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Summary.  A temporal  logic is defined which contains both  linear and 
branching operators.  The underlying model  is the tree of  all possible com-  
putations. The following metatheoret ical  results are proven:  1) an exponen- 
tial decision procedure for satisfiability; 2 ) a  finite model proper ty ;  3 ) t h e  
completeness of  an axiomatization.  

1. Introduction 

F r o m  the first in t roduct ion of  the Tempora l  Logic formalism as a tool for 
reasoning about  programs,  there arose a basic question which later almost  
developed into a controversy. The question involves the nature of  the underly- 
ing structure of time on which the formalism is based. The d icho tomy is be- 
tween the linear time approach  which considers time to be a linear sequence, 
and the branching time approach,  which adopts  a tree structured time, allow- 
ing some instants to have more  than a single successor. 

The difference in approaches has very little to do with the philosophical  
quest ion of the structure of  physical time which leads to the metaphysical  
problems of  determinancy versus free will. 

Instead it is pragmatical ly  based on the choice of the type of  programs and 
properties one wishes to formalize and study. 

Linear time is the correct  model to use in order to characterize the set of 
all execution sequences which a p rogram generates and to study properties 
which uniformly hold for all the execution sequences of  a program. Even a 
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nondeterministic program generates for each set of possible choices a linear 
execution sequence in which each execution state has a unique successor. The 
class of properties related to the set of execution sequences are the universal 
properties such as universal total correctness and universal responsiveness. 
Both these properties require that every execution sequence of the program will 
eventually achieve some goal such as termination with a correct result or cor- 
rect response to some request. The interpretation of temporal formulas over 
execution sequences of a given program was found to be very useful for 
reasoning about both sequential deterministic programs and concurrent pro- 
grams. In the case of concurrent programs, where the nondeterminism is 
caused by different scheduling scripts, we generally wish to prove that the pro- 
gram terminates or responds correctly regardless of how the individual pro- 
cesses are scheduled. This approach is pursued in I-9, 11, 12]. 

The branching time approach, on the other hand, considers for a given 
program the set of all execution trees generated by the program. With a nonde- 
terministic program P and a given input x we can associate the tree of all 
possible computations of P on x. Since the program is nondeterministic, some 
of the execution states will have more than one successor corresponding to a 
nondeterministic choice. Over execution trees we can study existential proper- 
ties such as correct termination for at least one possible computation (for every 
input). More generally, we may study the property that there is always one 
possible computation which realizes some goal. This certainly does not imply 
that all computations will realize the same goal. Consequently, this approach is 
useful for nondeterministic programs which are executed by systematically ex- 
ploring all possible choices by methods such as breadth first search, etc. This 
interpretation of nondeterminism is recommended for example in [4] as a de- 
sign tool and is the one classically used in automata and complexity theory. 
The branching time approach is implied in the underlying structure of Dy- 
namic Logic ([-1, 6]), but was not previously studied in a temporal framework. 

In the end, the choice between linear and branching models cannot be 
made on philosophical grounds but instead should be dictated by the type of 
programs, execution policies and properties which one wishes to study. For  a 
fuller discussion of this issue see [9]. 

A natural step at this point would be to formalize and investigate a branch- 
ing time temporal logic which incorporates both universal operators similar to 
those used in linear temporal logic, and existential operators similar to those 
used in simpler branching systems. It turns out that such a unified system 
which combines both approaches is not significantly more complex than the 
two separate systems. 

We will define a logic ~//~: the unified system of branching time. The under- 
lying model will be the branching tree of all possible computations of a pro- 
gram. We define, however, additional temporal operators that allow reference 
either to all possible execution sequences or only to a single sequence. The 
metatheoretical results in ~//~ include: 

1) An exponential decision procedure for satisfiability. 
2) A finite model property: If a formula in ~ is satisfiable then it has a 

finite (exponential) model. 



The Temporal Logic of Branching Time 209 

3) A simple axiomatization which is shown to be complete. 
The decision procedure uses semantic tableaux. Tableau systems provide a 

rapid way of deciding "natural"  formulas. The completeness theorem shows 
how to "read-off" a proof from a tableau. 

The expressive power of the system is illustrated by formalizing both uni- 
versal and existential properties of nondeterministic programs. Finally we give 
a temporal semantics for nondeterministic programs, complementing the se- 
mantics given in [12] for deterministic but concurrent programs. Even though 
the 4/M logic, inspired by linear temporal logic, incorporates universal oper- 
ators that correspond to statements holding in all paths of the model tree, it 
cannot be regarded as a generalization of linear temporal logic. In fact the two 
logics are incomparable in the sense that there are statements expressible in 
each which are not expressible in the other. Thus, even though the ~'M logic 
significantly extends the branching time logic studied in [9], the same essential 
result of [9], i.e. incomparability of linear versus branching time logic still 
holds. The examples for incomparability are essentially the same examples pre- 
sented in [9]. 

The statement that there exists some convergent computation of a given 
program is expressible in q/~3 but not in linear temporal logic. On the other 
hand the statement that all fair computations of a concurrent program con- 
verge is expressible in linear time temporal logic but not in ~M. 

In Sect. 2 the syntax and semantics of the system ~#M (unified branching) 
are given along with the axiom system. Section 3 contains a list of theorems of 
~'M along with a representative selection of proofs. Section 4 describes the con- 
struction of semantic tableaux for ~M giving a decision procedure and the 
finite model property. Section 5 proves completeness of the axiom system from 
the tableaux of Sect. 4. In Sect. 6 we illustrate the utility of the q/M system for 
axiomatizing the behavior of nondeterministic programs. Such axiomatization 
would lead to proof methods for proving properties of nondeterminstic pro- 
grams. 

An earlier abstract of this work appeared in [2]. This earlier version con- 
tained an error which is corrected in the current paper. 

2. The System ~ 

The base of ~M is the propositional calculus on ~ and v with the other 
connectives defined as usual. 

