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Abstract: The nucleolus and the prenucleolus are solution concepts for TU games based on the excess 
vector that can be associated to any payoff vector. Here we explore some solution concepts resulting 
from a payoff vector selection based also on the excess vector but by means of an assessment of their 
relative fairness different from that given by the lexicographical order. We take the departure 
consisting of choosing the payoffvector which minimizes the variance of the resulting excesses of the 
coalitions. This procedure yields two interesting solution concepts, both a prenucleolus-like and 
a nucleolus-like notion, depending on which set is chosen to set up the minimizing problem: the set of 
efficient payoff vectors or the set of inputations. These solution concepts, which, paralleling the 
prenucleolus and the nucleolus, we call least square prenucleolus and least square nucleolus, are easy 
to calculate and exhibit nice properties. Different axiomatic characterizations of the former are 
established, some of them by means of consistency for a reasonable reduced game concept. 

1 Introduction 

The nucleolus and the prenucleolus (Schmeidler (1969), Sobolev (1975)) are 
solution concepts for TU games based on the excess vector which can be 
associated to any payoffvector. The latter selects the efficient payoffvector which 
minimizes, according to the lexicographical order, the excess vector, while the 
nucleolus selects it, according to the same principle, from the set of imputations. 
In both cases the point is to minimize the maximal complaint, considering the 
excess of a coalition at a payoff vector as a measure of its dissatisfaction when 
facing it as a possible final payoff. 

Here we explore the solution concepts resulting from a payoff vector selection 
based also on the excess vector, but by means of an assessment of its relative 
fairness different from that given by the lexicographical order. That is, starting 
from the excess vector we take the departure consisting of, instead of minimizing 
it according to the lexicographical order, choosing the payoff vector which 
minimizes the variance of the resulting excess of the coalitions, or, more accurate- 

1 Wewant tothankM. Maschler for his helpful and encouraging comments at an early stage ofthis 
work. The research reported in this paper has received financial support from the Universidad del 
Pals Vasco (projects UPV 036.321-HA186/92 and UPV 036.321-HA127/93). 
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ly, that one whose associated excesses are closest to the average excess under the 
least square criterion. However hastily egalitarian this procedure may seem at 
first sight, it yields two interesting solution concepts, both a prenucleolus-like and 
a nucleolus-like notion, depending on which set is chosen to set up the minimizing 
problem: the set of efficient payoff vectors or the set of imputations. These 
solution concepts, which, paralleling the prenucleolus and the nucleolus, we call 
least square prenucleolus and least square nueleolus, are easy to calculate and 
exhibit nice properties. 

The paper is organized as follows: in Section 2 both solution concepts, the least 
square prenucleolus and the least square nucleolus, are introduced and proper- 
ties of the former are established. In Section 3 reformulations of the prekernel and 
the kernel coherent with our approach are given and shown equivalent to the 
least square prenucleolus and nucleolus respectively. In Section 4 the least square 
prenucleolus is characterized axiomatically, and by means of consistency in 
Section 5; then, in Section 6 it is shown the close relation of this solution concept 
with the Banzhaf index. Finally, in Section 7 properties of the least square 
nucleolus and an algorithm for its calculation are given. 

2 The Least Square Prenucleolus and the Least Square Nueleolus 

An n-person game in characteristic function form or a transferable utility (TU) game 
is a pair (N,v) where N =  {1,2 . . . . .  n} and v is a function v:2N~R, such that 
v (~)  = 0. N represents the set of players and 2 N denotes the family of all subsets or 
coalitions of N. For  each coalition S, the real number v(S) represents the reward 
that coalition S can achieve by itself if all its members act together. G N denotes the 
2" - 1 dimensional vector space of all n-person games. In this context any x ~ "  
will be called a payoff vector, and for any coalition S, s denotes its cardinality and 
x(S):= ~i~sXl. A payoff vector x is said to be efficient or a preimputation if 
x(N) = v(N), and an imputation if, besides, it is x i > v(i) for all ieN.  I(v) and prI(v) 
denote the sets of imputations and preimputations respectively. 

For  any payoff vector x~N" and any coalition S ~ ~ ,  we denote e(S,x):= 
v(S) - x(S) and call it the excess of S on x. And 0(x):= (e(S, X) )sc N will be called the 
excess vector of x. Note e(S, x) can be interpreted as a measure of the dissatisfac- 
tion of coalition S if x were suggested as final payoff: the greater e(S, x) the more 
ill-treated would feel S. 

As it has been commented in the introduction, based on this interpretation, the 
nucleolus and the prenucleolus select the payoffvector which minimizes, accord- 
ing to the lexicographical order, the excess vector (once decreasingly ordered its 
components) among all efficient payoff vectors, and on the set of imputations 
respectively. This selection is justified by a principle of fairness and stability: to 
minimize the maximal complaint that a coalition might raise against a proposed 
payoff. A twofold philosophy towards the coalitions seems to underly this 
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procedure. It embodies both an egalitarian principle (flattening the excess vector) 
and an utilitarian principle (doing it by pushing down the excesses). Here, also 
starting from the excess vector and based on the egalitarian side of this philos- 
ophy, we take a different departure to implement it. Instead of pushing down the 
highest excess to flatten the excess vector, we try selecting the payoff vector which 
minimizes the variance of the excesses of the coalitions. To be precise, we try 
selecting the payoff vector for which the resulting excesses are closest to the 
average excess under the least square criterion. At first sight it seems a sheer if 
not an exceedingly egalitarian expedient, disregarding any utilitarian consider- 
ation. But as it will soon be apparent the latter are of no consequence in this 
approach. Formally, we consider the following two problems for any game 
v~GN: 

Problem 1: Minimize ~ (e(S,x) - ~(v,x)) z 
S = N  

s.t. ~ x i = v(N). 
i e N  

Problem 2: Minimize ~ ( e ( S , x ) -  ~(v,x)) 2 
S ~ N  

s.t. ~ x  i=v(N)  and x i>v( i )  for a l l ieN.  
f E N  

Where the summations are taken (and so it should be understood in what follows) 
over all nonempty coalitions, and ~(v, x) is the average excess at x, given by 

1 
e(v' x):= 2" - i s=u~ e(S,x)  

Remark 3: Note the average excess at x is the same for any efficient payoff vector. 
This is a direct consequence of the following 

Lemma 4: For any game, the sum of the excesses of all coalitions is the same for 
all efficient payoff vectors. 

