is preserved by the flow. Let 7- be a one-sided singular integral associated to the flow 
and to a Calderdn-Zygmund kernel K with support in (0, cx~) for which there exists the limit 

1 

lime~o fl  ~ K(t)dt.  I f  f E ~ is such that 7 - f  E L1(dlz), then there exist go E Ll[O, ~ ) a n d  

fo ~ B2 such that f = go * fo. 

Proof .  Let 
C = { f E  B'--'2: 7 - f E  Ll(d#)}  . 

We claim that i fg  6 L~[0, oc) and f E C, then g �9 f E C. 

We first suppose that f 6 B2, i.e., f = h * fo for some fo E L~176 and h E Lol[0, ec). 

Then g �9 f = (g �9 h) �9 fo and g �9 h E LI[0, ~ ) .  Consequently, g �9 f E B2 and, since 7- f  E 
LZ(dix), we obtain by Corollary 3.15 in [2] with 7- instead of the ergodic Hilbert transform, that 
7-(g * f )  = g * 7 - f  ~ Ll(dlz). Thus, g * f E C. We obtain the same for f in the linear manifold 
generated by B2. If f E B2, then there exists a sequence {fn}~=l in the linear manifold generated by 

B2 such that f = limn~oo fn in the Ll(dix)-norm and, since g �9 fn belongs to the linear manifold 
generated by B2, for all n ~ N, it follows that g �9 f belongs to B2, since g �9 f = limn--,o~ g * fn in 
LI(dix). Furthermore, 7-(g �9 f )  = g .  7- f E Ll(d/z). 

If  we define 

Ilfllc = [[fIIL~(du) + llT- fllL~(d~) , 

then 1[ �9 lie is a norm in C and (C, II �9 is a Banach space. Now, by Theorem 32.22 of [9] we have 
that L~[0, o o ) ,  C is a linear subspace closed in C. If we prove that it is dense in C, we will get that 
C = L~[0, o o ) ,  C and this will complete the proof of Lemma 4. 

Let f 6 C and let {~n}n~=l be the approximation of the identity given by Lemma 3. Let us 
}o0 L01[0, o o ) .  C. By what we have proved in the case that the flow preserves consider {~n * f n=l C 

the measure, we have that if G ~ B1 = B2, then ~n * G converges to G in the Ll(d/z)-norm and 
7-(q/n * f )  converges to 7 - f  in the L 1 (d/z)-norm as n tends to infinity. As a consequence, 

lim Ilgsn * f - fllc= lim IlaPn * f - flltl(dtz) -t- lim [IT(grn * f )  - TfllL'(at~) = 0 .  
n ---+ o o  n----~ o(3 n----~ o o  

Therefore, ~n * f converges to f in the C-norm, which implies that C = LIo[O, e c ) .  C. This finishes 
the proof of Lemma 4. [ ]  

Consider as in [11] the sets 

Xn = {x ~ X " 2n < supco-l (rtx) < 2n+l } 

dv is as above. Since LI(Xn, dr) C LI(Xn, dlz), we have that f ~ B1 = BE (working where co = 3-~ 

in Xn) and 7- f  ~ L I(Xn, dix). Then f E C, defined as in the proof of Lemma 4 (in Xn). Therefore, 
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for each n ~ N, there exist Fn ~ ~ and Cn 6 L0~[0, c~) such that f = Fn * Cn in Xn. Since Fn ~ C 
we have that 7-Fn ~ L 1 (Xn, d#). Then we can apply the theorem in the case that the flow preserves 
the measure to obtain that 7-f  7-Fn * qSn in Xn. On the other hand, it follows from Theorem 9 
that 7 " f  = f l  + f2, where f l  ~ A and f2 6 B1. Then, 

+ 
lim ,A+(7-f) = lim ( ,A+fl  q-,As f2) = lim ,A+f l  = f l .  

8 -"4" ~ E - ' ~  ~ )  8" -4"00  

Since the limits of the averages are constant on each orbit and o~ f0 Cn = 0, we have that 

lim A+(7"f)  = l i m  .,4 + (TFn * Cn) = 0 
E---~(X) ~ - - ~  

in Xn, which implies that f l  = 0 in X n and therefore f~ = 0 in X. Thus, 7"f = f2 ~ B1. [] 

P r o o f  o f  T h e o r e m  2. Let f ~ L1 (du) such that 7"f ~ L 1 (dr), then, by Theorem 9, there exist 
f l  e A and f2 e B1 such that f = f l  + f2. We know that Tefl  converges to 7"fl a.e. and in the 
Ll(dv)-norm. Thus, we can suppose that f ~ Bll. Then, let f ~ B'-q" such that 7-f  ~ Ll(dv).  By 
Theorem 10, 7"f ~ B---'[. Let us consider a function 9 > 0, ~0 ~ C 1 [0, ~ ) ,  nonincreasing in [0, oe) 
and such that f o  ~o = 1. For each e > 0 let ~o,(t) = 1 ~ o ( t )  and define 

~E(x) = T~oe(x) - K x(~,oo)(x) , 

where T is the singular integral associated to K in ~.  Let KE = KX(e,~). Then 

(3.3) 

Let A~ = 81/e -- ~e. Then A~ ~ L l(N) for all e > 0 and [[AelIL l(R) < C, where C does not depend 

on e. Since Ke ~ LI (N)  it follows from (3.3) that T(~0e - q)l/e) e LI(N).  Observe that ~e and Ae 
have both support in [0, c~) and that the least majorant nonincreasing in [0, oo) of Ae belongs to 
L 1 (R). Then Theorem 8 gives that 

II~x~ �9 FIILI(dv) ~ C IlFllLl(dv) , 

for all F e Ll(dv).  

