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ABSTRACT. We present a simple proof af Ron and Shen's frame bounds estimates .]br Gabor .frames. 

The proof is based on the Heil and Walnut's representation ~[" the.frame operator and shows that it can be 

decomposed into a continuous family of  infinite matrices. The estimates then follow.from a simple application 

of Gershgorin "s theorem to each matrix. Next, we show that, if  the window.function has exponential decay, 
also the dual function has some exponential decay. Then, we describe a numerical method to compute the dual 

Junction and give an estimate of  the error. Finally, we consider the spline of  order 2; we investigate numerically 

the region r the time-]requency plane where it generates aflame and we compute the dual function for some 

values of  the parameters. 

1. Introduction 

In this paper we study expansions of square integrable functions into families of translates and 
modulates of a given function g. If g is a function in L2(R) and to, O9o are two positive parameters, 
the family 

g m ~ o , , , n t , , ( t )  = g ( t  - nto) e imw~ 

m, n 6 Z, is called a Gaborframe in L2(R) if there exist two constants 0 < A < B < ec such that 

Al[fl[2 < E [(f'gm~~ 2 < BIIfll2 (1.1) 
m,n 

for all functions f ~ L2(R). If A = B, the frame is called a tight frame. Denoting by F the 
operator F : L2(R) --+/2(Z2) (Ff)m,n  = ( f ,  gmwo,nt~,), and by F* its adjoint, we may rewrite (1.1) 
as follows: 

A I  < F * F  < B I .  (1.2) 
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Hence, the spectral bounds of the operator F*F are the optimal constants in (1.1). The operator 
F*F is called the frame operator," note that it depends on g, wo, and to. It is well known that if 
{gmwo,nt. } is a frame, then the parameters to, wo must satisfy the condition toCOo _< 2rr. Throughout 
the paper we shall assume that this condition holds. 
In general frames, even tight frames, are not a basis of L2(R), because some of their vectors may be 
in the closed linear span of the others. This redundancy implies that the operator F is not surjective. 
However, since by (1.2) its range is closed, F has a generalized inverse, which is a bounded operator 
from the range of F to L2(R). The inversion formula is 

f = Z(f,~m~oo.nto)gmo)o,nto, (1.3) 
m,n 

where o~ = (F* F) - I  g and gmoJ,,,nto(t) = ~(t - nto)e im~~176 The function ~ is called the frame dual 
function and the family {~,mto,nwo, m, n 6 Z, } is a frame, the dual frame. The coefficients in the 
expansion (1.3) are characterized by the property of having minimal norm among all the sequences 
(Cm.n) in 12(Z) such that f = ~ Cm.n grntoo,nto. 
In applications, once the window function g has been chosen, the basic questions to investigate for a 
Gabor analysis are: find the values of the time-frequency parameters such that {gmwo.nto } is a frame 
and compute good estimates of the frame bounds. For reconstruction, it is also necessary to compute 
the dual function ~ and to determine its time-frequency localization properties. 
In [1], Daubechies established estimates of the frame bounds for a window function decaying suffi- 
ciently fast at infinity [see formula (2.6)], These estimates, obtained by means of Schwarz inequality, 
are not sharp, so in general they do not provide the best bounds. Sharper estimates have been ob- 
tained by Ron and Shen as a consequence of their Gramian analysis of Weyl-Heisenberg frames for 
multiwindow frames in L2(R n) [ 15]. In this paper we present a simple proof of these estimates for 
a single window in one dimension. Starting from a representation of the frame operator due to Heil 
and Walnut, we show that the frame operator can be decomposed into a continuous family of infinite 
matrices {M(t), t 6 R} [7]. The estimates then follow from a simple application of Gershgorin's 
theorem to each matrix. 
Properties of the dual function as consequence of analogous assumptions on the function g generating 
a frame have been investigated by Janssen; in [8] it is proved that if Po in rational, ~ satisfies the 
Tolimieri-Orr condition if g does. In [10] the same author shows that if g is in the Schwartz space 
S, then ~ is in S. We prove that if the function g has exponential decay, then the dual function 
also has exponential decay. 
To compute the dual function, first Daubechies solved the equation 

F*F~, = g (1.4) 

by using an iterative algorithm based on the Neumann series ~ = 2 to I - Y~k =0 ( ~ F* F) k 
g [1]. Daubechies et al. proposed a simpler and faster recursive formula, based on the Wexler-Raz 
identity [4]. These formulas depend on the computed frame bounds. However, in general the true 
values of A and B are difficult to estimate. Alternative methods have been introduced by various 
authors. Qiu and Feichtinger obtain the dual function by exploiting the band and block structure 
and the sparsity of the Gabor matrices [ 14]. Their paper contains an outline of some of the practical 
approaches proposed by various authors. By using the Zak transform, if p~, = 2rc/t~,wo is a rational 
number, Zibulski and Zeevi reduce the problem of solving equation (1.4) to the problem of solving a 
finite system of linear equations whose coefficients are periodic functions defined on R 2 [ 19]. Lastly, 
we mention Janssen's technique, which consists in writing the Wexler-Raz biorthogonal conditions 
in the time domain as a collection of decoupled linear systems involving samples of g as knowns 
and samples of ~ as unknowns [ 11J. The method we propose to compute the dual function is based 
on the decomposition of the frame operator into the family of infinite matrices {M(t), t e R}. 
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The paper is organized as follows. In Section 2 we describe how Ron and Shen's fibration and 
the new estimates of the frame bounds follow from Heil and Walnut's identities via Gerschgorin's 
theorem. In Section 3 we show that if the function g generating a frame has exponential decay, then 
the dual ~ also has some exponential decay. The proof is obtained by combining some of the ideas 
in [10] with a representation of the dual function given in [9]. The key step of the proof consists in 
showing that if the elements of a positive definite matrix U decay exponentially away from the main 
diagonal, then the elements of U - t  also have some exponential decay. In Section 4 we present the 
numerical technique to compute the dual function and, by using the results of the previous section, we 
give an estimate of the error. In Section 5 we present several numerical results on frames generated 
by cardinal splines. For the spline of order 2, by using the frame bounds estimates given in Section 2, 
we find, for several values of to, the values of the frequency parameter COo such that {gmwo,nto } is a 
frame. Finally we apply the numerical technique described in Section 4 to find the dual function of 
the spline of order 2 for some values of the time-frequency parameters. 

