
Acta Informatica 20, 261-281 (1983)

�9 Springer-Verlag 1983

Task Allocation in Fault-Tolerant Distributed Systems*

Joseph A. Bannis ter 1 and Kishor S. Trivedi 2

1 University of California, Los Angeles, CA 90024, USA
2 Duke University, Durham, NC 27706, USA

Summary. This paper examines task allocation in fault-tolerant distributed
systems. The problem is formulated as a constrained sum of squares mini-
mization problem. The computational complexity of this problem prompts
us to consider an efficient approximation algorithm. We show that the ratio
of the performance of the approximation algorithm to that of the optimal
solution is bounded by 9m/(8(m-r+l)), where m is the number of pro-
cessors to be allocated and r is the number of times each task is to be
replicated. Experience with the algorithm suggests that even better perfor-
mance ratios can be expected.

List of Important Symbols

n

m

Xij
ri
M~j
Bj

r,
R~
blij

r
qi
q*
min-r

q , (t)

number of tasks to be assigned
number of processors to be allocated
1 if task i is assigned to processor j
number of clones of task i
units of memory space required by task i on processor j
units of memory space available on processor j
number of instructions executed by task i per iteration on processor j
task i's period
speed of a processor j in instructions per second
task i's utilization of processor j
scheduling constant (e.g. 1 or In 2) for processor j
number of clones of a task assuming a fixed level of replication
utilization of processor j
utilization of processor j under an optimal assignment
the r th min imum of a sorted multiset
least upper bound on a family of series ratios
used in computing K*

* This work was supported in part by the National Aeronautics and Space Administrat ion under
and by the National Science Foundat ion under Grant US NSF MCS-8302000

262 J.A. Bannister and K.S. Trivedi

1. Introduction

One of the first problems encountered in the operation of a distributed system
is the problem of allocating the tasks among the processing nodes. Allocation
problems of various types have been widely studied [1, 2, 4, 5, 9-11, 14, 15, 18-
20, 22]. The allocation problem has typically been formulated as a constrained
optimization problem. The constraining equations may describe system at-
tributes such as limited memory capacity or given processor speed, and the
objective is usually the minimization of some kind of cost function that varies
with the particular allocation.

Allocation problems are solved by providing a general, cost effective pro-
cedure for finding the optimal assignment for specific instances of the problem.
As a rule, allocation problems tend to be computationally intensive [5, 15, 19,
22]. This has spawned a variety of approaches to solving them. The three
widely used approaches to solving allocation problems are graph theoretic,
integer programming, and approximation methods. The graph theoretic ap-
proach represents the problem by a graph and then uses common graph
techniques such as the max-flow, min-cut algorithm to solve for the best
allocation [15, 18, 19]. The integer programming approach is perhaps the most
widely used method in solving allocation problems [5, 10, 14, 21]. The prob-
lem can be formulated as an integer program, and well-known techniques such
as implicit enumeration or branch-and-bound can be employed to find the
solution. The approximation approach is used when one wants a fast algorithm
that produces reasonably good approximations to the optimal solution [2, 3, 7,
10]. Other approaches to solving such problems include goal programming
[11] and Markov decision theory [4]. This paper will concentrate on approxi-
mation methods for solving allocation problems. The approximation algorithm
considered here is different in spirit from those advocated in [20, 22] where
one first removes the integer constraint, solves the continuous optimization
problem, discretizes the continuous solution, and obtains bounds on the discre-
tization error. This bound is with respect to the continuous optimum, whereas
in this paper we use an approximation directly to solve the discrete problem
and bound its performance with respect to the discrete optimum.

A contribution of this paper is to consider a specific allocation problem
that arises in the context of fault-tolerant distributed systems. These systems
typically achieve their tolerance to faults by the use of redundancy in hard-
ware, programs, or data. The use of redundancy enables the masking of faults
by voting on multiple copies of replicated (hardware or software) modules'
outputs. The use of redundancy also allows the replacement of a detected
faulty function by a fault-free function. The use of redundancy is modeled here
for certain fault-tolerant distributed systems.

Section 2 gives the necessary background on the type of system being
modeled and on real-time scheduling. Section 3 presents the mathematical
formulation of the allocation problem. In Sect. 4 we present an efficient ap-
proximation algorithm to solve the problem defined in Sect. 3, and we show
that the algorithm does not deviate significantly from the optimum. Section 5
discusses empirical results comparing the approximation algorithm to the

Task Allocation in Fault-Tolerant Distributed Systems 263

optimal algorithm. We summarize and discuss the significance of our results in
Sect. 6.

2. Background

First we briefly describe a real-time fault-tolerant distributed system similar to
the Software-Implemented Fault-Tolerance (SIFT) computer. The SIFT com-
puter was originally designed by SRI International to be used on board large
passenger aircraft [23-25]. The prime purpose behind the SIFT computer was
to make it possible for flight crews to control the new generation of fuel
efficient aircraft. The SIFT computer performs functions associated with flight
control, engine control, navigation, guidance, and other avionic functions.
Control functions such as these are essentially iterative in nature. A specific
avionic control task is typically performed at a constant frequency of from one
to 1,000 times per second. These tasks must execute fast enough so that they
can be completed within their iteration periods.

As described originally [23, 24] the SIFT computer is a system in which
multiple processors are interconnected by a triplicated bus. See Fig. 1 for a
processor-memory-switch (PMS) description of the SIFT system. Each pro-
cessor has a local memory and communicates with other processors by means
of a message passing protocol. A task consists of several clones that are
resident on and executed by a number of separate processors. Output values of
all clones of a task are submitted to a vote, and the majority value is provided
to consumers of the task's output. Thus if any single clone of a task for any
reason (e.g. processor, memory or bus failure) produces incorrect output, that
output will be suppressed by the majority vote. The voting is done under
program control, rather than through hard-wired circuitry - hence the sob-
riquet "Software-Implemented Fault-Tolerance".