We use two symbols for each modality. The first, V or 3, denotes quantifi- 
cation over branches. The second G, F or X (nexttime) denotes quantification 
over states in the branches. The three primitive modalities are VG, ~G and VX. 
The three defined dual modalities are 3F= , -~VG~;  V F = ~ 3 G ~ ;  3X 
= ,-~VX~, Parentheses may be omitted by defining ~ and the modalities to 
have precedence over A which in turn has precedence over v and =,  

Let T be a tree and s a node in T. Let a be a proposition which can hold at 
some nodes in T. The intuitive meaning of the modal operators when applied 
to a proposition is as follows. 
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VGa holds at s (in T) iff a is true at all nodes of the subtree rooted  at s 
(including s). 

VFa holds at s iff on every pa th  depar t ing f rom s there is some node  at 
which a is true. 

VXa holds at s iff a is true at every immedia te  successor ofs .  
qGa holds at s iff there is a pa th  depar t ing f rom s such that  a is true at all 

nodes on this path. 
qFa holds at s iff a is true at some node in the subtree rooted  at s, i.e. 

there is a pa th  depar t ing f rom s such that  a is true at some node on 
this path.  

3Xa holds at s iff a is true at one of the immedia te  successors of s. 

The four modali t ies  VG, VF, qG, 3F  cor respond  to four concepts  of correct-  
ness given by M a n n a  [10] for a general nondeterminis t ic  p r o g r a m  P. Let  B be 
the propos i t ion  that  a p r o g r a m  P is at its s tart  state and H be the propos i t ion  
that  P has halted. Let  q~ and ~ be the input and output  predicates which form 
a correctness specification for P. Then  M a n n a  distinguishes four concepts  of 
correctness of P relative to (~o, ~u). 

a) (B A q o ) ~ q G ( H ~ ) .  
P is partially q-correct with respect  to (q~, ~g). 
If the p r o g r a m  is s tar ted with a true input specification then there exists a 

compu ta t ion  that  may  be infinite, but  if it is finite then the p r o g r a m  terminates  
in a state satisfying the ou tpu t  specification. (Actually, the p rog ram halts by 
remaining forever in the halt  state to conform to our  model  of non-ending 
time.) 

b) (B A~o)23F(H A ~). 
P is totally q-correct with respect to (q~, ~u). 
There is a compu ta t ion  that  terminates  correctly, though other  compu-  

tat ions may  diverge or terminate  incorrectly. 
c) (B A q 0 ) ~ V G ( H ~  }//). 
P is partially V-correct with respect to (q), }P). 
Every terminat ing compu ta t ion  must  be correct  but  there is no guarantee  

that  any terminat ing  compu ta t ion  exists. 
d) (B Acp)=VF(H A ~). 
P is totally V-correct with respect to (q0, }/I). 
Every computa t ion  terminates  correctly. 

Semantics for ~l~ 

A model  for ~//~ is a triple (S, P, R) where S is a set of states, P is an assign- 
ment  of proposi t ional  letters to states and R is a binary relat ion on states. If  
s R t  then we say that  t is an immedia te  successor of s. To  capture  the concept  
of non-ending time, we require that  R be total, i.e. Vsqt (sRt). 

For  a proposi t ional  letter a and a state sES, asP( s )  iff a is true in s. We 
extend the in terpre ta t ion over  the model  to all formulas  in ~//~ as follows 
where b=(s=So, Sl,S2,... ) is an infinite pa th  through the model  such that  
siRsi§ 1. b is called an s-branch.  
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1. sNa iff aeP(s), for a atomic 
2. s ~  ~ p  iff s~p 
3. s ~ p v q  iff s~p or s~q 
4. s~ VGp iff Yb Vt (t~b implies t~ p) 
5. s~3Gp iff 3bVt (teb implies t~p) 
6. s~VXp  iff Vt (sRt implies t~p) 
7. s~3Fp iff 3b3t (teb and t ~ p )  
8. sNVFp iff Vb3t (tsb and t~p) 
9. s~3Xp  iff 3t (sRt and t~p). 

p is satisfiable if s~p for some model M and some state s in M; this is written 
M,s~p,  or s~p if M is understood. In 7, 8 and 9 we say the formula in s has 
been fulfilled at t. 

The following is a set of axioms for q/~.  
A1. VG(p~q)~(VGp~VGq) 
a 2 .  VX(p~q)~(VXp~VXq)  
A3. VGp~VXpAVXVGp 
A4. VG(p~VXp)~(p~VGp) 
E l .  VG(p~q)~(qGp~3Gq) 
E2. 3Gp~pA3X3Gp 
E3. VGp~3Gp 
E4. VG(p~3Xp)~(p~3Gp). 

The rules of inference are: 

R 1. If p is a substitution instance of a tautology then ~-p. 
R 2. If t-- p and ~-p = q then ~- q. (Modus ponens) 
R 3. If I-- p then ~- V G p. (Necessitation). 

If VGp~p (T1, below) is added to A 1 - A 4 ,  then we get a complete 
axiomatization of the universal fragment of branching nexttime. If VX and 3X 
are merged (along with VG and 3G) so that g X p - ~ V X ~ p  is an axiom then 
we get a complete axiomatization of linear nexttime. By T1 and T5, below, we 
could express A3 and E2 more symmetrically as: 

A3'.  V G p ~ p A V X p A V X V G p  
E2'. 3Gp=pA3XpA3X3Gp.  

Also, E3 can be derived by taking T1 and T6 as axioms. Some axiom of 
the form ~'~ ~ is needed to limit our models to non-ending time. 