2. T h e  S t r u c t u r e  o f  the  F r a m e  Operator  and  the  F r a m e  
B o u n d s  

In this section we collect some results on the frame operator to be used later. We begin by 
introducing some notation. The Fourier transform of a function f in L 1 (R) is 

1 f f ( t ) e _ i t ~ d  t . ~ f ( ~ )  = f ( ~ )  - 

With this definition 5 r is an isometry on L2(R). The convolution of two functions f and g is 

' f  f .  g ( x )  = ~ f ( x  - y ) g ( y ) d y  , 

so that 5 r ( f  * g) = 2 f  2g .  
Let F denote the operator/~ : L2(R) --* 12(ZZ) defined by ( F f ) m , n  = ( f ,  gmto,nwo). From 

the identity 
(gmwo,nto) ̂ =  (g)-nto.mCOo eimnt~176 

it follows that 
~'* ~" = .UF* F . ~  -1 . (2.1) 

Therefore, {gmo~.,nt.} is a frame if and only if {gmto..~oo } is a frame and the frame bounds are the 
same. 
In [7] Heil and Walnut proved that the frame operators F * F  and/~'* F can be represented as linear 
combinations of translation operators with coefficients which are periodic functions (see Proposition 1 
below). Let r,  denote the translation by a ~ R, i.e., the operator mapping the function f ( t )  into the 
function f ( t  + a).  To simplify the notation we shall denote by Tk, k 6 Z, the translation by 2~__Z and 

CO o 

by T~ the translation by 2rric -Z-o" Let SIC and S~ be the functions 

( Sic(t) -- ~_~ g (t - nto) so t - nto 4- k 27r (2.2) 
09~ n~Z ('0~ / 

to Z ~ (t - nw~ ~' t - nCoo + k 2zr . (2.3) 
n~Z to / 

Denote by W ( L  ~ ,  L 1 ) the space of all functions such that for some positive number a 

Ilgllw,. -- II ,, g " XtO,a)ll  < oo. 
n 



548 Vincenza Del Prete 

Propos i t ion  1. 
I f  g or ~ ~ W ( L  ~ L l ), then the operawrs F and F^are bounded. Moreover, 

F* F = y ~  Sk Tk , (2.4) 
k~Z 

k*k - s;, T;,  (2.5) 
k~Z 

where the right-hand sides converge in the operator norm. 

From Proposition 1 it is straightforward to derive Daubechies'  estimates for the frame bounds [1]. 

Corol lary  1. 
In the hypothesis o f  Proposition 1, the spectral bounds A and B o f  F* F satisfy the estimates 

A >__ max e s s i n f  S 0 - 2  IlSkll~ , e s s i n f  S ~ - 2  IIs ll  (2.6) 
k=l k=l  

B < min e s s sup  S 0 + 2  Ilakll~ , e s s sup  + 2  ~ . 
k=l  \ k=l 

Moreover if ess inf So > 0 there exists a coo c > 0 such that for  each w E]0, woe], the family 

{gmo)o,nto} is a frame. 

R e m a r k  1. Conditions ess inf So > 0, ess sup So < ~ are also necessary (see [7] p. 649). 
Therefore, if g has support [ - a ,  a], frames are possible only if to < 2a. In this case the expression 
of F * F  becomes 

No 
F*F  : ~ SkTk, 

lkl=0 

where N~) = [ ~ ] ,  h = (Do2--~ (here [x] denotes the greatest integer less than x). In particular, if 
L ~ 

Wo < zr/a, then F * F  is the operator of multiplication by So, the frame bounds are A = ess inf So 
and B = ess sup So, and the dual function is ~ = So- lg .  

