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ABSTRACT.  The function
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is a characteristic function of a probability distribution iff |6] < min(“—{i , T — "T"’). This distribution is
absolutely continuous; for © = 0 it is symmetric. The latter case was introduced by Linnik in 1953 [13] and
several applications were found later. The case 6 # 0 was introduced by Klebanov, Maniya, and Melamed in
1984 [9], while some special cases were considered previously by Laha [12] and Pillai [18]. In 1994, Kotz,
Ostrovskii and Hayfavi [10] carried out a detailed investigation of analytic and asymptotic properties of the
density of the distribution for the symmetric case 8 = 0. We generalize their results to the non-symmetric
case 8 # 0. As in the symmetric case, the arithmetical nature of the parameter « plays an important role, but
several new phenomena appear.

1. Introduction
In 1953, Linnik [13] proved that the function

%:(f): ,aE(O,Z),

1
1+ jej

is a characteristic function of a symmetric probability density p,(x). Since then, the family of
symmetric Linnik’s densities {py(x) : « € (0, 2)} has had several probabilistic applications (see,
e.g., [11-[6]). In 1994, Kotz et al. [10] carried out a detailed investigation of analytic and asymptotic

properties of py(x).
In 1984, Klebanov et al. [9], introduced the concept of geometric strict stability and proved

that the family of geometrically strictly stable densities coincides with the family of densities with
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characteristic functions
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A few years ago, it turned out that these densities have useful applications in modeling financial
data [11, 14]. In 1992, Pakes [17] showed that, in some characterization problems of Mathematical
Statistics, the probability densities with characteristic functions (1.2) play an important role. These
densities can be viewed as generalizations of symmetric Linnik’s densities. For 6| = min(%}, 7 —
12‘1), these densities appeared in the papers by Laha [12] and Pillai [18]. Therefore, the problem
of the study of analytic and asymptotic properties of the densities with characteristic function given
by (1.2) seems to be of interest.
As it was shown by Pakes [17], the function

1

1 4 e—ifsontjpja’ «€(0,2),0¢€(~nm,n], (1.3)

9
Yo (t) =
is a characteristic function of a probability distribution iff

L o
19]§mm( > , T 3 ) . (1.4)

The distribution is absolutely continuous. We denote its density by p(x). Clearly, for 6 = 0,
pz (x) coincides with symmetric Linnik’s density py(x). For 6 # O we call pg (x) non-symmetric
Linnik’s density. We study analytic and asymptotic properties of pz (x) and obtain generalizations
of the results of [10]. As in the symmetric case, convergence of series expansions of p? (x) depends
on the arithmetical nature of the parameter «. However, several new phenomena appear connected
with the non-symmetry parameter 9.

2. Statement of Results

Theorem 1.
The distribution function of the characteristic function ¢S (t) is absolutely continuous and its
density pl(x) can be represented in the form

(iJforO<a <1, 0<f <maf2andl <o <2, 056 <7t—”—i‘i;

sin (22 + @sgnx) [ —ylxlye g
po(x) = (% +6sg )/ MYy e, o
b4 0 l1+eiesgnxyae’—’£—ql
(iforl <a <2, 6 =m0 -5
sin(ma) [ e¥y%dy
6 - - 5 ¥ < 0,
pu(-x) = b4 0 |1 — elﬂayal (22)
e X/ x>0,
(iii) for —m < 6 < 0, we have
pl(x) = p;e(*X), xeR. (23)

The set of all pairs («, 8) for which (pﬁ () is a characteristic function of a probability distribution
is a diamond-shaped region described by (1.4) where 0 < o < 2. The points (0, 0) and (2, 0) are
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not included in the set. Note that the point (2, 0) can be interpreted as the well-known Laplace
distribution with the characteristic function ¢2(t) = (1 + 2)~! and the density py(x) = e~ ¥1/2.
We shall denote this set by P D and call it the parametrical domain. Denote by PD* the part of
P D consisting of pairs (o, 8) such that § > 0. Without loss of generality, we can restrict our study
of pf(x) to PD* since one can obtain pf(x) for (o, 8) € PD\PD* from (2.3).

Recall that a function f(x) defined on an interval I C R is called completely monotonic (resp.,
absolutely monotonic) if it is infinitely differentiable on I and, moreover, for any x € I and any
k=01,.. ,(=D*f®(x) > 0 (esp., f®x) > 0).

The following theorem related to analytic properties of pz (x) was proved in the symmetric
case @ = 01in [10].

Theorem 2.

(i) For any (o, 0) € PD™, the function pg (x) is completely monotonic on (0, 00) and abso-
lutely monotonic on (—0, 0).
(iJForl <a<2,0<8<m-— ”7“, pz(x) is a continuous function on R and

00) = Tim pl0) = lim PGy = L5 2.4)
= l1m = = — . .
Pa x—>0t Pa'¥ x—IH)]— PoX o sin ;7;— (

ForO<a<1,0<6 <% lim,_,0+ Pl (x) = lim,_,¢- p2(x) = +o0.

ForO0<a <1, 8 =22 lim,_ o pi(x) =00; pi(x) =0, for x <O.
(i) Fforl <a<2,0<0<7m-TFand0<a=<1,0<6 <2,

* (k)
) )

lim (=1)* (p§(x))" =00, lim (ph(x))" =00, k=1,2,3,...
x—0t x—0~

The first of these equalities remains valid for0 <o <1, 6 = wra/2.

Recall that an absolutely continuous distribution is called unimodal with mode 0 if its density is
non-decreasing on (—oo, 0) and non-increasing on (0, c0). The following theorem is an immediate
corollary of Theorem 2.

Theorem 3.

For any (a, 0) €PD, the distribution with the characteristic function (1.3) is unimodal with
mode 0.

Note that, in the case = min(%2, 7 — &%), this theorem was proved by Laha [12] in 1961.

The following theorem measures the non-symmetry of pg (x). Surely, this non-symmetry
increases with |6].