The SIFT system was designed to execute a set of tasks composed pre-

1 I

Fig. 1. PMS description of the SIFT computer (after [17])

264 J.A. Bannister and K.S. Trivedi

dominantly of closed-loop control functions, or in the parlance of [8], periodic
real-time tasks. By periodic it is meant that the task is requested with a fixed
frequency, e.g. 50 times per second. By real-time it is meant that each task has
some deadline that it must meet. A periodic real-time task can then be
specified as a quadruple (s, e, d, p) with 0 < e < d_<p, where s represents the time
that the task is first requested, e is the execution time of the task, d is the task's
deadline, and p is the task's period. In this scheme the (k + 1)-st request for the
task occurs at time s+kp and the deadline for this request comes at time s
+kp+d. The utilization of the task is given by e/p. It is common to assume
that s = 0 and d = p.

The problem of scheduling periodic real-time tasks on a single processor
has been studied in [13], where two algorithms were proposed. Both algor-
ithms schedule tasks preemptively, which means that any task may be in-
terrupted and later resumed at the point where it was interrupted - the
requirement being that the task should complete before its deadline expires.
The first algorithm, called the rate-monotonic priority assignment algorithm,
assigns static priorities to tasks according to their iteration periods - tasks
with smaller iteration periods have higher priorities. At any given time the
rate-monotonic priority assignment algorithm starts the task with the highest
priority provided the task has not already been completed for its current
iteration period. In [13] it was proved that a set of n tasks can be scheduled
on a processor so that each task completes within its iteration period as long
as the processor's utilization will be no greater than ~(21/"- 1) which tends to
ln2 (approximately 0.69) as n grows. The quantity ln2 is a sufficient, though
not a necessary, condition for scheduling with the rate-monotonic priority
assignment algorithm. The second algorithm, called the deadline driven
scheduling algorithm, assigns dynamic priorities to tasks on the basis of pro-
ximity of deadline. Thus the algorithm always starts the task whose iteration
period will most imminently expire (assuming that the task has not yet been
completed for the current iteration period). The deadline driven scheduling
algorithm will schedule a set of tasks on a processor so that all tasks are
completed within their iteration periods so long as the processor's utilization
will not be greater than unity.

In I-6, 12] the problem of scheduling periodic real-time tasks on a multiple
processor system was studied. There are two basic approaches to scheduling
periodic real-time tasks on a multiple processor system. The first approach is
called the partitioning method and it seeks to partition the task set into groups
and assign the groups to distinct processors. The group of tasks assigned to a
processor can then be scheduled by techniques for single processor systems.
The second approach is called the nonpartitioning method and it treats the
entire collection of processors as one large virtual processor that uses its
increased computing power to quickly execute the entire task set sequentially
(as opposed to the parallel execution of tasks in the partitioning method). The
entire task set is then scheduled on the single virtual processor as in the sing T"
processor case. In this paper we will be concerned exclusively with the par-
titioning method.

Task Al locat ion in Faul t -Toleran t Distr ibuted Systems 265

3. Mathematical Formulation of the Problem

Consider the following general allocation problem schema. Suppose that we
are given fixed parameters ri, Mij, B j, uij, and fj where 1 < i < n and 1 <j<m.
We wish to find an n by m matrix (x 0 of zeros and ones satisfying the
following problem:

minimize

subject to constraints

j = l =

~ x i j = r i for l_<i_<n, (2)
j = l

~ M i j xij ~ B~ for 1 < j N m, (3)
i=1

~ui j xi~ < fj for 1 <__j __< m. (4)
i = l

The problem specified in (1)-(4) is a constrained sum of squares minimi-
zation that may be used to model a task allocation problem (TAP) in a SIFT-
like system. Assume that the system consists of m processors. There are n tasks
which must be periodically executed. Each task will be loaded into a certain
number of processors' local memories and executed by those processors. Let
(x/j) be the n by m matrix of zeros and ones with xlj equal to one if task i is
scheduled on processor j and x/j equal to zero otherwise. The number of
processors to which task i is assigned is the replication factor rl of the task;
that is, the task i is composed of r~ clones, and each clone is resident on and
executed by a distinct processor. Each task i must then be assigned to exactly r~
distinct processors as indicated by Eq. (2).

If task i requires M~j units (bytes, words) of memory to execute on pro-
cessor j, and processor j has Bj units of memory available, then the task
assignment must satisfy inequality (3).

For each task i we also know the number of instructions in the task, Iij,
when it is executed on processor j, and the iteration period of the task, T~. The
iteration period of the task is an amount of time during which the task must
be executed at least once. The iteration period is dictated by physical con-
ditions such as how frequently a device must be serviced or how often an
aileron must be controlled. If the speed of processor j is Rj instructions per
second, then task i requires Iz/Rj seconds for its execution on processor j. The
quantity Ii/(RjT~) represents the fraction of its iteration period that task i
actually performs computations (if assigned to processor j). We will refer to
this ratio as task i's utilization of processor j, designated uij. Recall that if a
collection of tasks is assigned to a processor so that their utilization of the
processor falls below a certain level, then those tasks can be scheduled on the

266 J.A. Bannister and K.S. Trivedi

processor. Constraint (4) specifies that those tasks assigned to a processor must
be schedulable on that processor by one of the scheduling disciplines discussed
above. If the rate-monotonic priority assignment algorithm is used on pro-
cessor j, then fj has the value In 2. In the case that processor j uses the deadline
driven algorithm to schedule its tasks, f~ assumes the value one.