R e m a r k  2. From Proposition 1 it follows that if g ~ W ( L  ~ ,  L l), then {gmo)o,nto } is a tight frame 
2zr if and only if the sums Sk, Ikl ~ O, are zero and So is a constant. If  Ilgll = 1, then So = to(Do" 

Estimates (2.6), obtained by means of the Schwarz inequality, are not sharp, so in general 
they do not provide the best bounds. Sharper estimates have been obtained by Ron and Shen as a 
consequence of their Gramian analysis of  Weyl-Heisenberg frames [ 15]. They prove that the frame 
operator F * F  is unitarily equivalent to a collection of "'fiber" operators. We describe briefly how 
this fibration follows from Heil and Walnut's identities (2.4) and (2.5). To simplify the notation, we 
shall denote by h the ratio 2__.~ By (2.4), for every f 6 L2(R), 

( D  O ' 

F * F f ( t  - j h )  = ~ Sk(t - j h )  f ( t  - ( j  - k ) h ) .  
k6Z 

From (2.2) it follows that Sj- I  (t - j h )  = SI-] (t - lh). Therefore, 

F * F f ( t  - j h )  ~- y ~  mjl ( t )  f ( t  - lh) (2.7) 
I~Z 

where 
m jl(t  ) : S l - j ( t  - lh ) . (2.8) 
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We shall denote by M(t )  the infinite Hermitian matrix whose entries are mjl( t ) ,  j ,  l ~ Z. We 
shall identify infinite matrices with the densely defined operators on/2(Z) associated to them via 
the canonical basis. So, the norm of a matrix is the norm of the corresponding operator. Identify 

L2(R) with the Hilbert space L2([0, h]; 12(Z)) of the 12(Z)-valued functions isometrically o n  [0, h] 

by means of the isomorphism mapping a function f in L2(R) into the 12(Z)-valued function 

t w-~ ( f ( t  --nh))n~ z , 

0 < t < h. Then by (2.7), F* F is unitarily equivalent to the bounded operator.A.l on L 2 ([0, hi; l 2 (Z)) 

such that for any q)in L2([0, h]; 12(Z)) 

.A4cp(t) = M(t)~o(t) (2.9) 

for almost every t ~ [0, h]. An operator of this form is said to be decomposable into the measurable 
field t w-~ M( t )  of operators on 12(Z) [6]. From the general theory of decomposable operators it 
follows that the upper and lower bounds of the operator 3//coincide with 

ess inf inf (M(t)u ,  u), ess sup sup (M(t)u ,  u) , (2.10) 
tE[0,h] Ilull=l t~[0,h] Ilull=l 

respectively. Here (., .) and I[ " II denote the inner product and the norm in/2(Z). Note that since 
t w-~ M( t )  is to-periodic and to < h, here we may replace the interval [0, h] by R. 
By using (2.5), one can perform a similar analysis on the operator/~*F. Indeed for any t ~ R let 
M^(t) be the infinite matrix whose entries are 

(12 ) 
m h(t ) = S ~ _ . i  t -  to / (2.11) 

Z. Then /~*/7 is unitarily equivalent to an operator .M^on L2([0, 2r];/2(Z)) which is j , l  E to a 
i 

2Jr decomposable into the measurable field of matrices t ~-~ M^(t), t ~ [0, ZTo]. This leads to bounds 
for .M^analogous to (2.10). 
For later reference we summarize these results in the following proposition (see also [9], page 44 
and [15]). 

Propos i t ion  2. 
Let g or ~ be E W ( L c~, LI). Then 

A I  < F * F  < B I  .~ '.. A I  < M(t )  < B I  (2.12) 

A I  < F * P  < B I  ~. F A I  < M^(t) < B I ,  (2.13) 

for  a.e. t E R. 

It is now an easy matter to deduce Ron and Shen's estimates of the frame bounds: 

Propos i t ion  3. 
Let g or ~ be in W ( L ~176 LI). Then the spectral bounds A and B of  F* F satisfy the estimates 

max{essinf( 0 essinf 

min{esssup(S0+ Sk)  0 esssup (2.14) 
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Proof. The operators F*F and Ad have the same spectral bounds, which are, by (2.10), the 
2rr essential infimum and the essential supremum, for t 6 [0, ~,,, ], of the spectral bounds for the matrix 

M(t). Let PN denote the orthogonal projection onto the (2N + 1)-dimensional subspace of/2(Z) 
spanned by the elements {ej, ]Jl < N} of the canonical basis. Let Mg(t) = PNM(t)PN. By 
Gershgorin's theorem, the lowest and highest eigenvalues XN (t) and AN (t) of the matrix MN (t) 
satisfy the estimates 

IJI~N [ll<_N 
l • j  

.< 

for a.e. t 6 R. Since mfl(t) = St-j(t  - lh), 

m j j ( t ) -  Z lmjl(t)l > 
}ll<N 
i#.j 

Similarly, 

>. 

AN(t) _< max 
UI_<N 

mj.i(t) + Z [mJ (t)l) 
III<N 
t#.j 

So(t - jh) - Z jSl-j(t - lh) I 
Ill<_N 
t #,j 

essinf( o   )  o 
mjj(t)+ ItI<-N~ lmjl(t)l <esssup(So+\ k#oElSk[) = B I ,  

t#.j 
Hence, A1 < )~N(t) < AN(t) < B! for a.e.t.  Since MN(t) converges to M(t) in the strong operator 
topology and IIMN(t)II < IIM(t)ll for every t 6 R and every integer N, 

lim (MN(t)u, u) = (M(t)u, u} , 
N-.+ ~ 

for every u 6 /2(Z). Therefore, A! is a lower bound and B! is an upper bound of the spectrum of 
M(t) for almost every t 6 R. Similarly, one can see that 

ess inf ( S ~ -  Z [S~[ ) k # 0  and 

are, respectively, a lower and an upper bound for the spectrum of/~*.~. Since the spectral bounds 
of the operators F* F and F*.~ are the same, the conclusion follows. []  