Theorem 4.
(i) For any (o, 9) € PD™,

/Oo O (£x)d lie
X=—-—=T —.
0 Pal==X 2 o

(ii) For any (o, 0) € PD¥, andanyk =0,1,2,.. .,

f(d k 0 Yz d\* P . (T
(-1 (E; pa(x)sm(—z———())z o pa(—x)51n(7+6),x>0.

In particular, p%(x)sin(5E — 6) > pf(—x)sin(5 +6) , x > 0.
(iii) For any («, 8) € PD™ such thato € (0, D) andanyk =0, 1,2, ...,

k k
(=¥ (%) plx) > (ad;) Pl(=x), x>0.
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In particular, p5(x) > p2(~x), x > 0.

For any («,0) € PDY such that« € (1,2), 8 > 0, the last assertion is false.
(iv)Asafunctionof6, 0 < 6 < min(%2, £ —Z), (~1)¥(d/dx)* pl (x) increases and (d/dx)* p% (—x)
decreases for any fixedaw € (0, 1), anyk=0,1,2, ..., and x > 0.

Forany («,8) € PD™Y such that o € (1,2), 8 > 0, the last assertion is Jalse.

In Figure 1, there are graphs of pgl (x) and pzz(x): Hfor0 <ca<1,0<8 <86 <
min(%F, 7 — 5), (i) for 1 <o <3/2, B - 5 <6, <6, <7 — & The graphs ofpzl(x) are

shown by continuous lines, while the graphs of p§2 (x) are shown by dotted lines.

() (ii)
FIGURE 1
The following theorem characterizes the asymptotic behavior of pz (x) at infinity. For 8 = 0,

the result was proved in [10]. Denote by PDS" the part of P D" which is obtained by removing the
pairs (@, 6) with & = min(%%, 7 — &%),

Theorem 5.
(i) For any («,0) € PD{ andN=1,2,3, ..,

N
1 3
o) = = 3 T(1 + ak)(~ 1)+ sin (f“—k + kosgnx) X7 L Ry (), (29)
T 2

where

al' (1 + (N + 1)) o|~1=a+D

m |sin (2 + 6sgnx)| 26)

|Rn.a(0)] <
(ii) This statement remains true both forow € (0, 1), 6 = ma/2, x > 0, and forw € [1,2), 6 =
7 —mwa/2, x < 0. For the remaining cases, we have the explicit representations pg (x) = 0 for
ae 0,1, 8 =ma/2, x <0; pg(x) =e */aforae[l,2), 0=n—nma/2, x > 0.

Corollary 1.
For any (@, 6) € PD{,
1 o
00y = - (T ~l-a —~1-2a
pa(x)_nr(1+a)sm( ; +esgnx) Ix| +0([x| >,|x|—+ % .
Corollary 2.
For any (&, 6) € PD™,
pyx) _ sin (% +6)

%
= , x>0,
x>0 ph(—x)  sin (3 —6)

(the right-hand side is equal to 400 for 6 = Z).
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Corollary 3.
For any («, 8y), (o, 8) € PDg,
81 in (Z% 40
lim ez(x) ST (nza 1),x>0.
X=>00 pi(x) sin ('-2— + 02)

The analytic structure of p,(x) depends on the arithmetic nature of the parameter «. First we

will deal with the case o = 1/n, where n is an integer.
Theorems 6 through 9 were proved for & = 0 in [10]

Theorem 6. »
,and0 <8 < f—n,

Foranyn=1,2,3,.
o
k k
(1 ) (-—l)kJ"l sin (Z_n + stgnx) leg“

1
Pl = = 3 T{1-+
k=1.%2¢N

S

1 o (n+1 (J) (7] -1
;Z —1)Hhi 222 7)) (—2— +9njsgnx) x}/ =

ﬂ;—)aog )& SO cos (x cos(On) — On(—1)")

—(-D" 2G'H-ﬂe(ﬂ—l)" sin(6n))
2m

+
sin{x cos(fn) + 6n) . 2.7

Corollary 4.
Forany0 <6 < %,

(% +0jsgnx) x|/

P = %Z

o
1 sgn 20 :
;(log Ix])e™* 510 cos(x cos 6 + 6) — - (n gnx + ) e *5"% in(x cos@ +6) .

- 2

The following theorem deals with the case of a rational «

Theorem 7.
Leta € (0, 2) be a rational number. Set « = m/n where m and n are relatively prime integers
0 <6 <min(Z&, n — %),

both greater than 1. Fora =m/n € (0,2)
(—1)¥*Lsin (242 4 kosgnx) .

(7] —
Po(x) = Z (ko) sin(wke)

.
1 1 (=1)m+mr e _
ﬂlogm; T(mnt) 3 + fntsgnx ) |x|
oo
—1)lmtn)t nmt
=D cos( ;1 +9ntsgnx) x|t

gsgnx 1
B ( - '2') 2 )

Ta o
X (=1)/-Lsin (% + %jsgm) -
x|/~

1 —
+= : .
Z INE)) sin 2L

o -
j=1,L¢N
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1 = T'1(mt) wmt
~—Z 1)('"+">'F2(mt) sin( 5 +6ntsgnx> et (2.8)

:i

All the series in (2.8) can be represented by entire functions. The following theorem is an
immediate corollary of Theorem 7.

Theorem 8.
Under the conditions of Theorem 8,

po(Ex) = ﬁAi (Ix%) + log ﬁBi (IxI") + Cx(lx), x>0,
where A+(z), B+(z), C+(z) are entire functions of finite order.

Note that the term with log |x| in (2.8) vanishes identically if & = w{/n, for some integer [
and, moreover, m is even and n is odd.
The following theorem deals with the case of an irrational «:

Theorem 9.
If the number o € (0, 2) is not a rational number, then for 0 < 6 < min(Z%, 7 — %‘—”—),

1 '\ (~1)%*+! sin (222 + kosgnx)
) Z 7 k
= — l o
Pa () [ (ko) sin(rrka) %]

[x] s=>o0

1 (= Dkl sin(%’£ ngnx) P
+ - > kL 2.9)

. T® sin (’”‘)
I<k<a(s+3)

The limit is uniform with respect to x on any compact subset of R.