Proof: Let x be any efficient payoff vector. Then 

e(S,x)= ~ (v(S)-x(S))= ~, v(S)- ~ x(S)= ~, v(S)-2"-%(N) 
S ~ N  S e N  S c N  S e N  S c N  

because x(S) + x ( N \ S )  = v(N) for all S c N. [] 

In this sense we say the utilitarian principle is not to be taken into account for 
a choice among efficient payoff vectors. So in what follows we simply denote 
~(v):= ~(v, x), for any efficient payoff vector x. Now we can state the following 
result. 



116 L.M. Ruiz et al. 

Theorem 5: For  any game veG N. 

(i) There exists a unique solution x* of Problem 1 and it is given by 

x* - v(N)n + ~ nai(v) - j~N aj(v) (ieN), (1) 

where ai(v ):= ~,s:i~s v(S). 
(ii) If the set of imputat ions  of  v is nonempty,  then there exists a unique solution 
of Problem 2. 

Proof'. First, calculating the Hessian matrix it can easily be checked that the 
objective function in bo th  problems is strictly convex on N". On  the other hand,  it 
is obviously continuous,  so that  (ii) follows immediately, for the set of imputat ions  
is compact  and convex. N o w  consider Problem 1. It is an equality constrained 
problem in which the objective function is strictly convex and the feasible set is 
convex so that, first, there exist at mos t  one optimal solution and, second, 
Lagrange condit ions are necessary and sufficient for a point  to be the optimal 
solution. The Lagrangian  of Problem 1 is 

L(x,2) = s=u y" (v(S)-  x(S)-e(v))2 + 2 (  \ i ~ N  ~ xi - v(N)).  

Besides the constraint  equation, the Lagrange conditions are then 

Lx,(x, 2) = - 2 ~ (v(S) - x(S) - ~(v)) + 2 = 0 (teN). 
S:i~S 

A simple calculation solves this linear system and shows that  the unique point  x* 
satisfying these condit ions is that  one whose coordinates are given by (1). [ ]  

Now,  paralleling the prenucleolus and the nucleolus, we can define two 
solution concepts. 

Definition 6: The least square prenucleolus (LS-prenucleolus) and the least square 
nucleolus (LS-nucleolus) of a game are 2, respectively, the solutions of Problem 
1 and Problem 2. 

2 We have been full of doubts as to which names should be proper for both solution concepts. For the 
latter, other possibilities considered have been: 'least square' value or 'minimal variance of excesses' 
value (or nucleolus). Or even, for the former, in view of what will be shown in Section 6, 'additive 
normalization of the Banzhaf index'. In the end, taking into account the way it all started, we chose 
the simpler 'least square (pre) nucleolus'. After all the prenucleolus and the nucleolus have been the 
most inspiring solution concepts for this work and its basic term of reference, and these names bring 
to mind the interesting parallelism between both approaches. 
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According to Theorem 5 both are well defined, and the latter exists whenever 
the set of imputations is nonempty. Formula (1) provides an explicit definition of 
the LS-prenucleolus and allows its easy calculation. As to the calculation of the 
LS-nucleolus, in Section 7 a simple algorithm will be described. Now we 
concentrate on the LS-prenucleolus properties and axiomatization. 

R e m a r k  7: In view of Remark 3, in both Problem 1 and Problem 2, ~(v) can be 
substituted for g(v, x) in the objective function. Moreover, the optimal solutions 
of both problems remain unchanged if we substitute any constant k for g(v, x) in 
the objective function. To see this let I1"11 denote the euclidean norm and let 
1 = (1 . . . .  , l )eR 2"-1. Then for any k e n  

y ,  (e(S, x) - k) 2 = N O(x) - k l  II 2 = y. e(S, x) 2 + (2" - 1)k 2 - 2k ~ e(S, x), 
S ~ N  S e N  S e N  

and by Lemma 4 the last summation is the same for all efficient payoffvectors, so 
that the resulting objective function differs from that of Problems 1 and 2 on 
a constant on their feasible sets. 

In particular, for k = 0 we conclude that the optimal solution of Problem 1 is 
that of problem 

minimize ~ (v(S) - x (S) )  2 
S e N  

s.t. y" xi = v(N),  
i~N  

and that the optimal solution of Problem 2 is that of problem 

minimize ~ (v(S) - x(S)) 2 
S e N  

s.t. ~ ' x  i = v ( g )  and 
i e N  

x i > v(i) for all i e N .  

These formulations provide another two interesting interpretations of both the 
LS-prenucleolus and the LS-nucleolus of a game v: first, it is the efficient payo f f  
vector (resp. imputat ion) for  which the excess vector is closest to vector zero (or to 
any vector of equal coordinates); and, second, it is the efficient payo f f  vector (resp. 
imputation) whose associated additive game is closest to game v. In both cases we 
mean it under the euclidean distance. These equivalences show that the LS- 
prenucleolus belongs to the family of 'convex solution nuclei' studied by Charnes 
and Kortanek (1967). Note also that the equivalent to Problem 2 is very similar to 
that whose solution defines the 'two center' solution of Spinetto (1971), the only 
difference being that in Spinetto's formulation the excesses of one-player coali- 
tions are deleted in the objective function. 

