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Summary. This paper examines task allocation in fault-tolerant distributed 
systems. The problem is formulated as a constrained sum of squares mini- 
mization problem. The computational complexity of this problem prompts 
us to consider an efficient approximation algorithm. We show that the ratio 
of the performance of the approximation algorithm to that of the optimal 
solution is bounded by 9m/(8(m-r+l)), where m is the number of pro- 
cessors to be allocated and r is the number of times each task is to be 
replicated. Experience with the algorithm suggests that even better perfor- 
mance ratios can be expected. 
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1. Introduction 

One of the first problems encountered in the operation of a distributed system 
is the problem of allocating the tasks among the processing nodes. Allocation 
problems of various types have been widely studied [1, 2, 4, 5, 9-11, 14, 15, 18- 
20, 22]. The allocation problem has typically been formulated as a constrained 
optimization problem. The constraining equations may describe system at- 
tributes such as limited memory capacity or given processor speed, and the 
objective is usually the minimization of some kind of cost function that varies 
with the particular allocation. 

Allocation problems are solved by providing a general, cost effective pro- 
cedure for finding the optimal assignment for specific instances of the problem. 
As a rule, allocation problems tend to be computationally intensive [5, 15, 19, 
22]. This has spawned a variety of approaches to solving them. The three 
widely used approaches to solving allocation problems are graph theoretic, 
integer programming, and approximation methods. The graph theoretic ap- 
proach represents the problem by a graph and then uses common graph 
techniques such as the max-flow, min-cut algorithm to solve for the best 
allocation [15, 18, 19]. The integer programming approach is perhaps the most 
widely used method in solving allocation problems [5, 10, 14, 21]. The prob- 
lem can be formulated as an integer program, and well-known techniques such 
as implicit enumeration or branch-and-bound can be employed to find the 
solution. The approximation approach is used when one wants a fast algorithm 
that produces reasonably good approximations to the optimal solution [2, 3, 7, 
10]. Other approaches to solving such problems include goal programming 
[11] and Markov decision theory [4]. This paper will concentrate on approxi- 
mation methods for solving allocation problems. The approximation algorithm 
considered here is different in spirit from those advocated in [20, 22] where 
one first removes the integer constraint, solves the continuous optimization 
problem, discretizes the continuous solution, and obtains bounds on the discre- 
tization error. This bound is with respect to the continuous optimum, whereas 
in this paper we use an approximation directly to solve the discrete problem 
and bound its performance with respect to the discrete optimum. 

A contribution of this paper is to consider a specific allocation problem 
that arises in the context of fault-tolerant distributed systems. These systems 
typically achieve their tolerance to faults by the use of redundancy in hard- 
ware, programs, or data. The use of redundancy enables the masking of faults 
by voting on multiple copies of replicated (hardware or software) modules' 
outputs. The use of redundancy also allows the replacement of a detected 
faulty function by a fault-free function. The use of redundancy is modeled here 
for certain fault-tolerant distributed systems. 

Section 2 gives the necessary background on the type of system being 
modeled and on real-time scheduling. Section 3 presents the mathematical 
formulation of the allocation problem. In Sect. 4 we present an efficient ap- 
proximation algorithm to solve the problem defined in Sect. 3, and we show 
that the algorithm does not deviate significantly from the optimum. Section 5 
discusses empirical results comparing the approximation algorithm to the 
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optimal algorithm. We summarize and discuss the significance of our results in 
Sect. 6. 

2. Background 

First we briefly describe a real-time fault-tolerant distributed system similar to 
the Software-Implemented Fault-Tolerance (SIFT) computer. The SIFT com- 
puter was originally designed by SRI International to be used on board large 
passenger aircraft [23-25]. The prime purpose behind the SIFT computer was 
to make it possible for flight crews to control the new generation of fuel 
efficient aircraft. The SIFT computer performs functions associated with flight 
control, engine control, navigation, guidance, and other avionic functions. 
Control functions such as these are essentially iterative in nature. A specific 
avionic control task is typically performed at a constant frequency of from one 
to 1,000 times per second. These tasks must execute fast enough so that they 
can be completed within their iteration periods. 

As described originally [23, 24] the SIFT computer is a system in which 
multiple processors are interconnected by a triplicated bus. See Fig. 1 for a 
processor-memory-switch (PMS) description of the SIFT system. Each pro- 
cessor has a local memory and communicates with other processors by means 
of a message passing protocol. A task consists of several clones that are 
resident on and executed by a number of separate processors. Output values of 
all clones of a task are submitted to a vote, and the majority value is provided 
to consumers of the task's output. Thus if any single clone of a task for any 
reason (e.g. processor, memory or bus failure) produces incorrect output, that 
output will be suppressed by the majority vote. The voting is done under 
program control, rather than through hard-wired circuitry - hence the sob- 
riquet "Software-Implemented Fault-Tolerance". 