In a SIFT-like system minimization of the objective function (1) is desired
as a way to achieve load balancing among the system's processors. The
quantity

qj = Z Uij Xij
i=1

represents the utilization of processor j under allocation (xi~). There are several
ways to measure the imbalance in the processor utilizations ql qm' The
following two formulas immediately come to mind:

1 ~ [1 ~ 12 i ~ [1 ~]2
--m,.=l qj--mj=xqj =--mj=l(qj)2- ~=xqJ , (5)

1 m
Y (qf

j= 1 (6)

Formula (5) is known as the statistical variance of the qSs and formula (6) is
the normalized coefficient of variation of the qSs (equal to one plus the squared
coefficient of variation).

The SIFT system is a homogeneous system in which all processors are
identical. Homogeneity greatly simplifies system development, validation, and
maintenance. The assumption of homogeneity greatly simplifies the TAP as
well: one may now assume that Uij=U~k, M~j=M~k, and Bj=B k for l < n ,
1 <=j<=m, and 1 <k<m. Thus we need only consider problem parameters u~, M~,
and B. It is also likely that all processors might be scheduled by a single
scheduling algorithm and all tasks might undergo a common level of cloning.
This further reduces the problem's complexity by requiring us to consider a
single replication factor r and a single scheduling constant f. Given a homo-

geneous system the quantity ~ qj is independent of the particular allocation
j=~

(x~j) under consideration. This term will be constant in formulas (5) and (6) and
so both (5) and (6) may be minimized by minimizing (1).

We have assumed that the level of interprocessor communication will not
be significantly affected by the choice of allocation in a SIFT-like system. The
(relatively) constant interprocessor communication overhead is assumed to be
incorporated in the u~Ss.

The objective of balancing computational load evenly among all processors
of the system follows from the desire to maximize the reliability of the system.
Suppose that the tasks have been assigned so that processor utilization is
unbalanced, e.g. one processor is significantly more utilized than the others. An
underlying postulate of the system is that any processor is vulnerable to failure
- so suppose that the overutilized processor has experienced a failure. In a

Task Allocation in Fault-Tolerant Distributed Systems 267

certain sense, this overutilized processor represents a weak link in the system.
Some of the dangers associated with a system of unevenly utilized processors
are :

1. The failure of the overutilized processor makes it necessary to load, set
up, and restart on other processors the tasks originally assigned to the failed
processor. The time required for this reconfiguration varies roughly with the
reassigned tasks' utilizations. Thus the failure of the overutilized processor
jeopardizes the robustness of the system by increasing the likelihood that the
system may not recover within a reasonable grace period.

2. The slack time (time when no task is running) of the overutilized pro-
cessor is significantly less than the slack time of the other processors. The effect
of reducing slack time is to reduce the amount of time which might have been
allotted to running diagnostic programs. This in turn increases the probability
that the overutilized processor is "underdiagnosed" and is therefore more
prone to produce erroneous results. Such errors could seriously impair the
intended operation of the system.

3. Although we have assumed a priori knowledge of the tasks' characteris-
tics (notably running time), these characteristics are in fact nondeterministic by
nature. For instance, a task's running time will be influenced by program
branching, data dependencies, and hardware fluctuations and may therefore
vary from activation to activation. The tasks' tendency to exhibit this random
variation means that we risk missing task deadlines by overutilizing a pro-
cessor. Missed deadlines will have a deleterious effect on the system.

4. In cases where diagnostic programs are not employed or are employed
for only a fraction of the slack time, it is conceivable that the failure rate of a
processor will increase with its duty cycle. This implies that the overutilized
processor, by virtue of being computationally "overburdened," suffers a higher
failure rate than its less utilized comrades.

All of these considerations acquire considerable importance in light of the
fact that we are considering a life-critical application. The above discussion
suggests that a balanced system is inherently more reliable than an unbalanced
system. Note that the minimum value of (1) corresponds to the best possible
approximation of a perfectly balanced system.

4. An Efficient Approximation Algorithm for the Problem

We will now consider an approximation algorithm for restricted versions of
TAP. Depending on the parameters of TAP (e.g. u~, n, m, r), there may or may
not be a solution to the problem. For example, in TAP there may not be a
sufficient number of processors to satisfy the separation, capacity, and schedul-
ing constraints with any particular allocation. In practice, the system designers
will have built the system with enough processing power to accommodate a
wide range of task sets. Appealing to the good judgement and foresight of the
system architect, we shall henceforth assume that the memory capacity and
processing speed of the processors, as well as the number of processors are
sufficient to accommodate all reasonable allocations (where a reasonable allo-
cation might self servingly be defined as one produced by the soon to be
presented approximation algorithm). The point here is that the system was

268 J.A. Bannister and K.S. Trivedi

designed with a dedicated application in mind and should therefore be expect-
ed to handle all allocations associated with the application.

Our intent is to decide which of the many possible allocations is best, given
that we are constrained to make this decision in real-time. This real-time
requirement is necessary in the types of fault-tolerant systems that we are
considering. Processors are at all times subject to failure with subsequent
removal of chronically faulty processors from the system. The removal of
processors may then necessitate shedding some of the tasks. Every time this
occurs a new allocation must be created. One possibility is to compute optimal
allocations for various combinations of tasks and processors off-line, perhaps
using integer programming methods. These allocations could then be stored in
tables for system use after reconfiguration. The major drawback with this is
that the number of conceivable combinations of tasks and processors is very
large for even moderately sized systems.