The following theorem, which is immediate from Theorem 7 and Theorem 9, deals with the
“extremely” non-symmetric case. In the case 0 < « < 1, it was proved by Pillai [18].

Theorem 10.
The following representations are valid:
(i) for 0 <a <1, § =22 2,

o0
(—1)k+1 Ix|ka-—1

pfl(x) =0, x <0 pZ(x) = ,;_1 ke , x>0,
(ii) for l <a <2, 0 =m—%,
- — oo ka—1
0 e X xl
= ; < 0.
Pa(x) i >0, pix)= k§1 Fka) "

The representations above can also be written in the following form:
(i) for 0 <a <1, 9——

1+ sgnx

9% (£, (%))’

ph(x) = —

(ii) for l <a <2, 8 =m — %7,
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where Eq(2) is the Mittag—Leffler function defined as Eq(2) = Y peq I‘(Tziﬂci

It is natural to ask whether the limits of each of the two sums in the right-hand side of (2.9) exist.
We prove that this is the case for almost all (&, ) € PD in the sense of planar Lebesgue measure.
To describe this set we use Liouville numbers (see, e.g., [16]). We denote the set of all Liouville
numbers by L. By the famous Liouville theorem ({16], p. 7), all numbers in L are transcendental.
Moreover ([16], p. 8), the set L has Lebesgue measure zero.

Theorem 11.
If (o,0) € {(a,0) € PD:a ¢ L|JQ)}, then

o N (=DF!sin (332 4 kfsgnx)
Pa) = Z (ko) sin(mkar)

k=1

ka—1
|x ™

k k@
(=11 sin (Zf + Lsgnx)

T Z T® s (%)

x|kt (2.10)

where both of the series converge absolutely and uniformly on any compact set.

The following theorem is an immediate corollary of Theorem 11.

Theorem 12.
If(@,0) € {(,0) € PD :a ¢ L|JQ), then the following representation holds for x > 0

1
pi(Ex) = ﬂGi (|x|“)+ —Hy(Ix])

where G+ (z), Hi(z) are entire functions of finite order.

Since the set L | J Q has zero linear Lebesgue measure, the set {(o, §) € PD : o ¢ L|JQ} is
of full measure in P D. Thus, (2.10) is valid almost everywhere in P D. But, it turns out that the set
where both of the series in the right-hand side of (2.10) diverge is non-empty. Moreover, this set is
large in some sense.

Theorem 13.

Both of the series in (2.10) diverge on a dense subset of PD which has cardinality of the
continuum.

This theorem is a generalization of a theorem of Ostrovskii [15] related to the case 8 = 0
[when the role of P D is played by the interval (0, 2)].

3. Integral Representation and Analytic Properties of
Non-Symmetric Linnik’s Probability Densities

ProofofTheorem 1. Case(i):0<a<l, 0<f<mo/2andl <a<2, 0<6<m-—-5
We define p by (2.1). Evidently pa is non-negative and pz e L1(R); hence, it is enough to
prove that its Fourier transform is equal to ¢9.
Using Fubini’s theorem, we derive

o0
/OO itx O(x)dx = llm / yei;
—00 k14 0 (1 + eieyae—l-2—> (y2 + t2)
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+ —=Im /OO ydy
b 0 (1+e—ieyue—i’—’;) (32 +12)

ltl o0 dy
T m i0 ~i B 2
0 (1+e‘ e T) (y2+12)

+ —Im foo ydy
T 0 (1 + e‘iey“e'ilig> (y2+1?)
= % [ImA 4+ ImB — itlmC + itImD] . 3.1
In the complex y-plane, we consider the region
Gr={y=&6+in:ly|<R,n>0}, R > (3.2)
and define the branch of multivalued function y* as
D= |y[tel*™Y D <argy<m. (3.3)

The integrands of A and C are analytic in the closure of G except the simple pole at y = if|. By
Cauchy’s residue theorem, we have

d .
% 24 'y =27tiReSi|;[=———{[~f9——-.
IGR (1 +ei6yae—z%ﬂ) (yz_Hz) 14 e¥|t|@

Letting R — oo and using the notation A and B, we obtain

1
ImA 4+ imB = rRe———— . 34
* T et e G4

We have in the similar way:

IMC + ImD = — - Im—— 3.5)
ot T+ efre '

Substituting (3.4) and (3.5) into (3.1), we have

° 1 1
itx .8 . 9
P (X dx=Ré ——8M8M—— +isgntlm-—m—— =@, ).
/ ¢ Q'( ) 14 ezel{{a 189 14 ez9izfaz “()

Case (i) 1 <o <2, § =7 — %,
We define pa by (2.2). Similarly, pa is non-negative and pg e L'(R). We prove that its
Fourier transform coincides with 2.

From (2.2) we have

* itx o _ 1 1 /"" y dy
/_oo a(dx = a(l —it) + n Im{ o (1—eimaya)(y2+ 2)
(it)

- —im

1 { (1~e'l”°‘dz‘)(y +fz)}

= — —-ImA - —lmB (3.6)
a(l — zt)
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Having defined the region G by (3.2) and the branch of y by (3.3), we have

y dy . .
v.p. - = 2niRes;; + niRes_
P .éGR (1 _ e_m,aya) (y2 + t2) it} 1

i i
1—e™ T a(1+12)°

whence, letting R — oc, we obtain

A—vy /00 £ d& _ i _ i G7)
Pl Tme@+0) 1T altd) -

Similarly, we obtain

B+v /oo a5 = al + il (3.8)
Pl CTEEEA) T (1SR ) o) |

From (3.7) and (3.8) we obtain

it 1 .

