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Summary  

The theory of viscoplasticity based on total strain and overstress is used in order 
to simulate the sensitivity to the rate of loading of two commonly used stainless steels, 
namely AISI 316L and 316H. The constitutive model has been implemented within a 
transient finite element computer code using a stress update algorithm based on the 
elastic predictor-return mapping concept. Both monotonic and cyclic loading conditions 
are considered in one or more space dimensions. 

Experimental results showing strain-rate dependence at room temperature are re- 
ported for both types of steel and used for calibrating the viscoplastic numerical model. 
An explicit dependence of the nonlinear viscosity function on the strain rate has been 
obtained and the calibrated model is found to yield results which are in excellent agree- 
ment with the experimental data. 

Finally the calibrated viscoplastic model is applied to predict the response of two 
representative structures subjected to impulsive loading. The results indicate a significant 
effect of the rate of loading on the internal stress distribution. 

1. Introduction 

The sens i t iv i ty  to  the  r a t e  of load ing  of commonly  used s ta inless  steels (e.g. 

A I S I  t y p e s  316L and 316H) has  been the  sub jec t  of m a n y  expe r imen ta l  in-  

vestigationsL These have  revea led  t h a t  s ta inless  steels exhib i t  v iscoplast ic  be- 

hav iour  even a t  room t empera tu re ,  the i r  ine las t ic  de format ion  be ing  bas ica l ly  r a t e  

dependen t .  F o r  example ,  expe r imen t s  in  monotonic  loading  per formed  a t  J]~C- 

I s p r a  b y  Alber t in i  et  al. on 316H [1] and  on 316L ( repor ted  herein) show t h a t  

s t ress-s t ra in  curves for the  above  steels ob ta ined  a t  s t r a in  ra tes  ranging  f rom 

10 .4 to  10 s -1 for 316L and  f rom 10 -3 to  103 s -1 for  316H exh ib i t  a s tress  level  

difference of t he  order  of 40% to  60~o, respec t ive ly .  

Various  models  have  been proposed  in the  l i t e r a tu re  to  descr ibe r a t e - d e p e n d e n t  
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steel deformation behaviour. Among these the best known are probably those of 
Malvern [2], Perzyna [3], Bodncr and Parton [4] and Cernocky and Krempl [5]. 

The constitutive theory used herein to model rate sensitivity is the theory of 
viscoplasticity based on total strain and overstress developed by Cernocky and 
Krempl [5]. This theory and its main properties are briefly recalled in Section 2. 
In Section 3 numerical techniques are proposed that  allow for a systematic treat- 
ment of the chosen viscoplastic model in the context of transient finite element 
analysis. In particular a stress update algorithm is suggested which falls within 
the category of elastic predictor-return mapping algorithms widely used in 
computational plasticity. 

In Section 4 experimental stress-strain - -  strain rate results are presented for 
stainless steel types 316L and 316tt. Based on these experimental data, the para- 
meters in the nonlinear viscosity function are obtained in Section 5 using a curve 
fitting procedure. Finally, using the calibrated viscoplastie model, numerical 
examples are presented in Section 6 which illustrate the significant effect of the 
rate of loading on the internal stress distribution. 

2. Consti tut ive Theory  

The theory of viscoplasticity based on total  strain and overstress developed 
by Cernocky and Krempl [5] does not utilize the concept of a yield surface. The 
transition from linear elastic to nonlinear inelastic behaviour is smooth. A vis- 
cosity function and an equilibrium stress-strain diagram are used to characterize 
a material in monotonic loading. 

2.1 Isotropic Constitutive Equation 

Let  aii and eii be the stress and strain tensors, respectively, for small defor- 
mations and let a superposed dot designate the time derivative. The isotropie 
constitutive equation proposed in [5] is 

D~kt~ki -- e~j -- (2.1) 

whele 

] E (Sik~jt + ~ilbjk) + 1 2v ~ijSkt , (2.2) Diikz --  1 + v 

9[r Gij : E----~ Dij~ek~, (2.3) 

F - -  [(ali -- Gis) (oii -- G~)] z/2, (2.4) 

1 [3ei,e,,] z/2' (2.5) + -  

1 
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E is the elastic modulus and v Poisson's ratio. The function G is the equilibrium 
stress-strain curve and reduces to the uniaxial equilibrium stress-strain curve 
g[e] when the uniaxial state of strain is substituted in (2.3). The quanti ty F 
in (2.4) is the overstress magnitude; qb in (2.5) is the usual effective strain and 
e in (2.6) is the deviatoric strain tensor. The viscosity function ~[F], dimension 
time, is positive, continuous and bounded; further it  is required that  du[F]/dF< O. 
Note tha t  the constitutive Eq. (2.1) is linear in the stress-rate and the strain- 
rate tensors but  non-linear in the stress and the strain tensors. 

