
Acta Informatica 20, 207-226 (1983)
:l a

I e,aa
�9 Springer-Verlag 1983

The Temporal Logic of Branching Time* **

Mordechai Ben-Ari 1, Amir Pnueli 2, and Zohar M a n n a 2,3

1 Department of Computer Science, School of Mathematical Sciences,
Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
~,3 Department of Applied Mathematics, The Weizmann Institute of Science,
Rehovot, Israel 76100
3 Department of Computer Science, Stanford University, Stanford, CA 94305, USA

Summary. A temporal logic is defined which contains both linear and
branching operators. The underlying model is the tree of all possible com-
putations. The following metatheoret ical results are proven: 1) an exponen-
tial decision procedure for satisfiability; 2) a finite model proper ty ; 3) t h e
completeness of an axiomatization.

1. Introduction

F r o m the first in t roduct ion of the Tempora l Logic formalism as a tool for
reasoning about programs, there arose a basic question which later almost
developed into a controversy. The question involves the nature of the underly-
ing structure of time on which the formalism is based. The d icho tomy is be-
tween the linear time approach which considers time to be a linear sequence,
and the branching time approach, which adopts a tree structured time, allow-
ing some instants to have more than a single successor.

The difference in approaches has very little to do with the philosophical
quest ion of the structure of physical time which leads to the metaphysical
problems of determinancy versus free will.

Instead it is pragmatical ly based on the choice of the type of programs and
properties one wishes to formalize and study.

Linear time is the correct model to use in order to characterize the set of
all execution sequences which a p rogram generates and to study properties
which uniformly hold for all the execution sequences of a program. Even a

* Portions of this work are based on the first author's Ph.D. thesis done at the Tel Aviv Uni-
versity under the supervision of the second author. A Preliminary version of this paper was pre-
sented at the Eighth ACM Symposium on Principles of Programming Languages, Williamsburg,
VA, 1981
** This research was supported in part by: NSF under grant MCS-80-6930, Office of Naval
Research under grant N000-14-76-C-0687, the United States Air Force Office of Scientific Re-
search under Grant AFOSR-81-0014, and the Israeli Academy of Sciences and Humanities, the
Basic Research Foundation

208 M. Ben-Ari et al.

nondeterministic program generates for each set of possible choices a linear
execution sequence in which each execution state has a unique successor. The
class of properties related to the set of execution sequences are the universal
properties such as universal total correctness and universal responsiveness.
Both these properties require that every execution sequence of the program will
eventually achieve some goal such as termination with a correct result or cor-
rect response to some request. The interpretation of temporal formulas over
execution sequences of a given program was found to be very useful for
reasoning about both sequential deterministic programs and concurrent pro-
grams. In the case of concurrent programs, where the nondeterminism is
caused by different scheduling scripts, we generally wish to prove that the pro-
gram terminates or responds correctly regardless of how the individual pro-
cesses are scheduled. This approach is pursued in I-9, 11, 12].

The branching time approach, on the other hand, considers for a given
program the set of all execution trees generated by the program. With a nonde-
terministic program P and a given input x we can associate the tree of all
possible computations of P on x. Since the program is nondeterministic, some
of the execution states will have more than one successor corresponding to a
nondeterministic choice. Over execution trees we can study existential proper-
ties such as correct termination for at least one possible computation (for every
input). More generally, we may study the property that there is always one
possible computation which realizes some goal. This certainly does not imply
that all computations will realize the same goal. Consequently, this approach is
useful for nondeterministic programs which are executed by systematically ex-
ploring all possible choices by methods such as breadth first search, etc. This
interpretation of nondeterminism is recommended for example in [4] as a de-
sign tool and is the one classically used in automata and complexity theory.
The branching time approach is implied in the underlying structure of Dy-
namic Logic ([-1, 6]), but was not previously studied in a temporal framework.

In the end, the choice between linear and branching models cannot be
made on philosophical grounds but instead should be dictated by the type of
programs, execution policies and properties which one wishes to study. For a
fuller discussion of this issue see [9].

A natural step at this point would be to formalize and investigate a branch-
ing time temporal logic which incorporates both universal operators similar to
those used in linear temporal logic, and existential operators similar to those
used in simpler branching systems. It turns out that such a unified system
which combines both approaches is not significantly more complex than the
two separate systems.

We will define a logic ~//~: the unified system of branching time. The under-
lying model will be the branching tree of all possible computations of a pro-
gram. We define, however, additional temporal operators that allow reference
either to all possible execution sequences or only to a single sequence. The
metatheoretical results in ~//~ include:

1) An exponential decision procedure for satisfiability.
2) A finite model property: If a formula in ~ is satisfiable then it has a

finite (exponential) model.

The Temporal Logic of Branching Time 209

3) A simple axiomatization which is shown to be complete.
The decision procedure uses semantic tableaux. Tableau systems provide a

rapid way of deciding "natural" formulas. The completeness theorem shows
how to "read-off" a proof from a tableau.

The expressive power of the system is illustrated by formalizing both uni-
versal and existential properties of nondeterministic programs. Finally we give
a temporal semantics for nondeterministic programs, complementing the se-
mantics given in [12] for deterministic but concurrent programs. Even though
the 4/M logic, inspired by linear temporal logic, incorporates universal oper-
ators that correspond to statements holding in all paths of the model tree, it
cannot be regarded as a generalization of linear temporal logic. In fact the two
logics are incomparable in the sense that there are statements expressible in
each which are not expressible in the other. Thus, even though the ~'M logic
significantly extends the branching time logic studied in [9], the same essential
result of [9], i.e. incomparability of linear versus branching time logic still
holds. The examples for incomparability are essentially the same examples pre-
sented in [9].

The statement that there exists some convergent computation of a given
program is expressible in q/~3 but not in linear temporal logic. On the other
hand the statement that all fair computations of a concurrent program con-
verge is expressible in linear time temporal logic but not in ~M.