3. Exponential Decay of the Dual Function 

Properties of the dual function as a consequence of analogous assumptions on the window 
function g have been investigated by Janssen; in [8] it is proved that if Po is rational, ~ satisfies the 
Tolimieri-Orr condition if g does. In [10] the same author shows that if g is in the Schwartz space 
$, then ~ is in S. 
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In this section we prove that if the function generating a frame has exponential decay, then the 
dual function ~ also has exponential decay. The proof is obtained by combining some of the ideas 
in [10] with a representation of the dual function given in [9]. Let G and G be the elements of 

L2([0, h]; 12(Z)] defined by 
\ ] 

G( t )  = (g( t  - n h ) ) n c z  G( t )  = @,(t - nh))n~ z 

for a.e. t 6 [0, h], h = 2Jr Then, by (2.7), equation (1.4) is equivalent to 
fo o " 

G(t )  = M ( t ) G ( t )  (3.1) 

for a.e. t in R. We shall prove that if g has exponential decay, then M ( t )  is invertible for a.e. t 6 R 
and the entries of M - l  (t) have exponential decay. Hence, 

G(t )  = M - t  ( t ) G ( t )  (3.2) 

for almost every t in R and ~ is an infinite linear combination of translates of g, with exponentially 
decaying coefficients. Note that this is essentially the representation of the dual function given in [9] 
[formula (1.3.21)]. 
The key step of the proof consists in showing that if the elements of a positive definite matrix U decay 
exponentially away from the main diagonal, then the elements of U-1 also have some exponential 
decay (see Theorem 1 below). 
As in the previous section, we identify a bounded operator on/2(Z)  with the matrix associated 
to it via the canonical basis. Hence, the norm l iUII  of a matrix U = (uij)i, i s z  is the norm of 
the corresponding operator. To measure the exponential decay of the entries away from the main 
diagonal, we consider a family of spaces {1;a}, ot > 0. For every ot > 0 let V a denote the space of 
all infinite matrices U = (u i , j )  such that 

IIU[l==supelktu sup ]ui.il < e e .  (3.3) 
k~Z l i - j l=k  

It is easy to check that V '~ is a Banach space with respect to the norm II �9 I1~, but not a Banach algebra 
with respect to operator composition. However, we shall see that the product of a finite number of 
elements of l; ~ is in V~ for any/5 < ot (see Proposition 4 below). First we need a lemma. 

L e m m a  1. 
Le t  ~ and b be two posi t ive constants. For any 0 < z < cr, 

_ e  -rrix-kbI e -rly-kbL < 3 ~r + b-_______~ 1 e_rlx_y 1 (3.4) 

keZ 

f o r  all  x ,  y ~ R. 

Proof .  By a scaling argument it is enough to prove the lemma for b = 1. Assume first that x < y. 
Decompose the sum in (3.4) into three parts: 

~-~e-~rlx-k l  e - z l y - k l =  Z + ~ + ~ = ~ + ~ + ~ (3.5) 

k~Z k<x x<k<y y<k 1 2 3 

Since 
�9 e-aS 

S-"  e - ~ j  < (3.6) L ~ ,  
- l _ e _ U  

s<j 
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for a > 0 and s 6 R, we have that 

Hence, 

Z 
1 

< 

< 

2 

< 

e-t lx-y] 
e-aX-rY ~ e - (a+r ) J  < 

- -  1 - e -(or+r) ' 
j>--X 

e--T]x--yl 
eaX--rY E e--(cr--z)J < 

- 1 - -  e - ( ~ r - r )  ' 
x<_k 

e-alx-yl  
eaX+vY E e-(C~+z)'J < 

- -  1 - - e  - (a+r )  ' 
j>y 

< e_rlx_y I ( 1 Z e-, ,Ix-gle-rly-kl  
k~Z -- \ 1 -- e - ( a - r )  

2 

+ 1 -- e --(<r+r) ) " 

1 < 1 The conclusion follows since ~ _ 2 + 1. If x > y or x = y, the proof  is similar. 

Propos i t ion  4 .  
k IfU1 U2 . . . . .  Uk E ]2 c~, then I - I j=l  U / ~  V~ for  anyO < fl < ot and 

vj  _ 1-I IluJll . 
j = l  

P r o o f .  If  US = (uij)  and U2 = (I)i.j) are in V a, then 

lUi,jl <~ IIUlllcl e - a l i - j l  , IVi.jl < IIU2iicL e - a l i - j l  . 

By Lemma 1, the i j th entry of the matrix Ul U2 is bounded by 

Z [ uikl)kj] < 30t  "t- l 
- -  O l _ _  t~ k~Z 

IIUIlI~ IIU211~ e -~ i i - j l  

for every 0 < fl < c~. Therefore, 

~ + 1  
[[U1Uzllt~ < 3 Ilelll,~ ]lU2l[~ �9 

- -  0 / - - / ~  

This proves the lemma for k = 2. For general k, the thesis follows by induction. [ ]  

[ ]  

(3.7) 

Given an infinite matrix U = (u i j ) ,  for any integer N let UN denote the N-band matrix whose entries 
are uij if li - J[ -< N and zero otherwise. Note that for any positive ~ and any integer N, 

< e Na IIUNII . (3.8) 

2 e - ~ N  IIUII~, (3.9) 
Og 

eN(r-a) II g II,~ �9 (3.10) 

11 UN II 

L e t  6 N denote the matrix U - UN. 