Let g > 0. Choose g in the linear manifold generated by B1 such that [ I f  - gllLl(dv) < Y. 
Notice that Lemma 4 holds for f ~ L l (dr), since it suffices to restrict to Xn. Therefore, using this 
fact and Corollary 3.15 of [2] with 7" instead of the ergodic Hilbert transform (again restricting the 
things to Xn) we obtain 

I I ~ f  - TflIL~(dv) = liKe * f - TfllLl(du) 

= 

< [IA~ * ( f  - g)llLl(dv) + [IA~ * gllrl(dv) 

+ I1~o~ �9 T f  - TfllL~(dv) + il l/  * TfllLl(d~) 
= I -t- II -t- III + I V .  ( 3 . 4 )  

For the first term we have 

I ~ IIAellL~(m IIf  -- gllL'(d~) <-- C y .  (3.5) 
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Notice that B! C L2(dv),  then g E L2(dv)  which implies that 7"g ~ L2(dv)  C L l (dv ) .  We have 
the following: 

II = IIA~ *griLl(dr) 

�9 TgllL,(a ) + c IlTeg - TgllL2(du) + ]loPe * T g  - TgIIL'(d~) 
= V + V I + V I I .  (3.6) 

The corollary of Theorem 7 gives 

lim [ l ~ g  = 0 ( 3 . 7 )  ~ o  - Tgllz2(dv) �9 

Finally, it is clear that the proof will be complete if we show that 

lim (III + IV + V + V I I )  = 0 . ( 3 . 8 )  
e--+0 

This is a consequence of the following result and the fact that, by Theorem 10, both, 7 - f  and 7-g 
belong to B1. 

L e m m a  5. 

Suppose that we are under the same hypothesis as that in Theorem 9. Let q) > O, ~o ~ C~c [0, oc), 
nonincreasing in [0, oo) and such that f o  ~o = 1. For each e > 0 let q)e (t) = _~o(.i) t 

(a) l f  f E L l (dv) ,  then f �9 ~oe converges to f in the L l (dv) -norm as e goes to O. 

(b) I f  f ~ B1---, then f ,  ~ol/E converges to 0 in the L l (dv) -norm as e goes to O. 

The proof of  this theorem follows the same pattern as the proof of  Theorem 5 in [11]. Therefore, 
we omit it. [ ]  

P r o o f  o f  L e m m a  3. Consider a continuous function ~0 with support contained in [0, 1], ~o > 0 

and such that f01 q) = 1. For each n 6 N let 

r  = - ~ o  - ~o - . 
n n 

It is very easy to see that the sequence { On }n~=l satisfies (i) and (ii). To prove (iii) it is sufficient to show 

that the second convolution tends to O, i.e., l i m n ~  I1 f*Cn I1Ll[o,~) = O, where r (t) = 1 (4  - 1), 
for f 6 L~[0, o0). If  f = 0 a.e., then there is nothing to prove. Suppose that [If[ [Lq0,ec) > 0. Let 

e Therefore, using the fact that f o  f 0 and e > 0, then there exists k > 0 such that fk ~176 If[  < ~. = 
Fubini's theorem we obtain 

IIf * cpnlltltO.oo ) f0 ec.ln ~ I f ( t ) [  [r t) - qSn(x)l d t d x  

fo 5 I f ( t ) l  I~bn(x - t) - 4~n(x)l d x d t  

+ If( t ) [  kbn(x - t) - qSn(X)[ d x d t  = A + B . 

It is obvious that 

fk c E B < 2 IIqSnllLlto,o~) [f l  < 2 "  
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To estimate A, observe that for all t 6 [0, k] and for all natural n > k we have that 

fo ~ ICn(X -- t) -- Cn(X)[ dx 
2n+t l X-- t  1 --~o n - - 1  dx 

an n n 

= f1 r188 

Now using that ~0 is uniformly continuous, we have that there exists 8 > 0 such that lu - Yl < 
e . Choose N ~ N such that N > k and ~ < 3. Then, for all implies that I~0(u) - ~0(y)l < 4[IfllD[o,~] 

n > N we have that 

-r x +  dx < 
1 - -  2 f L I [ o  r 

This gives that 

f 0  k 8 A <  If( t )12 f Ll[Oc~]dt < ~ .  

g E Thus, Ilf*r ool < ~-t- -~ = e, for a l ln  > N. This completes the proof of  Lemma 3. [ ]  
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