2.2 Properties o/Constitutive Theory 

As illustrated in [5] the constitutive theory described by (2.1) is endowed 
with many desirable properties. For fast loading conditions, which a r e  of 
interest herein, the interesting properties of (2.1) are: 

- -  Initial linear elastic behaviour; 
- -  Initial elastic slope upon large instantaneous changes in strain rate in the 
plastic region under any state of stress; 
- -  Strain (stress) rate sensitivity of the stress-strain curves; 
--  Defined behaviour in the limit of very slow and very fast loading rates; 
--  Stress-strain curves obtained at different constant, strain rates will ultimately 
have the same slope; 
- -  Highly non-linear spacing of the stress-strain diagrams due to the dependence 
of the viscosity function V upon the overstress magnitude F. 

3 .  N u m e r i c a l  F o r m u l a t i o n  

In this section, numerical techniques are proposed that  allow for a systematic 
treatment of the visco-plastic constitutive model discussed in Section 2 within 
the context of finite element transient analysis. 

The stress update algorithm which is suggested here is adapted from an 
algorithm for linear viscosity (~ = constant) described in a recent paper by 
Simo and Ortiz [6]. This algorithm falls within the category of elastic predictor- 
return mapping algorithms widely used in computational plasticity (see, e.g. 
the excellent review by Hughes [7]). 

3.1 Elastic- Viscoplastic Operator Split 

We start  by rephrasing the visco-plastic constitutive Eq. (2.1) so as to give 
it a structure reminiscent of constitutive equations for inviscid plasticity. Using 
direct notation we rewrite (2.1) as 

1 
$ = D . f i  - - - - Z  ( 3 . 1 )  

3 A e t a  M e c h .  76/3--4 
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where Z = 6 - -  G is the overstress. From the definition (2.4) of the overstress 
magnitude r ,  i t  is observed tha t  

d r  Z 
d Z -  /~ (3.2) 

and 

II  tt : ' -  
Therefore, combination of (3.1) and (3.2) yields 

or, equivalently 

F d r  
d = D .  $ (3.4.1) 

dZ 

d = D .  ~ - - - - D  -1 = D  ~ - - ~ v P  . (3 .4 .2  

I t  is now apparent  tha t  the constitutive relation (3.4) is in a form similar 
to constitutive equations for inviscid plasticity, namely 

= D .  (~ - -  ~v); ~P = zir  (3.5) 

where r indicates the plastic flow direction and A is the plastic rate  parameter  
defined by the consistency condition. For an associated flow rule, r represents 
the unit  outward normal to the yield surface. In  particular, the constitutive 
relation (3.4) can be "spl i t"  into elastic and visco-plastic parts  as required for 
applying return mapping algorithms. 

The elastic part is deformation driven and is given by  

= ~ -~ $~P = ~(t), (prescribed rate  of total strain) 

= D .  ~, (3.6) 

On the other hand, the vi~sco-plastic part of the constitutive relation (3.4) reduces 

to 
F d/~ 

~-- 0; ~ ~ . (3.7) 
dZ 

Equation (3.7) defines a relaxation process for the stresses with a return pa th  

defined by dF/dZ. 

3.2 Rate o/Change o! F/V 

The rate of change of/~/V in (3.7) is given by  

(F/V)" = P/n  - -  r~/V 2 = P/V --  r - g - f  f,/V2 (3.8) 
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From the definition (2.4) of the overstress magnitude F one obtains 

/~ = ~9__.F__F 2 o  . = Z~J2~i-- ( 3 . 9 )  

~Z~ i F 

As indicated by (3.7) during the visco-plastic relaxation phase one has 

$ = 0 (3.10) 

and consequently 

d = 0. (3.11) 

I t  then follows that  

= 8 - -  F d__(F _ Z/~ (3.12) 
dZ  

so that  the rate of change (3.9) of the overstress magnitude can be written as 

f~ _ Z~iZu 
- -  - -  / ' / ~ .  ( 3 . 1 3 )  

~F 

Introducing (3.13) into (3.8) one finds that  the rate of change of F/~ is governed 
by the following equation 

(F/~)" -~ - -F /~  ~ (3.14) 

which is the viscous counterpart  of the consistency condition of inviscid plasticity. 
Defining an instantaneous relaxation time by the expression 

(3.14) may  be rewritten as 

1 - -  ~ a r  r/~ 
(3.15) 

( F / V ) ' = -  i " (3.16) 

3.3 Stress Update: Return M a p p i n g  Algorithm 

Based on the elastic-viscoplastic split (3.6), (3.7), a return algorithm can be 
defined by first solving the elastic Eq. (3.6) to obtain an elastic predictor, which 
is then taken as an initial condition for the visco-plastic relaxation Eq. (3.7). 