Henceforth we denote 2(v) the LS-prenucleolus of a game v. In order to 
establish the basic properties of the LS-prenucleolus it will be useful to rewrite 
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formula (1) like this: 

= + ~ n v ( S )  - Y~ s v ( S )  , 
n nz Ls:ies S=N J 

or, equivalently, 

v ( N ) ,  1 F v , ,  
(2) 

Proposition8: The LS-prenucleolus 2:GN~R", verifies the following pro- 
perties 

(i) Linearity. 
(ii) Continuity. 

(iii) Inessential Game: for any additive game v and any i, 2i(v ) = v(i). 
(iv) Strategic Equivalence. 
(v) Anonymity. 

(iv) Strict Coalitional Monotonicity: for all v, weGN such that v(S)> w(S) for 
some S and v(T) = w(T) for any Tva S, it is 2i(v ) > 2i(w), for all ieS. 

(vii) It is Standard for Two-person Games, that is, for any two-person game 

)ci(V ) = v(i) + �89 j)  -- v(i) -- v(j)  ]. 

(viii) Duality: for any game v and its dual v* ( v* (S ) :=v(N) -v (N /S ) )  it is 
,~(v) = ~(v*).  

Proof: They all can easily be derived from formulae (1) and (2). [] 

Remarks 9: (1) As it is well known, anonymity implies the Equal Treatment 
property, that is, for all i, j e N ,  

[ v s  ~ N\{~, j}, ~ ( S .  {~}) = ~(S ~ { j}) ]  ~ [~ ( , )  = ;~j(,)]. 

(2) Strict coalitional monotonicity is a desirable property which is not satisfied by 
the prenucleolus either the nucleolus. On the other hand, this property implies 
weak coalitional monotonicity, and there is no solution function on the class of 
balanced games satisfying this condition which always selects a vector on the core 
(Young (1985)), so that the LS-prenucleolus of a balanced game not always 
belongs to its core. 
(3) The Shapley value satisfies also properties (i)-(viii), while the LS-prenucleolus 
fails to verify the dummy axiom. But, as a straightforward corollary of Theorem 5, 
the latter satisfies instead an interesting property which is not verified by the 
Shapley value. 
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Corollary 10: For any game v, the sum of the excesses of all coalitions containing 
a player at the LS-prenucleolus of the game is the same for all players, that is 

(ix) ~ e(S,2(v))= ~ e(S,2(v)) (Vi, IeN, VveGN). 
S:ieS S:jeS 

Moreover, the LS-prenucleolus is the unique efficient value satisfying this 
property. 

Proof: Eliminating the Lagrange multiplier from the Lagrange conditions which, 
together with efficiency, " characterize the LS-prenucleolus (see the proof of 
Theorem 5) yields the equations 

e(S,x)= ~" e(S,x) (Vi, jEN). [] 
S:i~S S:jeS 

Property (ix) has an interesting interpretation: if each player considers how the 
coalitions he or she belongs to are treated at a payoff vector and assesses it from 
their excesses, this property ensures that on the average all players are equally 
treated. In a sense then, this way of implementing the egalitarian principle 
towards the coalitions turns out to be egalitarian towards the players too, so that 
its being verified by a solution would contribute to its stability. 

3 The Surplus Approach 

The kernel (Davis and Maschler (1965)) and the prekernel (Maschler, Peleg and 
Shapley (1972) and (1979)) are solution concepts based on the idea of surplus of 
a player against other. In a game (N, v) the (maximal) surplus of player i againstj at 
an efficient payoff vector x is defined by 

slj(x, v):= max {v(S) - x(S)/ieS, jq~S}. 

It can be interpreted as the most player i can hope to gain without the 
cooperation of j, departing from x and forming a coalition, supposing his or her 
partners will be satisfied receiving what they would receive in x. 

We now could introduce two parallel solution concepts also based on the idea 
of surplus, but for a suitable reformulation of the surplus concept that will prove 
coherent with our approach. We define the average surplus of player i againstj at 
an efficient payoff vector x as 

6ij(x,v):=- ~ s : ~ i e s V ( S ) -  x(S)). 
jcs 



120 L.M. Ruiz et al. 

This concept is similar to the usual surplus, but now players measure their 
relative strength from average instead of maximal expectations. Instead of the 
optimistic view according to which the maximal surplus is evaluated, assuming 
the best partner (coalition) will cooperate, now it is evaluated supposing all 
partners (coalitions) are equally probable. Equivalently, one can think that any 
player, being offered the same payment he or she would receive in x, will be 
indifferent between joining or not joining i, so that it is reasonable to assign 
probability 1/2 to each possibility; this assumption leads then to an expected 
surplus which is given by the same formula which defines the average surplus. 
According to the surplus concept so reformulated the prekernel and the kernel 
could be redefined as follows. 

Definition 11: The average prekerneI and the average kernel of a game v are, 
respectively, the sets 

av - prK(v):= {x~prI(v)/aij(x, v) = aji(x, v) (Vi, j ~ N ,  i C j)}, 

av - K(v):= {xd(v) / (ai j (x ,  v) - aji(x, v))(xj - v(j)) < 0 (V i, j e N ,  i r  

As it is well-known, the prenucleolus always belongs to the prekernel and the 
nucleolus to the kernel (Schmeidler (1969)). A similar but stronger result can be 
established about the average-versions of these concepts. 

Proposition 12: For any game v s G  N, the LS-prenucleotus is the unique point of 
the average prekernel. 

