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Abstract. In this paper we develop the geometric methods in the spectral 
theory of many-body Schr6dinger operators. We give different simplified 
proofs of many of the basic results of the theory. We prove that there are no 
very negative ions in Quantum Mechanics. 

O. Introduction 

In this paper we develop geometric methods for studying the spectral properties of 
the many-body Schr/Sdinger operators. The adjective "geometric" refers to the 
basic role played by the analysis of the space configurations of a many-body 
system in question. To translate this geometry into the quantum-mechanical 
language, one uses partitions of unity on the state space, L 2 (configuration space). 
This approach commands a remarkable flexibility. As with trim functions in the 
variational principle, one can vary and optimize the partitions of unity depending 
on a problem at hand. This will be demonstrated in the present paper. Moreover, 
the method is naturally generalizable to operators on manifolds. 

The basic property of the Schr~Sdinger operators which permits such an 
analysis is their locality. Nevertheless, it is remarkable that basically local methods 
give detailed information about the spectra which are the global characteristics of 
operators. 

The geometric methods in the many-body QM problem first appeared in the 
pioneering work of Zhislin [Z1]. In the West the geometric ideas come from the 
works of R. Haag and D. Ruelle on the scattering in the field theory and of Lax- 
Phillips on the acoustic scattering. The term "geometric methods" was dubbed by 
B. Simon [Siml]. The importance of partitions of unity in the QM many-body 
problem was realized in the classical works of Enss [El and Simon [Siml] (see 
also Delft and Simon [DS]). (For more complete references and detailed 
comments see [RS3].) 
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In this paper we discuss the following topics: 
Section 2: Hunziker-van Winter-Zhislin (HVZ) theorem (warm up). 
Section 3 : Exponential fall-off of eigenfunctions. 
Section 4: Number of bound states. Short-range systems and negative ions. 
Section 5: Nonexistence of very negative ions. 
In Sects. 2-4 we present simplified proofs of known results, while the result of 

Sect. 5 is new. Note that Ruskai [R] has earlier, and independently, obtained a 
similar but slightly weaker result (namely that the ground state energy of a 
negative ion is bounded from below by a constantt). All the neccessary definitions 
are given in Sect. 1 and some of the technical results are carried out into the 
appendices. Discussions of related results and extensions are presented under the 
title "Remarks" at the end of the paper. Finally we admit that in estimation we 
always favored short cuts whatever the price. Probably many of the estimates we 
use can be improved to give physically interesting results. An announcement of 
this paper appears in [$3]. 

1. Hamiltonians 

The configuration space of an N-body system in IR v with masses ml, ..., m N in the 
center-of-mass frame is the hyperplane X =  {xEIRVN[Zmixi=O}. We equip X with 
the inner product [SS] (x,  y)  = 2Smixiy ~. We assume v ~ 2. 

The potentials V~ :IR~IR are supposed to be Laplacian-compact, i.e. compact 
as multiplication operators from the Sobolev space H2(tW ) to L2(IW). By the same 
letter V z we denote Nso the multiplication operator by Vl(x ~) on L2(X). Here 
x z = x i -  xj for 1 = (ij). 

The Schr6dinger operator for an N-body system in question in the center-of- 
mass frame is 

H = - Z I + Z V / /  on L2(X), 

where A is the Laplacian on X. 
The partitions a= {Ci} of the set {1,.. . ,  N} are collections of nonintersecting 

subsets Ci, called below the clusters, of which the union is entire {1, ..., N}. 
With each a we associate the intercluster interaction In= ~ V~, truncated 

I$a 
Hamiltonian H , = H - I ,  and intercluster distance Ixlo= min Ixtl. Here l~=a sig- 

tea 
nifies that the indices of I belong to different clusters of a. 

A partition of unity on L2(X) is a collection {Xi} of (positive) C2-functions such 
that ZX~ = i. (Note the difference with the standard definition.) 

A localization formula (implicity [C, I, K, M, MS]). Let {Xi} be a partition of 
unity on L2(X). Then 

H-= SXiHX~- SIVX~I 2 . (1.1) 

Proof In the identity H=ZX~H commute X~ one step to the right and use 
ZXIVXi=O and S1VXI12 + ZX~AXi=O to transform ZXi[Xi, H ]. 

The local partition a(x) is defined by putting i and j  into the same cluster of a(x) 
iff xi = x~. 

1 Ruskai proved also nonexistence of very negative ions with the electrons replaced by bosons 
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2. HVZ Theorem, Difficult Direction 

The H V Z  theorem states ([H, VW, Z1]) that ae~(H)= Ua(H~). The inclusion 
U~(H~)Ca~s~(H), called normally the easy direction, is proven by an explicit 
construction of an approximate eigenfunction for each 2s U~(H~) and applying 
WeyFs criterion [RSI]. We prove here the inclusion 

ooAH) c (2.1) 
called the difficult direction. 

First, we introduce. 
A Ruetle-Simon partition of unity {J,}, a runs through all and only two-cluster 

partitions, is defined by suppJa= {xEXllxl~>dlxl} for some number d depending 
only on N and such that the regions on the right hand side coverX. Such d exist by 
the Ruelle-Simon lemma ([Siml]). This lemma and a standard construction (e.g. 
like the one used in the appendix) imply the existence of {J,}. 