L e m m a  2. 
I f  U ~ Vafor some ot > O, then 

II Nll-< 
lifT. _< 

for  any O < r < ot, N 6 N. 
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P r o o f .  We only prove (3.9). Let U = (u i j ) ,  and let U ( k )  denote the matrix whose entries are uij  
if i - j = k and zero otherwise. Then 

2 e - a ( N + l )  
IIUNII < ~ tlU(k)l[ < ~ max l u i j l <  IIUII~. 

- -  - -  t i - j l=k -- 1 -- e - a  
IkI>N+I Ikl>__N§ 

e -c~ 1 the thesis follows. Since ~ < 

L e m m a  3. 

Le t  U c )2 a, ot > O, be such that 

[] 

A I  < U < B I  (3.11) 

f o r  0 < A <_ B < ~ .  Then there exists an integer No such that 

(A) 
~ - I _ < U s  < B +  I (3.12) 

f o r  N > No. M o r e o v e r , / f  0 < fl < ~- log A§ B ' 

UN ~ 2 1 - t  < - -  B (3.13) 
- A + B 1 - eft N A+B 

1 P r o o f .  LetNo bean  integer greater than ~ log(4~a IlU[la); by(3.9),  lib'Nil < a i f N  > No. Since 
for any N 

(a -II~ull) I < UN < ( B  + II ull) I, 
(3.12) follows. To show the second part of  the lemma, we fix N > No and consider the N-band 

2 B matrix VN = I -- -g-g--# UN, so that II Vg II -< 3--gg and 

A + B  
UN = - - ( I  -- VN) �9 (3.14) 

2 

Therefore, we only need to show that the Neumann series ~ k  VN k for ( I  - V N ) -  t converges in l; # if 
/3 is sufficiently small. Since VN k is a (kN)-band matrix, from (3.8) we get It VN k II ~ _< e ~t~N t1VN k II 
for any positive /3. It f~176 that IIVNkllt ~ --< (e~N -a--g-~)'B k Therefore, iff i  < ~ l o g  3--~-, the series 

B -1 }--~k I1VN k I1~ converges and is bounded by (1 - e ~N 3-gg) " [] 

T h e o r e m  1. 
Suppose  that U ~ 1)~, ot > O. I f  there exist 0 < A < B < cx~ such that 

A I  < U < B I ,  (3.15) 

then U -  1 ~ V 8 f o r  some ~ > O. 

I 1 ~  A+B Therefore, we can write P r o o f .  By Lemma 3, UN 1 ~ V/~ if N > No and 0 < fl < ~ .ug ---if-. 

U = UN ( I  + UNI~[N)  . 

1 ~ _  A + B  We may assume that ~ lu~---U" < or. Moreover, by (3.10), UN E )3/3. Thus, ( U N I U N )  k is the 
product of 2k elements of ))/~; thus, by Proposition 4, (3.10), and (3.13) 

- l  ~ k ~/2 (UN UN)  ~ 1  zk 
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where 

tz = 3 6 ( 1 + ~ )  2 UN 1 3 IIUNII/3--< 3 6 ( 1 + ~ )  2 -  

1 - e 13N A +-----B 

2 

A + B  

For any N let fi be such that 
e/~U B _ 1 

A + B  2 

Then 1 + ~ = O ( N ) .  Therefore, we may choose N sufficiently large so that/z < 1. Thus, the 

Neumann series ~k>o(--1)k(UN 1UN) k converges to (1 + UN1UN) -1 in );3/2. Since UN 1 ~ V 3, 

by Proposition 4, we conclude that U -1 = (I + UNIUN) -1 UN 1 E ]26 for every 3 < -~. [ ]  

We can now prove the main result of this section, namely that if the function g generating a 
frame has exponential decay, then the dual function also has exponential decay. We first show that 
the entries of the matrix M ( t )  = ( m j l ( t ) )  in (3.1) have exponential decay. 

L e m m a  4. 
Suppose  to < h = 2rr and let g ~ L2(R) be such that 

- -  (2)O 

tg(t) l  < Ce-a l t l  

f o r  some C and a > O. Then, f o r  any 0 < r < a,  the matr ix  M ( t )  is in ])rh uni formly  in t. 

Proofi  By (2.8) 

[mj l ( t )  ! = h ~n g (t - nto - lh)-g (t - nto - j h )  < C 2 Zn e-Crlt-lh-nt~ e -crl t- jh-ntol  . 

By applying Lemma 1 with b = to, x = t - lh,  and y = t - j h ,  we obtain 

Imj l ( t ) l  < 3C 2 a -t- t(~ 1 e_rh[j_ll  
~7 - -  r 

for any t E R. [ ]  

T h e o r e m  2. 
Suppose to < h = 2E and tet  g c: W ( L  ~ ,  L 1) be such that [g(t)[ < C e-~l t l ,  f o r  some C and 

- -  ( D o  

a > O .  I f  
A I  < F ' F <  B I ,  

0 < A < B < oo, then Ig(t)l < CI e - Y l t l f o r s o m e C l  a n d v  > O. 