Proof" It is straighforward that condition o-~j(x, v) = aj~(x, v) for all i and j (i C j), is 
equivalent to condition (ix) 

~. e ( S , x ) =  ~ e(S,x)  (Vi, j eN) ,  
S:i~S S:j~S 

and by Corollary 10, for all v~GN, 2(v) is the only efficient payoffvector satisfying 
it. [] 

A similar result concerning the least square nucleolus and the average kernel 
will be proved in Section 7. So that Definition 11 turns out to be superfluous, for it 
is a mere restatement of the LS-prenucleolus and LS-nucleolus concepts. Never- 
theless this terminology and notation will be useful later. 

4 Axiomatization of the Least Square Prenucleolus 

In Section 2 we have seen that property (ix) together with efficiency fully 
characterizes the LS-prenucleolus (Corollary 10). Therefore this property can be 
judged too strong in order to establish a comparison with any other solution 
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concept. Now we offer an axiomatization involving axioms which are usual in the 
characterization of some other solution concepts, plus a new axiom requiring 
that whenever a player contributes more, on the whole or on the average, to the 
worth of the coalitions than some other player, he or she should receive more. 

Recall the index ai(v ) = Zs:i~s v(S) which has been introduced in Section 2. 
From formula (1) it follows that the LS-prenucleolus verifies the following 
monotonicity property for a value ~: 

(x) ai(v ) > aj(v)~Oi(v) >_ Oj(v) (Vi, j~N,  Vv~Gu). 

That  is to say, the bigger the index ai(v ) for a player the greater his value. 
Equivalent ways of expressing the inequality on the left hand side of this 
implication yield equivalent formulations of this property, as 

(x') ~ v(S)>_ ~ v(S)~Oi(v)>_t~(v) (Vi, j6N, VveGN) , 
S:i~S,jr S:jES,ir 

oreven  

(x") ~ (v(Sw{i})-v(S))>_ ~ (v(Sw{j})-v(S))~O,(v)>Oj(v) 
S:ir S:j(~S,i~S 

(u j~N, Vv~GN), 

which allows a new interpretation: if player i's marginal contribution (aggregated 
or on the average) to the coalitions not containing i no r j  is not less than that of 
player j, then i should not receive less thanj. So we call this property AverageMar- 
ginal Contribution (AMC) Monotonicity. It seems a reasonable requirement 
which is not verified by the Shapley value, for it gives a smaller weight to 
intermediate coalitions, while in our approach all coalitions are considered 
equally important. Note also that this axiom implies equal treatment. 

The following characterization of the LS-prenucleolus will permit us to 
establish a comparison with some other solution concepts as the Shapley value 
and the Banzhaf index. 

Theorem 13: The LS-prenucleolus is the unique value on G N which verifies 
efficiency, linearity, inessential game and average marginal contribution mono- 
tonicity. 

In order to prove it we first establish the following 

Lemma I4: A solution 0 :G N ~ JR" verifies efficiency, tinearity and average mar- 
ginal contribution monotonicity, if and only if there exists fl > 0 such that 

(3) 
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Proof" First, it can easily be checked that for any fi > 0, the value defined by (3) 
verifies these three axioms. To see the converse, let (wS)scN be the basis of G N such 
that, for any nonempty coalition S, 

1, if S = T  
wS(T):= O, if Sv aT. 

Then, by efficiency and AMC-monotonicity, Oi(w N) = 1/n (VieN), and for each 
S ~ N, there must exist some fis > 0 such that 

I~ , if i t S  

O~(w s) = 
[~_fi~, if ir  

On the other hand, by linearity, for any two disjoint coalition S and T (~  N) we 
have 

Oi(w s + wr ) = Oi(wS) + Oi(wr) = n - t' if i t S  

~, .~ i f , ~ ,  

And again by AMC-monotonicity, it should be Oi(w s + w r) = q/j(w s + wr), for all 
i t s  and a l l j s  T. So that (fis/S) - (fir/(n -- t) ) = (fir~t) -- (fis/(n -- s) ), or equivalent- 
ly (fis/(S(n -- s))) = (fir/(t(n -- t))). Now let us see this relation holds for any two 
nonempty coalitions different from N. If Sc~ T r  ~ ,  and S ~  T e N ,  then the 
relation applies to S and N \ ( S  • T), and to T and N \ ( S  u T), and therefore to 
S and T. If Sea Tva ~ ,  and S w  T =  N, then the relation applies to S and N \ S ,  and 
to T and N \ T ,  and also to N \ S  and N \ T ,  and therefore to S and T. Thus, 
denoting fi:= (fis/(s(n - s))), and again by linearity, we conclude that for any game 
v6Gu, 

= 

-s~s~ '~ ,~,.~, = ~ + ,~ [ z ~,, - ~ ,  - z ~ ,  I. n - -  s ' "  U S : i t S  S:Ir  _l 

And this is equivalent to formula (3). []  

Proof  of  Theorem 13: By Proposition 8 and what has been observed at the 
beginning of this section, the LS-prenucleolus satisfies efficiency, linearity, ines- 
sential game and average marginal contribution monotonicity. Now we show it is 
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the only value satisfying these four axioms. Let 0: G N--+ R" be a value satisfying 
them. By Lemma 14, there is some fl > 0 such that 0 is given by formula (3). To 
end the proof, let us see that the inessential game axiom determines ft. For any 
inessential game v, 

ai(v) = ~ v(S) = 2"-%(i) + ~ 2"-2v(j) = 2"- iv(i) + 2"-Z[v(N)- v(i)] 
S:iES j ~ i  

= 2"- 2 [v(N) + v(i)], 

and therefore 

aj(v) : ~ 2"-2[v(N)+ v(j)] = 2"-2 [ ~ v(j)+ ;v(N)] 
jEN jeN L j ~ N  

= 2"-2(n + 1)v(N). 