In this paper we do not use directly the definition of {Ja}. Instead we use 

The main property of {J,} ([Siml, RS3]): 

IVJ, f" and IJ"~, n>0, are A-compact (in fact, they decay in X as Tx]-" and the 
worst potential in I,, respectively). 

The localization formula with {J,} reads 

H = Y.(daHda -- [['Jal2). 

Proof. Since z Z(I,J~-[VJ~I ~) is A-compact, Weyl's theorem [RS3] yields 
6ess(H ) --- ffess(SJaHaJa). Furthermore, 2.'JaHaJ a > rain (infH~). Hence 
a(SJ,HaJa)cUa(H~) (remember that the spectra of the H a fill entire semiaxes 
since H, are translationary invariant). Both relations give (2.1). [] 

3. Exponential Fall-Off of Eigenfunctions 

Theorem [DHSV]. Let ~p be an eigenfunction of H corresponding to an isolated 
eigenvalue E. Then 

eY~p~L2(X) as long as Va,[Vf[2<infH~-E in a vicinity of {xEX]a(x)=a}. 

Here we need another partition of unity. 
A partition of  unity {X,}, a runs through all partitions, is defined with respect 

to the subspaces ([SS, DHSV, A]), {xEX[a(x)= a} Va. X~ with two-cluster a live in 
a neighborhood of {x~Xta(x)=a} and so on. 

Proof. By virtue of the Combes-Thomas argument (in the DHSV-form) (see 
[DHSV, CT, RS31 and Appendix 1) it suffices to show that 

Inf Re ae~(H(i2f) ) > E for all 0 </~-< 1 

as long as f is restricted as in the theorem. Here H(f)  = ( -  iV-  Vf) 2 + ZV~. By the 
abstract inequality (see Appendix 2, cf. [A]), 

infReo-e~s(A )>info-e~(ReA), where ReA=I(A+A*) ,  
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we find that infReG~(H(if))> infG~(H-[Vfl2). Applying the proof of Sect. 2 
with {J,} replaced by {Xa} to H-lVf t  a we arrive at aes~(H-IVfl 2) 
C Ua(Ha- ]Vfl2X,Z). Together with the previous inequality this gives 

Vf[ X,)  which implies the desired inequality. [] infReG~(H(if))>min in f (H, - [  z 2 

4. Finiteness of  the Number of Bound States 

Theorem 4.1. (Zhislin et al.) The number of bound states of N-body short-range 
(more exactly VI6 LP(1R~), p = v/2) systems whose bottoms of continuous spectra are 
defined only by two-cluster breakups (i.e. infH a > infGs~(H) if a has more than two 
clusters) is finite. 

Theorem 4.2. [Yafaev (3 particles), Zhislin, Zhistin-Vugalter]. Negative ions can 
have only a finite number of bound states. 

What makes the last theorem true is the QM Newton screening (by N - 1  
electrons, in the ground state, of the nucleus of charge Z < N - 1  from the other 
electron). If the potentials are changed in such a way that the ground states of the 
( N -  1)-electron system have different parities or do not have definite parities at all 
[which might happen if there is an additional ("accidental") degeneracy], then the 
effective potential between this system and the other electron has a dipole leading 
term (Ixl-2 at infinity). This term when sufficiently large might lead to the infinite 
number of bound states for H. 

Now we explain the main ideas of the proof of the theorems. First we transform 
H using the localization formula with the partition of unity {Xa} defined in Sect. 3 : 

H = Z(X aHX , -  IVXat z) 

= S(X.K.X. - IVXa[2), (4.1) 

where Ka---Ha+IaX a and Xa= 1 on suppX a. Here we have used that )~¢~Ta=X a. 
This step is where the geometric methods enter changing radically the problem: 
IaX a behaves as a multiparticle potential, namely, it vanishes in all directions, 
provided we choose suppX a C ( x ~ X t l x l  a > dtxl}. 

Next we note that the operators K.  with a such that infHa>S,  where 
Z =  infGss(H), contribute only a finite number of eigenvalues <Z.  For the 
operators K a with a such that i n f H . = S  we use the Combes-Simon inequality 
A > P A P - 5 - t P A Q A P + Q ( A - 5 ) Q ,  5>0,  to decouple the part along PaLZ(X) 
from the part along QaLZ(X). Here Pa = [projection on the eigenspace of H a 
corresponding to infHa=inf(Ha)]®li and Q , = l l - P  a with H a the operator 
obtained from H a after removal of the center-of-mass motion of the clusters in a. 
The resulting operators on Q,L2(X) have inf (essential spectrum) >Z,  so they 
contribute again only finite numbers of eigenvalues <Z.  The operators on 
p, Li(X) are one-particle Schr6dinger operators with the two-cluster effective 
potentials. Finally one takes care of the error term ZtVX,] 2 using the fact that it 
lives in the region of X where the system in question splits into three or more 
clusters. Collecting all the estimates above we observe that H > Z X ,  F,X a, where 
each F a has only a finite number of eigenvalues < Z. Hence so have ZXaFaX . and, 
by the comparison theorem, H. 
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We deduce Theorems 4.1 and 4.2 from a general result given below. It is a slight 
generalization of the results of Zhislin and his collaborators [Z2, Z3, AZS, ZV]. 