The SIFT system was designed to execute a set of tasks composed pre- 

1 I 

Fig. 1. PMS description of the SIFT computer (after [17]) 
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dominantly of closed-loop control functions, or in the parlance of [8], periodic 
real-time tasks. By periodic it is meant that the task is requested with a fixed 
frequency, e.g. 50 times per second. By real-time it is meant that each task has 
some deadline that it must meet. A periodic real-time task can then be 
specified as a quadruple (s, e, d, p) with 0 < e < d_<p, where s represents the time 
that the task is first requested, e is the execution time of the task, d is the task's 
deadline, and p is the task's period. In this scheme the (k + 1)-st request for the 
task occurs at time s+kp and the deadline for this request comes at time s 
+kp+d. The utilization of the task is given by e/p. It is common to assume 
that s = 0 and d = p. 

The problem of scheduling periodic real-time tasks on a single processor 
has been studied in [13], where two algorithms were proposed. Both algor- 
ithms schedule tasks preemptively, which means that any task may be in- 
terrupted and later resumed at the point where it was interrupted - the 
requirement being that the task should complete before its deadline expires. 
The first algorithm, called the rate-monotonic priority assignment algorithm, 
assigns static priorities to tasks according to their iteration periods - tasks 
with smaller iteration periods have higher priorities. At any given time the 
rate-monotonic priority assignment algorithm starts the task with the highest 
priority provided the task has not already been completed for its current 
iteration period. In [13] it was proved that a set of n tasks can be scheduled 
on a processor so that each task completes within its iteration period as long 
as the processor's utilization will be no greater than ~(21/"- 1) which tends to 
ln2 (approximately 0.69) as n grows. The quantity ln2 is a sufficient, though 
not a necessary, condition for scheduling with the rate-monotonic priority 
assignment algorithm. The second algorithm, called the deadline driven 
scheduling algorithm, assigns dynamic priorities to tasks on the basis of pro- 
ximity of deadline. Thus the algorithm always starts the task whose iteration 
period will most imminently expire (assuming that the task has not yet been 
completed for the current iteration period). The deadline driven scheduling 
algorithm will schedule a set of tasks on a processor so that all tasks are 
completed within their iteration periods so long as the processor's utilization 
will not be greater than unity. 

In I-6, 12] the problem of scheduling periodic real-time tasks on a multiple 
processor system was studied. There are two basic approaches to scheduling 
periodic real-time tasks on a multiple processor system. The first approach is 
called the partitioning method and it seeks to partition the task set into groups 
and assign the groups to distinct processors. The group of tasks assigned to a 
processor can then be scheduled by techniques for single processor systems. 
The second approach is called the nonpartitioning method and it treats the 
entire collection of processors as one large virtual processor that uses its 
increased computing power to quickly execute the entire task set sequentially 
(as opposed to the parallel execution of tasks in the partitioning method). The 
entire task set is then scheduled on the single virtual processor as in the sing T" 
processor case. In this paper we will be concerned exclusively with the par- 
titioning method. 
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3. Mathematical Formulation of the Problem 

Consider the following general allocation problem schema. Suppose that we 
are given fixed parameters ri, Mij, B j, uij, and fj  where 1 < i < n  and 1 <j<m. 
We wish to find an n by m matrix (x 0 of zeros and ones satisfying the 
following problem: 

minimize 

subject to constraints 

j = l  = 

~ x i j = r  i for l_<i_<n, (2) 
j = l  

~ M i j  xij ~ B~ for 1 < j  N m, (3) 
i=1 

~ui j  xi~ < fj for 1 <__j __< m. (4) 
i = l  

The problem specified in (1)-(4) is a constrained sum of squares minimi- 
zation that may be used to model a task allocation problem (TAP) in a SIFT- 
like system. Assume that the system consists of m processors. There are n tasks 
which must be periodically executed. Each task will be loaded into a certain 
number of processors' local memories and executed by those processors. Let 
(x/j) be the n by m matrix of zeros and ones with xlj equal to one if task i is 
scheduled on processor j and x/j equal to zero otherwise. The number of 
processors to which task i is assigned is the replication factor rl of the task; 
that is, the task i is composed of r~ clones, and each clone is resident on and 
executed by a distinct processor. Each task i must then be assigned to exactly r~ 
distinct processors as indicated by Eq. (2). 

If task i requires M~j units (bytes, words) of memory to execute on pro- 
cessor j, and processor j has Bj units of memory available, then the task 
assignment must satisfy inequality (3). 

For each task i we also know the number of instructions in the task, Iij, 
when it is executed on processor j, and the iteration period of the task, T~. The 
iteration period of the task is an amount of time during which the task must 
be executed at least once. The iteration period is dictated by physical con- 
ditions such as how frequently a device must be serviced or how often an 
aileron must be controlled. If the speed of processor j is Rj instructions per 
second, then task i requires Iz/Rj seconds for its execution on processor j. The 
quantity Ii/(RjT~) represents the fraction of its iteration period that task i 
actually performs computations (if assigned to processor j). We will refer to 
this ratio as task i's utilization of processor j, designated uij. Recall that if a 
collection of tasks is assigned to a processor so that their utilization of the 
processor falls below a certain level, then those tasks can be scheduled on the 
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processor. Constraint (4) specifies that those tasks assigned to a processor must 
be schedulable on that processor by one of the scheduling disciplines discussed 
above. If the rate-monotonic priority assignment algorithm is used on pro- 
cessor j, then fj has the value In 2. In the case that processor j uses the deadline 
driven algorithm to schedule its tasks, f~ assumes the value one. 