It is therefore desirable to have a procedure for creating allocations of
arbitrary sets of processors to arbitrary sets of tasks on-line and in real-time.
Since there is little hope of computing optimal allocations in real-time, what is
needed is some sort of "quick and dirty" solution to the problem, though we
prefer a solution that is long on "quick" and short on "dirty." To this end we
propose an algorithm for allocating processors to tasks. Suppose that we have
m processors to be allocated to n tasks, with each task to be assigned to r
distinct processors. Also suppose that the tasks have been sorted so that their
utilizations are in descending order: ul>. . .>u .. The algorithm (dubbed Al-
locate) works as follows:

(1) Initialize qj: = 0 for 1 <j<m. Initialize i: = 1.
(2) Assign the r clones of task i to the r least utilized processors. Set qj:=qj

+ u i for each processor j that task i is assigned to. Increment i: = i+ 1.
(3) If i> n then end else go to (2).
Algorithm Allocate is a best fit algorithm. The algorithm consists of n basic

steps, one for each task being assigned. During the i-th step the algorithm
assigns the r clones of the i-th task to the r least utilized processors and
updates their utilizations to reflect the assignment. This results in a sort of
"balance-as-you-go" effect. The execution time of Allocate is bounded above
by O(mnr) which compares favorably with the exhaustive search algorithm. [If
the task utilizations are not already sorted, we must add O(nlogn) to the
above.]

Notice that our description of the algorithm ensures that the separation
constraint (2) is met. However, we have said nothing about the capacity
constraint (3) or the scheduling constraint (4). The algorithm can be modified
to keep track of memory consumption and check for violations of capacity and
scheduling violations. In the case of a SIFT-like system, if a violation is
detected, then additional processors must be used or tasks must be shed. In
our discussion we will assume that there are enough processors to accom-
modate the assignment without capacity or scheduling violations.

The main result of this section is that algorithm Allocate produces allo-
cations that are relatively well balanced when compared to the optimum. More
formally, when algorithm Allocate assigns the r clones of n tasks to m pro-
cessors, the resulting sum of squares is guaranteed to be no more than

Task Allocation in Fault-Tolerant Distributed Systems 269

9 m
times greater than the optimal sum of squares. This bodes well for

8 m - r + 1
real design problems, since m is usually considerably larger than r, and as m
grows large in relation to r the ratio tends to 1.125. To use the TAP as an
example, one might expect up to 200 triplicated tasks to be executed by a 20
processor system. In this example the approximate allocation produced by
Allocate would never be more than 25 ~ off optimum.

We will derive the performance guarantee via a technique that we dub the
series ratio method. The series ratio method was first used in deriving a
performance guarantee for the problem of minimizing sum of squares (without
cloning) [3]. This method relies on the fact that the ratio of two appropriately
defined series of numbers can be bounded from above. We then show that the
ratio of Allocate's sum of squares to the optimal sum of squares can be made
to conform to the constraints of the series, and thus bounded from above.

Recall that qj represents processor j's utilization, i.e. q~= ~ ulxij given the
i=1

2 while allocation (xlj). The problem then becomes one of minimizing qj
j = l

providing that distinct clones of any task are assigned to distinct processors.
The basic strategy for proving that the absolute performance ratio is bounded
for the given parameters is as follows.

1. Establish technical and auxiliary lemmas for manipulating the problem
(Lemmas 1, 2, 5).

2. Show that the approximate and optimal sums of squares can be made to
fit the constraints of the series used in the series ratio method (Lemmas 3, 4, 6).

3. Compute the upper bound on the series ratio (Lemma 7).
4. The main result follows immediately (Theorem 1).
First we state two simple lemmas that will be used later.

Lemma 1. Suppose that there is an assignment of n tasks to m processors with
processor utilizations q 1,..., q,,. I f qj <= Q for s <j <m, then any other assignment

with processor utilizations q'l ,q'~ satisfying q j<= qi must satisfy the
j = s j = s m

inequality min {q)} ~<Q.
j - $

m
Proof. Assume that rain {q)} > Q. Then q)> Q for s ~<j < m. Hence

j = s

(m-s+l)Q>= ~ qj>= ~ q)>(m-s+l)Q.
j ~ $ j = s

m

We have a contradiction; so rain {q)} < Q.
/ = s

The next lemma, stated without proof, will be used to make comparisons
between the sums of squares of two allocations. It states that if we transfer a
task (represented by x in the lemma) from a processor of lesser utilization to a
processor of greater utilization, then the new sum of squares will be greater
than the old sum of squares.

Lemma 2. I f a>_b>_O and x>O, then (a+x)Z +bZ>a2 +(b+x) 2.

270 J.A. Bannister and K.S. Trivedi

The next result is a key lemma showing that the optimal assignment can be
transformed into a new assignment without increasing the sum of squares. The
new assignment is shown to agree with the approximate assignment on a
certain subset of the processors.

Lemma 3. Suppose that r clones of n tasks are to be assigned to m processors so
that distinct clones o f any task are assigned to distinct processors. Let ql, ..., qm
be the processor utilizations resulting from algorithm Allocate, ordered so that
q l >. . . >= qm. Let q t - -max {q j: processor j is allocated to two or more tasks}, and
define s = min {j: qj < q, and processor j is allocated to two or more tasks}. (I f no
such t exists, i.e. no processor is allocated to more than one task, then define s
= m + 1.) I f qT q* are processor utilizations in an optimal assignment, then

r

there exists an assignment with processor utilizations q'l , .-., q~ such that q~=qi
for 1 <j < s and

(q))2~ ~ (q*)2.

j = 1 1 = I

The assignment producing processor utilizations q'l q" might not assign dis-
tinct clones o f a task to distinct processors.