Recall that H a is the operator obtained from H,  after the removal of the center- 
of-mass motion of the clusters in a. The ground states, ~v a, of the H" are 
nondegenerate ([Zh4, RS3]). This is not, in general, true if one restricts H a to 
functions of a certain symmetry type. However, we assume for the sake of 
notations that these ground states are nondegenerate too. 

Theorem 4.3. (Essentially Zhistin et al.) Assume that infaess(H ) is defined only by 
two-cluster breakups (i.e. infH a > infaess(H ) for all three-cluster decompositions a) 
and assume that Jbr any two-cluster partition a with infH a= infa~s~(H) the one-body 
hamiltonian - A + W, (on L2(IW)), where 

W,=-(~f ,I,~p")-6-1((tpa, I2~p")- ( t f  , I,~pa)z), 6 > 0 ,  (4.2) 

has only a finite number of bound states. Then the discrete spectrum of H is finite. 
The analogous result holds also on the subspaces of functions of definite symmetry 
types. 

Pro@ Denote by :~ (a) the number of clusters in a partition a. Set, as usual, 
( x )  = (1 + [x[2) + 1/2. Let I47, is obtained from W a by the substitution Ia~Ia)( a. 

Lemma 4.4. For any ~ > 0 and e > 0 the following inequality holds 

H> Z X ,B ,X ,+  ~ X,(Ha+IJ( ,+C~(x)-Z)X, ,  (4.3) 
=~(a)= 2 + ( a ) > 3  

where B, = Ca(~D . on P, Lz(X)OQaLZ(x) with 

C , = - A +  V¢~-e(x) - 2 - ~  on LZ(IR,) (4.4) 
and 

D, = Qa(H,- ~ + I , X , -  ~<x>- 2)Q,. 

Proof. We apply the Combes-Simon decoupling inequality [Siml] 

K a > PaK,P, -  ~- ~ P~K, QaKaP ~ + Q,(K a -  3)Qa, (4.5) 

obtained by applying the Schwartz inequality to P,KaQ a + Q , K 2 ,  [see Remark 
(a) to this section], to each K a with #~(a)=2 on the right hand side of (4.1). 

Next, we estimate the localization error as 

SIPXj2 N( e e (a)E= 2 X~+C~ ,~ (a,Z_>_ a X:)  ( x ) - 2 ,  (4.6) 

for any e > 0. To understand this estimate it is useful to note that 

suppSIVX, I 2C U suppXb. 
# ( b ) > 3  

To prove (4.6)we observe that since S gXa[2=O on the set IxeXI ~ X~Z(x)= 1/, 
t ~ ( a ) = 2  J 

there is a g-neighborhood of this set and a number 0<e,2~ ½ such that 
~" X~Z>l-~2 and SIVX,12<ex on this neighborhood and 1 -  ~ X~>~ z 

# (a) = 2 # (a) = 2 

outside of it. This implies (4.6) with ~ = e t ( 1 -  e2)-1 and C~=e~ 1 sup(S[17X,[Z). 
Inserting (4.5) and (4.6) into (4.1) and recalling (4.2) we arrive at (4.3). []  
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Now we pick Jr, so that 

[x[a>constlxl on suppJf a. 

Lemma 4.5. Let X 1 = min infHaQ a. Fix positive 6 <Xx - X .  Then the operators B a 
a 

have only finite numbers of eigenvalues < 22. 

Pro@ Each C a has a finite number of negative eigenvalues because of the 
restriction on W a. Operators D, have finite numbers of eigenvalues < 22 because 
infae,~s(Da)=N 1 +6>22. Since Ba= CaODa, the statement follows. [] 

Lemma 4.6. The operators H b + i b J~ b -- C , ( x ) - 2 with ~ ( b ) >= 3 have finite numbers 
of  eigenvalues <=22. 

Proof. Since L o J(b--C~ ( x ) -  2 is Hb-compact, the essential spectra of the operators 
under consideration equal 0"ess(Hb). Since by the condition of Theorem 4,3, 
infHb>22 for all b with # (b)>3, those operators have only finite numbers of 
eigenvalues __< Z. [] 

Lemma 4.7. Let each operator F a be seIf-adjoint with negative spectrum finite. Then 
22X, F~X a has a finite number of  negative eigenvalues. 

Proof. Let re, be the projection operator on the eigenspace of F, corresponding to 
the spectrum in ( -  o% 0). Then 

22X aFaX a > 22 F j c  o . 

Since each zc, is finite dimensional, £F, ira has a finite number of negative 
eigenvalues. Thus by the comparison theorem [RS3], £XaF~X ~ has only a finite 
negative spectrum. [] 

Lemmas 4.4-4.7 imply via the comparison theorem the first statement of 
Theorem 4.3 (no symmetry). The proof with an allowance for symmetry is 
obtained by adding a few extra indices to the proof above (cf. Appendix 4). [] 

Now we deduce Theorems 4.1 and 4.2 from Theorem 4.3. 