In Sect. 2 the syntax and semantics of the system ~#M (unified branching)
are given along with the axiom system. Section 3 contains a list of theorems of
~'M along with a representative selection of proofs. Section 4 describes the con-
struction of semantic tableaux for ~M giving a decision procedure and the
finite model property. Section 5 proves completeness of the axiom system from
the tableaux of Sect. 4. In Sect. 6 we illustrate the utility of the q/M system for
axiomatizing the behavior of nondeterministic programs. Such axiomatization
would lead to proof methods for proving properties of nondeterminstic pro-
grams.

An earlier abstract of this work appeared in [2]. This earlier version con-
tained an error which is corrected in the current paper.

2. The System ~

The base of ~M is the propositional calculus on ~ and v with the other
connectives defined as usual.

We use two symbols for each modality. The first, V or 3, denotes quantifi-
cation over branches. The second G, F or X (nexttime) denotes quantification
over states in the branches. The three primitive modalities are VG, ~G and VX.
The three defined dual modalities are 3F= , -~VG~; V F = ~ 3 G ~ ; 3X
= ,-~VX~, Parentheses may be omitted by defining ~ and the modalities to
have precedence over A which in turn has precedence over v and =,

Let T be a tree and s a node in T. Let a be a proposition which can hold at
some nodes in T. The intuitive meaning of the modal operators when applied
to a proposition is as follows.

210 M. Ben-Ari et al.

VGa holds at s (in T) iff a is true at all nodes of the subtree rooted at s
(including s).

VFa holds at s iff on every pa th depar t ing f rom s there is some node at
which a is true.

VXa holds at s iff a is true at every immedia te successor ofs .
qGa holds at s iff there is a pa th depar t ing f rom s such that a is true at all

nodes on this path.
qFa holds at s iff a is true at some node in the subtree rooted at s, i.e.

there is a pa th depar t ing f rom s such that a is true at some node on
this path.

3Xa holds at s iff a is true at one of the immedia te successors of s.

The four modali t ies VG, VF, qG, 3F cor respond to four concepts of correct-
ness given by M a n n a [10] for a general nondeterminis t ic p r o g r a m P. Let B be
the propos i t ion that a p r o g r a m P is at its s tart state and H be the propos i t ion
that P has halted. Let q~ and ~ be the input and output predicates which form
a correctness specification for P. Then M a n n a distinguishes four concepts of
correctness of P relative to (~o, ~u).

a) (B A q o) ~ q G (H ~) .
P is partially q-correct with respect to (q~, ~g).
If the p r o g r a m is s tar ted with a true input specification then there exists a

compu ta t ion that may be infinite, but if it is finite then the p r o g r a m terminates
in a state satisfying the ou tpu t specification. (Actually, the p rog ram halts by
remaining forever in the halt state to conform to our model of non-ending
time.)

b) (B A~o)23F(H A ~).
P is totally q-correct with respect to (q~, ~u).
There is a compu ta t ion that terminates correctly, though other compu-

tat ions may diverge or terminate incorrectly.
c) (B A q 0) ~ V G (H ~ }//).
P is partially V-correct with respect to (q), }P).
Every terminat ing compu ta t ion must be correct but there is no guarantee

that any terminat ing compu ta t ion exists.
d) (B Acp)=VF(H A ~).
P is totally V-correct with respect to (q0, }/I).
Every computa t ion terminates correctly.

Semantics for ~l~

A model for ~//~ is a triple (S, P, R) where S is a set of states, P is an assign-
ment of proposi t ional letters to states and R is a binary relat ion on states. If
s R t then we say that t is an immedia te successor of s. To capture the concept
of non-ending time, we require that R be total, i.e. Vsqt (sRt).

For a proposi t ional letter a and a state sES, asP(s) iff a is true in s. We
extend the in terpre ta t ion over the model to all formulas in ~//~ as follows
where b=(s=So, Sl,S2,...) is an infinite pa th through the model such that
siRsi§ 1. b is called an s-branch.

The Temporal Logic of Branching Time 211

1. sNa iff aeP(s), for a atomic
2. s ~ ~ p iff s~p
3. s ~ p v q iff s~p or s~q
4. s~ VGp iff Yb Vt (t~b implies t~ p)
5. s~3Gp iff 3bVt (teb implies t~p)
6. s~VXp iff Vt (sRt implies t~p)
7. s~3Fp iff 3b3t (teb and t ~ p)
8. sNVFp iff Vb3t (tsb and t~p)
9. s~3Xp iff 3t (sRt and t~p).

p is satisfiable if s~p for some model M and some state s in M; this is written
M,s~p, or s~p if M is understood. In 7, 8 and 9 we say the formula in s has
been fulfilled at t.

The following is a set of axioms for q/~.
A1. VG(p~q)~(VGp~VGq)
a 2 . VX(p~q)~(VXp~VXq)
A3. VGp~VXpAVXVGp
A4. VG(p~VXp)~(p~VGp)
E l . VG(p~q)~(qGp~3Gq)
E2. 3Gp~pA3X3Gp
E3. VGp~3Gp
E4. VG(p~3Xp)~(p~3Gp).

The rules of inference are:

R 1. If p is a substitution instance of a tautology then ~-p.
R 2. If t-- p and ~-p = q then ~- q. (Modus ponens)
R 3. If I-- p then ~- V G p. (Necessitation).

If VGp~p (T1, below) is added to A 1 - A 4 , then we get a complete
axiomatization of the universal fragment of branching nexttime. If VX and 3X
are merged (along with VG and 3G) so that g X p - ~ V X ~ p is an axiom then
we get a complete axiomatization of linear nexttime. By T1 and T5, below, we
could express A3 and E2 more symmetrically as:

A3'. V G p ~ p A V X p A V X V G p
E2'. 3Gp=pA3XpA3X3Gp.

Also, E3 can be derived by taking T1 and T6 as axioms. Some axiom of
the form ~'~ ~ is needed to limit our models to non-ending time.