—ImB = Re————— —isgnt IM—7m7m+—
T 1—e 77 |t l—e 77 |t
1 it
a(l+12) a(l+12)°

Substituting (3.9) into (3.6) we have

1
—ImA -
4

3.9

oo 1
f e pl(x)dx = ————— = ¢b(1) .
-0 1—¢7 59|t
Case (iii): —m <0 < 0;

From (1.3) it is evident that cpf, () =y ?(—t). Hence, (2.3) follows from the Levy unicity theorem.
]

Proof of Theorem 2. (i) It is obvious that for any |x| > 0, (o, 8) € PDaL and for any k =
0,1,2,3... the integral in formula (2.1) is k-times differentiable and

d k sin (ﬂ + 0) 00 e—yxya+kdy
D — 6 = 2 / 0, 0, (3.10
=D (dx) Pa(¥) 04 0 1+2008(%+9)J’“+Y2“ Tt G-10)
d\* 0 sin (B2 —6) [ e¥* yrtkgy
— = 0, 0. (3.1
(dx) Pex) - ./0 T+ 2005 (5 —0) y* 4y >0,x < (3.11)

Hence, pg {(x) is completely monotonic on (0, 50) and absolutely monotonic on (—o0, 0) for («, 8) €
P Dy . The proof is similar for 6 = min(%%, & — &2).
(ii) By the monotonic convergence theorem, we have from (2.1)

. ;] _
xl—lg)li Pol¥) =

sin (B2 £ 6) [ y*dy
|

o 2
ll+ezi’2—izeya

Evidently, the integral in the right-hand side is divergent for 0 < o < 1

and convergent for 1 < o < 2, and in the latter case we have (2.4). For the («, ) located on
the boundary of the P D, the proof is obvious.
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(iii) For 0 < 8 < 7123, the proof is obvious by applying monotonic convergence theorem to (3.10)
and (3.11). For 6 = ma/2, it follows from (2.1) immediately. 0

Proof of Theorem 4. (i) For (o, 9) € PD(')" , we have from (2.1), by applying Fubini’s theorem

oo sin (B2 +9) [ yeld
/ Pg(X)dx = (i[ )/ ‘ .m}: -
0 0 ‘1+ele+l—2-ya
a sin(%w)/w du _1. 9
- To 0 1+2cos(%+9)u+u2_2 e

For 6 = min(%%, & — Z), the proof is evident from (2.1) and (2.2).
(ii) For the pairs («, 8) € PD{, from (3.10) and (3.11) we have for x > 0

(.‘1)" P e
dx sin (B2 +6)  sin (3¢ —0)

1 /00 e~r*4y2atksin Z2 sin g dy
0

>0.

T

s 2 i 2
‘1+616+t7—'25ya '1+e—10+152“—ya

For & = min(%F, & — %), the proof is evident from (2.1) and (2.2).
(iii) The positive assertion is an immediate corollary of (ii). Using Corollary 2 of Theorem 5, we
conclude that pZ(x) < pg(~x) for x being large enough if (o, ) € PDV, a € (1,2), 6§ > 0.
(iv) Consider formulas (3.10) and (3.11). For 0 < 6 < min(%%, & — Z2), both Z* + 6 and ZF — 6
arc in between 0 and 7. Thus, as ¢ increases sin(** + 6) increases and cos(%* + 6) decreases;
hence, (—1)(d/dx)* pz (x) increases for fixed x > 0. Similarly (d/dx)* pz (x) decreases for fixed
x <0

Fora € (1, 2), pz (x) 1s a continuous function of x on R by Theorem 2 (ii). Moreover, for
fixed @ € (1,2), pg (0) decreases as 6 increases. Hence, pz(x) cannot increase with 6 for x > 0

small enough. ]

Note that (3.11) yields that p? (x) is decreasing with € (0, min z, 7 — Z2)) for any fixed
o € (1,3/2) and x < 0. Corollary 3 of Theorem 5 shows that, for o € (1, 2), pz (x) is increasing
with 6 for fixed x > 0 being large enough. This justifies the graphs in Figure 1.

4. Representation by a Cauchy Type Integral

Consider the Cauchy type integral

1 o0 ,—vl/ l/ad
fa(z)=—/ ¢ VW g<ca<2. 4.1)
T Jo v—2

The function is analytic in the region C := {z : 0 < argz < 27 }. Evidently the function ey
satisfies Lipschitz condition on any ray [a, 00), a > 0. Therefore, by the well-known properties of
Cauchy type integrals (see, e.g., [8], p. 25), fy(z) has boundary values fu(x 4+ i0) and fo(x — i0)
for any x > 0. Henceforth, it will be convenient to write f, (x) instead of fi (x 4 i0) for x > 0.

The following lemma is a generalization of Lemma 4.1 of [10], which can be obtained from
ours by setting§ = 0.

1/a
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Lemma 1.
For any (&, 8) € PD?, the following representation is valid:
x| b, (sgn |xll/"’) = —Imf, (|x| =% -050) 42)
Proof. For all («,0) € PD*, except when o € (1,2),6 = 7 — %, x > 0, we have
x| el —EHSIN) ¢ €. We first prove the result for these values of parameters «, 8, and x.

Replacing sgnx|x|!/® with x in (2.1) and multiplying by |x|'/®, we obtain

1 _ 1/a
x|/ S(Sgnxlxll/“) _ sin (22 + Osgnx) fooe YRl a1/ g

, ; 2
T ’] + eifsgnx ye el%‘il

2

sin (&2 + 6sgnx) /“’0 eV ylla |x]dv
- o

1 vl/e dy
= Im 5
o v+ ]xI e—ifsgnx e_'T

1
= —Imf, (le elr- ‘959"")) (4.3)
For the exceptional values of (¢, 8) and x > 0, we have from (2.2)
e_xl/m
xl/e pg (—xl/“) = xl/e (4.4)
o
By the Plemelj—Sokhotski theorem ([8], p. 25), the following equality holds

Falx +10) = folx —i0) = 2ie™ " x1/o | 4.5)

Evidently, for any x,y € R, y # 0, fo(x +iy) and f,(x — iy) are complex conjugates. Hence,
Ja(x) (= fu(x+10)) and f,(x —i0) are also complex conjugates, and (4.5) can be rewritten in the
form

Im fy(x) = e x 1 /e

Comparing with (4.4), we obtain

xlfe po (_xl/a) -

which coincides with (4.2) in this case. O

Im £, (x) .