As in inviscid plasticity, the return path for stresses is defined iteratively 
and comprises a sequence of straight segments. To compute the final location 
of the stress point in the return path, one may proceed as suggested by  Simo 
and Ortiz [6]. 

3* 
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(a) Within a generic straight segment (i) in the return path, the relaxation 
time is taken to be constant and equal to a value i (i) computed according to 
(3.15) from the initial conditions, %+1. (i) -- for the segment, where subscript n indicates 
the time level. 

(b) Thus, within a typical straight segment, the variation of F/~) is given 
from (3.16) by the exponential relation 

' ~'(1) F/~ = (/'/~]),+1 exp (--zlt/Z (i)) (3.17) 

where At is the time elapsed since the entrance of the stress point into segment 
(i). 

(e) The total  time dt  (il spent by the stress point in segment (i) is, therefore, 
given by 

�9 ~ ( i )  

z j t ( i )  ~ ~(i) log ( F ] .  ,(i+1) 
~ I q ] n + l  

(d) The end of the relaxation process is characterized by the condition that  
At (i) =- h, where h is the time step size and the sum extends to all traversed 

1 

segments. 

3.4 Extension to Cyclic Loading Conditions 

The model given in Eq. (2.1) is considered to be valid for metals at low homo- 
geneous temperatures as long as ~ -  G[e] does not change sign [9]. ~n order 
to account for unloading beyond a = G[s] one needs to modify the equation 
through introduction of new origins and updating of the viscosity function. 
The updating of the viscosity function is a recognition of the fact that  the real 
material has changed its microstructure due to the loading up to the point 

- -  G [ ~ ]  = 0 .  

The stress update algorithm described above has been extended so as to 
be capable of treating unloading paths beyond a -- G[e] = 0. This is achieved 
in a straightforward manner, by redefining the origin 0' (Fig. 1) of the stress- 
strain diagram along the (elastic) unloading path  at a distance from point P0 
depending on the assumed hardening rule. Actually, Fig. 1 is a graphical re- 
presentation of the equilibrium diagram updating during cyclic loading based 
on the illustrative assumption of isotropic hardening. I t  is further assumed 
that  the time step size is sufficiently small that  the equilibrium diagram segment 
between G~ and G~+~ is a straight line. 

To illustrate the performance of the resulting algorithm, a simple calculation 
was performed for uniaxial cyclic loading at constant strain rate, $ = 1 s -~, 
using the fictitious material properties in [8, Table 2], and the assumption that  
the viscosity function does not require updating. The model response is shown 
in Fig. 2. Quasistatic and dynamic cyclic uniaxial experiments on stainless 
steel 316L are planned at JRC-Ispra in order to extend the calibration of the 
viscoplastic model to account for such loading conditions. 
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Fig. 1. Graphical representation of equilibrium diagram updating procedure during 
cyclic loading 

The  r e s u l t i n g  a l g o r i t h m  is s u m m a r i z e d  in  T a b l e  1 : 

Table 1. Stress update algorithm 

Step ! Elastic predictor 

a n and e n are given; 

Ae : h~n+l/~ is prescribed (h = time step); 

a(,~ 1 = a. + D .  Ae;  

G~§ 1 : G[~n+l]. 
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Table  1. (1%rtsetzung) 

Step 2 Check/or  overstress sign 

rX (0) - -  G n +  1 ~  O ?  n + l  

YES: go = e~ + ( e n  - -  %+i) " ( G n  - -  G ~ ) / ( G ~ + :  - -  ~n+i) 

:o = G + I  § (co - e ,~+:)  . (G - G , + : ) / ( e ,  - e n + l )  

~ *  = go - ( 2 %  - % ) / E  

(see no ta t ion  in Fig.  1) 

E X I T  

N O :  Go to  s tep 3 

Step 3 Check/or  inelastic behaviour 

Z(O) = a(.~ - -  G,~+:;  
n + l  

r(o) = / - (Z(~l )  n + l  

NO : E X I T  
_P(n~ ~ 0 Y E S :  i : 0,  t (i) : O. 