3. Theorems of ~ / /~  

T1. VGp~p 
T2. VGp~VFp 
T3. VX(p~q)~(3XpD3Xq) 
T4. VG(p=q)~(VFp=VFq) 
T5. 3Gp~3Xp 
T6. V X p ~ 3 X p  
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T7. VG(pAq)=-VGpAVGq 
T8. 3G(pAq)~3GpA3Gq 
T9. VX(pAq)=VXpAVXq 
T10. 3X(pAq)~3XpA3Xq  
T l l .  VXpAqXq~3X(pAq)  
T12. VGpA3Gq~G(pAq)  
T13. VGp=-pAVXVGp 
TI4 .  3 G p - p A 3 X 3 G p  
T15. VGp-VGVGp 
T16. 3Gp-3G3Gp 
T17. 3G(p~VXp)~(p~3Gp) 
T18. VFVGp~VGVFp 
T19. ~G((p v ~G q) A (3G p v q))-~(3G p v ~G q) 
T20. V X V G p - V G V X p  
T21. ~ X 3 G p ~ G 3 X p .  

From A 1-A 3, E 1, E3, T 1-T 6 we can derive necessitation rules ~ p--* ~-Mp 
and ~ - p ~ q ~ - M p ~ M q  for all modalities Me{VG, 3G, VF, ~F, VX, 3X}. 
These derived rules are used implicitly below. 

The proofs of T 1 - T 1 2  are straightforward. T9 and T l l  form the key to in- 
ductive proofs as will be seen in the completeness proof. The rest of the theo- 
rems are proven using the induction axioms A4 and E4. 

T14. 1. ~Gp~pA3X~Gp E2 
2. 3X3Gp~3X(pA3X3Gp)  
3. p A 3 X ~ G p ~ X ( p A 3 X 3 G p )  
4. VG(pA3X3Gp~3X(pA3X3Gp))  
5. p/x3X~Gp~3G(pA3XqGp) E4 
6. p A ~ X 3 G p ~ G p  T8 
7. 3Gp==-pA3X~Gp 1,6 

In their negated forms T13 and T14 are the key to the tableau constructions 
used in the recta-theory of ~/M: ,-~ ~ G p ~ ,-~ p v ,-~ q X 3 G p. If we try to falsify 
3Gp then either falsify it now (up )  or if that is not possible, put it off to 
tomorrow (~3X  3Gp=-VX ~3Gp). 

T 15-T16 are the $4 transitivity axioms. 
T 17 is another induction theorem. We conjecture that replacing E4 by T 17 

results in a weaker system for proof  theoretical reasons because the induction 
step p ~ V X p  is usually not true. Probably the system is not different from 
linear nexttime. 

T18 is our version of the $4.2 axiom <> [ ] p ~  F-l<>p. 
Note that 3Gp~VFp and VF3Gp~3GVFp can be proved but this is 

an artifact of the reflexiveness of ~//~ and would not carry over if E2 were 
changed to 3Gp~EXpA3X3Gp to obtain an irreflexive system as required 
classically in temporal  logic. 

T 19 is the S 4.3 linearity axiom for 3G. 

TI9. Denote (pv3Gq)A(3Gpvq) by r and 3 G r A  ~3GpA ~ G q  by s. 
1. s~ (pv3Gq)A(qGpvq)A~3Gp/x~3Gq E2 
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2. S~p Aq 
3. S ~ p A q A ( ~ p v  ~3X3Gp)  A(',~qv ~3X3Gq)  
4. s ~ 3 X 3 G p A ~ 3 X 3 G q  
5. s ~ 3 X 3 G r A ~ 3 X 3 G p A ~ 3 X ~ G q  
6. s~3X(3Gr A ~3Gp A ~3Gq) 

i.e., s ~ 3 X s  
7. 3G(s=3Xs) 
8. s~3Gs 
9. 3Gs~3G(p Aq) 

10. s~qGpAqGq 
i.e., 3 G r A ~ q G p A ~ 3 G q ~ 3 G p A 3 G q  

11. 3Gr~3Gpv3Gq  
i.e., 3G((pv3Gq)A(3Gpvq))=3Gpv3Gq. 

Conversely, 

T14 

E2 
T l l  

E4  
2, necessitation 
8,9, T8  

12. 3 G p ~ 3 G p v q  
13. 3 G p ~ p v 3 G q  E2 
14. 3Gp=(3Gpvq)A(pv3Gq) denote the consequent by r. 
15. 3G3Gp~3Gr 
16. 3Gp~3Gr T16 
17. 3Gq~3Gr Symmetry 
18. 3Gpv3Gq~3G r  
19. 3Gr=-3Gpv3Gq 11,18. 

Why does the proof not work for VG? In 5 we would have: 

5'. s ~VXVGr  A ~VXVGp A ~VXVGq 
i.e. s 3 V X V G r A 3 X ~ V G p A 3 X ~ V G q  

which cannot have a modality extracted. 

VGVGp~VGVXp A3 
g G p ~ g G V X p  T15 
VXVGp=VXVGVXp  
VXVGp=VXp T1 
V X V G p ~ V X p A V X V G V X p  3, 4 
VXVGpDVGVXp T13 
V G V X p D V X p A V X V G V X p  T13 
pAVGVXp~VX(pAVGVXp)  T9  
pAVGVXp~VGp A4, T7  
V X p A V X V G V X p ~ V X V G p  A2, T7  
VGVXp~VXVGp T13 
V X V G p - V G V X p  6, 11 

T20. 1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

4. Semantic Tableaux for q / ~  

In this section we describe the construction of semantic tableaux for formulas 
in q /~ ,  obtain a decision procedure for satisfiability and prove the finite model 
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property. In the next section we prove the completeness of the axiomatization 
of q/N by showing that if the tableau construction fails to produce a model 
for ~ p  then we can read off the tableau a proof  of p. 

A structure is a triple (S, P, R) where S is a set of states, P is an assignment 
of formulas to states and R is a binary relation on states. It is convenient to 
use the same name S for a structure and its set of states. A structure differs 
from a model in that it is not required to be complete, i.e. a state need not 
contain p or ~ p  for every p. Also, we have not required any connection be- 
tween the assignment of formulas and the assignment of its subformulas. We 
do require that our structure be appropriate for ~#~, i.e. for every seS there is 
a t such that sR t. 