Substituting on (3) and using the inessential game axiom 

Oi(v ) = v(N) + fl[n2,_ Z[v(N) + v(i)] - 2"- Z(n + 1)v(N)] 
Fl 

~(N) 
n 

~(N) 

- - -  + fl[n2"-Zv(i)- 2"- 2v(N)] 

- - -+f l[n2"-2v( i ) -n2"-2v(N)l=v( i ) 'n  

That is 

Thus, choosing v non-symmetric, fl = 1/n2"- 2, Therefore, substituting this value 
for fl on (3), we conclude that the unique value satisfying the four axioms is given 
by 

~(N), 1 /-  , ,  ] 
O,(vt= ~ - *n -p -~  Lna, tv~-j~Na~(v) , 

which is precisely (see (1) in Section 2) the LS-prenucleolus. [] 

Remark 15: To show the independence of these four axioms, note: (i) the Shapley 
value satisfies them all except AMC-monotonicity; (ii) the 'Banzhaf value' (see 
Section 6) only fails to be efficient; (iii) the LS-nucleolus, as it will be shown in 
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Section 7, satisfies all but linearity; and (iv) any value 0 defined by 

~ ( v ) = ~ ) - + f l [ n a ~ ( v ) - L a ~ ( v )  ] (VieN, VveGN), 

where/~ is any nonnegative real number such that/3 r 1/n2"- 2, verifies efficiency, 
linearity and AMC-monotonocity (Lemma 14), but not the inessential game 
axiom. 

5 Consistency of the Least Square Prenucleolus 

In this section we show the consistency of the LS-prenucleolus for a suitable 
reduced game concept and characterize it by means of this condition. The 
consistency principle is a concept associated to a notion of 'reduced game'. Given 
a game ve G~, the reduced game (RG) on a nonempty coalition S at a payoffvector 
x, is the game v~,seG s which arises when a group of players S supposes that the 
remainder, N\S, are satisfied with what they are paid in x, and, based on this 
assumption, they face the possibility of renegotiating among themselves how to 
divide the rest of the cake, v(N) - x(N\S). This is what it is basically a reduced 
game, though it is not a sharp definition for it leaves deliberately unspecified what 
game arises in such circumstances. As a matter of fact, it should be only after close 
examining each particular application that one or another RG concept could be 
considered appropriate. Based on such a slack definition of the RG, we can 
formulate the principle of consistency in a parameterized way, the parameter 
being the RG concept itself. 

Definition 16: A value 3 ~b: G N ~ ~" is consistent with respect to a RG concept, if 
for all veG N and all nonempty S ~ N, 

O~(v) = ~,~(vor (vies), 

where vo(~),s denotes the reduced game on S at payoff vector ~b(v). 

Consistency is then a requirement of stability or self-consistency for a solution 
concept. If it fails to be verified by a value, its being accepted by some coalition 
could be a basis for its complementary to deviate. As it will soon be proved, the 
LS-prenucleolus is consistent for the following RG concept. 

3 For a general solution concept, not  necessarily single valued either nonempty,  this definition should 
be slightly retouched. It should be noted too that this formulation does not  cover all consistency 
concepts which have been proposed. 



The Least Square Prenucleolus and the Least Square Nucleolus 125 

Definition 17: Given a game (N, v), a nonempty coalition S and a payoffvector x, 
the reduced game on S at x, denoted (S, vS), is the game defined by 

IO, T = ~  

vS(T): = v ( N ) -  x (N \S ) ,  T =  S 
| ~  

z 
" ~ Q c N \ S  

It is similar to the reduced game concept introduced by Davis and Maschler 
(1965), according to which the consistency of different solution concepts can be 
established (see e.g. Maschler (1992)). But it differs in the way a nonempty 
coalition T g S  assesses its worth. In Davis and Maschler's definition this 
assessment is based on an optimistic expectation, supposing the best partner will 
cooperate, that is, for any nonempty coalition T ~  S, it is given by 

Vx,s(T):= max{v(Tu Q) - x(Q)/Q ~ N \ S } .  

Our definition, once again, is based on a more realistic or at least not so optimistic 
a point of view: all partners are equally probable. Alternatively, one can interpret 
that any player on N \ S ,  being offered the same payment he or she would receive 
in x, will be indifferent between joining or not joining T, so that it is reasonable to 
assign the same probability to both events; under this assumption the expected 
worth for T is precisely vS(T). 

Theorem 18: The LS-prenucleolus is the unique value ~:Gu~[R" which is 
standard for two-person games and it is consistent with respect to the reduced 
game concept given by Definition 17, that is, such that 

S ~bi(v ) = ~bi(vo(v) ) (Vv~GN, VS c N, Vi~S). 

Proof." The LS-prenucleolus is standard for two-person games (Proposition 8). 
To see that it is consistent, let S be a nonempty coalition S c N, v~G N and x an 
efficient payoff vector. Then for all i, j e S  (i C j), denoting xS:= (Xk)k~S, 

1 S S 
aq(X , V~) -- 2 ~- 2 r:ieTcS 

(vS(T) -- xS(T))  

j ~ T  

- 2s_ 2 ~ ( v ( T u Q ) -  x ( Q ) ) -  x(T) 
T : i e T c S  Q \S  

j r  

1 
~, ~ ( v ( r ~ Q ) -  x ( r w Q ) )  

2 n- z T:isT=S Q~N\S 
yet 

1 
- 2,_ 2 ~ (v(P) -- x(P)) = aii(x, v). 

P: ieP 
jC:P 
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Therefore, i f xeav  - prK(v), then xSEav - prK(vS). But the LS-prenucleolus is the 
only point of the average prekernet (Proposition 12), so that its consistency 
follows. 