Step d Plastic correctors 

1 0 F  ~ l n + l  

F(i}+ 1~(i) 
Ay = - ( 1 )  

qn+l  
dF\ ( i )  

v n +  1 = t ~ / + l  
+1 

zi i+i)  ~(i+i) _ Gn+l n + l  ~ ~ n + l  

Fn(~+~) = rrT.(/+i)q + 1  ~ L ~  + 1 J 

At(i) = i(t) log 'lpl,~l(i+i) 
~,~ I'lln+ 1 

t({+i) = t(i) + Aft (i) 

Step 5 Check/or  end o] relaxation process 

t (i~i) ~ h? 

Y E S :  At (i) ~ h - -  t (i) 

n+l" [1 - -  exp (--dt(i)/~(t))l A?~ --i:i 
~'ln + l 

~1,) . ( d F  ~ (i) 

E X I T  

NO:  i - - > i §  go to step 4. 
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Fig. 2. Stress versus strain for cyclic loading under constant  strain rate 

4. Expe r imen ta l  D a t a  

In  this section we present the experimental  da ta  tha t  were used to calibrate 
the viscoplastic model for both AISI  316L and AISI  316H. 

4.1 Stainless Steel A I S I  Type 316L 

A set of cylindrical specimens with dimensions as shown in Fig. 3 were 
prepared from AISI  316L stainless steel. The diameter  tolerance was nominally 
•  m m  but  was found to be ~0.015 m m  over the range of the samples 
tested. 

The experiments were performed using a 400 kN Schenck servohydraulic 
testing machine operated in stroke displacement control. In  order to obtain 

8+-o.o a 

Dimensions in mm 

:Fig. 3. Cylindrical specimen used in strain-rate tests for Stainless Steel type 316L 
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a constant stroke velocity, the displacement was continuously compared with 
a constant slope signal. Due to the fact that  the specimen elongation V8 is equal 

to the stroke displacement X minus the deflection VM arizing from the machine 

and specimen connections compliance, dVs/dt is not constant. In  order to over- 

come this inconvenience, without having to run the test under the more difficult 
conditions of strain control, the stroke reference signal X has been chosen as 

the sum of a linear input plus a fraction of the load signal. The appropriate 

choice of this fraction should compensate for the machine and specimen connec- 

tion deflection so long as these remain proportional to the load. 

The force was measured with ~ 63 kin load cell in series with the standard 

400 kN device mounted on the machine. The strain was measured with an extenso- 
meter or strain gauges, depending upon the strain rate of the experiment. The 

extensometer strain measurement was used for strain rates up to 12 • 10 -~ s -~. 

For higher values, strain gauges were used in order to avoid extensometer damage 

and spurious measuring effects. 

5. 

4. 

Z 
M 

U) 

I. 

3Z. 

vJ 

4Z. 5Z~ 

f 
J j l  

BZ. 7Z. 8Z 

Fig, 4 a.. Comparison of the response of two strain g~uges mounted on the same specimen 

2 .  Z 
O 

< 1 . 7  

bJ 
:" 1 . 3  

. 7  

~ 3 el 
X I , I  

STRAIN RATE ~. m~1~12/S EN~. STRAIN L ~  
- -  STRAIN RATE 1 . 2 / S  

Fig. 4b. Experimental over nominal strain-rate ratio versus strain for two typical eases 
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Fig. 5. Experimental data for stress versus strain at various strain rates for stainless 
steel type 316L including the postulated equilibrium diagram 

A Hott inger  Baldwin Messtechnik Linearly Variable Differential Transformer 
was used, having a range of ~= 1 m m  over a gauge length of 40 m m  with a pre- 
cision of •  The strain gauges, mounted on the specimen following a 
special procedure described in [10], can follow deformations of up to 20%. Two 
strain gauges were cemented axially at  the centre of the specimen in diametral  
opposition. 

Figure 4a  compares the response of the two ganges at  a strain rate  of 1.2 s -1. 
The overall deviation between the two signals is of the order of =E2%. 