Rim

5. Asymptotic Behavior at Infinity

Proof of Theorem 5. (i) As it was shown in [10], the function f,(z) defined by (4.1) can be
represented in the form

T+ ak
fal = =2 @It oo 5.1)
k=1
where Tl + (N + 1
|fa.N(Z)|Sa (14 o ) P =argz

m|zIN+1 sin(g)|
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for N =1,2,3,.... By Lemma 1, we obtain

r
x| e 9<sgnx|x|‘/"’> - _Z (1|-Tkak)( ez sin(zg—k +k93gnx>
k 1

_lmfa N (]xle'(” —ngnx))
where
al' (1 4+ a(N + 1)
7|x|V+1 [sin (B2 + @sgnx)| |
Putting |x| instead of |x|1/#, we obtain (2.5) and (2.6) for any (@, 8) € PDy.
(ii) Evidently, the above proof remains valid for both cases & € (0,1), 6 = wa/2, x > 0 and

a € [1,2), 8 =7 —ma/2, x < 0. In the remaining cases, we obtain the desired assertion
from (2.1) and (2.2) immediately. J

]'mfa,N (leei(ﬂ~’—'2"i—9$gnx))l <

6. Analytic Structure of p(x)

Proof of the theorems concerning the analytic structure of pz (x) for the rational values of o
are based on the following facts about the analytic structure of the Cauchy type integral (4.1):

Theorem 14.
InC={z:0<argz <2nm}the following representation is valid:

fin(2) = szr ( > +2"An(2) + 2" Bu(2) . 6.1

Here : .
Apn(R) = =77 [log -+ ni] , 6.2)

7 z

(the branch of the logarithm is defined by the condition 0 < argz < 2w ); B,(z) is an entire function
representable by the power series

Bu(z) = Zﬂ"” :

where
U'(—kn)/mn ,k/n € N
B =1 (=) T+ ) ©3)
=i, j=0,1,2,....
zn T4 j) kim=7.7 2
Theorem 15.

Assume o € (0,2) is represented in the form o« = m/n, where m, n are relatively prime
integers. The following formula is validin C = {7 : 0 < argz < 2z };

(@) = ———Z ( )z +[log‘——‘+z(n—argz)]2§rg?_r lzs+q

s=1

00 e E (ggr41)

n

-7 E &, z

— sin (£(k +r + 1))
kgz{mv—r—-l)?"1

k4r+1
T

+m Z W 2t (6.4)
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where q is the greatest integer strictly less thenn/m , r =n —qm — 1 and

0 ,k/n &N
g =1 (-1
7!

Jkin=j,j=0,1,2,... 6.5)

ﬁ,&") was defined by (6.3).

Theorem 14 is a combination of Lemma 6.1 and Lemma 7.1 of [10]. Theorem 15 is a combi-
nation of Lemma 10.1 and Lemma 11.1 of [10].

Proof of Theorem 6. From (4.2) and (6.1) we have

lxlnp?/n (sgnx|x|™) _}r_:z:(:l)(_l)k+lr (1 _ _:_) sin (Z_: . Gksgnx) i
— n{=]x])" cos(§n)Re {An (!x,ei(n—{;—esgnx)> }
— n(=|x])" cos(@n)Re {Bn (|x|ei(n~2’%—esgnx))}
— n(~|x])" sin(0nsgnx)lm [ A, (|x|ei(ﬂ—2"7—959nx))

}
— n(—|x|)" sin(@nsgnx)im {B,, (lxlei(”—z’%—f’sgnx))]

=: X4+ Rs+Rp+Is+1p. (6.6)
Utilizing (6.2), we obtain
n(=|x|)" n . "
Ra+14 = ————xp ((—1x)"sgnx sin(6n)) log |x| cos ((—|x|)" cos(8n) — Onsgnx)
a(—|x{)" . . 7T
- ((—Ix])"sgnx sin(6n)) (ngnx + ﬂ)
sin (|x|" cos(@n) + Onsgnx) . (6.7)

Utilizing (6.3), we obtain

[e0]

Rp+1Ig = % Z |x|k+n(_1)k+n+1r(—%)sin((k+n)(;—n+6’sgnx))

k=1tgN

+ li|x|"f+"(—1)<f+1><"+‘>£,(1—+ﬁ in (G+ 1) (Z+6
”j=0 201 ) sin { (j )(2 + nsgnx)) .

Putting s = k + n in the first sum and substituting j + 1 for j in the second one, we have

1 ad s TS
I - - s 1ys+1 AT (__ ) )
Rp +Ip =) D F(l n)sm 5 +0ssgnz
s=n+1,L4N

T L NN £.7
+;Z|x|](—1)1" Fz—(j)sm(—z—-f-c’?jnsgnx). (6.8)
j=0

Putting (6.7) and (6.8) into (6.6) and substituting |x| for |x|", we obtain (2.7). OJ
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Proof of Theorem 7. From (4.2) and (6.4) we obtain

5 1"/™ b, (sgnx |x["/™)

1 o k
= —> 7T (1 - _m) (—=D** ! sin (jr—m—lE + 9ksgnx) [x]*
k14 n 2n

k=0
n I & Tm
_— . (n) 1+l s S+
+ o log gsm_rhl( )"+ sin ((s+q) (a-n—+9sgnx)) Pas
n 7 nfsghx i ) 1)+ Mg s+q
>t §por—1(—1)"4cos ((s +4q) (—-27 + sgnx)) x|
5=1
: k+r+l
_mn i oy 51D (ﬂq — (6sgnx + %) (—ﬁ—— + q)) e
m — k sin (Z(k +r + 1))
kglms—r—1)2,
— m
+ n Zﬁr(,:f)_,_;(*l)“'erl sin ((s +q) (_271_ + HSgnx)) x|+
s=]
1 fsgn
= Sl + [+ I Y s T s ns, 6.9)
m |x] 2 m m

say. Now we shall transform X7, X3, X4, X5 by substituting S,S") , ,E").