Proof of Theorem 4.1. Writing (tp a, Ia~ ~) and ( t f ,  I~lp a) as sums of the con- 
volutions of V~ and V~, respectively, l~  a, with one-particle densities (see e.g. the 
proof of Theorem 4.2 below) and using the Young (or generalized Young) 
inequality [RS2] and the fact that ~fe L q for any q, we find that Qp", I ,~ f )E  LPc~L q 
and (~ f , I~ f ) eLP/Zc~L  ~ with p the same as in the statement and Go ~ q > p  and 
oo >r>=p/2. Hence, since p=v/2 and (~p", I,~pa) 2 is positive, W, has only a finite 
number of bound states [RS3]. [] 

Before proceeding to the proof of Theorem 4.2, we recall the Hamiltonian of an 
ion with N electrons and a nucleus of charge Z (the masses are not restricted) 

H ( N ) = - A -  ~ Z LN 1 (4.7) 

Here the nucleus is labeled by O, the electron charge is taken to be 1 and X is, of 
course, the vN-dimensional hyperplane in IR ~(N+ 1). The fact that the electrons are 
fermions is reflected in the restriction of H(N) to functions of the permutation- 
symmetry types corresponding to one- and two-column Young tables. 
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Next we note that in accordance with the HVZ theorem (Sect. 2 and 
Appendix 4) the bottom of the continuous spectrum of I-I(N) (also if restricted to 
certain symmetry type functions) is defined only by two-cluster breakups of the 
form 

a s = {(0...L..N) (s)}, s = 1, ..., N,  

i.e. by the one-electron ionizations. Here we assume that H ( N - 1 )  has isolated 
eigenvalues. We conjecture that this always holds in the case when H(N)  has 
isolated eigenvalues (presently, it is known only for N = Z + 1). 

Finally, we mention that [RS3] the ground state, ~PN, of H(N)  is unique and 
therefore rotationary invariant in the sense 

~N(gX)=ll)N(X) with 9x=(gxl . . .gXN)  and geO(3). (4.8) 

This is not, however, known for different permutation-symmetry types. If (4.8) fails 
to hold we use the fact that the ground states of the same symmetry type have the 
same parities [see Remark (b) to this section]. 

Proof  of  Theorem 4.2. To estimate W~ we note that the intercluster interaction for 
a s is 

1 Z 
I.s= ~ (4.9) 

i,o,s IxJ IXoJ 

and use standard screening estimates given in the two lemmas below. There we use 
the notations y=xs ,  I (y)=I,~ and ~p for the ground state of H "s of a definite 
permutation symmetry type. We assume ~p is rotationary invariant [in the sence of 
(4.8)]. If the latter fails to hold then we proceed as prescribed in Remark (b). 

Lemma 4.9. (QM Newton screeing theorem.) We have (here x = ( x  I . ..x N_ 1) and 
N-1 ) \ 

dx = ~ dx i 

( ~ P , I ( y ) ~ o ) > [ N - 1 - Z - ( N - 1 )  Ixll-->lYll ]~pl2dx]]Y1-1- (4.10) 

Proof. First we compute in a standard way (M = mass of the nucleus/mass of the 
electron) 

(tP, I ( y ) t P ) = ( N - 1 ) S  Jh°(x)]2 " ~ r~P(x)J2dx (4.11) 
Ix i - Y-~ ax - z j I m -  1Sxj  - YI " 

Since ~p is rotationary invariant [in the sence of (4.8)] the one-particle densities 
entering (4.11) are spherically symmetric. Hence by the Newton electrostatic 
theorem 

i Iw(x)l , 
IX-~-~_ yl ax = lY] -1 ~ IlP(x)ldx 

Ixd < lyl 

and similarly for the second integral on the right hand side of (4.11). Together with 
(4.11) this gives (4.10). [] 

Lemma 4.10. (Simon.) The following estimate holds 

(lp, I(y)2w) -- (lp, i(y)/p)2 ~ const(1 + lyl)- 4. 

Proof. Using the elementary inequality 

I l a -  Yl- 1 _ lYl- 1 _ (a-Y)IYl- 31 < 31a[ 2 lYl- 2 l a -  Yl- 1, 
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we obtain 

I ( y ) - ( N - 1 -  Z)jyl-1 + (,.~o. X , -  Zxo). yjy[-3 ~ 3]y1-2 i~.~ [x~l[x,- y[ - t .  

Consider <~p,I(y)~p>. Since I~l z is even, the integral, produced by the term 
2 xi-ZXo]'YlY1-3, is zero. Using that Itpt 2 falls off at infinity we estimate 

i4~O,s / 
t(tp, I(y)~p> - ( N -  1 - Z)Iyl- J l --< C(1 + ]Yl)- 3 (,) 

(the dipole moment is zero for an even density). Similarly, we obtain 

](~p, i(y)2 ~p)_ ( N -  1 - Z )  2 [y[-2] < C(1 + [y[)- 4. 

These two inequalities imply the desired estimate. 

These two lemmas and the fact that the bound states are exponentially bounded 
[see Remark (c) to Sect. 3] imply the inequality (a = as) 

Wa(Y ) > ( N - 1 - Z)fyl - 1 _ const (1 + lyl) -4 . 