Notation. pes is short for peP(s). 

A formula is elementary if it is a proposition, a negation of a proposition or a 
nexttime formula. Following Pratt [13], it is convenient to regard reduction of 
a double negation and replacement of a modality by its dual as part  of the 
syntax of the language. Thus compound formulas are always non-negated. Ob- 
viously, this does not affect satisfiability or provability. 

Following Smullyan [16] we classify formulas as e-formulas and /3-for- 
mulas. 

e e I e 2 

pAq  p q 
VGp p VXVGp 
~Gp p 3X~Gp 

/3 /31 /32 
p v q  p q 
VFp p V X V F p  
3Fp p 3 X 3 F p  

A structure H is called a Hintikka structure iff for all sell:  

H1. ~pes=> pCs (H is consistent). 
H2. e e s ~ e l e s  and ezeS. 
H3. /3es~/31es or /32es. 
H4a. VXpes=:,for all t such that sRt, pet. 
H4b. ~ X p e s ~ f o r  some t such that sRt, pet. 
H4c. ~Fpes~there  exists an s-branch b and for some teb, pet. 
H4d. V F p e s ~ f o r  all s-branches b there exists a teb such that pet. 

H is called a Hint ikka structure for p if pes for some sell.  

Theorem 4.1. (Hintikka's Lemma for ~//~): A ~ll~ formula Po is satisfiable iff 
there is a Hintikka structure for Po. 

Proof. (~ ) :  It is easy to check that the "only-if" directions of the model con- 
ditions 1.-9. are sufficient to guarantee that any model can be viewed as Hin- 
tikka structure. 

(~ ) :  Let H=(S,P,R)  be a Hint ikka structure for Po. 
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Define H'  = (S, P, R) by: 

aeP'(s) if aeP(s) or ,~aCP(s) 

aCP'(s) if ~aeP(s); for atomic formulasa.  

Then H'  defines a ~//~ model. We have to show that H'  is a ~ for 
P0. This is done by a simultaneous induction showing 

(i) p~sEH~H', s~p 

(ii) ~p~s~H~H',  s~ ~p 

for positive formulas p. 

Basis: asseH~H' ,  s~a by construction. 
~aes~H~H' ,  s~a by construction ~ H ' ,  s ~  ~ a  by model condition 

2. 

Induction: (We shorten the notation by dropping the H and H '  and using 
and ~ to distinguish between the notions.) 

p v q ~ s ~ p e s  or q~ s~ s~ p  or s~q by induction 

~ s N p v q  by 3. 

~(pvq)es. i.e. ~ p A ~ q e s ~ p e s  and ~ q ~ s ~ s ~ p  and s ~ q  

by induction ~sffFp and s ~ q ~ s ~ ( p v q ) ~ s ~  -,~(pvq) by 2. and 3. 

VXpEs=~for all successors ti, pe t i~ t i~p  by induction 

~ s ~ V X p  

and similarly for the other modalities. | 

A semantic tableau is a systematic search for a Hint ikka structure. The 
tableau will be constructed as a tree of nodes. Each node is labelled with a set 
of formulas derived from the original formula Po- Later we will show how to 
obtain a Hint ikka structure from a successful tableau construction. 

Notation. If n is a node of a tableau then U, is the set of formulas labelling n. 
It is usually convenient to write pen for p~U,. A further convenience is to 
replace the original formula Po by Po A VG 3X(true) to ensure that the resulting 
structure is non-e,"tin~. 

Tableau Construction. Let Po be a ~ ' ~  formula. Let n o be the root of T and let 
U,o={P0}. T, the tableau for Po, is constructed inductively by applying the 
following rules to nodes n which are leaves of T. 

R,: If c~U, then create a son n I of n and define: 
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Rp: If fleU. then create two sons nl and n 2 of n and define: 

U,i= U, w {fl,}, i = 1 , 2 .  

The following rule is applied only when any applicat ion of the c~/fl rules 
would not  generate a new node. 

Rx: Let V,={3Xpl  . . . . .  3Xp k, VXql , . . . ,VXqm } be the set of nextt ime for- 
mulas in n. Create k sons hi, i = 1 . . . . .  k of  n and define: 

U., = {Pi, ql, "", q,,}" 

Since we assumed that  Po contains a conjunct  VG3X(true) ,  it follows that  
k,m>O. 

Notation. If  the RJRIJR x rule was applied at node n then n is called an ~/fi/X- 
node. 

The construct ion of  T is made  finite by observing the following two termi- 
nat ion rules. 

1. If pen and ,~pen then this node is called closed and is not  expanded 
further. 

2. If  a node m is about  to be created as a son of an X-node  n and there is 
an ancester n' of n such that  n' is an immediate  descendent of an X-node  and 
U,,= U,, then do not  create m but  instead connect  n to n' with a " feedback"  
edge. 

The following lemma shows that the construct ion of  T must  terminate. 

L e m m a  4.2. Let T be a tableau for Po. Then for some (small) positive c, the 
number of distinct formulas that can appear in nodes of T is at most ClPol, where 
IP01 is the length of Po. 

Proof. All formulas in nodes of T are subformulas of  Po or negations or duals 
of  subformulas or are subformulas prefixed by VX or ~X. 

We now describe a marking algori thm which is designed to check if the 
tableau resulting from the construct ion can be made into a Hint ikka  structure. 
The algori thm is described in two parts. First, we describe a simple algori thm 
that  will turn out  to be incomplete and then we show the (substantial) changes 
that  must  be added in order to complete it. 

Marking Algorithm 

M 1. Mark  every closed leaf (node containing p and ~ p). 
M2. If n is an e-node and n 1 is marked then mark  n. 
M3. If  n is a / ? -node  and both  n 1 and n 2 are marked then mark  n. 
M4. If  n is an X-node  and some n i is marked then mark  n. 