Figure 4b shows two typical  plots of strain rate  versus strain. These were 
obtained by  evaluating the ratio of the experimental  to the nominal strain rate  
as set on the machine controls. The curves correspond to strain rates of 12 • 10 -5 
and 1.2 s -1. I t  can be seen tha t  after an initial transient (up to 1.5% engineering 
strain) the ratio is nearly unity. The max imum disparity between the experi- 
mental  and nominal values is about  20% in the region of 0.5% engineering 
strain. Figure 5 shows the final experimental  da ta  for stress vs. strain at several 
constant strain rate  values tha t  were used for the calibration of the viscoplastic 
material  model. 

4.2 Stainless Steel A IS I  Type 316H 

In  order to calibrate the viscoplastic model and thereby predict the sensitivity 
to the rate  of loading exhibited by  AISI  type  316I-I stainless steel, use is made 
of the experimental  data  obtained at  room temperature  using either Hopkinson 
bars or hydropneumatic  loading devices depending on strain-rate level, as re- 
ported in [1]. Figure 6 shows the final experimental  data  for stress vs. strain 
at several constant strain ra te  values. 
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:Fig. 6. Experimental data for stress versus strain at various strain rates {or stainless 
steel type 3i6It including the postulated equilibrium diagram 

5. Calibration of the Constitutive Model 

Following [9], we assume tha t  the viscosity function for both types of steel 

depends on the overstress magnitude as follows 

C~ 

(5.1) 

where C~, C~, C~ and C4 are unknown material constants to be determined from 
experimental  data. 

I t  must  be bor~ in mind tha t  in order to define completely the strain rate 
dependent material  behaviour in monotonic loading, in addition to the viscosity 
constants on needs to know the equilibrium stress-strain diagram which of 
course cannot be obtained experimentally. For  this reason such a diagram has 
been postulated based on the experimental  results at  the lowest strain rate 
available. 

The procedure tha t  was followed for ~he determination of the material  constants 
in (5.1) is briefly summarized below. At first a parametr ic  s tudy was carried 
out tha t  revealed the sensitivity of the model response (viscous par t  of stress 
at  2% strain) to each viscosity parameter  separately, starting with the values 
in [8] for s t ra ta  rate  ix the  neighborhood of $ ~ 1 s -1. These parameter  values 
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are shown in Table 2 below 

Table 2 

173 

C 1 = 188.8 MPa, C~ = 0.2296 X 1 0  - 6  s ,  C a = 2 8 . 1 9 ,  C a : 1.13 

This first step revealed that  parameter C 3 in (5.1) should be considerably lower 

than originally assumed. After close examination of the results of the previous 

step, a parametric study was performed to determine the model sensitivity 

to the simultaneous variation of constants C1 and C2. I t  was concluded that  

by appropriate selection of values for this pair of parameters, one could maintain 
practically constant the model response in the 1% to 2% strain range and at 

the same time vary the deviation of the model response from the equilibrium 

diagram at strains below 1%. 

I t  was conduded that  for C1 = 1.888GPa and C2 = 0.2296 • 10-Ss the 

numerical results were much closer to the experimental data available for both 
types of steel than was the case for the originally assumed values for this pair  

of parameters. Moreover this pair of values also seemed to yield a much more 

reasonable response for low values of strain rate (10-4--10 -~ s-l). Upon further 

examination of the model response it was nevertheless concluded that  the ex- 

perimentally revealed material behaviour could not be simulated, to an acceptable 

degree of accuracy, in either case of stainless steel considered, unless one of 

the two remaining viscosity parameters (Ca and C4) is allowed to vary with 
strain rate. After extensive numerical experimentation, the selection of C4 = 1.25 

was made and Ca was determined separately for the two different material 

types as described below. 

5.1 Stainless Steel A I S I  Type 316L 

Figure 5 shows experimental results of stress versus strain for the following 
values of strain rate: 1 . 2 •  -4 , 1 . 2 •  -a, 1 . 2 x 1 0  -2 , 1 .2X10 -1 , 1.2 and 
12 s -1. 

The selected equilibrium diagram (~ = 0) is also shown in the same figure. 
For the first trial it was taken into account that  for ~ = 3 • 10 -5 s -1 the viscous 

effect at 2% strain is about 7% for the present type of stainless steel [11]. 
I t  is clear from Fig. 5 that  the spacing of the stress-strain diagrams in highly 

nonlinear. The stresses, at strain ~ = 2% obtained with strain rates differing 
by several orders of magnitude are much less than one order of magnitude 
different. In  fact, at strain e = 2% and strain rate ratio ~1/~2 = 105 one has a 
stress ratio a~/a~ = 1.43 = 10 ~ Moreover, the stress value for ~ = 1.2 • 10 -4 s -1 

and at ~ = 2% is about 15% higher than the "derived" equilibrium stress 
at that  strain value. In  addition, it is evident that  the evolution of spacing of 
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t he  s t ress-s t ra in  d iagrams,  as t he  s t ra in  r a t e  increases,  does no t  exh ib i t  a n y  

a p p a r e n t  regula r  pa t t e rn .  F i n a l l y  t he  s t ress-s t ra in  curves to  a ve ry  good appro-  

x ima t ion  have  the  same slope for s t ra ins  higher  t h a n  1%.  