So for Z < N - 1 ,  the negative part of W a is short-range (the Newton screening 
theorem in QM). Hence Wa have only finite number of bound states. This by virtue 
of Theorem 4.3 completes the proof. []  

5. Nonexistence of Very Negative Ions 

Theorem. There is no very negative ions in QM. 

To give a mathematical formulation of the theorem we consider an N-electron 
ion with a nucleus of charge Z. For  the sake of notational convenience we assume 
the nuclear mass to be infinite. In the units in which the electron charge and mass 
are 1 and i respectively, the Schr/3dinger operator of such an ion is 

=~t on L2(lRV~V). HN=~= -~li-~ +,..Ix-xs I 
Here A~ stands for the Laptacian in x~elR". 

Ignoring the symmetry, the theorem asserts that 

Hu >= inf°'ess(HN) = infHN- x for sufficiently large N. 

[The second equality follows from the HVZ theorem (Sect. 2).] The symmetry can 
be taken into account in a routine simple way (see Appendix 4). 

In this section we use a new partition of unity {Ks}o N tailored for the problem. 
Let x = (x 1 . . . . .  xu) and Ixlp= N-1/P(ZIxilP)I/P. We define K~ by 

suppKsC {XSlR"~V[IX[p<=y]x~[ and [x~I>N-I/P~} , (5.1) 

where y > 1 is a given number, e.g. 7 = 2, for s = 1, . . . ,  N and 

KoEC~(IR ~N) and suppK 0C {xelWNtlxil<N-a/P?Q}, (5.2) 

K~, s = 1, .. ., N, is invariant under the action of the group - u -  e(s) 1 and K0, under the 
action of S u. (5.3) 
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Here S N and o N_e(s~ 1 are the groups of permutations of the indices { 1, . . . ,  N} and 
{1, ..., N}\{s}, respectively. 

The localization formula with {Ks} is 

N N 

HN= ~ KsHNKs- Z IVKsl 2" (5.4) 
s = 0  s = 0  

Proof. In each cone K s, s =  1,. . . ,  N, we estimate (from below) the electrostatic 
interaction of the s TM electron with the rest of the ion, using that 

Ixisr-:>=(N/7+l-½)lXs1-1 on suppK s (this inequality is derived by 
/ 

eval- 
i : i * s  N \ N 

uating the minimum of ~ (1 + a~)- ~ under the restrictions a~ > 0 and ~ af < yPN; 
1 1 \ 

here ai = Ix~l/Ixst) and that t4~s~ 1> N N, where H}~_ 1 is the Hamiltonian of the ion 
/ 

without the s th electron: 

KsHNKs>(SN+(Nly+ 1-- {-Z)lxs1-1)Ks,  where S s = i n f H N - t -  (5.5) 

This estimate expresses a simple fact that this electron sees the nucleus shielded by 
the other electrons whose electrostatic repulsion prevails for sufficiently large N 
(the classical Newton screening). In K o we estimate (again from below) the 
electrostatic repulsion between electrons using the fact that they cannot get more 
than 2y0 apart in K o and then we estimate the ground state energy of N 
independent electrons by the classical Fermi method filling first N/2 levels 
(counting the multiplicities) of the corresponding Dirichlet one-particle 
Hamiitonian with two electrons each (the Pauli principle !): 

KoHNK o >= LNK 2, where L s = N ( N -  1)/470 + Fermi term. 

The Fermi term is twice the sum of the first N/2 eigenvalues (counting the 
multiplicities) of the one-particle Hamiltonian - A - Z / I x l  on L2(B~), where 
BQ = {xelRV[ [xt _--< O}, with the Dirichlet boundary conditions. A good estimate of 
this term is tedious but its asymptotic behavior as N---> oo is easy to derive (using 
e.g. the hydrogen levels till the cutoff energy and a box model for the positive 
eigenvalues): it tends to + co as N ~  oo. 

Finally we estimate the localization error - S I V K j  2 using an explicit con- 
struction of {Ks} (see Appendix 3), (we set p = N  2 and absorb the thctors N I/p 
into the constants which otherwise are p-independent): 

Zl VKs(x)I 2 <-_ C N2/3(lxt, + e)- 2. 

Putting together these inequalities and localization formula (5.4), we get 

H x > (L N -  CN'/20 - 2)Ko2 + SN(1 -- Ko 2) + W, (5.6) 
where 

N 

W =  ~(g/?,+ 1 - ½ - Z - C g l / 2 ~  1)lxsl-:Ks z . 
1 

For N sufficiently large and ~ > 1 we have that 

N>~:Z for some e > 2  implies W > 0 .  
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Furthermore, since L n = O(N2Q- 1) and Z N does not grow as N ~  ~ we can choose 
N so that LN~ NN+ Co-2N 2/3. Together with the former inequality this implies 
Hn> SN. [] 

Appendix 1: Combes-Thomas Argument 

Combes-Thomas Argument (in the DHSV form) [CT, DHSV]. Let ~ be an 
eigenfunction of H with an eigenvalue E, f a measurable J:hnction with the 
measurable weak derivative. Then 

ef~ELz(X) iff E¢%~s(H(i3,f) V 0 < 2 < i .  