Define a structure as follows. Let S, the set of states, be the unmarked  X- 
nodes of T. Call n a pre-state if n is the root  or  was created by the applicat ion 
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, VGpA~tF~p ) 

i 

i 
~ ~  ~ ~ ' x ~  p' VXVGp, ~F~p 

(p, VXVGp, ~p) ~ ,  VXVGp, ~X~/F~p) 

X 
Fig. 1 

of the X-rule to a state (X-node). Let sRt  if there is a path (s, no, . . . ,nk_l=t) 
in T where n 0, ...,nk_ 1 are e-nodes or/3-nodes, aeP(s) iff aes. 

It is easy to see that the resulting structure satisfies HI,  H2, H3 and H 4 a -  
b but not necessarily H4c-d.  For example, consider the tableau for 
YGp A 3F~p  shown in Fig. 1. Every finite branch closes because any attempt 
to assign ~p  to a state is inconsistent with VGp but there is an open branch 
which corresponds to always putting off to tomorrow the task of fulfilling 
3F~p. 

Let T be a finite tableau whose unmarked nodes N satisfy: if neN is an 
e/fl/X-node then the only son /a t  least one son/a l l  sons of n are in N. Let us 
call a formula a future formula if it is of the form YFr, VXYFr,  3Fr, or 
3X3Fr.  We define a ranking algorithm which will assign a positive rank 
p(q, n) to some occurrences q of future formulas in n. 

Ranking Algorithm. Let qen be a future formula which has not yet been ranked. 

R 1. If n is a/3-node for qe{gFr, 3Fr} and renleN then set p(q, n)= 1. 
R2. If n is a fl-node for q~{VFr, 3Fr} and p(Xq, n2) is defined then set 

p(q,n)=p(X q, nz)+ l, where X q=V X VFr/3X 3Fr if q=VFr/3Fr, resp. 
R 3. If n is a/3-node not for q and p(q, nl) is defined for some i=  1,2, then set 

p (q, n) = p (q, ni) + 1. 
R4. I f n  is an co-node and p(q, nl) is defined, then set p(q,n)=p(q, nl)+l. 
R5V. If n is an X-node, q = V X V F r  and p(VFr, nl) is defined for all hi, then 

set p(q, n)= max(p(VFr, ni) ) + 1. 
i 
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R5~.  If n is an X-node, q = 3 X 3 F r  and for some son n i, ~ F r s n  i and 
p(3 F r, hi) is defined, then set p(q, n)= p(~ F r, n~)+ 1. 

Since the number of future formulas in N is finite and each is ranked at 
most once, the ranking algorithm must terminate. 

Lemma 4.3. ( i )  p(q, n)= 1 iff n is a fl-node for q and ren 1. 
Otherwise, if  p(q, n)> 1: 
( i i)  if n is a fl-node for q then p(Xq ,  n2)<p(q,b); 

( i i i)  if n is a fl-node not for q (or an s-node) then p(q, ni)<p(q,n ) for some 
(the only) son n i of  n; 

( iv)  if n is an X-node then p(VFr, n i ) < p ( V X V F r ,  n ) for every son n i of n 
and p(3Fr,  n i ) < p ( 3 X ~ F r ,  n ) for the son n i of n corresponding to 3 X S F r .  

Proof. Immediate from the definition of p. | 

We now revise the marking algorithm as follows. 

Marking Algorithm. Apply M l - M 4  as long as possible. 
At this stage the unmarked nodes form a structure N as described above. 
M5. Apply the ranking algorithm to N. Mark each node containing an 

unranked occurrence of a future formula. 
Of course, M5 can cause the structure to change so that M I - M 4  again 

become applicable. However, since each stage marks at least one node, the 
algorithm must terminate, in fact, in time polynomial in the size of the tableau. 

Theorem 4.4. n o the root of  T, is not marked iff there is a ( f ini te)  Hintikka 
structure for Poeno. Hence, by Theorem 4.1 there is a decision procedure for ~llN 
and ~ has the finite model property. 

Proof. ~ :  This will follow from the completeness theorem to be given in the 
next section. 

~ :  From the unmarked nodes of T we can form a structure as described 
before. However, this is still not a Hintikka structure. The problem can be 
demonstrated by the formula r - V  G (V F(p A q) A V F(p A ~ q) A V F( ~ p A q)). The 
structure resulting from the tableau construction is shown in Fig. 2. The branch 
s 0, s 1, s o, s I .... is not fulfilling for V F ( ~ p  A q). The reason is that branching on 
//-nodes sometimes gives too much choice. This can be corrected by "unwind- 
ing" the structure as shown in Fig. 2 to force every infinite path to take both 
sons of a//-node. 

We construct a tableau T' whose nodes are instances of nodes of T. Denote 
instances of n e T  by n', n"eT' ,  etc. In the remainder of the proof, "nodes" refers 
only to unmarked nodes. 

n o is the root of T'. If n' is a leaf of T' then extend T' as follows. 

Notation. n(n'i, nj) is a path from n'~ down to n) (not including n}) in r ' .  An 
alternative node is any/ / -node with two (unmarked) sons. 

W1. If n is not an alternative node then for every son n~ of n let n'~ be a son 
of n' in T'. 
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W2. If n is an alternative node, let k be the number  of instances of  n in 
~(no, n'). 

(i) If k = 0  then let n' 1 (arbitrarily) be the son of n' in T'. 
(ii) If k > 0  then if n'~(n~) was the son of  n" taken at the k - l ' s t  instance n" 

of  n then let n 2 (n'l) be the son of  n' in T'. 
That  is, we alternate our  choices. 
W3. However,  if n has a previous instance n" in ~(no,n') and every alter- 

native node which has an instance in ~z(n", n') has at least two instances in 
rc(n", n') then identify n' with n". 

It is easy to see that the "unwinding"  must  terminate since there are a 
finite number  of  alternative nodes. 