In a SIFT-like system minimization of the objective function (1) is desired 
as a way to achieve load balancing among the system's processors. The 
quantity 

qj = Z Uij Xij 
i=1 

represents the utilization of processor j under allocation (xi~). There are several 
ways to measure the imbalance in the processor utilizations ql . . . . .  qm' The 
following two formulas immediately come to mind: 

1 ~ [ 1 ~ 12 i ~ [ 1  ~ ]2 
--m,.=l qj--mj=xqj =--mj=l(qj)2- ~=xqJ , (5) 

1 m 
Y (qf 

j= 1 (6) 

Formula (5) is known as the statistical variance of the qSs and formula (6) is 
the normalized coefficient of variation of the qSs (equal to one plus the squared 
coefficient of variation). 

The SIFT system is a homogeneous system in which all processors are 
identical. Homogeneity greatly simplifies system development, validation, and 
maintenance. The assumption of homogeneity greatly simplifies the TAP as 
well: one may now assume that Uij=U~k, M~j=M~k, and Bj=B k for l < n ,  
1 <=j<=m, and 1 <k<m. Thus we need only consider problem parameters u~, M~, 
and B. It is also likely that all processors might be scheduled by a single 
scheduling algorithm and all tasks might undergo a common level of cloning. 
This further reduces the problem's complexity by requiring us to consider a 
single replication factor r and a single scheduling constant f. Given a homo- 

geneous system the quantity ~ qj is independent of the particular allocation 
j=~ 

(x~j) under consideration. This term will be constant in formulas (5) and (6) and 
so both (5) and (6) may be minimized by minimizing (1). 

We have assumed that the level of interprocessor communication will not 
be significantly affected by the choice of allocation in a SIFT-like system. The 
(relatively) constant interprocessor communication overhead is assumed to be 
incorporated in the u~Ss. 

The objective of balancing computational load evenly among all processors 
of the system follows from the desire to maximize the reliability of the system. 
Suppose that the tasks have been assigned so that processor utilization is 
unbalanced, e.g. one processor is significantly more utilized than the others. An 
underlying postulate of the system is that any processor is vulnerable to failure 
- so suppose that the overutilized processor has experienced a failure. In a 
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certain sense, this overutilized processor represents a weak link in the system. 
Some of the dangers associated with a system of unevenly utilized processors 
are :  

1. The failure of the overutilized processor makes it necessary to load, set 
up, and restart on other processors the tasks originally assigned to the failed 
processor. The time required for this reconfiguration varies roughly with the 
reassigned tasks' utilizations. Thus the failure of the overutilized processor 
jeopardizes the robustness of the system by increasing the likelihood that the 
system may not recover within a reasonable grace period. 

2. The slack time (time when no task is running) of the overutilized pro- 
cessor is significantly less than the slack time of the other processors. The effect 
of reducing slack time is to reduce the amount of time which might have been 
allotted to running diagnostic programs. This in turn increases the probability 
that the overutilized processor is "underdiagnosed" and is therefore more 
prone to produce erroneous results. Such errors could seriously impair the 
intended operation of the system. 

3. Although we have assumed a priori knowledge of the tasks' characteris- 
tics (notably running time), these characteristics are in fact nondeterministic by 
nature. For instance, a task's running time will be influenced by program 
branching, data dependencies, and hardware fluctuations and may therefore 
vary from activation to activation. The tasks' tendency to exhibit this random 
variation means that we risk missing task deadlines by overutilizing a pro- 
cessor. Missed deadlines will have a deleterious effect on the system. 

4. In cases where diagnostic programs are not employed or are employed 
for only a fraction of the slack time, it is conceivable that the failure rate of a 
processor will increase with its duty cycle. This implies that the overutilized 
processor, by virtue of being computationally "overburdened," suffers a higher 
failure rate than its less utilized comrades. 

All of these considerations acquire considerable importance in light of the 
fact that we are considering a life-critical application. The above discussion 
suggests that a balanced system is inherently more reliable than an unbalanced 
system. Note that the minimum value of (1) corresponds to the best possible 
approximation of a perfectly balanced system. 

4. An Efficient Approximation Algorithm for the Problem 

We will now consider an approximation algorithm for restricted versions of 
TAP. Depending on the parameters of TAP (e.g. u~, n, m, r), there may or may 
not be a solution to the problem. For example, in TAP there may not be a 
sufficient number of processors to satisfy the separation, capacity, and schedul- 
ing constraints with any particular allocation. In practice, the system designers 
will have built the system with enough processing power to accommodate a 
wide range of task sets. Appealing to the good judgement and foresight of the 
system architect, we shall henceforth assume that the memory capacity and 
processing speed of the processors, as well as the number of processors are 
sufficient to accommodate all reasonable allocations (where a reasonable allo- 
cation might self servingly be defined as one produced by the soon to be 
presented approximation algorithm). The point here is that the system was 
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designed with a dedicated application in mind and should therefore be expect- 
ed to handle all allocations associated with the application. 