Here, recall, H(f)  = ( -  iV-  Vf) 2 -~ V with V= XV v 

Sketch of the proof Introduce the one parameter group of gauge transformations: 

U(2) :u~d~Su. 

The gauge-transformed Hamiltonian is given by 

H(2f) = U(2)HU(2)- ~. 

We compute H ( f ) = ( - i V - V f ) 2 + V .  Hence the family I-I()~f) has an analytic 
continuation to 2e(K Applying the O'Connor projection lemma and the first 
Balslev-Combes theorem [RS3-] one concludes that ~p is U(~)-analytic as long as E 
stays away from a~s(H()~f)). So e~pEL2(X) if E¢%~s(H(i2f)) for all 0<)~___ 1. [] 

Appendix 2: An Inequality 

Proposition. Let A be a densely defined closed operator on a Hilbert space such that 
ReA=½(A+A*) and I m A = ~ ( A - A * )  are deJined and setJ:adjoint and ImA is 
(Re A)-bounded. Then 

inf Re %~s(A) > inf%~s(Re A). (*) 

The same inequality is also true for the full spectra. 

Proof. Note first that ReA and ImA are self-adjoint by the assumptions. For any 
e > 0  there is an n-dimensional eigen-projection P', n<c~,  for ReA so that 
T = ( R e A ) ( ~ - P " ) > i n f a ~ ( R e A ) - e .  The real spectrum of A - ( R e A ) W  lies 
in [ infa,~(ReA)-e,  o9) as follows from the invertibility of 

T + i I m A - ~ = ( T - 2 ) I / z [ 1 [ + i ( T - 2 ) - I / 2 ( I m A ) ( T - 2 ) - I / Z ] ( T - 2 )  1/2 (**) 

for any 2 < infants(Re A ) -  e. Since a~(A) C a(A - (Re A) W) by Weyt-type theorem 
of [$4, Theorem AI, 1], (,) follows. The second part of the proposition follows 
from the invertibility of (**) with T = Re A, [] 

Appendix 3: Construction of {K~} 

Let &={xe~N[Ixl~<lx~l, Ixsl>~} for s = l ,  . . . ,N and ~o={XE~Nllxl,<Q}. 
N 

Then U O~ = 1R ~N. Let {F~}o u be a collection of real C~-functions such that F~ = t 
0 
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on ~ .  We  define K~ = F~(ZF{)-1/2. So S K  2 = 1. No te  tha t  SF{  > 1 since F~.= 1 on 
f2sVs and  UOs=IRVN. 

N o w  we construct  F,. Let  X~ C ° and  X(t) = 1 if t_--< 1 and  = 0 if t > 1 + c¢ for some 
fixed c¢ > 0. Then f~(x) = (1 - Z(lxslXl/U~))Z([xl./[xs[) if lXsl > 0 and = 0 if Ix~l = 0 for 
s = 1, ..., N and Fo(x ) = Z(IxtpN1/p/O). With this definit ion K~ obeys  (5.1)(5.3). We  
show now that  it obeys (5.5) as well. 

First  we prepare  the ground for the es t imat ion of  ~IVKsl z. We compu te  

VK~ = VF~( Z F~. )- :/2 _ F , (2  F i VF j)(2 F2) a/2- 

So as vectors  on lR N+I and IR ~(s+I)N 

II VKll 2 = II VFII 2 I IFI [ -2_  I(F,  VF)I 2 IIF[1-4 

tl VFll 2 [I F II - 2 (A. 1) 

Finally, we note the following simple inequalities [cf. (4.6)] 

Z'2~-~CI(E-lX2+g ) and Z ' 2 < C : ( 6 - 1 ( t - z ) 2 + 6 ) ,  (A.2) 

where C 1 is a constant  depending only on c¢. This can be derived using e.g. the 
explicit construct ion 

X(t)=2 - 3  + t  for l_<t_<l+c¢.  

N o w  we proceed directly to an est imat ion of  II VF]I. First  we compute  explicitly 

IFfsl 2 = [~o- 1 ~s-{- ~/alx~l(lxlplxJ- 1)gs3 2 
2 (p- 1) 

4- X -2N-2/P x 2(P-1)~/~'~ X I p~ 2 
\ i * s  / \  j / 

where we have in t roduced the nota t ion  ~s--)((Ix~T/o)z(TxlylXst ) and 
gs=(1-z(Ix~l/~))z'(Ixlp/lx~l). Since Ix~<(l+~)lx~l on suppg~ and  [x~] p-1 

p--1 
< ( D x F )  p we have 18/OIx~I(Ixl.lx~l-1)l<(l+~+N-X/p)lx~1-1. Fur thermore ,  

2(p- 1) 
using the inequalities (a+b)2<2a2+2b 2 and ~lxj[2(P-1)~(~lxj[V) p we find 

lVFJZ < 2e-  zW2 + lx~l- 2(2(1 + c¢ + N-1/P)2 + N -  2/V)o2 s . 

Finally, since 
Ixlp<(l+c~)lx~[<(1 + , ) 2 0  on supwp~, (A.3) 

0<lxs] and lXlp<(l+cc)Jx~[ on suppgs 

and, by virtue of  (A.2), 

~ < C ~ ( 6 + 5 - 1 F  2) and g 2 ~ C l ( e + e - l F 2  ) 

we get taking 6 = e < 1 

[VF~[ 2 < 24(1 + c04 C 1 (e + e -  2 F 2) (0 + Ix[p)- 2 N1/p. 