The following lemma is immediate  from the construction. 

L e m m a  4.5. Let  b' be an (infinite)  branch in T'. Let  n e T  be an alternative node 
which has an infinite number of  instances n', n", ... in b'. Then each son n i o f  n in 
T has an infinite number o f  instances in b'. 

Furthermore,  it is trivial that  the structure that can be defined from T'  is a 
Hint ikka  structure except possibly for H 4 c - d .  Thus Theorem 4.4 follows from 
the following lemmas. 

L e m m a  4.6. Let  V F r e n '  eT ' .  Then all n'-branches are fulfilling. 

L e m m a  4.7. Let  3 F r e n ' e T ' .  Then some n'-branch is fulfilling. 

Proof  of  Lemma 4.6. Suppose that there was an (infinite) nonfulfilling n ' -branch 
b 'eT ' .  By the construct ion of  T and T', q = V F r  or V X V F r E m '  for all m'eb' .  
Since each m' is an instance of  an (unmarked) node m in T, p(q, m) is defined. 

Let b'=(m' l ,m'  2 . . . .  ) and define pi=p(q ,  mi) where m' i is an instance in T'  of  
m~ in T. Define p ~  appears infinitely often in (/91,/92, ...)}. Since the 
ranking algori thm terminates, there are a finite number  of ranks assigned and 
thus some rank must  appear  i.o. and there must  be a min imum such rank. 

Since T is finite, there are a finite number  of nodes me T (perhaps only one) 
such that  p ( q , m ) = p  ~ Since pO appears i.o. in b, there must  be a node m such 
that  p ( q , m ) = p  ~ and instances of m appear  i.o. in b'. We now derive a con- 
t radict ion to the minimali ty of  pO at m. 
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p~ since that would imply by Lemma 4.3 that m is a /t-node for VFr 
and m I which contains r is not marked. But since m appears i.o. in b' by 
Lemma 4.5, so does m 1 contradicting the assumption that b is nonfulfilling. 

Thus p o >  1. By Lemma 4.3: 
If m is an e-node then an instance of its only son m I is in b' and satisfies 

p(q, ml)<p(q ,m)=p ~ 
If m is a fl-node then by Lemma 4.5 an instance of each (unmarked) son m 1 

appears i.o. in b', in particular the m~ such that p(q, mz)<p(q,m)=p ~ 
If m is an X-node then p(q,m~)<p(q,m)=p ~ for an instance of every son mz 

of m, in particular the one following m' in b'. 

Proof of Lemma 4.7. Let us define an n'-branch b' in T'. Note that in T' only 
the X-nodes offer a choice and thus we specify b' by requiring that if m'~b' is 
an X-node and 3X 3From' then choose the son of m' that contains 3Fr. Since 
2Fren', either b' is fulfilling, or q = 3 F r  or 3 X 3 F r e m '  for all m'sb'. 

If b' is not fulfilling then we proceed to define pO as in the previous lemma 
and derive a contradiction. The only difference is that if m is an X-node then 
we have (fortuitously) chosen the son m~ such that p(3Fr, m~)<p(3X3Fr, m) 
=po  by Lemma 4.3. 

5. Completeness 

We now show that if a node n is marked by the marking algorithm then the 
conjunction of the formulas in U, must be unsatisfiable because its negation is 
provable. If U, = {Pi}, we define the associated formula of n, af~ to be ~/~Pi .  In 
particular, if n o is marked, then Po is unsatisfiable so t- ~Po. (It is easy to show 
that the proof system is sound). 

In a typical proof  of completeness by the tableau method ([15]), one shows 
that t - a f .  for every leaf and that provability is preserved as one ascends the 
tree to the root. For nodes marked by M1-M4,  the nexttime operator greatly 
simplifies the proof. For M5 we need a more difficult construction to show 
how the induction axioms must be used. These proofs were inspired by 
Pratt 's work [-13]. In practice, the tableau method for completeness is easy to 
use and the proofs of the theorems in Sect. 3 can be discovered by mechanical 
application of the tableau method. 

Lemma 5.1. I f  n is a leaf then t-aft.  

Proof. pen and ~pen.  But t - ~ ( p A  ~p)  by R1 so t - a f ,  by dilution. (By dilu- 
tion is meant:  if there are other formulas q,r, ... in n then from t- ~ (pA ~p)  
we get I - - ~ p v ~ p ,  ~ p v ~ p v ~ q v ~ r v . . . a n d t h e n  

~(pA , ,~pAqAr...).) 

Lemma 5.2. I f  n is an e/fl/X-node and t- af,1/~ af,~ and ~- af,2/I- af,, for some i, 
then t- af,. 

Proof. For e and fl nodes the Lemma follows by simple propositional reason- 
ing and T13-T14. For an X-node: 
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~ ( p i  A q l  A ... A ql ) 

I--(q 1 A . . .  A q l ) ~  ~ P i  

I- VX(q 1 A. . .  A q t ) ~ V X ~ P i  
I--(VX ql A . . .  A V X  q t ) ~ V X " . ' p i  

I - - ( V X q l A . . . A V X q l ) ~  ~ 3 X  pi 

I - ( V X q l A . . . A V X q l ) D  ~ 3 X  pl  V . . .  v ~ 3 X  pk 

I-" ~ ( V X q l  A . . .  A VXq A ~ X p l  A ... A 3 X  Pk) 

I-- af .  

by assumption 

A2 

T9 

Def. of 3X 

dilution 

dilution. 

Let t be a node (which is a state) in T which was marked because 3 X ~ F r  
was not ranked. Let [t]* be the set of states accessible from t by choosing at 
an X-node the son corresponding to 3X3Fr .  Then for every us[ t ]* ,  there is 
an unranked occurrence of 3X 3Fr (by construction of T and the definition of 
p). 