Our intent is to decide which of the many possible allocations is best, given 
that we are constrained to make this decision in real-time. This real-time 
requirement is necessary in the types of fault-tolerant systems that we are 
considering. Processors are at all times subject to failure with subsequent 
removal of chronically faulty processors from the system. The removal of 
processors may then necessitate shedding some of the tasks. Every time this 
occurs a new allocation must be created. One possibility is to compute optimal 
allocations for various combinations of tasks and processors off-line, perhaps 
using integer programming methods. These allocations could then be stored in 
tables for system use after reconfiguration. The major  drawback with this is 
that the number of conceivable combinations of tasks and processors is very 
large for even moderately sized systems. 

It is therefore desirable to have a procedure for creating allocations of 
arbitrary sets of processors to arbitrary sets of tasks on-line and in real-time. 
Since there is little hope of computing optimal allocations in real-time, what is 
needed is some sort of "quick and dirty" solution to the problem, though we 
prefer a solution that is long on "quick"  and short on "dirty." To this end we 
propose an algorithm for allocating processors to tasks. Suppose that we have 
m processors to be allocated to n tasks, with each task to be assigned to r 
distinct processors. Also suppose that the tasks have been sorted so that their 
utilizations are in descending order: ul>. . .>u .. The algorithm (dubbed Al- 
locate) works as follows: 

(1) Initialize qj: = 0  for 1 <j<m. Initialize i: = 1. 
(2) Assign the r clones of task i to the r least utilized processors. Set qj:=qj 

+ u i for each processor j that task i is assigned to. Increment i: = i+  1. 
(3) If i>  n then end else go to (2). 
Algorithm Allocate is a best fit algorithm. The algorithm consists of n basic 

steps, one for each task being assigned. During the i-th step the algorithm 
assigns the r clones of the i-th task to the r least utilized processors and 
updates their utilizations to reflect the assignment. This results in a sort of 
"balance-as-you-go" effect. The execution time of Allocate is bounded above 
by O(mnr) which compares favorably with the exhaustive search algorithm. [If  
the task utilizations are not already sorted, we must add O(nlogn) to the 
above.] 

Notice that our description of the algorithm ensures that the separation 
constraint (2) is met. However, we have said nothing about the capacity 
constraint (3) or the scheduling constraint (4). The algorithm can be modified 
to keep track of memory consumption and check for violations of capacity and 
scheduling violations. In the case of a SIFT-like system, if a violation is 
detected, then additional processors must be used or tasks must be shed. In 
our discussion we will assume that there are enough processors to accom- 
modate  the assignment without capacity or scheduling violations. 

The main result of this section is that algorithm Allocate produces allo- 
cations that are relatively well balanced when compared to the optimum. More 
formally, when algorithm Allocate assigns the r clones of n tasks to m pro- 
cessors, the resulting sum of squares is guaranteed to be no more than 
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9 m 
times greater than the optimal sum of squares. This bodes well for 

8 m - r +  1 
real design problems, since m is usually considerably larger than r, and as m 
grows large in relation to r the ratio tends to 1.125. To use the TAP as an 
example, one might expect up to 200 triplicated tasks to be executed by a 20 
processor system. In this example the approximate allocation produced by 
Allocate would never be more than 25 ~ off optimum. 

We will derive the performance guarantee via a technique that we dub the 
series ratio method. The series ratio method was first used in deriving a 
performance guarantee for the problem of minimizing sum of squares (without 
cloning) [3]. This method relies on the fact that the ratio of two appropriately 
defined series of numbers can be bounded from above. We then show that the 
ratio of Allocate's sum of squares to the optimal sum of squares can be made 
to conform to the constraints of the series, and thus bounded from above. 

Recall that qj represents processor j's utilization, i.e. q~= ~ ulxij given the 
i=1 

2 while allocation (xlj). The problem then becomes one of minimizing qj 
j = l  

providing that distinct clones of any task are assigned to distinct processors. 
The basic strategy for proving that the absolute performance ratio is bounded 
for the given parameters is as follows. 

1. Establish technical and auxiliary lemmas for manipulating the problem 
(Lemmas 1, 2, 5). 

2. Show that the approximate and optimal sums of squares can be made to 
fit the constraints of the series used in the series ratio method (Lemmas 3, 4, 6). 

3. Compute the upper bound on the series ratio (Lemma 7). 
4. The main result follows immediately (Theorem 1). 
First we state two simple lemmas that will be used later. 

Lemma 1. Suppose that there is an assignment of n tasks to m processors with 
processor utilizations q 1,..., q,,. I f  qj <= Q for s <j <m, then any other assignment 

with processor utilizations q'l .... ,q'~ satisfying q j<= qi must satisfy the 
j = s  j = s  m 

inequality min {q)} ~<Q. 
j - $  

m 
Proof. Assume that rain {q)} > Q. Then q)> Q for s ~<j < m. Hence 

j = s  

(m-s+l)Q>= ~ qj>= ~ q)>(m-s+l )Q.  
j ~ $  j = s  

m 

We have a contradiction; so rain {q)} < Q. 
/ = s  

The next lemma, stated without proof, will be used to make comparisons 
between the sums of squares of two allocations. It states that if we transfer a 
task (represented by x in the lemma) from a processor of lesser utilization to a 
processor of greater utilization, then the new sum of squares will be greater 
than the old sum of squares. 