Proof, For l_<iNn assume that u i is task i's utilization and that u~ >=... >u , .
Consider the assignment produced by Allocate, reordered so that q l > - . . >qm.
The allocation is depicted in Fig. 2. This figure indicates that if some pro-
cessors are allocated to only single tasks, then these processors will be the
most utilized in the system. Without loss of generality, assume that processor s
is allocated to at least two tasks and processors 1, . . . , s - 1 are each allocated
to single tasks. Assume that only tasks 1 , . . . ,k are assigned to processors
1 , s - 1 and only tasks k + 1 , n are assigned to processors s m.

Let q* , . . . ,q* be the processor utilizations in an optimal assignment, or-
dered so that q * > . . . > q * . We will transform this optimal assignment as
follows:

for j . '= 1 to k do

for i . .=l t o r d o

find the processor allocated to clone i of task j and reassign all
tasks but j to the least utilized processor allocated to tasks chosen
only from k + 1 , n, and update processor utilizations.

ql

q2 J

qs I

) m qm

Fig. 2. An assignment produced by algorithm Allocate

each p r o c e s s o r
is a l loca ted to
a single tusk
chosen f rom
1 k

a l loca ted to
at least two t u s k s

each p rocesso r
is a l loca ted to
t asks chosen
only f rom
k + l n

Task Allocation in Fault-Tolerant Distributed Systems 271

This transformation will produce an allocation in which tasks 1 ,k are
assigned to s - l processors, with exactly one task assigned to each of these
processors. It will now be shown that this transformation is always possible.
Any assignment must have no more than s - 1 processors allocated to tasks
1 , k. Therefore there will always be at least one processor allocated to tasks
chosen only from k + 1 n if 1 < s <m, and hence the transformation can be
performed. The only other case to consider is when s = m + l , in which case
Allocate assigned at most one task per processor and it is easy to verify t h a t
the transformation is possible. [-In fact there is no " t ransformat ion" in this case
- the " t ransformed" assignment is identical to the optimal assignment.] Since
the transformation is possible, assume that the new assignment has processor

t t 1 utilizations q~ , q,,, reordered so that qi = qJ for 1 < j < s.
It now remains to show that

(q))2< ~ (q.)2.
j = l j = l

We will demonstrate that each step of the transformation produces a new
assignment whose sum of squares is no greater than the previous assignment's.
Suppose that the previous assignment had processor utilizations Pl, ..., P,, and
reassignment of tasks in processor t 1 to processor t z produced a new assign-
ment with processor utilizations p'l p~,. Assume that the reassigned tasks
had total utilization x. Task k~ was the task examined in the transformation
and k~<k. Thus we have ptl=uk,+x. The old and new assignments are shown
in Figure3. Since Uk>q ~ for s < j < m , by Lemma 1 there is a processor t 2
allocated to tasks chosen only from k + l ,n such that pt2<Ukl. Then by
Lemma 2

(pj)2 = [- Z P2]+(UkI+X)2+(p'2)2
j= 1 j * t l , j ~ : t 2

>= [E + (ukl) 2 +(pt2 + x)
j * t l , j * t 2

= ~ (p})2.
j = l

Note that processor t 2 may have been allocated to a clone of a task also
contained in the shaded region of Fig. 3. Thus the transformation might not
produce an assignment in which distinct clones of a task are assigned to
distinct processors.

Hence the transformed assignment with processor utilizations q'~ , q" has
q) = qj for 1 =<j < s and

(q))2<= ~ (qy)2.
j = l j = l

Definition 1. If S = {s I , Sm} is a multiset (i.e. a set in which multiple occur-
rences of an element are possible - also known as a bag) in which s a < . . . <s, , ,
then for 1 <_r<_m define min-r S = s r. This is the r th minimum of S.

For example, if we take S to be the multiset {1, 2, 2, 8, 10}, then min-3 S
~---2.

272 J.A. Bannister and K.S. Trivedi

Pl

Ph

Pt 2

Pil

Pi2

Uk 1

Old Assignment

1
x processor t~ is

~ P u r ? ~ being examined by the t ransformat ion

tasks comprising x will be
reassigned to processor t 2

ocessor t 2 is the least
ilized processor al located

to tasks chosen only from
k + l n

New Assignment

ukl I
X

Fig. 3. Reassignment of tasks in the transformation of Lemma 3

Lemma 4. Suppose that r clones of n tasks are to be assigned to m processors so
that distinct clones of any task are assigned to distinct processors. Let ql, . . . ,q,,
be the processor utilizations resulting from algorithm Allocate. I f a maximally

m m

utilized processor is allocated to at least two tasks, then max {q j} =< 2 min-r {q j}.
j=1 j=1

Proof Let s be a maximally utilized processor allocated to at least two tasks,
Suppose that task k was the last task assigned (by algorithm Allocate) to
processor s and Pl p,. were the processor uti l izations just prior to the
assignment of task k. It is clear that pj~qj for 1 <=j<m, and hence

m n l

min-r {p j} <__ min-r {q j}. (7)
j=l j=1

The r clones of task k were assigned to the r least utilized processors; thus

Ps < min-r {p j}. (8)
j = l

Since at least two tasks were assigned to processor s, Ps > Uk" Hence

Ps + Uk < 2Ps" (9)
m

But ps + u k = max {q j} ; so by (7), (8) and (9),
j = t

Task Allocation in Fault-Tolerant Distributed Systems 273

m

max {q j} < 2ps
j = l

m

< 2 min-r {p j}
j = l

m

< 2 min-r {q j}.
j = l

The following result is obvious and stated without proof.

Lemma 5. I f a> b >O and c > d>O, then

a + c < b + c

a+d=b+d"

The following definition is central to the series ratio method. Two series are
specified and the value K7 is defined to be the least upper bound of their
ratios.