3. Theorems of ~ / /~

T1. VGp~p
T2. VGp~VFp
T3. VX(p~q)~(3XpD3Xq)
T4. VG(p=q)~(VFp=VFq)
T5. 3Gp~3Xp
T6. V X p ~ 3 X p

212 M. Ben-Ari et al.

T7. VG(pAq)=-VGpAVGq
T8. 3G(pAq)~3GpA3Gq
T9. VX(pAq)=VXpAVXq
T10. 3X(pAq)~3XpA3Xq
T l l . VXpAqXq~3X(pAq)
T12. VGpA3Gq~G(pAq)
T13. VGp=-pAVXVGp
TI4 . 3 G p - p A 3 X 3 G p
T15. VGp-VGVGp
T16. 3Gp-3G3Gp
T17. 3G(p~VXp)~(p~3Gp)
T18. VFVGp~VGVFp
T19. ~G((p v ~G q) A (3G p v q))-~(3G p v ~G q)
T20. V X V G p - V G V X p
T21. ~ X 3 G p ~ G 3 X p .

From A 1-A 3, E 1, E3, T 1-T 6 we can derive necessitation rules ~ p--* ~-Mp
and ~ - p ~ q ~ - M p ~ M q for all modalities Me{VG, 3G, VF, ~F, VX, 3X}.
These derived rules are used implicitly below.

The proofs of T 1 - T 1 2 are straightforward. T9 and T l l form the key to in-
ductive proofs as will be seen in the completeness proof. The rest of the theo-
rems are proven using the induction axioms A4 and E4.

T14. 1. ~Gp~pA3X~Gp E2
2. 3X3Gp~3X(pA3X3Gp)
3. p A 3 X ~ G p ~ X (p A 3 X 3 G p)
4. VG(pA3X3Gp~3X(pA3X3Gp))
5. p/x3X~Gp~3G(pA3XqGp) E4
6. p A ~ X 3 G p ~ G p T8
7. 3Gp==-pA3X~Gp 1,6

In their negated forms T13 and T14 are the key to the tableau constructions
used in the recta-theory of ~/M: ,-~ ~ G p ~ ,-~ p v ,-~ q X 3 G p. If we try to falsify
3Gp then either falsify it now (up) or if that is not possible, put it off to
tomorrow (~3X 3Gp=-VX ~3Gp).

T 15-T16 are the $4 transitivity axioms.
T 17 is another induction theorem. We conjecture that replacing E4 by T 17

results in a weaker system for proof theoretical reasons because the induction
step p ~ V X p is usually not true. Probably the system is not different from
linear nexttime.

T18 is our version of the $4.2 axiom <> [] p ~ F-l<>p.
Note that 3Gp~VFp and VF3Gp~3GVFp can be proved but this is

an artifact of the reflexiveness of ~//~ and would not carry over if E2 were
changed to 3Gp~EXpA3X3Gp to obtain an irreflexive system as required
classically in temporal logic.

T 19 is the S 4.3 linearity axiom for 3G.

TI9. Denote (pv3Gq)A(3Gpvq) by r and 3 G r A ~3GpA ~ G q by s.
1. s~ (pv3Gq)A(qGpvq)A~3Gp/x~3Gq E2

The Temporal Logic of Branching Time 213

2. S~p Aq
3. S ~ p A q A (~ p v ~3X3Gp) A(',~qv ~3X3Gq)
4. s ~ 3 X 3 G p A ~ 3 X 3 G q
5. s ~ 3 X 3 G r A ~ 3 X 3 G p A ~ 3 X ~ G q
6. s~3X(3Gr A ~3Gp A ~3Gq)

i.e., s ~ 3 X s
7. 3G(s=3Xs)
8. s~3Gs
9. 3Gs~3G(p Aq)

10. s~qGpAqGq
i.e., 3 G r A ~ q G p A ~ 3 G q ~ 3 G p A 3 G q

11. 3Gr~3Gpv3Gq
i.e., 3G((pv3Gq)A(3Gpvq))=3Gpv3Gq.

Conversely,

T14

E2
T l l

E4
2, necessitation
8,9, T8

12. 3 G p ~ 3 G p v q
13. 3 G p ~ p v 3 G q E2
14. 3Gp=(3Gpvq)A(pv3Gq) denote the consequent by r.
15. 3G3Gp~3Gr
16. 3Gp~3Gr T16
17. 3Gq~3Gr Symmetry
18. 3Gpv3Gq~3G r
19. 3Gr=-3Gpv3Gq 11,18.

Why does the proof not work for VG? In 5 we would have:

5'. s ~VXVGr A ~VXVGp A ~VXVGq
i.e. s 3 V X V G r A 3 X ~ V G p A 3 X ~ V G q

which cannot have a modality extracted.

VGVGp~VGVXp A3
g G p ~ g G V X p T15
VXVGp=VXVGVXp
VXVGp=VXp T1
V X V G p ~ V X p A V X V G V X p 3, 4
VXVGpDVGVXp T13
V G V X p D V X p A V X V G V X p T13
pAVGVXp~VX(pAVGVXp) T9
pAVGVXp~VGp A4, T7
V X p A V X V G V X p ~ V X V G p A2, T7
VGVXp~VXVGp T13
V X V G p - V G V X p 6, 11

T20. 1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

4. Semantic Tableaux for q / ~

In this section we describe the construction of semantic tableaux for formulas
in q /~ , obtain a decision procedure for satisfiability and prove the finite model

214 M. Ben-Ari et al.

property. In the next section we prove the completeness of the axiomatization
of q/N by showing that if the tableau construction fails to produce a model
for ~ p then we can read off the tableau a proof of p.

A structure is a triple (S, P, R) where S is a set of states, P is an assignment
of formulas to states and R is a binary relation on states. It is convenient to
use the same name S for a structure and its set of states. A structure differs
from a model in that it is not required to be complete, i.e. a state need not
contain p or ~ p for every p. Also, we have not required any connection be-
tween the assignment of formulas and the assignment of its subformulas. We
do require that our structure be appropriate for ~#~, i.e. for every seS there is
a t such that sR t.

Notation. pes is short for peP(s).