Lemma 2. I f  a>_b>_O and x>O, then (a+x)Z +bZ>a2 +(b+x) 2. 
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The next result is a key lemma showing that the optimal assignment can be 
transformed into a new assignment without increasing the sum of squares. The 
new assignment is shown to agree with the approximate assignment on a 
certain subset of the processors. 

Lemma 3. Suppose that r clones of  n tasks are to be assigned to m processors so 
that distinct clones o f  any task are assigned to distinct processors. Let  ql,  ..., qm 
be the processor utilizations resulting from algorithm Allocate, ordered so that 
q l >. . .  >= qm. Let  q t - -max  {q j: processor j is allocated to two or more tasks}, and 
define s = min {j: qj < q, and processor j is allocated to two or more tasks}. ( I f  no 
such t exists, i.e. no processor is allocated to more than one task, then define s 
= m +  1.) I f  qT . . . . .  q* are processor utilizations in an optimal assignment, then 

r 

there exists an assignment with processor utilizations q'l , .-., q~ such that q~=qi 
for  1 <j  < s and 

(q))2~ ~ (q*)2. 

j = 1  1 = I  

The assignment producing processor utilizations q'l . . . . .  q" might not assign dis- 
tinct clones o f  a task to distinct processors. 

Proof, For  l_<iNn assume that u i is task i's utilization and that u~ >=... >u , .  
Consider the assignment produced by Allocate, reordered so that q l > - . .  >qm. 
The allocation is depicted in Fig. 2. This figure indicates that if some pro- 
cessors are allocated to only single tasks, then these processors will be the 
most utilized in the system. Without loss of generality, assume that processor s 
is allocated to at least two tasks and processors 1, . . . ,  s - 1  are each allocated 
to single tasks. Assume that only tasks 1 , . . . ,k  are assigned to processors 
1 . . . .  , s - 1  and only tasks k + 1 . . . .  , n are assigned to processors s . . . . .  m. 

Let q* , . . . ,q*  be the processor utilizations in an optimal assignment, or- 
dered so that q * > . . . > q * .  We will transform this optimal assignment as 
follows: 

for j . '=  1 to k do 

for i . .=l  t o r d o  

find the processor allocated to clone i of task j and reassign all 
tasks but j to the least utilized processor allocated to tasks chosen 
only from k + 1 . . . .  , n, and update processor utilizations. 

ql 

q2 J 

qs I 

) m qm 

Fig. 2. An assignment produced by algorithm Allocate 

each p r o c e s s o r  
is a l loca ted  to 
a single tusk  
chosen  f rom 
1 ... . .  k 

a l loca ted  to 
at least  two  t u s k s  

each p rocesso r  
is a l loca ted  to 
t asks  chosen  
only f rom 
k + l  .. . . .  n 
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This transformation will produce an allocation in which tasks 1 . . . .  ,k  are 
assigned to s - l  processors, with exactly one task assigned to each of these 
processors. It will now be shown that this transformation is always possible. 
Any assignment must have no more than s - 1  processors allocated to tasks 
1 . . . .  , k. Therefore there will always be at least one processor allocated to tasks 
chosen only from k + 1 . . . . .  n if 1 < s  <m,  and hence the transformation can be 
performed. The only other case to consider is when s = m + l ,  in which case 
Allocate assigned at most one task per processor and it is easy to verify t h a t  
the transformation is possible. [-In fact there is no " t ransformat ion"  in this case 
- the " t ransformed" assignment is identical to the optimal assignment.] Since 
the transformation is possible, assume that the new assignment has processor 

t t 1 utilizations q~ . . . .  , q,,, reordered so that qi = qJ for 1 < j  < s. 
It now remains to show that 

(q))2< ~ (q.)2. 
j = l  j = l  

We will demonstrate that each step of the transformation produces a new 
assignment whose sum of squares is no greater than the previous assignment's. 
Suppose that the previous assignment had processor utilizations Pl, ..., P,, and 
reassignment of tasks in processor t 1 to processor t z produced a new assign- 
ment with processor utilizations p'l . . . . .  p~,. Assume that the reassigned tasks 
had total utilization x. Task k~ was the task examined in the transformation 
and k~<k. Thus we have ptl=uk,+x.  The old and new assignments are shown 
in Figure3. Since Uk>q ~ for s < j < m ,  by Lemma 1 there is a processor t 2 
allocated to tasks chosen only from k + l  . . . .  ,n such that pt2<Ukl. Then by 
Lemma 2 

(pj)2 = [- Z P2]+(UkI+X)2+(p'2)2 
j= 1 j * t l , j ~ : t 2  

>= [ E + (ukl) 2 +(pt2 + x) 
j * t l , j * t 2  

= ~ (p})2. 
j = l  

Note that processor t 2 may have been allocated to a clone of a task also 
contained in the shaded region of Fig. 3. Thus the transformation might not 
produce an assignment in which distinct clones of a task are assigned to 
distinct processors. 