Definition2. Let P=(PI,. . . ,P,,) and q=(q~ ,q,,) be two sequences of non-

negative numbers such that p j = qj and max{qj}<2min-r{qj} . For
1 < r_< m define J= ~ J= ~ J= ~ J=

m K, =lub| 7. l"

l i t is easy to show that such a lub exists and hence the definition is proper.]
Lemma 6 states that the ratio of the approximate to the optimal sum of

squares can be made to fit the format of the series ratio method. The absolute
performance ratio is therefore bounded above by K~.

Lemma 6. Suppose that r clones of vi tasks are to be assigned to m processors so
that distinct clones of any task are assigned to distinct processors. Let ql, ..., q~
be the processor utilizations resulting from algorithm Allocate, ordered so that
q l >= ... > qm. Let q* q* be the processor utilizations in an optimal assignment.
Then

~ (q)2
i= 1 < K ~ .

(q*):
j = l

t Proof Let s and q'l, ...,q',, be as in Lemma 3, i.e. qj=qj for l<=j<s and

(q})2<= ~,, (q.)2.
j = l j = l

274 J.A. Bannister and K.S. Trivedi

Then
(q j)2 ~ (q j)2

j= i <j~1

(q.)2 • (q,)2
j = l j ~ l

(q j)2 + ~ (q j)2
__j<$ j ~ s

Z (q})2 + E (q})2
j<s j>s

(qY + Y~ (qf
- J ~ J>--~ (10)

Z (q j)2 + Z (q})2
j<s j>s

(qs)2 + ~ (qj)2
<J<~ J>-s (11) = ~ (q~)2 + ~, (q))2

j<s j>=s
<Km. (12)

Here (11) follows from (10) by noting that qj>qs for 1 <j<s and then applying
m

Lemma 5. From Lemma 4 q~=<2min-r {q j} since qs, ..., % represents the allo-
j - s

cation that results from applying algorithm Allocate to tasks k + 1 ,n on
processors s m (where k is used as in the proof of Lemma 3). Now let P2
=q~ for l<j<s, and let p2=qj for s<j<m. Likewise let p}=q~ for l<=j<=s, and
let p}=q} for s<j<m. The sequences Pl ,Pro and p',,...,p~, appear in the
numerator and denominator, respectively, of (11). We also see that

m m

max {p j} = qs =< 2 min-r {p j}
j = l j = l

and ~ pj= ~ p). Equation (12) then follows from (11) by Definition 2 of
j = l j = 1

We now compute a tight bound on K~.

Lemma 7. For m > r >_ 1
9 m K m _<

r - 8 m-r+1"

Proof Let q(t) be a nonincreasing step function (with steps at integers) defined
for 0 _< t _< m such that:

q(O)<__2q(m-r+ 1), (13)

q(t) dt = 1, (14)
0

~qZ(t)dt is maximized for the given m and r. (15)
0

Task Allocation in Fault-Tolerant Distributed Systems 275

Let q,(t) be such a function. Suppose that P=(Pl , p,,) and q=(ql, ..., q,,) are
sequences of nonnegative numbers such that

Then

Moreover

~ m m
Pi= q j = a and max {q j} <2 min-r {q j}.

j = l j = l j = l j = l

m

(qj)2 <=~2 ~ q~,(t)dt. (16)
j = l 0

~2
(p j)2 > _ _ . (1 7)

j = l m

Hence from (16) and (17) we have

~ (q i) 2
m

J= ' <=m ~ q2(t)dt.
~ (pj)2 o

j = l

From (18) and Definition 2 of K~ we then have

m

K~<=m ~ q2,(t)dt.
0

Next we will show that q,(t) must have the following form:

ix O<t<k
q , (t)= k<_t<_m-r + l

m-r+l<t<_m

(18)

(19)

(20)

for some values of k and x. It is clear that q , (t)=O for m-r+l<t<=m.
Otherwise, we could form another step function q**(t) satisfying (13) and (14)
but with m

q2,(t) dr> f q2,(t)dt
0 0

as shown in Fig. 4. Furthermore, it is clear that q,(t) cannot have one single
step for O<_t<_m-r+ 1, as shown in Fig. 5. Moreover, q,(t) cannot have three
or more steps for 0 < t < m - r + 1, as shown in Fig. 6. This leaves (20) as the
only form that q,(t) can assume.

From (14) and (20) we see that

m

q,(t) dt= 2xk + x (m - r - k + l)= l.
0

Hence k = I / x - (m - r + 1) and

- [q2(t)dt=4x2(1/x-(m-r+ 1))+x 2 (m
0

= 3 x - 2 (m - r + l)x 2.

--r + l) - (1 - (m - r + l))]

(21)

276 J.A. Bannister and K.S. Trivedi

q.(t)

--t_q...t
L

t
m-r+1 m

q , can be t r a n s f o r m e d to b e t t e r q**

q**(t)

s h a d e d reg ion is even l y
... r e d i s t r i b u t e d

0/q .Ctldf, 0/q Cfldt
t

0 m-r+1

Fig. 4. q,(t) must be zero for t > m - r + l

q,(t) q,(t)

one step

t
m-r*~

q. can be transformed
to better q**

m

/q2**(tIdt> /q.2(t)dt
o o

t
0 m-r§

Fig. 5. q,(t) cannot have one step

Three-or-more
steps

t
m-r.1

q. can be transformed
to better q**

q**(t}

/q2..lt)dt> fq2.(t)dt
o o

!
0 m-r§

Fig. 6. q,(t) cannot have three or more steps

Task Allocation in Fault-Tolerant Distributed Systems 277

m

Using the derivative of (21) to solve for the maximum we find that ~q2,(t)dt
attains a maximum of 9 / (8 (m - r + 1)) when x = 3 f14(m-r+ 1)), i.e. o

S q2, (t) dt - . (22)
o m - r + l

Using (19) and (22) we have
9 m

K m < -
r - 8 m - r + l "

The main result follows.