The coefficients 5;") differ from zero only if k/n is an integer; hence, 5,5:;)_ .1 is nonzero iff
(ms — r — 1)/n is an integer. Remembering the definition of r we have

ms—r—1_m(s+q) !

n 1

Since m, n are relatively prime, (ms —r — 1)/n is an integer iff (s + g)/n is. Hence, E,fl';)_r_l #0
iff s € {nt — q}2,. When s = nt — g, using (6.5), we obtain

(n) = _ _
Eppsmr—1 = Sn(mt_l) = m ,t=1,2,....
Thus,
R AN £
Yy = — i fnrsgn n 6.10
2 N;(mt—l)!sm(z +6n gx))lxl (6.10)
Similarly,
1 & (—1)lmtni-l —
Y= Ontsgn " 6.11
? Jr; (mt = 1)! COS( 5 ton gx>>IXI (6.11)
Substituting » = n — gm — 1, we obtain
o0 o Sin ((B2 + 6sgnx) (&2)) o

k=0
k;é{ms-—r—l}_‘i"__’l

g =— P
E sin (”——~(k”f"))

This sum is taken over the values of k such thatk ¢ {ms—r—1}%2 , and the summand vanishes ifk/n
isof the formk = nj, j € N. Therelationk ¢ {ms—r—1}72 isequivalenttonj & {ms—r—1}2,
which is the same as j ¢ {m(—sr;"g-)- — 1}32;. But the numbers ﬂ(—":—‘” — larcintegers iff s =nt — g



Analytic and Asymptotic Properties of Non-Symmetric Linnik’s Probability Densities 537

for some ¢ € N7T; hence, the relation nj & {ms —r — )82, is equivalent to j & {mt — 1}32,.
Using (6.5), we can rewrite 24

D ) I CRS e wsgnx)) | s
j=0 J: sin (7(1 + 1))
Jé{me=1}2,

Substituting j + 1 for j, we obtain

- i (—1)-1 sin (’% + %’;lsgnx)
4 = — s X
= G- sin (w)
j=1,L¢N m

@)

Jx | (6.12)

Using the same argument, we shall divide X5 into two parts. The first summation is taken over
the values of s for which (ms —r — 1)/n is an integer, i.e.,s =nt —q, t = 1,2,3.... The second
summation is taken over the values of s for which (ms — r — 1)/n is non-integer, i.e., the values of

s for which (s + ¢)/n ¢ N. Remembering the formula for ,B("), we can rewrite X5 in the form:

o0

_ (__l)mH-nt F’(mt)
¥s = Z an  T2(mt)

(_1).r+q+l r (1 B m(s + q)
nn

t
in (ﬂm + 0ntsgnx> lx|™
2
r=1
o0

+

]

. ) sin ((s +4q) (% + Bsgnx)) X149 .

=

1
519 gN

n

Putting p = 5 + ¢ in the second sum we have,

[e.]

(=™ mey | [amt
s = Ontsgn n
5 ; an  [Z(mt) S\ +Ontsgnx ) Ix|

o0
+ (—:T):+1r (1 - ";—p) sin (sz +9psgnx) X, (6.13)

p=q+1.L¢N

Substituting (6.10), (6.11), (6.12), and (6.13) into (6.9) and using the well-known equality ["(1 —
2T (2) = 7/ sin(r2), we obtain (2.8). [

7. Representation of p’(x) by a Contour Integral

In this section we shall represent p? (x) by a contour integral. This representation plays the

key role in the transition from rational to irrational ’s. For 8 = 0, this representation was obtained
in [10].
Fix a positive § < % and consider the integral

[ zlog x| qin (T2 26
Is(x; 0, 0) = L ¢ Sm(.z + Lsgnx) dz
2o Jis) T'(z) sin

(7.1)

nz

= SinmwTz

where L(5) is the boundary of the region G(8) := {z : [z] > %6, |argz] < 1;—}. L(4) is traversed so
that G(8) remains to the left.
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Theorem I6.
The following representation is valid for («,0) € PD™\{(x,8) : 0 = 7 —nwa/2}, x > 0,
and for (o,0) € PD"\{(,0) : 0 = ma/2}), x < O:

1
po(x) = piltia6) (1.2)
where § is such thata € [8,2 — §].
This theorem is a generalization of Theorem 13.1 of [10], which can be obtained from ours by
setting @ = 0.
We first prove the following two lemmas.

Lemma 2.
For any fixed 0 <0 < min(Z%, 7 — ’—’23), 0<é< %, 1 < M < o0, the integral Is(x; o, 0)
converges absolutely and uniformly with respect to botha € [8,2 — 8] and |x| < M.

Proof. Note that |sin(7z/a)| > sinh(w|Imz|/«), |sin(rz)| > sinh(w|Imz|). Moreover, on the
rays {z : |z| = /2, argz = Fu/4), we have |Imz| > 6/2\/5. Hence, |sin(rz/a)|, |sin(rz)| are
bounded on L(8) from below by a positive constant C not depending on « € [8, 2 — 8].

Using the Stirling formula ({19], p. 249), we see that there are positive constants £ and B such
that [T'(z)] > Bexp(elz|log|zl), z € G(9).

Noting that
. (nz 20 )
sin { — + —Ssgnx
2 o

we see that for (x| < M the integrand in (7.1) can be estimated as follows:

T, 8
< elv‘r+;sgnx|,jlmz| < en]lmzl ,

elog Xl gjn (B + %sgnx)

I'(z) sin Z£ sinmz

o (Rezlog |x| + m|imz|)
Bee[zllog Iz[c2

(1.3)

This gives the assertion of the lemma. U

Lemma 3.

pS(x) is a continuous function of
(i)aon[2,2— Z) for any fixed § € (0,%) and x > 0,
(iij o on (%[2,2 - i—e}foranyﬁxede €0, %)yandx <0,
(iit) a on (0, 2) for 6 = 0, and any fixed x # 0.

Proof. Comparing (2.1)and (2.2), we see that formula (2.1) is valid for the intervals in the statement
of the lemma.

(i) Take 0 < 8 < # and consider @ € [%{Q, 2— 3(97"”8—)] we have the following bound for the integrand
on the right-hand side of Equation (2.1)

—YX 0 —yX —yx 2
ey < ey S < € _(1 +2y)
1+ €9 yae's* ‘ (sin (%5 +6)) (sin )

Therefore, the integral in (2.1) converges uniformly with respect to @ € [2—7?, 2 — g@;—"s—)] for
fixed 8 € (0, 7/2) and fixed x > 0. Hence, the integral is a continuous function of o. The proof
of (ii) is similar to the proof of (i).

