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1. Introduction 

For the efficient numerical treatment of viscous flow problems it would be 
highly desirable to work with solutions of the Navier-Stokes initial-boundary 
value problem, which are as smooth as possible at least at the initial time t = 0. 
However in [6, p. 243] Heywood has drawn attention to a compatibility 
condition, which must be fulfilled by the initial value of any Navier-Stokes 
solution being strongly H 3 - continuous at time t=0 .  In the joint paper [7, 
p. 277] with Rannacher the authors pointed out, that because of its non-linear 
and non-local nature, this condition "is virtually uncheckable for given data". 
A compatibility condition of this type has already been formulated in 
Lady~enskaya's book [12, p. 168] 1. Recently Temam [22] has shown this type 
of a non-local condition to be not only necessary, but also (in the case of 
initial values from H3) sufficient for strong H3-continuity at time t = 0  for 
solutions of a class of semilinear evolution equations. 

The following note gives an answer to the question, how smooth a Navier- 
Stokes solution can be at time t =0  without any compatibility condition men- 
tioned above. For this aim (roughly spoken) we measure the smoothness of a 
vector function u(t) by means of the exponent e of the highest fractional power 
A s of the Stokes operator A, which is applicable on u(t), the function A%(t) 
being strongly continuous at t = 0. 

We will see (Theorems 3.1, 4.t below), that the exponents being possible 
without the above compatibility condition are e<�88 This follows with methods 
from Fujita and Kato's work [4] together with results on interpolation 
spaces from Lions and Magenes' book [14]. 

By the way we will find, that Heywood's and Temam's formulations of the 
compatibility condition differ in so far, as Heywood's condition follows from 
the strong continuity of the external force f(t) itself at time t=0 ,  while 
Temam's condition is a consequence of the strong continuity of Weyl's ortho- 
gonal projection of f(t) at t = 0, c.p. Sect. 4 below. 

1 c.p. also Solonnikov [-20, p. 97] 
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2. Local Strong Navier-Stokes Solutions. Notations 

Let R be a bounded open set in the (x 1, x 2, x3)-space R 3, the boundary 0R 
being a compact 2-dimensional C3-submanifold of /R 3. The velocity vector 
u(~, x)=(u 1, u 2, u a) and the pressure function p(t, x) of a nonstationary incom- 
pressible flow in R at times t > 0 solve the Navier-Stokes initial-boundary value 
problem 

c~ 
- - u - A u + V p = f - u V u ,  V . u = 0  for t > 0 ,  
0t 

ulna-=0, u(0, " )=u  o (2.1) 

with the prescribed (density of the) external force f ( t , x )=( f* , f2 , f3 ) ,  if we 
assume the condition of adherence on 0R, and if distance and time are 
measured in the appropriate units. 

A particularly adequate framework for (2.1) give the Hilbert spaces H,, of 
vector functions (defined almost everywhere) on R, which belong to Lebesgue's 
class L2(R) together with their spatial derivatives up to the order m=0,  1, ... .  
We write the norm 

Iflm~=( ~ j" [D~f(x)12dx) 1/2 
Inl__<m ra 

on H,, with the usual multi-index n =(n, ,  n2, n3) containing the integers na>0, 
Inl=na+n2+n3, where ]a~f(x)L stands for the Euclidean norm of the vector 
(Ol~lf(x)/(Oxl) "1 (DxZ)"2(ax3)~)MR 3. For the L2(R)-norm we will write llflJ = [flHo. 

By .;/{',, we denote the closure in H m of the linear space D(O) of divergence- 
free Coo-vector functions having compact support in R, P being Weyl's ortho- 
gonal projection of/-/0 on ~0.  Finally let A be Friedrichs' selfadjoint extension 
of the positive definite, symmetric operator - PA in Jfo, with D a (or DA~ ) 
denoting the domain in J~o of the "Stokes operator" A (or of the fractional 
power A ~, respectively, for any real e>0).  We recall, that DA= is a Hilbert space 
equipped with the usual graph norm (ll f II 2 .~_ II h=f [I 2)1 /2  = I/IoA=- 

With these notations and since P commutes with the strong time derivative 
9,, the Navier-Stokes initial-boundary value problem (1.1) leads to the evolu- 
tion equation 

(c~t+A)u=P(f-uVu), t>0 ,  u(0)=u o (22) 

for the X/go-valued function u(t)= u(t,.). 
Because we are interested in Navier-Stokes solutions which are as reg- 

ular as possible at t = 0  without any additional compatibility conditions, we 
assume U o ~ c ~ H  2 for the initial value, the external force f :  [0, o o ) ~ H  o 
being uniformly H61der-continuous with H/51der-exponent v~(0, 1), i.e. 
f e  C~([0, o9), Ho). 