Hence the transformed assignment with processor utilizations q'~ . . . .  , q" has 
q) = qj for 1 =<j < s and 

(q))2<= ~ (qy)2. 
j = l  j = l  

Definition 1. If  S =  {s I . . . .  , Sm} is a multiset (i.e. a set in which multiple occur- 
rences of an element are possible - also known as a bag) in which s a < . . .  <s, , ,  
then for 1 <_r<_m define min-r S = s  r. This is the r th minimum of S. 

For example, if we take S to be the multiset {1, 2, 2, 8, 10}, then min-3 S 
~---2. 
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Pl 

Ph 

Pt 2 

Pil 

Pi2 

Uk 1 

Old Assignment 

1 
x processor t~ is 

~ P u r ? ~  being examined by the t ransformat ion 

tasks comprising x will be 
reassigned to processor t 2 

ocessor t 2 is the least 
ilized processor al located 

to tasks chosen only from 
k + l  . . . . .  n 

New Assignment 

ukl I 
X 

Fig. 3. Reassignment of tasks in the transformation of Lemma 3 

Lemma 4. Suppose that r clones of n tasks are to be assigned to m processors so 
that distinct clones of any task are assigned to distinct processors. Let ql, . . . ,q,,  
be the processor utilizations resulting from algorithm Allocate. I f  a maximally 

m m 

utilized processor is allocated to at least two tasks, then max {q j} =< 2 min-r {q j}. 
j=1 j=1  

Proof Let s be a maximally utilized processor allocated to at least two tasks, 
Suppose  that task k was the last task assigned (by algorithm Allocate) to 
processor s and Pl . . . . .  p,. were the processor uti l izations just prior to the 
assignment of task k. It is clear that pj~qj for 1 <=j<m, and hence 

m n l  

min-r {p j} <__ min-r {q j}. (7) 
j=l j=1 

The r clones of task k were assigned to the r least utilized processors; thus 

Ps < min-r {p j}. (8) 
j = l  

Since at least two tasks were assigned to processor s, Ps > Uk" Hence 

Ps + Uk < 2Ps" (9) 
m 

But ps + u k = max {q j} ; so by (7), (8) and (9), 
j = t  
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m 

max {q j} < 2ps 
j = l  

m 

< 2 min-r {p j} 
j = l  

m 

< 2 min-r {q j}. 
j = l  

# 

The following result is obvious and stated without proof. 

Lemma  5. I f  a> b >O and c > d>O, then 

a + c < b + c  

a+d=b+d"  

The following definition is central to the series ratio method. Two series are 
specified and the value K7 is defined to be the least upper bound of their 
ratios. 

Definition2. Let P=(PI,. . . ,P,,) and q=(q~ . . . .  ,q,,) be two sequences of non- 

negative numbers such that p j =  qj and max{qj}<2min-r{qj} .  For  
1 < r_< m define J= ~ J= ~ J= ~ J= 

m K, =lub| 7. l" 

l i t  is easy to show that such a lub exists and hence the definition is proper.] 
Lemma 6 states that the ratio of the approximate to the optimal sum of 

squares can be made to fit the format of the series ratio method. The absolute 
performance ratio is therefore bounded above by K~. 

Lemma  6. Suppose that r clones of vi tasks are to be assigned to m processors so 
that distinct clones of any task are assigned to distinct processors. Let ql, ..., q~ 
be the processor utilizations resulting from algorithm Allocate, ordered so that 
q l >= ... > qm. Let q* . . . . .  q* be the processor utilizations in an optimal assignment. 
Then 

~ (q)2 
i= 1 < K ~ .  

(q*): 
j = l  

t Proof Let s and q'l, ...,q',, be as in Lemma 3, i.e. qj=qj for l<=j<s and 

(q})2<= ~,, (q.)2. 
j = l  j = l  
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Then 
(q j)2 ~ (q j)2 

j= i <j~1 

(q.)2 • (q,)2 
j = l  j ~ l  

(q j)2 + ~ (q j)2 
__j<$ j ~ s  

Z (q})2 + E (q})2 
j<s j>s  

(qY + Y~ (qf 
- J ~  J>--~ (10) 

Z (q j)2 + Z (q})2 
j<s  j>s  

(qs)2 + ~ (qj)2 
<J<~ J>-s (11) = ~ (q~)2 + ~, (q))2 

j<s j>=s 
<Km. (12) 

Here (11) follows from (10) by noting that qj>qs for 1 <j<s and then applying 
m 

Lemma 5. From Lemma 4 q~=<2min-r {q j} since qs, ..., % represents the allo- 
j - s  

cation that results from applying algorithm Allocate to tasks k +  1 .. . .  ,n on 
processors s . . . . .  m (where k is used as in the proof of Lemma 3). Now let P2 
=q~ for l<j<s,  and let p2=qj for s<j<m. Likewise let p}=q~ for l<=j<=s, and 
let p}=q} for s<j<m. The sequences Pl . . . .  ,Pro and p',,...,p~, appear in the 
numerator and denominator, respectively, of (11). We also see that 

m m 

max {p j} = qs =< 2 min-r {p j} 
j = l  j = l  

and ~ pj= ~ p). Equation (12) then follows from (11) by Definition 2 of 
j = l  j = 1  

We now compute a tight bound on K~. 