To see it is the unique value satisfying both conditions, let us first show that any 
value ~ satisfying them is efficient. This is true for n = 2 from being standard for 
two-person games. For n > 2, let S be any two player coalition. Then, by 
consistency 

Z 0j( ' )  Z s = ~)(vo(~)) + O(N\S). 
j~N jeS 

But vor ) s  _- v(N) - I)(N/S) by Definition 17 and ~ is efficient for two-person 
games, thus ~ is efficient. Now let ~0 and ~b be two values satisfying both pro- 
perties. Let w G u ,  and let S be any two player coalition S = {i, j} ~ N. Consider 
the reduced games (S, v~,t~))s and (S, v~r by Definition 17 

1 
vSor 2,_ 2 ~ [v(Qw{i})-~O(Q); 

QcN\S 
and 

1 
S 

vO~)( j ) -2 ,_  z ~ [ v ( Q w { j } ) - O ( Q ) ] ,  
QcN\S 

S S therefore, v,~)(i) - v)(~)(j) does not depend on ~0. The same is true for ~b so that 
v~,(~)(i) - v~,tv)(j) = v ~ ) ( i ) -  vSc~)(j). On the other hand, by ~ being standard for 
two person games 

S 1 S S �9 S �9 
= v o ~ ( z )  - vo(o~(j)], 

so that 0~(v~,(~)) > (resp. <)  Oi(v~)) if and only if ipj(v~tv) ) > (resp. <)  0j(v~(v)) (if 
~ n t and only if vo(~)(S ) >(resp.<)vr And by consiste cy and the s andard 

property 

q,,(v) s = Oi(vo(v)) > (resp. < )@i(vg(v)) = qSi(v~(~) ) = d?i(v ). 

So that for all i and j, Oi(v) > (resp. <)0i(v)if  and only Oj(v) > (resp. < )~bj(v). But 
the efficiency of both values implies then O~(v) = q~(v) for all iEN. [] 

Note the strong similarity of the characterization (and its proof) of the 
LS-prenucleolus provided by Theorem 18 and that of the Shapley value given by 
Hart and Mas-Colell (1989). On the other hand, from it it can easily be derived 
a second characterization of the LS-prenucleolus, stated in the following the- 
orem, entirely similar to that of the prenucleolus due to Sobolev (1975), reinforc- 
ing the parallelism of these concepts. In both cases the only difference rests upon 
the reduced game concept underlying the notion of consistency. 
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Theorem 19: The LS-prenucleolus is the unique value ~: G N ~ NN which satisfies 
anonymity, strategic equivalence and consistency with respect to the reduced 
game concept given by Definition 17. 

Proof" From Proposition 8 and Theorem 18 it follows that the LS-prenucleolus 
verifies all three properties. Now let 0 be a value satisfying them. It can easily be 
shown that strategic equivalence together with consistency with respect to the 
RG concept given by Definition 17 imply efficiency. And efficiency with anonym- 
ity and strategic equivalence imply being standard for two-person games. Then, 
by Theorem 18, #; must be the LS-prenucleolus. [] 

It should be noted too that the core is also consistent with respect to this RG 
concept. Another fact that perhaps deserves to be mentioned is that the reduced 
game of any constant sum game is constant sum too. 

We finish this section with a third characterization of the LS-prenucleolus, now 
by means of the converse reduced game property. This notion also is always 
associated to some RG notion, so that it can also be formulated in a par- 
ameterized way with respect to the RG concept. 

Definit ion 20: A value #J:G N--, IR" verifies the converse reduced 9ame property  
( C R G P )  with respect to a RG concept, if for all v e G  N and all efficient payoff 
vector x, 

[x s = tp(V~,s) (VS ~ N s.t. s = 2)]~[x = 4,(v)], 

where vx, s denotes the reduced game on S at x. 

Theorem 21: The LS-prenucleolus is the unique value ~9: G N ~ N" which verifies 
the converse reduced game property with respect to the RG concept given by 
Definition 17 and it is standard for two-person games. 

Proof :  To see the LS-prenucleolus verifies the converse reduced game property, 
let v e G  N and let x be an efficient payoff vector such that for all two player 
coalition S ~ U it is x s = 2(vS). Then, by Proposition 12, av - prK(v  s) = {x  s } and 
therefore, if S = { i , j } ,  aij(xS, vS)=aj~(xS,  vS). On the other hand, 
aij(x  s, vx = vx(Os" _ xi = a i j ( x , v  ). Thus, a v - - p r K ( v ) =  {x} or equivalently, by 
Proposition 12, x = 2(v). 

Now let 0 be a value standard for two-person games and verifying the CRGP. 
Then for any game v, 0(v) must be the unique efficient payoffvector x such that for 
any two-person coalition S = {i, j} verifies 

x S = ( x i ,  x j ) = ( v S ( i ) , v S ( j ) ) +  l s . s �9 s . ~ [ v x ( z ,  j )  - -  vx(0  --  vx ( J ) ] (1 ,  1). 

On the other hand, vS(i) =- x~ + aij(x, v), and substituting on the last equality we 
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have 

x i = xi + ~u (x, v) + �89 Iv (N) - x ( N \  { i, j } ) - x i - %(x ,  v) - xj  - aji(x, v) ], 

or, which is equivalent, cru(x, v) = o-j~(x, v) for all i, j e N .  And by Proposition 12, 
the only efficient payoff vector satisfying this condition is the LS-prenucleolus. 

[] 

6 The Banzhaf Index and the Least Square Prenucleolus 

A generalization to non-simple games of a natural normalization of the Banzhaf- 
Coleman index, sometimes called 'Banzhaf value' (Banzhaf (1965), Coleman 
(1971), also Owen (1982)), of a player i in a game (N, v) is given by 

F ,  Ev(S  {i}) - v(s)]. 
S:ir 

That is to say, it is his or her average marginal contribution to the coalitions not 
containing him or her. In general vector/~(v) is not efficient. In order to obtain an 
'efficient normalization' of/~(v) there are two natural procedures. One can get it by 
means of a multiplicative efficient normalization (Dubey and Shapley (1979)). 
Another possibility is adding the same constant to all its components, so 
obtaining an additive efficient normalization (Hammer and Holzman (1987)) 
given by 

fl"(v):= fl(v) + [ (V(N) -- i~Nfli(v) )/n l l .  