As was s t a t ed  before,  t he  four  v iscos i ty  p a r a m e t e r s  can no t  al l  be i n d e p e n d e n t  

of s t r a in  ra te .  I n  fac t  we found  t h a t  t he  m a t e r i a l  behav iou r  as shown in Fig.  5, 

is ve ry  well  s imula ted  in t he  s t r a in  r a t e  range ,  1.2 • 10 .5 - -  1.2 • 103 s -~, b y  

the  fol lowing select ion of values  for the  v iscos i ty  funct ion  p a r a m e t e r s :  

C1 = 1.888 G P a ;  C2 = 0.2296 x 10-s;  C4 = 1.25 (5.2) 

while C3 is s t r a in - r a t e  d e p e n d e n t  as Table  3 below ind i ca t e s . .  

Table 3. C a versus h /or  316L 

: .00012 .0012 .012 .12 1.2 12 (s -1) 
C3: 20.7 19.0 17.28 15.1 12.9 10.9 

F igu re  7 shows t h a t  C3 is to  a good a p p r o x i m a t i o n  l inear  in  In ~, i.e., 

C3 --~ 13.07 - -  0.903 In ~. (5.3) 

O ~  

='~ 0., 

io 

C3= 73~07~0.903 Ins 

set 
at b~ 

2o~: 

76~ 

~ 0 , ~  

- 8  -6  -4 - 2  0 2 
NAT. LOGARITHM OF STRAIN-RATE 

Fig. 7. Viscosity function coefficient C a versus In ~ for stainless steel type 316L 
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l~igures 8 and 9 show numerical  results a t  constant  s t rain rates using the  values 

of  Table 3 and Eq.  (5.3) respectively, while Fig. 10 shows a comparison of the 

numerical  results of Fig. 8 with the  exper imenta l  data .  
Thus  it  is concluded tha t  in the  s train rate  range of 10 -4 s -z to  10 s -z and 

for deformations up to 2%,  the  wiseoplastic behaviour  of stainless steel A I S I  
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Fig. 8. Numerical results for stress versus strain for stainless steel 316L using Table 3 
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Fig. 10. Numerical (using Table 3) and experimental results for stress versus strain for 
stainless steel 316L 

type  316L is described wi th  an  excellent  approx imat ion  b y  the cons t i tu t ive  

Eqs. (2.1) th rough (2.6), the  viscosity func t ion  (5.1) and  the  mater ia l  propert ies  

given in  Table  4. 

Table 4. Material properties o/ AISI  316L Stainless Steel 

1. Viscosity/unction coe//icients 
C z = 1.888 GPa, C 2 = 0.2296 • 10 -s s, 
C a = 13.07 -- 0.903 In e 

2. Equilibrium stress-strain diagram 
Elastic Modulus: 195 GPa 
First yield stress: 195 MPa 
First hardening slope: 5.25 GPa 
Second yield stress: 216 MPa 
Second hardening slope: 2.93 GPa 

3. Other properties 
Density: 8000 kg/m a 
Poisson's ratio : 0.3 

C 4 = 1.25 and 

5.2 Stainless Steel A I S I  Type 316H 

Figure  6 shows exper imenta l  results for stress versus strain for the  following 

values of s t ra in  ra te :  

.0035, .082, .88, 4.5, 45,  480 and  750s  -1 

The selected equi l ibr ium diagram (~ = 0) is also included in  the  same figure. 
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Here again one observes tha t  the spacing of the stress-strain diagrams is 
highly nonlinear and to a good approximation they have the same slope for 
strains higher than  1% . However, in this case one also observes tha t  for strain 
rates 4.5 s -1 and 45 s -1 and in the strain range of 1% to 2% the stresses are 
practically coincident. Of course, one could compare th i s  experimental  pheno- 
menon with tha t  of the thinly spaced response exhibited by  316L in the strain 
ra te  neighborhood of 1.2 • 10 -~ to 1.2 s-L Such a comparison, however, is 
probably  of l imi ted  value because of lack of experimental  data  at  strain rates 
higher than  12 s -1 in the case of AISI  316L. 