Theorem 1. Suppose that r clones of n tasks are to be assigned to m processors so
that distinct clones o f any task are assigned to distinct processors. Let ql , . . . , qm
be th'e processor utilizations resulting f rom algorithm Allocate, and let q~ , q*
be the processor utilizations in an optimal assignment. Then

• (q~)2 9m
j=i <

(q.)2 = 8(m-- r + 1)'

j = l

Proof The theorem follows directly from Lemma 6 and Lemma 7.

It can be seen that the upper bound of Theorem 1 is not tight. For
instance, in the case when r = m algorithm Allocate produces optimal assign-
ments (all processors are equally utilized), whereas Theorem 1 gives a very
weak performance guarantee that is an increasing function of the number of
processors (9m/8). Moreover, Theorem 1 gives a performance bound of 9/8
when r = 1, but a better bound of 25/24 is known [3].

The bound derived in [3] may be used to improve Theorem 1. In the case
when r evenly divides m, algorithm Allocate can be seen to produce assign-
ments that are identical to those produced by the placement algorithm anal-
yzed in [3]. We then have the following strengthening of Theorem 1:

(q j)2 ~ if r divides m,
j = l <

i [9m j= t (q*)2 8 m - ; + 1 if r does not divide m.

5. Empirical Results with the Approximation Algorithm

Algorithm Allocate was implemented as a Pascal program and run with data
adapted from [16]. The results of this experiment are described in the follow-
ing.

278 J.A. Bannister and K.S. Trivedi

The design of the S I F T compu te r was p receded by a feasibil i ty s tudy tha t
sought to charac ter ize the app l i ca t ion (digital flight control) in quant i t a t ive
terms. This s tudy p r o p o s e d a logical pa r t i t ion ing of the app l i ca t ion into a
n u m b e r of canonica l tasks and es tabl ished c o m p u t a t i o n a l requ i rements for
these tasks. The c o m p u t a t i o n a l r equ i rements for these tasks consis ted of es-
t imates of how often the task had to be executed (the task 's frequency),
a p p r o x i m a t e l y how many opera t ions are executed by the task per second, and
how much m e m o r y space is requi red by the task. Al l da t a was s ta ted with
respect to a hypo the t i ca l " b e n c h m a r k " processor . F r o m this da t a it is poss ible
to der ive input pa rame te r s for the T A P . This da t a is shown in Tab le 1. The
da t a is s ta ted with respect to a bas ic p rocessor with an ins t ruc t ion execut ion
ra te of 0.5 M I P S and an address space of 64 Kbytes . W e a l loca ted groups of
six, seven and eight processors to t r ip l ica ted versions of the tasks shown in
Tab le 1.

Table 1. Avionic task characteristics

Task Task Descrip. Iterations Instructions Utilization Mere.
No. per Sec. per Iteration

1 Attitude Control 20 1,228 0.04912 2,075
2 Flutter Control 250 138 0.06900 92
3 Gust Control 240 58 0.02784 60
4 Autoland 160 342 0.10944 1,025
5 Autopilot 5 200 0.00200 250
6 Attitude Director 30 2,560 0.15360 1,310
7 Inertial Navigation 25 1,350 0.06750 2,250
8 VOR/DME 5 770 0.00700 300
9 Omega 5 800 0.00800 505

10 Air Data 5 200 0.00200 135
11 Signal Processing 0.2 1,750 0.00070 315
12 Flight Data 5 5,520 0.05520 550
13 Airspeed 16 549 0.01757 430
14 Graphics Display 8 3,975 0.06360 6,250
15 Text Display 10 1,900 0.03800 9,340
16 Collision Avoidance 670 32 0.04288 1,150
17 Onboard Communication 250 28 0.01400 705
18 Offboard Communication 4 155 0.00124 687
19 Data Integration 4 360 0.00288 1,300
20 Instrumentation 5 2,792 0.02792 1,900
21 System Management 0.5 2,320 0.00232 950
22 Life Support 0.5 2,320 0.00232 950
23 Engine Control 33 3,597 0.23740 1,500
24 Executive 5 200 0.00200 1,100

The results of app ly ing a lgo r i thm Al loca te to the task set are shown in
Tables 2, 3 and 4. A l g o r i t h m Al loca te p r o d u c e d near ly perfect ly ba lanced
processor ut i l izat ions, and with eight digits of prec is ion the a p p r o x i m a t e and
op t ima l sums of squares are identical . Since no a t t empt was made to ba lance
m e m o r y usage, m e m o r y ba lance leaves much to be desired.

Task Allocation in Fault-Tolerant Distributed Systems 279

Table 2. Utilizations of six processors

Processor Utilization Memory

1 0.50194 22,579
2 0.50194 22,579
3 0.50194 22,579
4 0.50227 12,550
5 0.50227 12,550
6 0.50227 12,550

Table 3. Utilizations of seven processors

Processor Utilization Memory

1 0.43011 15,657
2 0.43047 18,835
3 0.43053 22,712
4 0.43037 14,082
5 0.43014 8,067
6 0.43073 8,212
7 0.43031 17,822

Table 4. Utilization of eight processors

Processor Utilization Memory

1 0.37614 20,090
2 0.37658 5,332
3 0.37658 5,447
4 0.37605 8,110
5 0.37656 13,179
6 0.37685 15,800
7 0.37702 16,577
8 0.37688 20,852

6. Summary and conclusions

This paper has presented a TAP for certain fault-tolerant real-time distributed
systems, the SIFT-like system. The TAP captures several important elements of
these systems: separation constraints for replicated modules, capacity con-
straints imposed by limited local processor memory, scheduling constraints
needed to ensure that the allocation will support the scheduling of periodic
real-time tasks, and load balancing for reliability enhancement.