Summing  up these inequalities we find 

II VF 112 < C2(e N + e -  z II F II 2)(~ + Ixlp)- 2 N ~ / p  
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where C2=24(t  +~)4C~, obviously N-independent. Picking here ~ = N  -1/3 and 
recalling (A.1) we arrive at 

N 

t(VK)(x)I ~ < C N  ~/~ + ~/~(Ixt, + ~) -  ~ 
1 

with a p- and N-independent constant C. [] 

Appendix 4: The Symmetry Groups 

Let G and G(a) be symmetry groups (or subgroups) of H and H a, respectively, and 
let a and e label the types of their irreducible representations. We always choose 
G(a) to be a subgroup of G. The examples of G(G(a)) are trivial group, S, S x 0(3) 
[trivial group, @S(Ci), (@S(Ci)I@O(3)]. Here S and S(C)are the groups of 
L Ci~a \c,~a ) j 
permutations of the identical particles in the whole system and in the cluster C, 
respectively. The trivial group, {id}, is considered when we do not want to take the 
symmetry into account. Let c~-<a express the fact that the irreducible repre- 
sentation ~ of G(a) is present in the decomposition of the restriction of the 
irreducible representation a of G to the subgroup G(a). Finally, we denote by H ~ 
and H i the restrictions of H and H a to the invariant subspaces on which the 
representations of G and G(a) are multiple to irreducible of the types a and e, 
respectively. The projections on the invariant subspaces above will be denoted by 
W and P,. Then H~= H W =  W H  and similarly H,  ~ = HaP" = Pall,. 

To obtain the HVZ-theorem with the symmetry we note first that the Ja can be 
constructed to commute with the symmetry groups G(a). 

Since ~ P~W= W by the definition of the restriction e-<a, the proof above 
C t ~ a  

applied to H ~ yields that ae~s(H ~) C U G(H~). Together with the easy direction of 

which proof in the case of symmetry remains the same, this 
gives C%s~(H ~) = ~ o-(H~), which is the HVZ theorem with symmetry. 

a,~-<o 
Now we point out the allowances which have to be made in the proof of the 

theorem of Sect. 5 in order to take into account the symmetry consistently. Recall 
that S N and S~ )_ a denote the groups of the permutations of (1...N) and (1...~...N), 
respectively. Let W and P~ be the projections on the subspaces on which the 
representations of S N and S~ ) are multiple to irreducible of the types a and ~, 

¢7 - -  ' ¢~ respectively. Finally, let ZN--mfaes~(HN). Then the obvious inequality 
(s) > 2 K~HN_~K~=infHN_~K ~ used to obtain (5.6) should be replaced by 

W K~H~) ~ ~ ~ 2 _ t K~P >= ZNP K~ P ,  wich follows readily if we use" 

(or) ~ P ~ W = P  °, 

(]3) invariance of K~ with respect to permutation S(~ )_ (so K~ commutes with 1 

Ps"), and 

(7) Z~ = min inflict_ 1 by the HVZ-theorem with the symmetry. 

The second and last remark is about inequality (5.6): It should be placed 
between the W's. 
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Remarks 

Section 2. Our proof of the HVZ theorem is related to that of Enss [E]. It is 
shorter than the latter since it uses the Weyl theorem while Enss' proof is based on 
the Weyl criterion (which is more powerful) and proves the Weyl theorem in its 
course. Besides, Enss' proof is more intuitive. 

Section 3. (a) For almost all x, a(x)={(1)...(N)}, so [Vf[2<-E, which gives the 
fastest possible decay. 

(b) As was noticed by Agmon (see [CS]) the DHSV exponential bounds are 
equivalent to the Agmon optimal bounds. 

(c) [DHSV] has shown that the DHSV LZ-exponential bound implies the 
DHSV LP-exponential bound [i.e. ef~pELP(X)]. 

(d) The references and comments on other works on the exponential fall off of 
bound states can be found in [DHSV, H-O2AM, and RS3] (we note only that the 
first general exponential bounds were obtained by O'Connor [OC]). 

(e) The subspaces {x~X[a(x)=a} can be also written as ([SS]) 

{x~X]x~=xj iff i a n d j  belong to the same cluster of a}. 

Section 4. (a) The Combes-Simon inequality can be given the following abstract 
form : 

Lemma. Let A and P be self-adjoint operators with R(P)C D(A) and R(A)CD(P). 
Denote Q = 11- P. Then 

A > PAP-- PAQW -I QAP + Q ( A -  IV)Q (*) 

for any invertible, positive operator W for which the right hand side is defined. 