(iii) This was proved in [10]. O

Proof of Theorem 16. We first prove the validity of the formula (7.2) for rational «’s. Since
the rational numbers are dense in (0, 2), by the continuity of pﬁ (x) and of the integral I5(x; «, 6)
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as functions of «, the theorem will be proved for the triples (&, 6, x) as in the statement of the
theorem.

Since « is rational, it has a unique representation « = m/n where m and n are relatively prime
integers. The functions sin ZZ , sin 7z vanish on the set «Z and Z, respectively. The intersection of
these sets is mZ, and they are contained in the set %Z. Taking a positive v < 1/2n, both functions
are bounded from below on the set C\ U??_,_oo{z 1|z — s/n| < v} by a positive constant C.

Set X; =s/n+1/2n, s = 1,2, ... and consider the integral

i ezloglxlgin (22 4 Pggnx) dz
I (x;0,0, X;) = —/ (.2 T 259 ) (7.4)
20 Ji5.x,) I'(z) sin % sinmz

where L(8, X,) is the boundary of the region G(8) (\{z : Rez < X,}.
By Cauchy’s residue theorem we have

Is(x;0,6,X5) = —g D, (Residucatz = ko)

a<ka<Xy

k/n¢N
b4
—— E (Residue at z = k) — T E (Residue at z = mt)
o o

I<k<Xy Il<mt<X;
k/mgN

b4
=: — (Zi+X4+2Z3) . (7.5)
Calculating the residues, we have

@ 3 (—1)¥*1sin (Z2k 4 kosgnx) [x|*

Y = ——
! o4 (ko) sin wkoe ’

a<ka<Xy

k/ngN

22=—%Z

I<k<Xy
k/méN

(7.6)

(~ 1 sin (B + Bsgnx) x <!
T'(k) sin ZX '

1.7

To evaluate the residues at the points z =mt, t = 1,2, ..., put

sin (2 + £sgnx) |x|?

7) =
1@ I'(2)
Evidently, f(z) is analyticatz =m¢, t = 1,2, ..., and we have

(z— mt)zf(z)]’

sin % sinmz

Res,,, = zl_ig’llt [
cos (*5£ + Ontsgnx) |x|™
I'(mt)
sin (%5 + Ontsgnx) jx|™
I'(mt)

o M(met) . (amt
- ;—5(~1)(”‘+")’ I‘Z((mt)) sm( 5 +9ntsgnx> [x|™

o 7 6
= —(~1 (m4nyt { Zsan
— (=D (2+asg x

o
+ ;7(~1><'"+">’ log x|

Hence,

% o= (X4 Lsgnx > (=D cos (5% + Ontsgnz) |x|™
? o | w2 T (mt)
I<mt<X;
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+ o loglx] Y (=1)@*"" sin (23 + Onesgnax) |x|™
2 I'(mt)

l<mt<X;

® (=)™ ()  (wme mt
=) Z 2 mt) sm( 5 +6ntsgnx> [x ™. (1.8)

l<mt<X,

Substituting (7.6), (7.7), and (7.8) into (7.5), we obtain

(=¥ sin (Zk= 4 kgsgnx)

l Ika

Ii(x;0,0,X;) = Z

ashweXy I (k) sin(kor)
k/ngN
! ! (=Dt (ame
—l =l t n mit
+ bid 0og | | Z F(mt) Sin 7 +6n sg X) le
I<mt<X;
fsgnx 1 (m+n)t Tmt
— ( 9 ) Z ( r) oS ( ZL +0ntsgnx) lxlmt
l<mt<X, (mt)
41 (=1)**!sin (& + %sgnx)] p
o X
I<k<Xg (k) sin %"
k/mgN
! Domt) . (wmt
_1){m-+n)t .
+ = Z (=D 2 m) Sln( 5 +9ntsgnx) Ix|™ . (7.9)
I<mr<X;

On the other hand, we have

I G 0.0, Xo) = i f +/~ etlogixl gin (%Z- -+ %ngnx) dz (7.10)
S A Le.x)  Jowxy ['(z) sin ZZ sinmz '

where
LG, X;) = LO[)lz:Rez <X},
CXy) = [z .Rez =X, , |argz] < %} . (7.11)
Using the bound (7.3), we have

exlo8*lgin (Z2 + Lsgny)

I'(z) sin Z£ sinzz

_ oxp (X (log lx] + 7))
BeEX-" log X C2 ’

€ C(Xy) (7.12)

Hence, the integral along C(X;) tends to zero as s — 0o. Therefore,

lim I5 (x; @, 6, Xs) = Is(x; @, 6)
5>
Taking the limit in (7.9) and using (2.8), we obtain

b8 = —pfo)  a=" [
x| n

8. The Case of Irrational o

Proof of Theorem 9. We shall evaluate the integral I5(x; «, 8) by means of the Cauchy residue
theorem and obtain (2.9) using Theorem 16.
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Since « is irrational, the intersection of the sets ¢Z, Z is empty. We construct a sequence
{Q5}52, which plays the role that {X,}°2, did in the proof of Theorem 16. Since & € (0, 2), each
of the intervals (so, (s 4 1)a) contains none, one, or two points from {k}?2 ;. In the first case, we
define Qs = (s + %)a. In the second and third cases, we choose Q, € (sa, (s + 1)&) so that the
distance from Q; to the nearest of the three points s, (s + ), k € (so, (s + 1)) is at least /4.