Let Yu = {qlVXq is (a universal nexttime formula) in U,}. 
Let W u= A qand  W t= V I41,. W t i s  called theinvariant o f t .  

qEYu ue[t]* 

Lemma 5.3 t- W' ~ V X W t. 

Proof Let n u be the pre-state created in T for the 3 X 3 F r  son of u. Then U.. 
= Y.w {3Fr} and any state in [t]* accessible from u is accessible only by paths 
through n.. Let [u] be the states (all in It]*) accessible from n u by c~- and fl- 
nodes. Now for any node n, ~-A u.=(A u.,)v(A u. 2) as shown by the various 
theorems we have proved (e.g. T13: ~ V G p = ( p A V X V G p ) ;  T14" ~-VFp 
= ( p v V X V F p ) ) .  By what was noted above, 3 X 3 F r e v  for all vs[ t ]*  hence in 

Eu]. 
Thus ~-W,~ V (A(U~-{3X3Fr}) ) .  

ve[ul 

What we have shown is that the conjunction of the formulas in a pre-state 
(not including 3 Fr) implies at least one of the conjunctions of the formulas in 
the successor states (except that formula produced by 3Fr). In particular it 
implies the conjunction of all the universal nexttime formulas in the state. 
Thus: 

~ w . =  V (A vxp) 
v~[u] p~Yv 

t - W , ~  V (VX( A P)) T9 
v~[ul peYv 

~-W.= V (VX W~) Def. of W~ 
v~[u] 

~-W t~  V (VX Wu) by taking the disjunction over all ue[ t ]*  
us[t]* 

~ - W ' n V X (  V W.) TIO 
u~[t]* 

I-- W ' ~ V X  W t Def. of Wt. 



222 M. Ben-Ari et aL 

L e m m a  5.4. For all ue [ t ]* ,  t - W u ~  ~r. 

Proof Without  loss of  generali ty we can assume that  the fi-rule was applied to 
3Fr at the pre-state n u to construct  sons n I and n z. Then  U , = { U , .  
- { ~ F r } }  ~ {r} = Y,w {r}. But n 1 must  be marked  for otherwise p(3Fr, n , )=  1 
and then p(~X3Fr ,  u)=2 cont rary  to the assumpt ion  that  3 X 3 F r  was not  
ranked  in u. By the induct ion hypothesis  ~-af, ,  which is ~ - ~ ( W  u A r) or ~-W, 
~ r .  | 

T h e o r e m  5 .5 .  v - a f  t 

Proof 

1. 

2. 

3. 

W t ~  ~ r  

~ V G W ~ V G ~ r  
F- W t ~ V G  W t 

4. t - W t = V G ~ r  

5. ~ - W , ~ W  t 

6. ~ W t ~ V G ~ r  

But this is F-af. ,  

7. t - a f  t . 

Disjunct ion over  all u e [ t ] *  on L e m m a  5.4 

A 4  on L e m m a  5.3 

2,3 

t~Et]* 
4,5 

for the pre-state created f rom state t. By L e m m a  5.2: 

We now proceed  to the case where a state t was marked  because VX VFret  
was not  ranked.  

L e m m a  5.6. I f  V X V F r e t  was not ranked then at that stage of the marking 
algorithm, there exists a set of unmarked nodes S such that: 

a) teS;  
b) for all rueS, q - -VFr  or V X V F r e m  and p(q,m) is undefined; 
c) if rueS is an c~-node then roleS; 
d) if rueS is a fi-node then all unmarked sons m i of m are in S. 
e) if rueS is an X-node then some son m i of m is in S. 

Proof. Let S o--  t. Obviously,  a) and b) hold. By induct ion assume that  S i has 
been constructed and a) and b) hold for Si. Let  m be a node in Si for which 
one of c)-e) does not hold. F o r m  Si+ 1 by adding to S i as m a n y  sons of  m as 
possible consistent with a) and b). c)-e) now hold for meS~+x. Let us check d)- 
e). 

If  m is a /~-node for q then it must  be that  m~ is marked.  Otherwise we 
would have p(q, m ) =  1 by R1 cont ra ry  to b). If p(q, m2) is defined or if m is a p- 
node  not for q and either p(q, m~) or p(q, m2) is defined then so would p(q,m) 
by R 2 - R 3 .  To  check e), observe that  if m is an X-node  and V X V F r  is un- 
ranked  then there must  be an m~ son of m in which VFr  is unranked,  m~ is 
added to S. 

Since the ranking a lgor i thm is appl ied to a finite structure, this procedure  
must  te rminate  after, say k stages. S = S  k has the required properties.  | 

Let V X V F r e t  and S be as in L e m m a 5 . 6 .  Fo r  a state ueS, some pre-state 
n, eS was selected by 5.6.e. Let  this be the node constructed in T for 3X pu. Let  
Y,' = Y,, w {Pu} where Y, is defined as before. 

Let  Z , =  A q and Z t =  V zu. 
q~Y~ ueS 
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Lemma 5.7. t- Z t ~ ~ X Z t. 

Proof Like Lemma 5.3 except that T l l  is used instead of T9 to deduce that 

t - Z ~  V ( A V X p A 3 X p , )  
v~[ul p~Yu 

implies 
I -Z~= V (3X( A pap , ) ) .  II 

v~[u] P~Yu 

Lemma 5.8. For all u~S, t - Z , =  ~r. 

Proof By Lemma 5.6, b and d the son of the fi-node for VFr containing r must 
be marked. By induction we can conclude that 

t- ~{  A qAr} 
q~Y~-- {VFr} 

~ { A q A r} d i l u t i o n  
q ~ Y/, 

k - Z ~  ~r. | 

Lemma 5.9. I-- af t. 