Proof .  By Lemma 4 the matrix M ( t )  is in )2 ~h uniformly in t for any r < a. By Proposition 2, 
the bounds A and B are also bounds of the matrix M ( t )  for almost all t 6 R. Thus, we can apply 
Theorem 1 with ~ = vh and conclude that for almost every t the matrix M ( t )  is invertible and 
M -1 (t)  = ( s  ( t))  is in V 8h for some 3. Moreover, ess supl[M-l(t)ll6h < oc since M ( t )  is in V ~:h 
uniformly in t. Hence, by (3.2), 

Ig(t)l _< ~ls I g ( t  - k h ) l  <_ C' ~ e -~hlkl e -crlt-khl . 

k k e Z  

By applying Lemma 1, we obtain the thesis with y = min(3h, or). [ ]  
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We end this section by discussing briefly the question whether the dual function ~ has compact 
support if the window g has compact support (see also [9]). Let the support of g be in [ - a ,  a]. 
From Remark 1 in Section 2, it follows immediately that if h > 2a, ~ has compact support. If  

2zr h < 2a and po = t - ~  is rational, by using the Zak transform, it can be shown that ~ cannot have 
compact support [5]. Indeed the Zak transform of ~, Uh~(t, s) (t, s) ~ [0, 11 x [0, 1], extends to 
a meromorphic function z ~ H(z ,  s), with poles off the real axis. Hence, ~ cannot have compact 
support since the Zak transform of a function with compact support, as function of t, extends to an 
entire function. 

4. The Computation of  the Dual Function 

In this section we present a numerical technique to find the dual function ~ and, by using the 
results of the previous section, we estimate the error. Let II �9 II denote the 12(Z) norm. The method 
we propose is based on identity (3.2). Let {gm~o,,.nto } be a frame with best frame bounds A and B. 
Let t 6 R be fixed. Henceforth we shall suppress the dependence on t. Let g and ~, j 6 Z denote 
the vectors 

g = (g(t - j h ) ) j ~ z  ~ = (~(t - jh)) . j~z . 

By (3.1), 
M~ = g .  (4.1) 

If g has compact support in [ - a ,  a], then M is a band matrix with band width No = [-~]. Let m, n 
be positive integers. To solve (4.1), we replace it by the finite dimensional system 

P M P v  = Pg (4.2) 

where P = P(n,  m) is the projection defined by: 

{u~ i f - n  < k < m for 
(Pu)~ = 0 otherwise, any u = (u j) ]ez p 

T h e o r e m  3. 
Let g or ~, be in W ( L  ~ ,  L1), then equation (4.2) has a unique solution vp in Im  P, which 

satisfies the error estimate 

iiv - ll 0 
where A and B are the optimal frame bounds. 

Proof .  By Proposition 2 the restriction of P M P to I m P  is invertible and the norm of its inverse 
is < A - ] .  Thus, equation (4.2) has a unique solution vp in ImP.  Let Q = 1 - P, then 

IlvP- ll IIvP-P ll § IIa ll �9 (4.4) 

To estimate the first summand, we observe that, from (4.1) and (4.2), 

P M P  ( re  - Pfg) = Pg  - P M  (I - Q) ~, = Pg  - P M ~  + P M Q ~  = P M O ~ .  (4.5) 

Hence, 
1 B 

live - P II -< ~ ] l P  M all I[a~gll < ~ [Ia ll �9 (4.6) 

From (4.4) the thesis follows. [ ]  



556 Vincenza De i Prete 

By Theorem 2, if g has exponential decay, then ~ also has exponential decay. In this case an 
explicit error estimate can be given. 

Corol lary 2. 
Let g or ~ be in W (L c~, L1). I f l~(t) l  < Cl e -yltl then for every t ~ R and every ~ > O, 

) IIv - l[ -< + 1 e - y '  , 

provided m > ~+___At and n > -T-" 

Proof. To estimate [I Qf~ll e = ~k>m I~(t-kh)l  e + ~ < _ ~  Ig(t-kh)]  2, we first let t be positive. 
Then the first sum is estimated by 

C 1 [e-ZYlt-Uhldu < C2 _ _  e-2FYdy ._~ e-2F(hm-t) 
- -  h m - l  

if mh - t > 0. Similarly, we find that the second sum in the expression of  [[Qgll is less than 
3 - t  C~-2y(t+nh) Fix 3 > 0. If t > 0 and m > ~__~t and n > -h-- 

2F h ~ 

C 2 
< - 1 e-2Y~ . (4.7) iia~l[z (e_2F(mh_t) + e  2y(nh+0) < 2Fh 
- 2Fh 

A similar argument shows that the conclusion holds if t < 0. [ ]  

5. Frames Generated by Cardinal Splines 

In this section we shall use the previous results to study frames generated by the functions 
g(t) = SM(t + M), where SM is the cardinal B-spline of order M, 

s u ( t )  - 

M 
- 1 Z ( - - 1 ) k  ( M )  (t -- k) M-1 , 

(M 1)! k=o 

for 0 < t < M, and zero otherwise. So, for M --- 1, g is the characteristic function X of  the interval 
[_�89 1], for M = 2, g is the "tent" function g(t) = (1 - ttl)+. The Fourier transform of g is 

1 ( s i n ( ~ / 2 ) ~ M  
(5.1) 

Before presenting the numerical experiments, we review some facts from the theory of flames 
constructed by means of cardinal B-splines. 
It is well known that if {gmwo,nto } is a frame, then the frame parameters must satisfy the condition 
tocoo < 2zr. I f  tocoo = 2zr, by the Balian-Low theorem, either tg(t)  q~ L2(R) or t~(t)  f~ L2(R). 
Therefore, if toWo = 2zr, cardinal B-splines of order greater than 1 cannot generate frames, while it 
is well known that X generates an orthonormal basis for to = 1 and COo = 2zr. Henceforth we shall 

suppose toCOo < 2zr. 
First we discuss briefly the existence of  tight frames. Cardinal B-splines of  order M > 1 cannot 
generate tight frames if toCOo < 2zr, by Remark 1 at the end of  Section 2. Indeed if M > 1, the 