We have also presented a technique for the solution of the TAP. This
approach involved the use of a fast algorithm that produces good but non-
optimal allocations. We have shown that the allocations produced by this
algorithm have normalized coefficients of variation that are guaranteed to be

280 J.A. Bannister and K.S. Trivedi

less than 9m/(8(m-r+ 1)) times that of the optimal allocation, where m is the
number of processors and r is the number of times each task is replicated. For
situations where m is large in relation to r (as is normally the case), this
indicates very reasonable performance, with the performance ratio tending
toward 1.125.

Acknowledgement. We would like to thank Robert Geist, Erol Gelenbe, and a referee for his
comments.

References

1. Bokhari, S.H.: Dual Processor Scheduling with Dynamic Reassignment. IEEE Trans. Software
Engrg. SE-5, 341-349 (1979)

2. Bryant, R.M., Agre, J.R.: A Queueing Network Approach to the Module Allocation Problem
in Distributed Systems. Performance Evaluation Review 10, 191-204 (1981)

3. Chandra, A., Wong, C.K.: Worst Case Analysis of a Placement Algorithm Related to Storage
Allocation. SIAM J. Comput. 4, 249-263 (1975)

4. Chou, T.C.K., Abraham, J.A.: Load Balancing in Distributed Systems. IEEE Trans. Software
Engrg. SE-8, 401-412 (1982)

5. Chu, W.W., Holloway, L.J., Lan, M.-T., Efe, K.: Task Allocation in Distributed Data Process-
ing. IEEE Comput. 13, 57-69 (1980)

6. Dhall, S.K., Liu, C.L.: On a Real-Time Scheduling Problem. Operations Research 26, 127-140
(1978)

7. Efe, K.: Heuristic Models of Task Assignment and Scheduling in Distributed Systems. Com-
puter 15, 50-56 (1982)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, W.H. (ed.). San Francisco 1979

9. Geist, R.M., Trivedi, K.S.: Optimal Design of Multilevel Storage Hierarchies. IEEE Trans.
Comput. C-31, 249-260 (1982)

10. Gylys, V.B., Edwards, J.A.: Optimal Partitioning of Workload for Distributed Systems. Digest
of Papers. COMPCON 76, 353-357 (1976)

11. Ignizio, J.P., Palmer, D.F., Murphy, C.M.: A Multicriteria Approach to Supersystem Architec-
ture Definition. IEEE Trans. Comput. C-31, 410-418 (1982)

12. Leung, J.Y-T., Whitehead, J. : On the Complexity of Fixed-Priority Scheduling of Real-Time
Tasks. Proceedings of the Eighteenth Annual Allerton Conference on Communication. Control
and Computing, pp. 464-470, 1980

13. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. J. ACM 20, 46-61 (1973)

14. Ma, P.-Y.R., Lee, E.Y.S., Tsuchiya, M.: A Task Allocation Model for Distributed Computing
Systems. IEEE Trans. Comput. C-31, 41-47 (1982)

15. Rao, G.S., Stone, H.S., Hu, T.C.: Assignment of Tasks in a Distributed Proceesor System with
Limited Memory. IEEE Trans. Comput. C-25, 291-299 (1979)

16. Ratner, R.S., Shapiro, E.B., Zeidler, H.M., Wahlstrom, S.E., Clark, C.B., Goldberg, J.: Design of
a Fault Tolerant Airborne Digital Computer, vol. 2: Computational Requirements and Tech-
nology. SRI Final Report, NASA Contract NASl-10920, 1973

17. Siewiorek, D.P., Gordon Bell, C., Newell, A.: Computer Structures: Principles and Examples.
New York: McGraw-Hill 1982

18. Stone, H.S.: Multiprocessor Scheduling with the Aid of Network Flow Algorithms. IEEE
Trans. Software Engrg. SE-3, 85-93 (1977)

19. Stone, H.S., Bokhari, S.H.: Control of Distributed Processes. Computer 11, 97-106 (1978)
20. Trivedi, K.S., Wagner, R.A., Sigmon, T.M.: Optimal Selection of CPU Speed. Device Capa-

cities, and File Assignments. JACM 27, 457-473 (1980)
21. Uhrig, J.L.: Mathematical Programming Approaches to System Partitioning. IEEE Trans. Syst.

Man, Cybernetics SMC-8, 540-548 (1978)

Task Allocation in Fault-Tolerant Distributed Systems 281

22. Wagner, R.A., Trivedi, K.S.: Hardware Configuration Selection Through Discretizing a Con-
tinuous Variable Solution. In: Proc. 7th IFIP Int. Symp. Comp. Performance Modeling,
Measurement, and Evaluation. Toronto, Canada, pp. 127-142, 1980

23. Weinstock, C.B.: SIFT: System Design and Implementation. Proc. Tenth International Sym-
posium Fault Tolerant Computing, pp. 75-77, 1980

24. Wensley, J.H., Goldberg, J., Green, M.W., Kautz, W.H., Levitt, K.N., Mills, M.E., Shostak,
R.E., Whiting-O'Keefe, P.M., Zeidler, H.M.: Design Study of Software-Implemented Fault-
Tolerance (SIFT) Computer. SRI Interim Technical Report 1, NASA Contract NAS1-13792,
1978

25. Wensley, J.H., Lamport, L., Goldberg, J., Green, M., Levitt, K.N., Melliar-Smith, P.M., Shos-
tak, R., Weinstock, C.B.: SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft
Control. Proc. IEEE 66, 1240-1255 (1978)

Received September 21, 1982/May 13, 1983