A formula is elementary if it is a proposition, a negation of a proposition or a
nexttime formula. Following Pratt [13], it is convenient to regard reduction of
a double negation and replacement of a modality by its dual as part of the
syntax of the language. Thus compound formulas are always non-negated. Ob-
viously, this does not affect satisfiability or provability.

Following Smullyan [16] we classify formulas as e-formulas and /3-for-
mulas.

e e I e 2

pAq p q
VGp p VXVGp
~Gp p 3X~Gp

/3 /31 /32
p v q p q
VFp p V X V F p
3Fp p 3 X 3 F p

A structure H is called a Hintikka structure iff for all sell:

H1. ~pes=> pCs (H is consistent).
H2. e e s ~ e l e s and ezeS.
H3. /3es~/31es or /32es.
H4a. VXpes=:,for all t such that sRt, pet.
H4b. ~ X p e s ~ f o r some t such that sRt, pet.
H4c. ~Fpes~there exists an s-branch b and for some teb, pet.
H4d. V F p e s ~ f o r all s-branches b there exists a teb such that pet.

H is called a Hint ikka structure for p if pes for some sell.

Theorem 4.1. (Hintikka's Lemma for ~//~): A ~ll~ formula Po is satisfiable iff
there is a Hintikka structure for Po.

Proof. (~) : It is easy to check that the "only-if" directions of the model con-
ditions 1.-9. are sufficient to guarantee that any model can be viewed as Hin-
tikka structure.

(~) : Let H=(S,P,R) be a Hint ikka structure for Po.

The Temporal Logic of Branching Time 215

Define H' = (S, P, R) by:

aeP'(s) if aeP(s) or ,~aCP(s)

aCP'(s) if ~aeP(s); for atomic formulasa.

Then H' defines a ~//~ model. We have to show that H' is a ~ for
P0. This is done by a simultaneous induction showing

(i) p~sEH~H', s~p

(ii) ~p~s~H~H', s~ ~p

for positive formulas p.

Basis: asseH~H' , s~a by construction.
~aes~H~H' , s~a by construction ~ H ' , s ~ ~ a by model condition

2.

Induction: (We shorten the notation by dropping the H and H ' and using
and ~ to distinguish between the notions.)

p v q ~ s ~ p e s or q~ s~ s~ p or s~q by induction

~ s N p v q by 3.

~(pvq)es. i.e. ~ p A ~ q e s ~ p e s and ~ q ~ s ~ s ~ p and s ~ q

by induction ~sffFp and s ~ q ~ s ~ (p v q) ~ s ~ -,~(pvq) by 2. and 3.

VXpEs=~for all successors ti, pe t i~ t i~p by induction

~ s ~ V X p

and similarly for the other modalities. |

A semantic tableau is a systematic search for a Hint ikka structure. The
tableau will be constructed as a tree of nodes. Each node is labelled with a set
of formulas derived from the original formula Po- Later we will show how to
obtain a Hint ikka structure from a successful tableau construction.

Notation. If n is a node of a tableau then U, is the set of formulas labelling n.
It is usually convenient to write pen for p~U,. A further convenience is to
replace the original formula Po by Po A VG 3X(true) to ensure that the resulting
structure is non-e,"tin~.

Tableau Construction. Let Po be a ~ ' ~ formula. Let n o be the root of T and let
U,o={P0}. T, the tableau for Po, is constructed inductively by applying the
following rules to nodes n which are leaves of T.

R,: If c~U, then create a son n I of n and define:

216 M. Ben-Ari eta|.

Rp: If fleU. then create two sons nl and n 2 of n and define:

U,i= U, w {fl,}, i = 1 , 2 .

The following rule is applied only when any applicat ion of the c~/fl rules
would not generate a new node.

Rx: Let V,={3Xpl 3Xp k, VXql , . . . ,VXqm } be the set of nextt ime for-
mulas in n. Create k sons hi, i = 1 k of n and define:

U., = {Pi, ql, "", q,,}"

Since we assumed that Po contains a conjunct VG3X(true) , it follows that
k,m>O.

Notation. If the RJRIJR x rule was applied at node n then n is called an ~/fi/X-
node.

The construct ion of T is made finite by observing the following two termi-
nat ion rules.

1. If pen and ,~pen then this node is called closed and is not expanded
further.

2. If a node m is about to be created as a son of an X-node n and there is
an ancester n' of n such that n' is an immediate descendent of an X-node and
U,,= U,, then do not create m but instead connect n to n' with a " feedback"
edge.

The following lemma shows that the construct ion of T must terminate.

L e m m a 4.2. Let T be a tableau for Po. Then for some (small) positive c, the
number of distinct formulas that can appear in nodes of T is at most ClPol, where
IP01 is the length of Po.

Proof. All formulas in nodes of T are subformulas of Po or negations or duals
of subformulas or are subformulas prefixed by VX or ~X.

We now describe a marking algori thm which is designed to check if the
tableau resulting from the construct ion can be made into a Hint ikka structure.
The algori thm is described in two parts. First, we describe a simple algori thm
that will turn out to be incomplete and then we show the (substantial) changes
that must be added in order to complete it.

Marking Algorithm

M 1. Mark every closed leaf (node containing p and ~ p).
M2. If n is an e-node and n 1 is marked then mark n.
M3. If n is a / ? -node and both n 1 and n 2 are marked then mark n.
M4. If n is an X-node and some n i is marked then mark n.

Define a structure as follows. Let S, the set of states, be the unmarked X-
nodes of T. Call n a pre-state if n is the root or was created by the applicat ion

The Temporal Logic of Branching Time 217

, VGpA~tF~p)

i

i
~ ~ ~ ~ ' x ~ p' VXVGp, ~F~p

(p, VXVGp, ~p) ~ , VXVGp, ~X~/F~p)

X
Fig. 1

of the X-rule to a state (X-node). Let sRt if there is a path (s, no, . . . ,nk_l=t)
in T where n 0, ...,nk_ 1 are e-nodes or/3-nodes, aeP(s) iff aes.