2~r sum So(t) = ~ ~ n c Z  g2( t - nto) is not constant for any to. Tight frames can be constructed by 
taking as window the square root of a cardinal B-spline [2]. Indeed, since by Poisson summation 
f o r m u l a  Z l  g M ( t  -- l) = 1, from Remark 2, it follows that for to < M and COo < 2:r/M, the function 
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g( t )  = ( t o ) - t / Z s M t / 2 ( t o - l t ) ,  generates a tight frame. In particular, if to < 1, toCOo < 2rr, and 
27r ---~ )~@,), then {gmwo,nto} is a tight frame with frame bounds t-2~o" Tight frames can also g( t )  = 

be constructed from any frame, via a general procedure: if the family {gmcoo,nto} is a frame, F * F  
the associated frame operator and G = ( F * F ) - I / 2 g ,  then {Gm,oo,nto} is a tight frame (see [3]). 
If g has support [ - a ,  a] and 2Jr/COo > 2a, then, by Remark 2, G has compact support since 
G = ( ~ _ ) 1 / 2  g(ff-~4, "gktog2) -1/2" 

To find the points (to, COo) of the time-frequency plane such that SM generates a frame, we note that, 
for the spline of order greater than 1, inf So > 0 if and only if to >__ M .  Moreover, if COo < 2_~, the 
frame operator reduces to the operator of multiplication bt So. Hence, by Remark 1, if to > M > 1, 

2rr SM does not generate a frame; on the contrary, if to < M and COo < --~, SM generates a frame. 

P r o p o s i t i o n  5. 
I f  co o is equal to 2jzr ,  j > 2 integer, the fami ly  {(SM)m,oo,nto } is not a f rame.  

Proof .  By Remark 1, it is enough to show that if COo = 2jzr ,  j integer > 2, the infimum of the 
function 

SO^(~) = ~ (S'MM (~ -- nCOo)) 2 
n 

is zero. Indeed, by (5.1), all the summands vanish in 2zr. [ ]  

R e m a r k .  We notice that COo = 2jzr, j > 2 integer, is a necessary condition for inf 5'0 ̂  = 0. Indeed 
if Wo ~= 2j  Jr j >_. 2 integer, the intersection of the sets of zeros of s~ and s~/(. - coo)iS empty. Thus, 
S0^(~) > 0 for every ~. Since S0^(~) > 0 is continuous and periodic, its infimum is positive. 
We can summarize this result and the previous considerations as follows: 

P r o p o s i t i o n  6. 
Suppose  M > 1. Then the fami ly  {(SM)mwo,nto} 

2rr i) is a f r a m e  in the region {(to, coo) : to < M ,  coo < --if}, 

ii) is not a f rame  in the region 

{(to, Wo) : to > O, coo= 2j~r, j > 2}  U {(to, coo) : to >__ M ,  wo > 0} . 

If M = 1 the same result holds, provided that, in condition ii), we replace the region {(to, COo) : to > 
M,  Wo > 0} with {(to, Wo) : to > 1, COo > 0}. 
Thus, it remains to investigate the region of the time-frequency plane 

(to, Wo) " to < M,  Wo > --~,  COo ~ 2jzr ,  j > 2 . 

In the rest of this section we shall deal with this question, describing some numerical experiments 
based on the frame bounds estimates given in Section 2. First we compare the sharpness of esti- 
mates (2.6) and (2.14) for the Gaussian and for the spline of order 2. Next, we investigate numerically 
the region of the time-frequency plane (to, COo) such that the family {(SZ)m,o,,,nto} is a frame. Finally, 
by using the method described in Section 4, we find the dual function ~ .  
We shall denote by A, B the frame bounds computed by using Daubechies' estimates (2.6) and by 
An,  Bn the frame bounds computed via the new estimates (2.14). 
If toCOo = ~-, N a positive integer, it is possible to compute the exact values Aex,  Bex of the 
optimal frame bounds. Indeed, the frame operator F * F  is unitarily equivalent to the operators of 
multiplication by the functions 

K o ( t , s ) = ~  g t+-~,s Co(t,s)= g t , s -  
l=0 1=0 
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acting on L2([0, 112). Here Ux )~ 6 R + denotes the Zak transform o f g  with parameter ~ (see [1]). 
Therefore, it is possible to compare the computed frame bounds An and Bn with the exact values 

Aex = inf Ko = inf Lo, Bex = sup Ko = sup Lo �9 

First we test the sharpness of  the estimates on the Gaussian z r -1 / 4e -F / 2 .  It is well known that this 
function generates a frame if and only if toCOo < 2zr (see [13], [16]). For the Gaussian, Janssen 
found an analytic expression for the frame bounds in the case tocoo 27r and computed the dual 
function for N even [12]. In Table 2.1 we compare the estimated and the exact lower frame bounds 
for this function in the case toCOo = Jr for several values of to. In all these cases the upper frame 
bounds coincide to the fifth digit. The same calculations for other hyperbolas tocoo = 2zr /N,  N > 2, 
give similar results. So, for the Gaussian, Ron and Shen's estimates slightly improve Daubechies' 
estimates, and there is a very good agreement between the computed and the exact frame bounds. 