Then/~"(v) is the orthogonal projection of/~(v) over the efficient hyperplane or, in 
other words, the point of this hyperplane closest to/~(v) according to the euclidean 
distance. As Hammer and Holzman point out,/~"(v) provides the additive game 
closest to v under the euclidean distance. As a consequence, in view of Remark 7, 
we have the following result of which we give a proof based on the axiomatic 
characterization of the LS-prenucleolus. 

Theorem 22: The additive normalization of /~ coincides with the LS-pre- 
nucleolus. 

Proof: It can easily be checked that /~a, besides efficiency, satisfies linearity, 
inessential game and average marginal contribution monotonicity. By Theorem 
13, the only value satisfying this four properties is the LS-prenucleolus. [] 
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Therefore, denoting fly(S):= ~i~S~i(V), the LS-prenucleolus of a game v is also 
given by 

v(N)  -- fi~(N) 
2,@) = fl~(v) + (VisN). 

// 

Thus, 2(v) is an imputation and therefore coincides with the LS-nucleolus, if and 
only if 

v(N) ~(N) 
- - -  v ( i )  > - - -  f l i ( v )  (Vi~N). 

/l /~/ 

7 Properties and Calculation of the Least Square Nucleolus 

In general the least square prenucleolus is not an imputation for it possibly fails to 
verify individual rationality. In order to assure this property, a similar solution 
concept, the least square nucleolus, has been defined in Section 2 as the optimal 
solution of Problem 2 

minimize ~ (e(S, x) - ~(v, x)) 2 
ScN 

s.t. ~ x i = v(N) and xi > v(i) for all i e N ,  
i~N 

where g(v, x) is the average excess at x and the feasible set has been restricted to 
the set of imputations. As pointed out in Remark 7, the LS-nucleolus can be 
redefined equivalently as the optimal solution of problem 

minimize ~ (v(S) - x(S)) 2 
S = N  

s.t. ~ x i = v(N) and x i >_ v(i) for all i~N.  
i~N 

R e m a r k  23: From the last formulation it is easy to check that the LS-nucleolus 
verifies strategic equivalence. On the other hand, the LS-nucleolus only makes 
sense for games with a nonempty imputation set. So in what follows we can 
restrict to (0, 1)-normalized games, for any game with a nonempty imputation set 
is strategically equivalent to a (0, 1)-normalized game. 

In order to prove the coincidence, formerly alluded, of the LS-nucleolus and 
the average kernel, we need a lemma. It is very similar to a lemma proved in 
Spinetto (1971) in order to establish the correctness of his algorithm to calculate 
his two center solution. As it has been commented in Section 2, this solution 
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concept is similar to the LS-nucleolus, but in it the excesses of one-player 
coalitions are not taken into account. This lemma is also useful in order to prove 
the correctness of an algorithm for the calculation of the LS-nucleolus later 
described. 

Lemma 24: For any game v and any payoffvector x, let pi(x):= ~s:i~s(v(S) - x(S)). 
Then an imputation x is the LS-nucleolus of v if and only if for all j e N, 

xj > v ( j ) ~  pi(x) = max {#dx)/i = 1,... ,  n}. 

Proof." We prove it for a (0, 1)-normalized game. For every player i we define the 
n-person inessential game e~ as 

1, if ieS 
ei(S):= O, if iq~S. 

Let C N be the convex hull of these n games. Given a (0, 1)-normalized game v, 
every imputation xeI(v) has an associated additive game, given by 2(S):= x(S), 
belonging to C N. It is well known that this is a one to one correspondence between 
I(v) and C u. Then (Remark 7), the LS-nucleolus of v can be interpreted as the 
imputation whose associated additive game in C N is closest to the original game 
v according to the euclidean distance. Let ueCN, by a well-known theorem on 
minimal distance over convex sets, we have that for u to be the additive game 
associated to the LS-nucleolus of v, it is necessary and sufficient that for all we C N 

y~ (v(S)-u(S))(w(S)-u(S))<_o. 
S e N  

Since C N is the convex hull of {e 1 . . . . .  e,}, the last condition holds for all weC N if 
and only if it holds for each % So we can rewrite the latter condition as 

(v(S)- u(S)) <_ ~ u(S)(v(S)- u(S)) (VieN). 
S:i~S S e N  

Let x be the imputation associated to u, then the last condition is equivalent to 

( v ( S ) -  x(S)) < ~ x (S ) (v (S ) -  x(S)) (VieN), 
S:i~S S ~ N  

where the right-hand side of the inequality can be rewritten 

x(S)(v(s)- x(S)) = ~ x~ ~ ( , (s)-  x(s)). 
S e N  j e N  S:jeS 

So an imputation x is the LS-nucleolus of game v if and only if 

#i(x) ~_ ~ xj#j(x) (Vi~N), 
j ~ N  
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and since Zj~Nxj = 1, this condition is equivalent to say that if for some j it is 
xj > 0, then it must be/~j(x) > #i(x) for all i. The conclusion extends immediately 
to any game. []  

A direct conclusion of this lemma, using the same notation, is the following 

Corollary 25: An imputation x is the LS-nucleolus of a game if and only if for 
all i, j, 

#j(X) ( #i(X)=r~ Xj =/)( j ) .  

Proposition 26: For any game v~ G N in which the set of imputations is nonempty, 
the LS-nucleolus is the unique point of the average kernel. 