It is easy to see that the resulting structure satisfies HI, H2, H3 and H 4 a -
b but not necessarily H4c-d. For example, consider the tableau for
YGp A 3F~p shown in Fig. 1. Every finite branch closes because any attempt
to assign ~p to a state is inconsistent with VGp but there is an open branch
which corresponds to always putting off to tomorrow the task of fulfilling
3F~p.

Let T be a finite tableau whose unmarked nodes N satisfy: if neN is an
e/fl/X-node then the only son /a t least one son/a l l sons of n are in N. Let us
call a formula a future formula if it is of the form YFr, VXYFr, 3Fr, or
3X3Fr. We define a ranking algorithm which will assign a positive rank
p(q, n) to some occurrences q of future formulas in n.

Ranking Algorithm. Let qen be a future formula which has not yet been ranked.

R 1. If n is a/3-node for qe{gFr, 3Fr} and renleN then set p(q, n)= 1.
R2. If n is a fl-node for q~{VFr, 3Fr} and p(Xq, n2) is defined then set

p(q,n)=p(X q, nz)+ l, where X q=V X VFr/3X 3Fr if q=VFr/3Fr, resp.
R 3. If n is a/3-node not for q and p(q, nl) is defined for some i= 1,2, then set

p (q, n) = p (q, ni) + 1.
R4. I f n is an co-node and p(q, nl) is defined, then set p(q,n)=p(q, nl)+l.
R5V. If n is an X-node, q = V X V F r and p(VFr, nl) is defined for all hi, then

set p(q, n)= max(p(VFr, ni)) + 1.
i

218 M. Ben-Aft et al.

R5~. If n is an X-node, q = 3 X 3 F r and for some son n i, ~ F r s n i and
p(3 F r, hi) is defined, then set p(q, n)= p(~ F r, n~)+ 1.

Since the number of future formulas in N is finite and each is ranked at
most once, the ranking algorithm must terminate.

Lemma 4.3. (i) p(q, n)= 1 iff n is a fl-node for q and ren 1.
Otherwise, if p(q, n)> 1:
(i i) if n is a fl-node for q then p(Xq , n2)<p(q,b);

(i i i) if n is a fl-node not for q (or an s-node) then p(q, ni)<p(q,n) for some
(the only) son n i of n;

(iv) if n is an X-node then p(VFr, n i) < p (V X V F r , n) for every son n i of n
and p(3Fr, n i) < p (3 X ~ F r , n) for the son n i of n corresponding to 3 X S F r .

Proof. Immediate from the definition of p. |

We now revise the marking algorithm as follows.

Marking Algorithm. Apply M l - M 4 as long as possible.
At this stage the unmarked nodes form a structure N as described above.
M5. Apply the ranking algorithm to N. Mark each node containing an

unranked occurrence of a future formula.
Of course, M5 can cause the structure to change so that M I - M 4 again

become applicable. However, since each stage marks at least one node, the
algorithm must terminate, in fact, in time polynomial in the size of the tableau.

Theorem 4.4. n o the root of T, is not marked iff there is a (f ini te) Hintikka
structure for Poeno. Hence, by Theorem 4.1 there is a decision procedure for ~llN
and ~ has the finite model property.

Proof. ~ : This will follow from the completeness theorem to be given in the
next section.

~ : From the unmarked nodes of T we can form a structure as described
before. However, this is still not a Hintikka structure. The problem can be
demonstrated by the formula r - V G (V F(p A q) A V F(p A ~ q) A V F(~ p A q)). The
structure resulting from the tableau construction is shown in Fig. 2. The branch
s 0, s 1, s o, s I is not fulfilling for V F (~ p A q). The reason is that branching on
//-nodes sometimes gives too much choice. This can be corrected by "unwind-
ing" the structure as shown in Fig. 2 to force every infinite path to take both
sons of a//-node.

We construct a tableau T' whose nodes are instances of nodes of T. Denote
instances of n e T by n', n"eT' , etc. In the remainder of the proof, "nodes" refers
only to unmarked nodes.

n o is the root of T'. If n' is a leaf of T' then extend T' as follows.

Notation. n(n'i, nj) is a path from n'~ down to n) (not including n}) in r ' . An
alternative node is any/ / -node with two (unmarked) sons.

W1. If n is not an alternative node then for every son n~ of n let n'~ be a son
of n' in T'.

The Temporal Logic of Branching Time

t t ~
S O St $2

Fig. 2

219

W2. If n is an alternative node, let k be the number of instances of n in
~(no, n').

(i) If k = 0 then let n' 1 (arbitrarily) be the son of n' in T'.
(ii) If k > 0 then if n'~(n~) was the son of n" taken at the k - l ' s t instance n"

of n then let n 2 (n'l) be the son of n' in T'.
That is, we alternate our choices.
W3. However, if n has a previous instance n" in ~(no,n') and every alter-

native node which has an instance in ~z(n", n') has at least two instances in
rc(n", n') then identify n' with n".

It is easy to see that the "unwinding" must terminate since there are a
finite number of alternative nodes.

The following lemma is immediate from the construction.

L e m m a 4.5. Let b' be an (infinite) branch in T'. Let n e T be an alternative node
which has an infinite number of instances n', n", ... in b'. Then each son n i o f n in
T has an infinite number o f instances in b'.

Furthermore, it is trivial that the structure that can be defined from T' is a
Hint ikka structure except possibly for H 4 c - d . Thus Theorem 4.4 follows from
the following lemmas.

L e m m a 4.6. Let V F r e n ' eT ' . Then all n'-branches are fulfilling.

L e m m a 4.7. Let 3 F r e n ' e T ' . Then some n'-branch is fulfilling.

Proof of Lemma 4.6. Suppose that there was an (infinite) nonfulfilling n ' -branch
b 'eT ' . By the construct ion of T and T', q = V F r or V X V F r E m ' for all m'eb' .
Since each m' is an instance of an (unmarked) node m in T, p(q, m) is defined.

Let b'=(m' l ,m' 2) and define pi=p(q , mi) where m' i is an instance in T' of
m~ in T. Define p ~ appears infinitely often in (/91,/92, ...)}. Since the
ranking algori thm terminates, there are a finite number of ranks assigned and
thus some rank must appear i.o. and there must be a min imum such rank.