TABLE 2.1 

The lower frame bound for tocoo = Jr 
for g = j r - l /4e-XZ/2 

to 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

A 
0100073 
0.60089 
1.51863 
1.57489 
1.17168 
0.71275 
0.36939 
0.16533 

An 
0.00073 
0.60119 
1.53961 
1.60014 
1.17804 
0.71341 
0.36942 
0.16534 

Aex 
0.00073 
0.60119 
1.53961 
1.60015 
1,17804 
0~71341 
0.36942 
0.16534 

Next, we test the estimates on the spline of order 2; in Table 2.2 we list computed vs. exact frame 
bounds for tocoo = zr. 
To find the region of  the time-frequency plane such that {gmwo,nto } constitutes a frame, we shall 
compute the lower frame bounds for each fixed value of  to in a range and for increasing values of coo, 
detecting the value coo c = cooC(to) such that the computed lower frame bound becomes zero. This 
technique was used by Daubechies to investigate Gaussian frames. We shall also compare results 
obtained using estimates (2.6) and (2.14) [1]. In Table 2.3 we list, for to = 0.2, 0.3 . . . .  1.9, the 
values COo c obtained by using Daubechies's estimates and the values coocn obtained with the new 
estimates. 
In Figure 1 we have plotted these values and the hyperbola tocoo = 2zr, We remind the reader that 
for toWo > 2re the family {gm~o,,,nt,,} cannot be a frame. We can see that for to ~ [1, 2] and coo close 
to 2rr/to the estimates for the lower frame bound are excellent. We believe that, due to the poor 
localization of ~, the estimates for small to are not satisfactory. 
In Figure 2 we have plotted the curve ( to, cooCn ), the hyperbolas tocoo = 2zr, tocoo = zr and the lines 
COo = 2jzr, j > 2, where Aex = 0, by Proposition 5. Although our estimates are not sufficiently 
sharp to investigate whether the family {gmoJo.nto } is a frame for the values of  the time-frequency 
parameters between these lines, we have obtained An > 0 also in some points between the lines 
COo = 4:r and COo = 6zr. Indeed Aex is positive on some points on the hyperbola tocoo = Jr that lie 
between these two lines. 
Lastly, we have used the method described in Section 4 to compute the dual function of  the spline of 
order 2. Figure 3 shows some sets of  plots of  ~ for fixed coo. In the first set of  plots coo = zr. In this 
case, we were able to compare the computed with the exact dual function since, for co~, = Jr, the dual 
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T A B L E  2 . 2  

The frame bounds for g = (1 - ]x[)+ and toCOo = ~r. *Values 
obtained with the estimates for 

I to 
0.2 

0.25 

0.3 

0.4 

0 5  

0.6 

0.7 

0.8 

16 

1.8 

A 

-0.036* 

-0.069* 

-0.101" 

0.044* 

0.5 

0.816 

0.931 

1.024 

1.053 

1 

0.768 

0.504 

0.256 

0.072 

A.o04. 

0* 

0.001" 

0.218" 

0.5 

0.864 

1.120 

1.152 

1.089 

1 

0.768 

0.504 

0.256 ' 

0.072 

Aex 

0.008 

0 

0.003 

0.230 

0.5 

0.864 

1.120 

1.152 

1.089 

1 
0.768 

0.504 

0.256 

0.072 

46* 5,008 8 

4,069 4.000 4.000 

3.450* 3,480 3.480 

2.708* 2,720 2.720 

2.250 2.000 2.000 

1.968 1.968 1.968 

1.904 1,904 1.904 

1.856 1.856 1.856 

1.872 1.872 1.872 

2 2 2 

2.4 2.4 2.4 

2.8 2.8 2.8 

3.2 3.2 3.2 

3.6 3�9 3.6 

TABLE 2.3 

c f o r g  = (1 - I x l ) +  Values of w~ 

to 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
1.1 <to < 1.9 

(3)0 g 

9.94000 

9.14195 

8.12088 

7.83451 

7.36071 

7.28531 

7.36071 

6.86549 

6.28319 

6.28319/~ 

27r/(woCto) - 1 2rr/(woCto) - 1 

2.16056 

1.2910 

9.3427.10 -1 

6.0398.10 - I  

4.2269.10 -1 

2.3207.10 - I  

6.6783.10 -2 

1.6871.10 -2 

2.2204�9 10 -16 

2.2204. 10 -16 

10.8197 

10.4991 

9.27700 

8.92778 

9.09486 

8.61735 

7.85239 

6.97859 

6.28319 

6.28319/to 

6.9322 

4.0755 

1.5141 

4.1617 

i 2.0245 
3.9148 

1.9036 

9.9483. 10 -1 
. 1 0 - i  
.10-1  
.10-I  
. 10 -2  
�9 10-4 
.10 -4 

2.2204. 10 -16 

2.2204. 10 -16 

function ~ is So- !g  (see Remark 1 in Section 2). For to = 0.2, where the frame is close to a tight 

frame, the function ~ is very similar to g. For growing values of to, the function ~ becomes very 

different from g; for to = 1.9 the ~ does not even look like a perturbed tent any more. In the second 

set of plots, where Wo = 27r, we can observe the same behavior: as we get closer to the hyperbola 

toWo = 27r the deviation of ~ increases, 
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The dual function ~. The parameter h = ~o is equal to 2 in the first column, and is equal to 1 in the second. 
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