Lemma 7. For m > r >_ 1 
9 m K m _< 

r - 8  m-r+1" 

Proof Let q(t) be a nonincreasing step function (with steps at integers) defined 
for 0 _< t _< m such that: 

q(O)<__2q(m-r+ 1), (13) 

q(t) dt = 1, (14) 
0 

~qZ(t)dt is maximized for the given m and r. (15) 
0 
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Let q,(t) be such a function. Suppose that P=(Pl .... , p,,) and q=(ql, ..., q,,) are 
sequences of nonnegative numbers such that 

Then 

Moreover 

~ m m 
Pi= q j =  a and max {q j} <2  min-r {q j}. 

j = l  j = l  j = l  j = l  

m 

(qj)2 <=~2 ~ q~,(t)dt. (16) 
j = l  0 

~2 
(p j )2  > _ _ .  ( 1 7 )  

j = l  m 

Hence from (16) and (17) we have 

~ ( q i )  2 
m 

J= ' <=m ~ q2(t)dt. 
~ (pj)2 o 

j = l  

From (18) and Definition 2 of K~ we then have 

m 

K~<=m ~ q2,(t)dt. 
0 

Next we will show that q,(t) must have the following form: 

ix  O<t<k 
q , ( t )=  k<_t<_m-r + l 

m-r+l<t<_m 

(18) 

(19) 

(20) 

for some values of k and x. It is clear that q , ( t )=O for m-r+l<t<=m. 
Otherwise, we could form another step function q**(t) satisfying (13) and (14) 
but with m 

q2,(t) dr> f q2,(t)dt 
0 0 

as shown in Fig. 4. Furthermore, it is clear that q,(t) cannot have one single 
step for O<_t<_m-r+ 1, as shown in Fig. 5. Moreover, q,(t) cannot have three 
or more steps for 0 < t  < m - r +  1, as shown in Fig. 6. This leaves (20) as the 
only form that q,(t) can assume. 

From (14) and (20) we see that 

m 

q,(t) dt= 2xk + x ( m - r - k  + l)= l. 
0 

Hence k =  I / x - ( m - r +  1) and 

- [ q2(t)dt=4x2(1/x-(m-r+ 1))+x 2 (m 
0 

= 3 x - 2 ( m - r  + l)x 2. 

--r + l ) -  ( 1 - ( m - r  + l))] 

(21) 
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q.(t) 

--t_q...t 
L 

t 
m-r+1 m 

q ,  can  be t r a n s f o r m e d  to b e t t e r  q** 

q**(t) 

s h a d e d  reg ion  is even l y  
... r e d i s t r i b u t e d  

0/q .Ctldf, 0/q  Cfldt 
t 

0 m-r+1 

Fig. 4. q,(t) must be zero for t > m - r + l  

q,(t) q,(t) 

one step 

t 
m-r*~ 

q. can be transformed 
to better q** 

m 

/q2**(tIdt> /q.2(t)dt 
o o 

t 
0 m-r§ 

Fig. 5. q,(t) cannot have one step 

Three-or-more 
steps 

t 
m-r.1 

q. can be transformed 
to better q** 

q**(t} 

/q2..lt)dt> fq2.(t)dt 
o o 

! 
0 m-r§ 

Fig. 6. q,(t) cannot have three or more steps 
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m 

Using the derivative of (21) to solve for the maximum we find that ~q2,(t)dt 
attains a maximum of 9 / ( 8 ( m - r +  1)) when x = 3 f14(m-r+  1)), i.e. o 

S q2, (t) dt - . (22) 
o m - r + l  

Using (19) and (22) we have 
9 m 

K m < -  
r - 8  m - r + l "  

The main result follows. 

Theorem 1. Suppose that r clones of  n tasks are to be assigned to m processors so 
that distinct clones o f  any task are assigned to distinct processors. Let  ql ,  . . . ,  qm 
be th'e processor utilizations resulting f rom algorithm Allocate, and let q~ . . . .  , q* 
be the processor utilizations in an optimal assignment. Then 

• (q~)2 9m 
j=i < 

(q.)2 = 8(m-- r + 1)' 

j = l  

Proof  The theorem follows directly from Lemma 6 and Lemma 7. 

It can be seen that the upper bound of Theorem 1 is not tight. For 
instance, in the case when r = m  algorithm Allocate produces optimal assign- 
ments (all processors are equally utilized), whereas Theorem 1 gives a very 
weak performance guarantee that is an increasing function of the number of 
processors (9m/8). Moreover, Theorem 1 gives a performance bound of 9/8 
when r = 1, but a better bound of 25/24 is known [3]. 

The bound derived in [3] may be used to improve Theorem 1. In the case 
when r evenly divides m, algorithm Allocate can be seen to produce assign- 
ments that are identical to those produced by the placement algorithm anal- 
yzed in [3]. We then have the following strengthening of Theorem 1: 

(q j)2 ~ if r divides m, 
j = l  < 

i [9m j= t (q*)2 8 m - ; +  1 if r does not divide m. 