Since T is finite, there are a finite number of nodes me T (perhaps only one)
such that p (q , m) = p ~ Since pO appears i.o. in b, there must be a node m such
that p (q , m) = p ~ and instances of m appear i.o. in b'. We now derive a con-
t radict ion to the minimali ty of pO at m.

220 M. Ben-Ari et al.

p~ since that would imply by Lemma 4.3 that m is a /t-node for VFr
and m I which contains r is not marked. But since m appears i.o. in b' by
Lemma 4.5, so does m 1 contradicting the assumption that b is nonfulfilling.

Thus p o > 1. By Lemma 4.3:
If m is an e-node then an instance of its only son m I is in b' and satisfies

p(q, ml)<p(q ,m)=p ~
If m is a fl-node then by Lemma 4.5 an instance of each (unmarked) son m 1

appears i.o. in b', in particular the m~ such that p(q, mz)<p(q,m)=p ~
If m is an X-node then p(q,m~)<p(q,m)=p ~ for an instance of every son mz

of m, in particular the one following m' in b'.

Proof of Lemma 4.7. Let us define an n'-branch b' in T'. Note that in T' only
the X-nodes offer a choice and thus we specify b' by requiring that if m'~b' is
an X-node and 3X 3From' then choose the son of m' that contains 3Fr. Since
2Fren', either b' is fulfilling, or q = 3 F r or 3 X 3 F r e m ' for all m'sb'.

If b' is not fulfilling then we proceed to define pO as in the previous lemma
and derive a contradiction. The only difference is that if m is an X-node then
we have (fortuitously) chosen the son m~ such that p(3Fr, m~)<p(3X3Fr, m)
=po by Lemma 4.3.

5. Completeness

We now show that if a node n is marked by the marking algorithm then the
conjunction of the formulas in U, must be unsatisfiable because its negation is
provable. If U, = {Pi}, we define the associated formula of n, af~ to be ~/~Pi . In
particular, if n o is marked, then Po is unsatisfiable so t- ~Po. (It is easy to show
that the proof system is sound).

In a typical proof of completeness by the tableau method ([15]), one shows
that t - a f . for every leaf and that provability is preserved as one ascends the
tree to the root. For nodes marked by M1-M4, the nexttime operator greatly
simplifies the proof. For M5 we need a more difficult construction to show
how the induction axioms must be used. These proofs were inspired by
Pratt 's work [-13]. In practice, the tableau method for completeness is easy to
use and the proofs of the theorems in Sect. 3 can be discovered by mechanical
application of the tableau method.

Lemma 5.1. I f n is a leaf then t-aft.

Proof. pen and ~pen. But t - ~ (p A ~p) by R1 so t - a f , by dilution. (By dilu-
tion is meant: if there are other formulas q,r, ... in n then from t- ~ (pA ~p)
we get I - - ~ p v ~ p , ~ p v ~ p v ~ q v ~ r v . . . a n d t h e n

~(pA , ,~pAqAr...).)

Lemma 5.2. I f n is an e/fl/X-node and t- af,1/~ af,~ and ~- af,2/I- af,, for some i,
then t- af,.

Proof. For e and fl nodes the Lemma follows by simple propositional reason-
ing and T13-T14. For an X-node:

The Temporal Logic of Branching Time 221

~ (p i A q l A ... A ql)

I--(q 1 A . . . A q l) ~ ~ P i

I- VX(q 1 A. . . A q t) ~ V X ~ P i
I--(VX ql A . . . A V X q t) ~ V X " . ' p i

I - - (V X q l A . . . A V X q l) ~ ~ 3 X pi

I - (V X q l A . . . A V X q l) D ~ 3 X pl V . . . v ~ 3 X pk

I-" ~ (V X q l A . . . A VXq A ~ X p l A ... A 3 X Pk)

I-- af .

by assumption

A2

T9

Def. of 3X

dilution

dilution.

Let t be a node (which is a state) in T which was marked because 3 X ~ F r
was not ranked. Let [t]* be the set of states accessible from t by choosing at
an X-node the son corresponding to 3X3Fr . Then for every us[t]* , there is
an unranked occurrence of 3X 3Fr (by construction of T and the definition of
p).

Let Yu = {qlVXq is (a universal nexttime formula) in U,}.
Let W u= A qand W t= V I41,. W t i s called theinvariant o f t .

qEYu ue[t]*

Lemma 5.3 t- W' ~ V X W t.

Proof Let n u be the pre-state created in T for the 3 X 3 F r son of u. Then U..
= Y.w {3Fr} and any state in [t]* accessible from u is accessible only by paths
through n.. Let [u] be the states (all in It]*) accessible from n u by c~- and fl-
nodes. Now for any node n, ~-A u.=(A u.,)v(A u. 2) as shown by the various
theorems we have proved (e.g. T13: ~ V G p = (p A V X V G p) ; T14" ~-VFp
= (p v V X V F p)) . By what was noted above, 3 X 3 F r e v for all vs[t]* hence in

Eu].
Thus ~-W,~ V (A(U~-{3X3Fr})) .

ve[ul

What we have shown is that the conjunction of the formulas in a pre-state
(not including 3 Fr) implies at least one of the conjunctions of the formulas in
the successor states (except that formula produced by 3Fr). In particular it
implies the conjunction of all the universal nexttime formulas in the state.
Thus:

~ w . = V (A vxp)
v~[u] p~Yv

t - W , ~ V (VX(A P)) T9
v~[ul peYv

~-W.= V (VX W~) Def. of W~
v~[u]

~-W t~ V (VX Wu) by taking the disjunction over all ue[t]*
us[t]*

~ - W ' n V X (V W.) TIO
u~[t]*

I-- W ' ~ V X W t Def. of Wt.

222 M. Ben-Ari et aL

L e m m a 5.4. For all ue [t]* , t - W u ~ ~r.