Proof" The average kernel (Definition 11) can be equivalently defined as 

av -- K(v):= {X~I ( v ) / a i j (X  , V) > O'ji(X, V):=> Xj = v(j) ,  (Vi, j 6 N ,  i #j)} .  

And it is straightforward that condition aij(x, v) > aji(x, v ) ~  x j  = v ( j )  is equival- 
ent to ktj(x ) < I~i(x)~ x j = v(j) ,  for all i, j e N ,  i # j. Thus, from Corollary 25, the 
result follows. []  

We now describe two algorithms for the calculation of the LS-nucleolus. The 
first one is an adaptation of the algorithm due to Spinetto (1971) for calculating 
his two center solution of a game. A simpler and equivalent algorithm is de- 
scribed later. Without loss of generality (Remark 23) we consider games such that 
v(i) = 0, for all i~N.  

Algori thm1:  Construct a sequence of pairs (xi, T ~) ( i=  1,2,...), where x ~ is 
a payoff vector and T ~ a subset of N, inductively defined by 

(i) x l :=  2(v) and TI:= { j ~ N / x ~  < 0} 
(ii) x i + 1 is the solution of problem 

k=i 
Min ~ (v(S) - x(S)) 2 s.t. ~ x i = v(N)  and xj = 0, Vje U Tk. 

ScN i~N k = l  

The sequence stops when T i = ~ .  Clearly, this process must end after at most 
n - 1 steps and the closing payoff vector is an imputation. 

Proposition 27: For any game on G N in which the imputation set is nonempty, 
the imputation obtained at the e n d o f  the above procedure is its LS-nucleolus. 

Proof." The proof, based on Lemma 24, is an adaptation of that of a similar result 
due to Spinetto (1971). []  
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In Algorithm 1, at each step a minimization problem has to be solved. Namely, 
x ~ is the optimal solution of problem 

Min ~ ( v ( S ) -  x(S)) 2 s.t. ~ x i = v ( N )  and xj = O, V j E M  i -  1, 
S ~ N  i ~ N  

k=i and ~ .  This problem is equivalent to where, for each i, Mi:= U k = l  T k M~ 
problem 

Min ~ ( v ( S )  - x(S)) 2 s.t. ~ x i = v ( N )  and xj = x~, V j e M  i, 
S e N  i~N 

whose solution, for jCM g, is given by 

i v (N)- -x i (Mi)  
X j - -  

Yl - -  HI i k ~ M  i 

where m~ denotes the cardinality of M ~. On the other hand, x ~+ 1 solves 

Min ~' (v (S)  - x(S)) 2 s.t. ~ x i = v ( N )  and xj = O, V j e M  i, 
S ~ N  i E N  

and the optimal solution of this problem is given by 

i+ 1 + - -  m i ) a j ( v )  , 
x i = n - - m  i ( n - -m i )2" -2 [  kr 

O, V j e M  i. 

i and x} +1 forjq~M i, it is Therefore, comparing the expressions which give x~ 
immediately concluded that each x ~+1 can be calculated directly from the 
preceding x ', so that the algorithm formerly described is equivalent to the 
following one. 

Algorithm 2: Construct a sequence of pairs (x i ,M i) (i = 1,2 . . . .  ), where x ~ is 
a payoff vector and M ~ a subset of N, inductively defined by 

(i) x 1 := 2(v) and M 1 := { jeN/2j (v)  < O} 

t i xi(Mi) 
�9 " " n - m ~  

(ii) x)+l.= x j +  , VjCM' 

1.0,  V j e M  i. 

and M i + 1:___ M ' ~  { jEN/x}  +1 < 0}. The sequence stops when M ' =  M*-I (with 
M ~ := ~) .  
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That  is to say, start with the LS-prenucleolus of the game and, at each step; give 
0 to those players with a negative payment in some of the earlier steps and divide 
the aggregated negative payment in the last step equally among the rest of the 
players. And stop when no player receives a negative payment. 

Example: Let v be the game defined by v(34)= t; v(35)= 1; v(45)--- 1; v(134)= 1; 
v(135) = I; v(145)= i; v(234)= 1.4; v(235)= 1; v(245)= I; v(345)= 1.75; v(1234)= 
1.75; v(1235)=1; v(1245)=1; v(1345)=2; v(2345)=2; v(12345)=2; otherwise 
v(S) = 0. Using formula (1), we first obtain its LS-prenucleolus 

x t = 2(v) = (--0.0425, 0.0075, 0.72625, 0.72625, 0.5825). 

Then we give 0 to player 1 and divide -0.0425 equally among players 2, 3, 4 and 
5, so that we obtain 

x 2 = (0,--0.003125,0.715625,0.715625, 0.571875). 

Now we give 0 to players 1 and 2, and divide - 0.003125 equally among players 3, 
4 and 5. In this way we finally obtain the LS-nucleolus of the game 

X 3 = (0, 0, 0.7145833.., 0.7145833.., 0.570833..). 

From the procedures above described to calculate the LS-nucleolus, it can 
easily be established that it verifies tbe properties enumerated in the following 

Proposition 28: The LS-nucleolus A:IG N --, ~", verifies the following properties 
on the domain, denoted IGN, of games with a nonempty set of imputations 

(i) Continuity. 
(ii) Inessential Game. 

(iii) Strategic Equivalence. 
(iv) Anonymity. 
(v) Equal Treatment. 

(vi) Weak Coalitional Monotonicity: for all v, w~Gu such that v(S) > w(S) for 
some S and v(T) = w(T) for any T-~ S, it is A&) >_ Ai(w), for all i6S. 

(vii) It is Standard for Two-person Games, 
(viii) Average Maginal Contribution Monotonicity. 

The loss oflinearity is the price of assuring individual rationality. This makes it 
difficult to obtain a nice axiomatization of the LS-nucleolus. 
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