The values in Table 5 for the viscosity function coefficient C3 and the values 
given in (5.2) for the remaining constants yield an excellent agreement between 
the experimental  and numerical da ta  in the range of strain rate of 4.5 s -~ to 750 s -1. 

Table 5. C~ versus ~ /or 316H 

: 4.5 45. 480 750 (s -1) 
C3: 11.5 9.15 7.30 7.00 

Figure 11 shows tha t  parameter  C3 is parabolic in In ~. In  fact, f rom the first 
three values of Table 5 one obtains: 

C3 = 13.32 - -  1.29 In ~ ~ .05 ( ln ~)2 (5.4) 

r  

Q: 

0 r 
I 

C 3 .  13.32 - 7 .291n~. .05 ( l n g )  2 

X ~  
X , ~  

0 1 2 3 4 5 6 

NAT.  LOGARI TNM OF STRAIN  -RATE 

Fig. 11. Viscosity funct ion coefficient C 3 versus In h for stainless steel type  316H 
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Subs t i tu t ing  in (5.4) for S = 750 s -1 one finds 

~78[ ;=?5os-~ = 6.97, 

which is wi thin  1% of the  es t imated  value  of 7.0 f rom the  numer ica l  model.  
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Fig. 12. Numerical a.nd experimental results for stress versus strMn for stainless steel 316H 
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Fig. 13. Numerical results for stress versus strain for stainless steel 316I-I showing per- 
formance of the model in the strain-rate range of 4.5 to 45 s -1 
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Figure 12 shows an excellent agreement between experimental data  and 
numerical results. 

Another indication that  the parabolic relation (5.4) is adequate is the fact 
that  the numerical model response for a randomly selected value of strain rate 
in between the experimental values 4.5 and 45 s -1, i.e., ~ = 23.75 s -1, coincides 
with the experimental observations (Fig. 13). 

6. Numerical  Examples 

The calibrated viscoplastic material model and the related stress-update 
algorithm described in Section 3 have been incorporated into the transient 
dynamic Computer Code BLEXIS-3C jointly developed by CEA (CEN-Saclay) 
and CEC (JRC-Ispra). The resulting subroutine has been linked to several two- 
and three-dimensional finite elements available in the PLEXIS library. 

In order to illustrate the significant effect of the rate of loading on the stress 
distribution, two numerical examples will be presented using the material pro- 
perties reported in Table 4 for the nonlinear viscoplastic behaviour of stainless 
steel AISI 316L. For comparison purposes, numerical results have also been 
derived for the case of linear viscosity (7 = C2) and for inviscid plasticity. 

6.1 Thick-Walled Cylinder Under Internal Pressure 

The first example considers a thlck-walled cylinder with axially fixed ends 
submitted to internal pressure. The cylinder has an outer to inner radius ratio 
of 2, and is modelled using 9-node Lagrange finite elements as shown in Fig. 14. 
The loading rate is taken 1 GPa s -i  and the maximum applied pressure is 280 MPa. 

I 

L 

r= o [ r=2o 

Fig. 14. Finite element model for internally pressurized cylinder 

4 Acta Mech. 76/3--4 



180 A.G. Youtsos, J. Donea, and G. Verzeletti: 

This loading rate  corresponds to  a strain rate  in the  range 10-2--10 -1 s -z at  
the  inner surface of the  cylinder. 

Figures 15a and 16a show hoop and equivalent  stresses, respectively, versus 

internal  pressure, while in Figs. 15b and 16b similar results are shown for purely 
elastoplastic material  behaviour.  The comparison of the  numerical  results shown 

in Figs. 15a and 15b on one hand  and those in Figs. 16a and 16b on the  o ther  
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Fig. 15a. Hoop stress versus internal pressure at various r/a ratios based on the calibrated 
model for stainless steel type 316L 
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elastoplastie behaviour for stainless steel type 316L 
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Fig. 16a. Equ iva len t  stress versus in ternal  pressure a t  various r/a ra t ios  based on t h e  
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Fig. 16b. Equivalent stress versus internal pressure at various r/a ratios assuming simple 
elastoplastie behaviour for stainless steel type 316L 

hand illustrate the significant effect of the viscoplastic behaviour on the structural 
response even a t  such moderate  strain rates. 