Proof Without loss of generali ty we can assume that the fi-rule was applied to
3Fr at the pre-state n u to construct sons n I and n z. Then U , = { U , .
- { ~ F r } } ~ {r} = Y,w {r}. But n 1 must be marked for otherwise p(3Fr, n ,)= 1
and then p(~X3Fr , u)=2 cont rary to the assumpt ion that 3 X 3 F r was not
ranked in u. By the induct ion hypothesis ~-af, , which is ~ - ~ (W u A r) or ~-W,
~ r . |

T h e o r e m 5 .5 . v - a f t

Proof

1.

2.

3.

W t ~ ~ r

~ V G W ~ V G ~ r
F- W t ~ V G W t

4. t - W t = V G ~ r

5. ~ - W , ~ W t

6. ~ W t ~ V G ~ r

But this is F-af. ,

7. t - a f t .

Disjunct ion over all u e [t] * on L e m m a 5.4

A 4 on L e m m a 5.3

2,3

t~Et]*
4,5

for the pre-state created f rom state t. By L e m m a 5.2:

We now proceed to the case where a state t was marked because VX VFret
was not ranked.

L e m m a 5.6. I f V X V F r e t was not ranked then at that stage of the marking
algorithm, there exists a set of unmarked nodes S such that:

a) teS;
b) for all rueS, q - -VFr or V X V F r e m and p(q,m) is undefined;
c) if rueS is an c~-node then roleS;
d) if rueS is a fi-node then all unmarked sons m i of m are in S.
e) if rueS is an X-node then some son m i of m is in S.

Proof. Let S o-- t. Obviously, a) and b) hold. By induct ion assume that S i has
been constructed and a) and b) hold for Si. Let m be a node in Si for which
one of c)-e) does not hold. F o r m Si+ 1 by adding to S i as m a n y sons of m as
possible consistent with a) and b). c)-e) now hold for meS~+x. Let us check d)-
e).

If m is a /~-node for q then it must be that m~ is marked. Otherwise we
would have p(q, m) = 1 by R1 cont ra ry to b). If p(q, m2) is defined or if m is a p-
node not for q and either p(q, m~) or p(q, m2) is defined then so would p(q,m)
by R 2 - R 3 . To check e), observe that if m is an X-node and V X V F r is un-
ranked then there must be an m~ son of m in which VFr is unranked, m~ is
added to S.

Since the ranking a lgor i thm is appl ied to a finite structure, this procedure
must te rminate after, say k stages. S = S k has the required properties. |

Let V X V F r e t and S be as in L e m m a 5 . 6 . Fo r a state ueS, some pre-state
n, eS was selected by 5.6.e. Let this be the node constructed in T for 3X pu. Let
Y,' = Y,, w {Pu} where Y, is defined as before.

Let Z , = A q and Z t = V zu.
q~Y~ ueS

The Temporal Logic of Branching Time 223

Lemma 5.7. t- Z t ~ ~ X Z t.

Proof Like Lemma 5.3 except that T l l is used instead of T9 to deduce that

t - Z ~ V (A V X p A 3 X p ,)
v~[ul p~Yu

implies
I -Z~= V (3X(A pap ,)) . II

v~[u] P~Yu

Lemma 5.8. For all u~S, t - Z , = ~r.

Proof By Lemma 5.6, b and d the son of the fi-node for VFr containing r must
be marked. By induction we can conclude that

t- ~{ A qAr}
q~Y~-- {VFr}

~ { A q A r} d i l u t i o n
q ~ Y/,

k - Z ~ ~r. |

Lemma 5.9. I-- af t.

Proof

1. ~-Zt= ~ r Disjunction on Lemma 5.8
2. t - 3 G Z t ~ 3 G ~ r E1
3. ~ - Z t ~ 3 G Z t E4 on Lemma5.7
4. k -Z tD3G~r 2,3
5. ~ - Z ~ 3 G ~ r teS and 4
6. t - Z t ~ ~ 3 G ~ r Since VFr is a conjunct of Z,
7. ~- Z~ Dfalse 6, 7
8. ~- ~ Z, which is F- af.~
9, t--af t Lemma 5.2

Thus we have shown

Theorem 5.10. A1-A4, EI-E4, R1-R3 form a complete axiom system for ql~.

6. The ~ Semantics of Nondeterministic Programs

The utility of ~ N for proving the program properties so elegantly expressible
in the language depends on the ability to restrict the class of possible models
to the class of execution trees of a given program P. This is done by specifying
a set of axioms which impose the structure of computation according to a
given program on our general models. It may also be considered as specifying
the temporal semantics of the programming language by connecting its syn-
tactical constructs to transformations and developments in time.

In order to do this we extend our language by allowing predicates on vari-
ables.

We have three types of variables:
a) Computation variables Yl, Y2 which are modified by the execution

and vary from state to state.

224 M. Ben-Ari et al.

b) Free variables x l , x 2, ... which remain constant in time and are used to
express relations between values of computation variables in different instances.
Thus

(y = x) ~ 3 F(y = f (x))

is the expression of the statement that there exists some computation and some
state in it such that the value of y in this state is equal to f of the initial y.

c) A variable n whose value at any state points to the segment of program
yet to be executed.

Consider programs which are represented by transition graphs, G =(N, E).
The set N of nodes is called the set of locations. E is the set of edges each of
which is labeled by a guarded instruction of the form

g(y)--, [y: = f (y-)]

with the meaning that this edge is enabled if the condition g(y) is true and
passing through the edge involves the assignment of f(y--) to y.

We form our temporal semantics of such programs by letting n range over
N (the location set) and forming for each node a semantic formula. Let a node
I~N admit the following transitions:

<
gin(Y) -+ [Y := fm('7)l

Then we form the formula scheme

Al: (n= l)~ [i~= 1 [gi(~) A Q(li, f / (#)]) - 3 X Q]

Here Q=Q(n,y-) is an arbitrary predicate depending in general on the lo-
cation variable n and the computation variables ~. It may also refer to free
variables.