Proof 

1. ~-Zt= ~ r  Disjunction on Lemma 5.8 
2. t - 3 G Z t ~ 3 G ~ r  E1 
3. ~ - Z t ~ 3 G Z  t E4 on Lemma5.7 
4. k -Z tD3G~r  2,3 
5. ~ - Z ~ 3 G ~ r  teS and 4 
6. t - Z t ~  ~ 3 G ~ r  Since VFr is a conjunct of Z, 
7. ~- Z~ Dfalse 6, 7 
8. ~- ~ Z, which is F- af.~ 
9, t--af t Lemma 5.2 

Thus we have shown 

Theorem 5.10. A1-A4, EI-E4, R1-R3 form a complete axiom system for ql~. 

6. The ~ Semantics of  Nondeterministic Programs 

The utility of ~ N  for proving the program properties so elegantly expressible 
in the language depends on the ability to restrict the class of possible models 
to the class of execution trees of a given program P. This is done by specifying 
a set of axioms which impose the structure of computation according to a 
given program on our general models. It may also be considered as specifying 
the temporal semantics of the programming language by connecting its syn- 
tactical constructs to transformations and developments in time. 

In order to do this we extend our language by allowing predicates on vari- 
ables. 

We have three types of variables: 
a) Computation variables Yl, Y2 . . . .  which are modified by the execution 

and vary from state to state. 
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b) Free variables x l ,  x 2, ... which remain constant in time and are used to 
express relations between values of computation variables in different instances. 
Thus 

(y = x) ~ 3 F(y = f  (x)) 

is the expression of the statement that there exists some computation and some 
state in it such that the value of y in this state is equal to f of the initial y. 

c) A variable n whose value at any state points to the segment of program 
yet to be executed. 

Consider programs which are represented by transition graphs, G =(N, E). 
The set N of nodes is called the set of locations. E is the set of edges each of 
which is labeled by a guarded instruction of the form 

g(y)--, [y: = f  (y-)] 

with the meaning that this edge is enabled if the condition g(y) is true and 
passing through the edge involves the assignment of f(y--) to y. 

We form our temporal semantics of such programs by letting n range over 
N (the location set) and forming for each node a semantic formula. Let a node 
I~N admit the following transitions: 

< 
gin(Y) -+ [Y := fm('7)l 

Then we form the formula scheme 

Al: (n=  l)~ [i~= 1 [gi(~) A Q(li, f / ( # ) ] ) - 3 X  Q] 

Here Q=Q(n,y-) is an arbitrary predicate depending in general on the lo- 
cation variable n and the computation variables ~. It may also refer to free 
variables. 

Note the presence of the ' = '  connective which implies that this formula 
contains two implications. The first is stating that for every i=  1 . . . . .  m such 
that gl is true there is a successor state s in which ns= li and ~s=f~(y). The 
other implication is a complementary statement saying that the only possible 
successor states are derived in this fashion. By using A~ as the axiomatic repre- 
sentation of a given nondeterministic program, it is possible to prove partial 
and total correctness of different types for nondeterministic programs. The sys- 
tem ~//~ discussed here in great detail is only the propositional part of the full 
~//N logic required in order to reason about concrete programs. 

7. Discussion and Conclusions 

In this paper we presented a unified branching time system which seems to 
enjoy the joint advantages of both linear time and branching time systems, in 
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being able to express and reason about the two basic types of termination, 
universal and existential. We have established the logical properties of the ~M 
properties by presenting a decision algorithm and a complete deductive axio- 
matic system for the propositional fragment of the language. The decision pro- 
cedure presented is obviously exponential. 

This language must of course be compared with process logic languages 
such as P L  [7] and its predecessors. The languages certainly can express any 
of the properties expressible in q /~  and many more. However, there is a price 
to pay for this expressibility which is the complexity of the languages. A sign 
of this is the fact that P L  is nonelementary (has a nonelementary decision 
procedure) while q/M is exponential. 

Admittedly we do have six modal operators which is a disadvantage com- 
pared to simpler systems such as D X  for linear time [5] or the corresponding 
branching time systems. On the other hand the formation rules of these oper- 
ators are simple and uniform, and they do enable us to express most of the 
interesting program properties discussed in the literature. 

Another advantage lost in the transition from linear to branching time is 
expressive completeness in the sense of [5]. Here the problem is inherent and 
cannot be remedied by the addition of one or two extra operators. This shown 
by the following: 

Proposition 2. No branching time temporal language with a finite number of 
modal operators can be expressively complete. 

This theorem, due to Gabbay (unpublished manuscript) is based on the 
following observations: 

a) A temporal language with a finite number of operators can always be 
translated into a first order formula with a number of distinct variable names 
which is fixed for the language. 

b) In a first order language it is easy to come up with formulas which need 
an arbitrarily large number of distinct variable names. Consider for example 
the statement: 

There exist k time instants tl ,  ..., t k no two of which are related. 
This statement needs k variables for its expression for an arbitrary k. These 

formulas for sufficiently large k cannot therefore be expressed in any temporal 
logic. 

While the proposed unified system is adequate for proving properties of 
nondeterministic programs it still falls short of linear temporal logic in being 
inadequate for proving properties of concurrent programs under the assump- 
tion of fairness. If we still adopt as basic model the tree of all possible com- 
putations, it necessarily contains some unfair computations as well. Con- 
sequently, we should be able to say that for every path in the tree, either the 
path represents an unfair computation or it satisfies some desirable property 
such as convergence. Such statements are inexpressible in q/M. 

Since the writing of the first version of this paper there has been intensive 
activity in extending and refining the logic system and techniques presented 
here. 
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Most recent is the work reported in [3] which introduces C T L  § - an ex- 
tension of the q /~  system. While retaining the exponential complexity of q /~  it 
is possible to express in C T L  § additional statements inexpressible in q/N.5 

One of the novel features of the q/M system is the introduction of the next- 
time operators. In general, the nexttime operator is a relatively newcomer to 
temporal logic. Prior (in [14] ; pp. 66-67) attributes the introduction of the next- 
instant operator to linear temporal logic to Scott. Krtiger [81 was the first to 
use a temporal logic that included the nexttime operator for describing proper- 
ties of nonterminating programs. 
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