Taking a positive v < «/4, we observe that the modulus of the functions sin % , sinmz are
bounded from below by a positive constant C on the set

oy U [ie:le—kel <mJte:le—k < v}] .

k=—o00

The vertical lines {z : Rez = Q;}, s = 1,2, ..., are located in the interior of this set.
Consider the integral I5(x; «, 8, Q) defined by (7.4) with Q, instead of X;. Analogously
to (7.9) and (7.10), we have

(—1)**!sin (Z&= 4 kgsgnx
15 (x;asea QS) = Z ( 2 )|xlka
Ika) sinmka
a<ko<Qy
1 —1)k+H gin (Zk + ¥ggnx
+= > D (2_ — 9 )lxlk, (8.1)
% 0k<0, (k) sin 7~
i e“loglxl gin (22 4+ P ggny) dz
Ii(x;0,60,0Q,) = 2_{/ +f } - (.2,” a 9 ) (8.2)
o \Jre.0n Jewn (z) sin Z£ sinmz

where L(8, @), C(Q;)aredefined by (7.11) with Q; instead of X;. Obviously, the inequality (7.12)
is valid with Qy instead of X,. The integral along C(Q;) tends to zero uniformly with respect to x
as s —» 0o. By Lemma 2, the integral along L(8, Q) approaches the integral along L(8) as s — o0
uniformly with respect to x on any compact subset of R. Taking the limitsass — coin(8.1)and (8.2),
we arrive at the assertion of Theorem 9 except the cases o« € (1,2)\Q, 06 =7 — ”7" , x > 0and
a € (0, D\Q, 6 = 5, x < 0. But by comparing the series expansion in (2.9) with (2.1) and (2.2)
for these exceptional values of («, 8, x), we see that the series expansion in (2.9} is valid. ]

Proof of Theorem 11. For any integer k > 2, there exists an integer /; such that

<. (8.3)

Since « is not a Liouville number, there is an integer r > 2 such that for any pair of integers p, g > 2,
lo — p/ql = 1/q". Thus,

)
‘a— JFs 8.4)

From (83) and (84), we Obtaiﬂ kl < |Olk - lkl < 1/2. USing the inequality
Sinx > X 0 < < 8 5
—X, -, )
X ( )

we obtain | sin wko| = |sin 7w (ko — )| > 2|ker — ;| > 2k1~". Hence, the first of the series in 2.9)
converges absolutely and uniformly on any compact subset of R.
Similarly, as above, for any integer k£ > 2, there exists an integer I such that

1 It

o k

<% (8.6)
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It follows that

I < 1 + Ik 1 + 1 2
— — —_— — — < —-— — —
kT« o« k % o’
hence,
2k
h < —. 8.7)
o

Since « is not a Liouville number, we have jo — k/L;| > [7". Multiplying the inequality by [ /o
and using (8.6) and (8.7), we obtain
1- -
> lk ! > _1_ E ’ kl——r
T o T a\ '

k 2—)’
sin 7w (— — lk) > (E) kK
a o

Hence, the second of the series in (2.9) converges absolutely and uniformly on any compact subset
of R. O

Proof of Theorem 13. We shall construct a subset D of PD* which (i) is dense in PD™, (ii)
has cardinality of the continuum, and (iii) is such that, for (&, #) € D, both of the series in (2.10)
diverges.

Let {on}72 | be a sequence of rapidly increasing integers defined by the equations

Hence, using (8.5), we obtain

k k
sinzr———Iz zZI——lk
o o

o1=2, gpe1=2%" n=1,2,... (8.8)

Denote by A the set of all sequences {8_;}‘;‘;1 with terms 4 ; having values O or 1 only and satisfying
the conditions: (i) é; is allowed to be equalto 1if j € {cr,,}"O ; only; (ii) infinitely many of 4;’s are
equal to 1.

Let @ = {y 1y = 3%, 8;277,{8; )32, € A} Let A be the set of numbers in (0, 2)
representable by finite binary fractions. Set E e € 0,2) ;e =x+y,x € A,y € Q}.
Evidently E is dense in (0, 2) and it has cardinality of the continuum. Set D = {(¢,0) € PD :
o€ E, («+ %:2) ¢ L{JQ}. Ttis easy to see that D is dense in PD, and it has cardinality of the
continaum.

It suffices to prove that for any («, 6) € D, the first of the series in (2.9) diverges.

If « € E, then there is an integer m such that

a-—b+Za]2 I+ Z §;27
Jj=m+1

where b, a; take values O or 1, and {8;}%; Gl € A. Denote by {n,}°°, the subsequence of {0y},
such that 8; = 1 for j € {n,}7° | and §; = O for j & {nn};2,. Then for any n, > m, we have

o]
0<o- b+Za]2 J 4+ Z 8;270 | = Z 5}.2—j<2—nn+1+1.

J=m+1 J=Nn1

Multiplying this inequality by 277, we see that there is an integer p, such that

0 < a2 — pp < 21Tl 9= 3nt (8.9)
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for sufficiently large ».
Consider the terms of the first of the series in (2.9) with indices ¢ = g, = 2. From (8.9) we
obtain .
Isin wqne| = |sin (wquee — Tpy)| < w272

Since o + 2770 is an irrational, non-Liouville number, as in the proof of the previous theorem,

there is an integer r > 2 such that
w2 26 N\
sin o+ — 22(2”” ) .
2 bid

lsin (m;,,cx + q,ﬁ)‘ =

Hence, for sufficiently large n we have

_1yart+ gip (T2 qne
(-1 sin ( 7 + Qne) |x| > 32(7)"_1)(1—’)|x|‘]n012—q,%0!22%77n+1 - (8.10)
b4

I (gna)sinmwguo

o0
n=1

Since {1,}22 | is a subsequence of {0}, |, the following inequality holds:

3 3
T],H.]Z,’Z"”:an

Hence, from (8.10) the series diverges. O
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Note

This paper is a shortened version of [7]. Having completed [7] and having published its abstract in
IMS Bulletin, 24(5), 500, 1995, I was kindly informed by T.J. Kozubowski about his paper (Repre-
sentation and properties of geometric stable laws, in Appr. Prob., Related Fields, Anastassiou, G. and
Rachev, S.T., Eds., Plenum Press, New York, 1994, 321-337). His paper contains Theorem 5 (i).
Kozubowski’s proof of these results is quite different from ours. It is based on the properties of
stable densities. Moreover, his paper contains Theorem 3, but without the assertion about mode 0
for 1 < & < 2. Note that our proof of Theorem 3 is immediate, whereas Kozubowski’s proof of his
result is based on Yamazato’s theorem on the unimodality of distributions of the class L.
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