Note the presence of the ' = ' connective which implies that this formula
contains two implications. The first is stating that for every i= 1 m such
that gl is true there is a successor state s in which ns= li and ~s=f~(y). The
other implication is a complementary statement saying that the only possible
successor states are derived in this fashion. By using A~ as the axiomatic repre-
sentation of a given nondeterministic program, it is possible to prove partial
and total correctness of different types for nondeterministic programs. The sys-
tem ~//~ discussed here in great detail is only the propositional part of the full
~//N logic required in order to reason about concrete programs.

7. Discussion and Conclusions

In this paper we presented a unified branching time system which seems to
enjoy the joint advantages of both linear time and branching time systems, in

The Temporal Logic of Branching Time 225

being able to express and reason about the two basic types of termination,
universal and existential. We have established the logical properties of the ~M
properties by presenting a decision algorithm and a complete deductive axio-
matic system for the propositional fragment of the language. The decision pro-
cedure presented is obviously exponential.

This language must of course be compared with process logic languages
such as P L [7] and its predecessors. The languages certainly can express any
of the properties expressible in q /~ and many more. However, there is a price
to pay for this expressibility which is the complexity of the languages. A sign
of this is the fact that P L is nonelementary (has a nonelementary decision
procedure) while q/M is exponential.

Admittedly we do have six modal operators which is a disadvantage com-
pared to simpler systems such as D X for linear time [5] or the corresponding
branching time systems. On the other hand the formation rules of these oper-
ators are simple and uniform, and they do enable us to express most of the
interesting program properties discussed in the literature.

Another advantage lost in the transition from linear to branching time is
expressive completeness in the sense of [5]. Here the problem is inherent and
cannot be remedied by the addition of one or two extra operators. This shown
by the following:

Proposition 2. No branching time temporal language with a finite number of
modal operators can be expressively complete.

This theorem, due to Gabbay (unpublished manuscript) is based on the
following observations:

a) A temporal language with a finite number of operators can always be
translated into a first order formula with a number of distinct variable names
which is fixed for the language.

b) In a first order language it is easy to come up with formulas which need
an arbitrarily large number of distinct variable names. Consider for example
the statement:

There exist k time instants tl , ..., t k no two of which are related.
This statement needs k variables for its expression for an arbitrary k. These

formulas for sufficiently large k cannot therefore be expressed in any temporal
logic.

While the proposed unified system is adequate for proving properties of
nondeterministic programs it still falls short of linear temporal logic in being
inadequate for proving properties of concurrent programs under the assump-
tion of fairness. If we still adopt as basic model the tree of all possible com-
putations, it necessarily contains some unfair computations as well. Con-
sequently, we should be able to say that for every path in the tree, either the
path represents an unfair computation or it satisfies some desirable property
such as convergence. Such statements are inexpressible in q/M.

Since the writing of the first version of this paper there has been intensive
activity in extending and refining the logic system and techniques presented
here.

226 M. Ben-Ari et al.

Most recent is the work reported in [3] which introduces C T L § - an ex-
tension of the q /~ system. While retaining the exponential complexity of q /~ it
is possible to express in C T L § additional statements inexpressible in q/N.5

One of the novel features of the q/M system is the introduction of the next-
time operators. In general, the nexttime operator is a relatively newcomer to
temporal logic. Prior (in [14] ; pp. 66-67) attributes the introduction of the next-
instant operator to linear temporal logic to Scott. Krtiger [81 was the first to
use a temporal logic that included the nexttime operator for describing proper-
ties of nonterminating programs.

Acknowledgements. We would like to thank E.M. Clarke, Jr., A.E. Emerson and J.Y. Halpern for
pointing out an error in the preliminary version. We would also like to thank L. Lamport and an
anonymous referee for their comments and suggestions.

References

1. Abrahamson, K.R.: Modal logic of concurrent nondeterministic programs. Symposium on
Semantics of Concurrent Computations, Lecture Notes in Computer Science 70, pp. 21-33.
Berlin, Heidelberg, New York: Springer 1979

2. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Eight ACM Sym-
posium on Principles of Programming Languages, Williamsburg, VA, pp. 164-176, 1981

3. Emerson, A.E., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of
branching time. 14-th ACM Symposium on Theory of Computing, San Francisco, CA, pp. 169-
180, 1982

4. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636-644 (1967)
5. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: The temporal analysis of fairness. Seventh ACM

Symposium on Principles of Programming Languages, Las Vegas, NE, pp. 163-173, 1980
6. Harel, D.: First Order Dynamic Logic, Lecture Notes in Computer Science 68. Berlin, Heidel-

berg, New York: Springer 1979
7. Harel, D., Kozen, D., Parikh, R.: Process Logic: expressiveness, decidability, completeness. 21-

st IEEE Symposium on Foundation of Computer Science, pp. 129-142, 1980
8. Krtiger, A.: A uniform logical basis for the description, specification and verification of pro-

grams. IFIP Working Conference on Formal Description of Programming Concepts, St. An-
drews, Canada, 1977

9. Lamport, L.: "Sometime" is sometimes "not never". Seventh ACM Symposium on Principles
of Programming Languages, Las Vegas, NE, pp. 174-183, 1980

10. Manna, Z.: Second order mathematical theory of computation. Second ACM Symposium on
Theory of Computing, pp. 158-168, 1970

11. Manna, Z., Pnueli, A.: The modal logic of programs. Automata, Languages and Programming,
Lecture Notes in Computer Science 79, pp. 385-409. Berlin, Heidelberg, New York: Springer
1979

12. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45-60
(1981)

13. Pratt, V.R.: A near optimal method for reasoning about action. J. Comput. Syst. Sci. 20, 231-
254 (1980)

14. Prior, A.: Past, Present and Future. Oxford University Press 1967
15. Rescher, N., Urquhart, A.: Temporal Logic. Berlin, Heidelberg, New York, Wien: Springer

1971
16. Smullyan, R.M.: First Order Logic. Berlin, Heidelberg, New York: Springer 1968

Received October 14, 1982/May 2, 1983

5 A recent manuscript by Clarke and Emerson has shown how to use this logic to synthesize
concurrent programs