More specifically, for the viscoplastic material  law the hoop stress at the 
inner surface of the cylinder increases practically linearly up to about  180 MPa, 
which corresponds to an internal pressure of 130 MPa, while for the purely 
elastoplastic law significant deviation f rom linearity begins at  125 MPa which 
corresponds to an internal pressure of 90 M-Pa. Maximum, hoop stress at  the inner 

4* 
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surface in the viscoplastic case is by  about  40% higher than  tha t  for the elasto- 
plastic case. In  the elastoplastic case the equivalent stress near the inner surface 
increases linearly until the yield stress is reached and hardening does not commence 
there until the yield stress is reached throughout the cylinder, thus leading 
to an ideally plastic behaviour in the mean time. Contrary to the above is the 
viscoplastie case where the viscous effect yields a hardening effect throughout 
the material  in a continuous manner  following the original linear response. 

6.2 Thin-Walled Vessel Under Internal Pressure 

A thin-walled vessel under high internal pressure rate is now considered. 
The finite element model of the vessel is shown on Fig. 17 and consists of 11 
conical shell elements based on Kirchhoff theory. Four different loading rates 
were analyzed: 50, 500 and 5000 G P a s  -1 where the radius to thickness ratio 
was taken to be 6.25 (cases A, B and C) and finally 50000 GPa s -1 where tha t  
ratio was taken to be 12.5 (case D). Thus it was possible to s tudy the structural 
response tha t  corresponds to strain rates of 3 - -  30 s -1 for the A, B and C cases 
and around 150 s -1 for case D. All transient analyses performed were run up 
to the point where the mean equivalent strain reached the value of one percent. 

Numerical results are presented for equivalent stress vs. internal pressure. 
For pressure rates of 50 and 500 GP~ s -1 (Figs. 18 and 19) two material  behaviour 
cases are shown for comparison purposes (elastoplastic and nonlinear visco- 
plastic). Finally for pressure rate of 5000 and 50000 GPa s -1 (Figs. 20 and 21), 
three material  behaviour cases are shown (nonlinear viscoplastie (~/----~(F)), 
linear viscoplastic (V = C~) and purely elastoplastie). 

6 

7 

$ 9 

Fig. 17. Finite element model for pressurized vessel 
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:Fig. 20. Equivalent  stress versus internal pressure for P ~ 5000 GPa s -1 at  nodes l 
and 12 of pressure vessel and for elastoplastic and viseoplastic behaviour of stainless 
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A s  could be seen from the numerical results for the two lower pressure rates, 

the deformation histories vary after yield stress is reached depending on whether 
t h e  viscosity function is constant or depends on the overstress. Contrary to 

this, for the two higher pressure ra tes  the deformation history throughout the 

vessel is practically the same. However, as also shown in Figs. 20 and 21, the 
stress results for linear and nonlinear viscoplastic material behaviour are different 

for these two higher loading rate cases. 

From the plotted results for equivalent stress one observes that  the non- 

linear viscoplastic behaviour response at the end of the transient is higher than 

that  of the simple elastoplastic behaviour by about 40%--65% as pressure 
rate increases. In  addition, as expected, the response due to linear viscoplastic 

behaviour falls in between the other two. ~inally for the two extreme pressure- 

rate cases, 50 and 50000 GPa s -1, which yield strain rates of 3 and 150 s -z, 

respectively, the equivalent stress response at the end of the transient differs 
by about 15% as Table 6 indicates. 

Table 6 

Node Equivalent stress Equivalent stress 
No. (P = 50 GPa s -I) (P = 50000 GPa s -1) 

1 316 MPa 346 MPa 
12 323 MPa 353 MPa 
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7. Conclusions 

The viscoplastic const i tut ive model  developed by  Cernocky and Krempl  

has been implemented in a t ransient  finite element code together  with an efficient 

stress upda te  algori thm based on the  elastic predictor-re turn mapping  concept. 

The model has been calibrated to reproduce the  uniaxial response of both  stainless 

steels A I S I  316L and 316H and applied to predict  the  response to t ransient  

loading of two representat ive structures.  
:However, the  performance of the  model  needs to  be fur ther  examined in 

comparison with two-dimensional  s train ra te  experimental  da ta  and its cali- 

bration must  be extended to  account  for cyclic loading cases. Therefore, fur ther  

experimental  work is required in uniaxial cyclic quasistatic and dynamic  loading, 

as well as in two-dimensional monotonic  loading. 
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