Proof. The equality 
A = PAP + QAQ + PAQ + QAP 

and inequality 
KQAPq~, q))I <½(11 U- 1QAPq~I[ 2 + H U*Qq)ll 2), 

where U is any invertible operator, resulting from the Schwartz inequality, imply 
(,) with W=UU*.  [] 

(b) H(N) has a finite number of eigenvalues on a subspace of any irreducible 
S N- or S N x O(3)-symmetry type or if the symmetry group is dropped altogether. 
Here S N is the group of permutations of N indices (electrons). If the ground states 
of H ( N -  1) of a certain S N _ z-symmetry type are not rotationary invariant [in the 
sence of (4.8)1 as it is the case with the ground states of the S N_ 1 x O(3)-symmetry 
types with nonzero total momenta, estimate (4.10) is not, in general, valid (the 
negative part of (~0, I(y)lp) does not fall off exponentially for Z < N -  1). However, 
since the ground states have same parity [the parity transformation is contained in 
0(3)1, [negative part of (~p, I(y)~p)[ < const(1 + lYl)-3 for Z < N - 1  as follows from 
inequality (.) of the proof of Lemma 4.10 (the dipole moment is zero for even 
densities). Note that if the potentials are changed in such a way that the ground 
states have different parities or do not have definite parities at all (which might 
happen if there is an additional ("accidental") degeneracy (see ILL]), then the 
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effective potential (Vo, I (y)p)  has a dipole leading term (Ix1-2 at infinity) which 
when sufficiently large might lead to the infinite number of bound states for H(N). 

(c) Note again that ZJVXal 2 falls off at infinity as Ixl-2 i.e. it behaves as a long- 
range N-body potential. This does not lead to the infinite number of bound states 
of H in our case since SlVSol z lives in the region of X where the system splits into 
more than two clusters and therefore has the lowest threshold > Z = info-es~(H ). If 
we remove the restriction on S, e.g. allow for three-cluster thresholds to be at S, 
then sII7Sal 2 is supported also in the region with the lowest threshold Z. This, in 
our opinion (also, B. Simon, private communication) might account for the 
Effimov effect, the appearance of the infinite number of bound states in some 
short-range systems. 

(d) One might try to use inequality (4.3) together with the comparison theorem 
[RS3] in order to obtain effective estimates of the number of bound states of H 
along the lines of works [B1, B2, BF1, BF2, H1] (see also [G, WS, W]). Note that 
such estimates were given using different generalizations of the Birman-Schwinger 
principle by Yafaev [Y2], Klaus and Simon [KS], and Sigal [$2]. 

(e) The restriction on Z, that it is defined only by two-cluster breakups, is a 
technical one. The essentially most general conditions under which the finiteness 
of ad(H ) is still true were given in IS1]. To obtain this result by the method 
presented here one might try to counter - ZIVX, I z with e ( -  A) borrowed from - A. 

(f) Theorem 4.2 can be obviously generalized to include molecular ions. 
(g) In the case Z - - N -  t the proof of Lemma 4.10 is especially simple. Indeed, 

by virtue of 
][a-  y1-1 _ lyl- 11 =< lal lyl- 2(1 + lal l a -  yl- 1 

we get II(y)l < ~ I lx i -  yl- 1 _ ix ° -  yl- 11 
i~O,s  

<ly1-2 ~ Ixi l ( l+lxi l lx~-yl-1) ,  
i~=s 

which, along with the fact that Iv012 is bounded and fast decreasing, implies that 
(W, I(y)2 tp) < C(1 + lYl)- 4. 

Section 5. (a) Different generalizations (not discussed here) of the theorem of this 
section are possible. Among them we list the extensions of this theorem to 
molecules and to non-Coulomb potentials (cf. [R]). 

(b) The idea of using txlp with p < oo comes from Ruskai JR]. (Originally the 
author used the Ks-partition with p = Go.) 

(c) This section has many common points with Ruskai [R]  and Zhislin 
[zl, z23. 

Appendix 3. (a) We used the same function )~ in different, independent con- 
structions. The reason for this is our laziness. 

(b) We believe that the estimate (A.4) can be improved considerably: 
N 

Our conjecture is that ~ I(gK~)(x)l 2 < C(1 +S~o~(x))(Ixl~+0)-2, where 
s=O 

~os = (1~sf/ll,p~N ~)z, is true. Note that (A.3) implies that 
suppcp~ C {x~IR3NI IxjI < 720Vi}. The factor N 1/2 should, in our opinion, disappear 
due to a compensation in I117FI[ 2 _  l ( f ,  VF)t2/IIFll 2. 
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Note added in proof. The technique above is effective within the framework of Agmon's method of 
proving the exponential bounds. More specifically, the localization formula H =  Z ( X ~ H X  a -  [VX~I 2) 
implies/4 > co + I, where co = £(in fH,)X, 2 and t = £( I ,X~  - 1VXaJ2). Since I is/4-compact,  )CRI(H + 1)- 1 
--,0 as R--,oo for bounded C z functions ZR with suppzaC{jxi>R}.  So for any e > 0  there is R s,t. 
~Ze/4)2R > [co - e(H + a)]x~, where a = infH + t. The latter inequality plays an important  role in Agmon's 
method [together with the elementary inequality ( (H - E -  [ Vf[2)el)~R~p , eIzR~p) < M[[eIxa~p[i, where 
M=lle~A)dl 1]~]l+21lerV)d] [[DPI], valid for any bounded C 2 function f and an eigenfunction qJ of H 
with the eigenvalue E, it implies validity the DHSV bound (see Sect. 3)]. 