5. Empirical Results with the Approximation Algorithm 

Algorithm Allocate was implemented as a Pascal program and run with data 
adapted from [16]. The results of this experiment are described in the follow- 
ing. 
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The design of  the S I F T  compu te r  was p receded  by  a feasibil i ty s tudy tha t  
sought  to charac ter ize  the app l i ca t ion  (digital  flight control)  in quant i t a t ive  
terms. This  s tudy p r o p o s e d  a logical  pa r t i t ion ing  of the app l i ca t ion  into a 
n u m b e r  of canonica l  tasks and es tabl ished c o m p u t a t i o n a l  requ i rements  for 
these tasks. The c o m p u t a t i o n a l  r equ i rements  for these tasks consis ted of  es- 
t imates  of how often the task  had  to be executed (the task 's  frequency), 
a p p r o x i m a t e l y  how many  opera t ions  are executed by the task  per  second, and  
how much  m e m o r y  space is requi red  by the task. Al l  da t a  was s ta ted with 
respect  to a hypo the t i ca l  " b e n c h m a r k "  processor .  F r o m  this da t a  it is poss ible  
to der ive input  pa rame te r s  for the T A P .  This  da t a  is shown in Tab le  1. The 
da t a  is s ta ted  with respect  to a bas ic  p rocessor  with an ins t ruc t ion  execut ion 
ra te  of 0.5 M I P S  and an  address  space of 64 Kbytes .  W e  a l loca ted  groups  of 
six, seven and  eight  processors  to t r ip l ica ted  versions of  the tasks shown in 
Tab le  1. 

Table 1. Avionic task characteristics 

Task Task Descrip. Iterations Instructions Utilization Mere. 
No. per Sec. per Iteration 

1 Attitude Control 20 1,228 0.04912 2,075 
2 Flutter Control 250 138 0.06900 92 
3 Gust Control 240 58 0.02784 60 
4 Autoland 160 342 0.10944 1,025 
5 Autopilot 5 200 0.00200 250 
6 Attitude Director 30 2,560 0.15360 1,310 
7 Inertial Navigation 25 1,350 0.06750 2,250 
8 VOR/DME 5 770 0.00700 300 
9 Omega 5 800 0.00800 505 

10 Air Data 5 200 0.00200 135 
11 Signal Processing 0.2 1,750 0.00070 315 
12 Flight Data 5 5,520 0.05520 550 
13 Airspeed 16 549 0.01757 430 
14 Graphics Display 8 3,975 0.06360 6,250 
15 Text Display 10 1,900 0.03800 9,340 
16 Collision Avoidance 670 32 0.04288 1,150 
17 Onboard Communication 250 28 0.01400 705 
18 Offboard Communication 4 155 0.00124 687 
19 Data Integration 4 360 0.00288 1,300 
20 Instrumentation 5 2,792 0.02792 1,900 
21 System Management 0.5 2,320 0.00232 950 
22 Life Support 0.5 2,320 0.00232 950 
23 Engine Control 33 3,597 0.23740 1,500 
24 Executive 5 200 0.00200 1,100 

The  results  of app ly ing  a lgo r i thm Al loca te  to the task  set are  shown in 
Tables  2, 3 and 4. A l g o r i t h m  Al loca te  p r o d u c e d  near ly  perfect ly ba lanced  
processor  ut i l izat ions,  and  with eight  digits of prec is ion  the a p p r o x i m a t e  and 
op t ima l  sums of squares  are identical .  Since no a t t empt  was made  to ba lance  
m e m o r y  usage, m e m o r y  ba lance  leaves much  to be desired. 
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Table 2. Utilizations of six processors 

Processor Utilization Memory 

1 0.50194 22,579 
2 0.50194 22,579 
3 0.50194 22,579 
4 0.50227 12,550 
5 0.50227 12,550 
6 0.50227 12,550 

Table 3. Utilizations of seven processors 

Processor Utilization Memory 

1 0.43011 15,657 
2 0.43047 18,835 
3 0.43053 22,712 
4 0.43037 14,082 
5 0.43014 8,067 
6 0.43073 8,212 
7 0.43031 17,822 

Table 4. Utilization of eight processors 

Processor Utilization Memory 

1 0.37614 20,090 
2 0.37658 5,332 
3 0.37658 5,447 
4 0.37605 8,110 
5 0.37656 13,179 
6 0.37685 15,800 
7 0.37702 16,577 
8 0.37688 20,852 

6. Summary and conclusions 

This paper has presented a TAP for certain fault-tolerant real-time distributed 
systems, the SIFT-like system. The TAP captures several important elements of 
these systems: separation constraints for replicated modules, capacity con- 
straints imposed by limited local processor memory, scheduling constraints 
needed to ensure that the allocation will support the scheduling of periodic 
real-time tasks, and load balancing for reliability enhancement. 

We have also presented a technique for the solution of the TAP. This 
approach involved the use of a fast algorithm that produces good but non- 
optimal allocations. We have shown that the allocations produced by this 
algorithm have normalized coefficients of variation that are guaranteed to be 
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less than 9m/(8(m-r+ 1)) times that of the optimal allocation, where m is the 
number of processors and r is the number of times each task is replicated. For 
situations where m is large in relation to r (as is normally the case), this 
indicates very reasonable performance, with the performance ratio tending 
toward 1.125. 
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