More generally for any fixed interval J c N  1 and any Banach space H with 
norm ].In, we will write C~(J, H) for the class of strongly H/31der-continuous 
functions f :  J--+H with 

[ f ] ~ =  sup {[f(t)-f(s)IH. ft-sl-~} < oo. 
t, s E J  

O<l~-sl< t 
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By Co(J ,H ) we denote the usual Banach space of continuous functions 
f :  J ~ H .  

Then from Fujita and Kato's work [4, p. 293, 303, 312] we know, that on a 
(possibly small) time interval [0, T], T>0, the unique strong solution 
u ( t ) ~  ~ H  2 of (2.2) exists, u together with the associated gradient Vp repre- 
senting the unique solution of (2.1) on [0, T]. For u, the inequalities 

(a) I]A~u(t)ll~c~ for teE0, T] and (b) [A~u]u<c~,, (2.3) 

hold with any ~ [ 0 , 1 ) ,  #e(0,1) if a + # < l ,  the bounds % c, ,u>0 depending 
only on lUoIuz, f2, T, a and #. In the following, by c, co, q ,  ... we will denote 
positive constants, the value of which may be different in different sections. 

3. Strongly Continuous Navier-Stokes Solutions in DA~+~, ~E[0,�88 

Let u, Vp be the local solution of (2.1), u existing on a time interval [0,T], on 
which (2.3) is valid. We prove 

Theorem3.1. Assume uo~D a . . . .  ~[0,�88 PfsCu([O,~) ,  DAo ) with H61der- 
exponent #~(0,1]. Then u~C o ([0,T], DAI+~ ) holds. I f  in addition f ~ C  o 
([0, ~),  Ho) , then the unique pressure gradient from (2.1) is 

Vp = (1 - P ) ( f - u V u  + Au)~ C 0 ([0, T], H0). (3.1) 

For the proof we use the integral equation 

u(t )=e-'AUo - A -  1 (1 --e-tA) P(u V u-- f ) ( t )  
t 

- -  ~e-(t-~)a P((u V u - f )(s)  - (u V u - f ) ( t ) )  d s 
0 

=11 +12 -t-13, (3.2) 

which follows from the integral Eq. (1.11) in Fujita-Kato [4, p. 272] because of 
the identity 

t 

~ e-(t--s)A M S  : A - 1(1 - e-tA), 
0 

[8, p. 489]. Since the strong H61der continuity of P(uVu- f )~C~([O,T] ,Wo)  
guarantees the existence and also a H61der estimate of A~I3 even for exponents 
~s[1, l + v )  [4, p. 281, Lemma2.13],  the belonging of the projection P(uVu) 
from the second term I 2 in (3.2) to DA~ will be the decisive point for the 
following estimates. The statement on P(uVu)~DA, for any positive e<�88 will 
follow in the framework of Lions and Magenes' interpolation spaces [14]. 
Results in more general Banach spaces are due to Kielh6fer [10] and v.Wahl 
[23, 24~. 

The proof of Theorem 3.1 results from the following Lemmata 3.1-3.4 and 
Corollaries 3.1-3.3. Firstly we state 
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Remark 3.1. The equality ~flc~H2=Da holds, since the operator A is defined 
on ~f~ ~ H  2 with values in ~o and, due to Cattabriga's Theorem [2], any 
solution v of A v = g e ~ .  o belongs to ~ c~H 2, c.p. [15, p. 299, 324]. 

Information on the existence of A~P(uVu) gives us 

Lemma 3.1. Assume v, weD a. 
Then P(vVw)eDa,  holds for all ee[0,�88 and the estimate 

]lA~P(vVw)ll <c IlAvll IIAwll (3.3) 
is valid. 

For the proof, using H61der's inequality, the multiplicative inequality 
[VVlL~<coIIVVvll3/4[lVvil 1/~ [13, p. 62, 633, Sobolev's inequality IV[L~<C 11Vln ~ 
and the special form 

Ivl~2_-<egllAvll for v e D  A (3.4) 

of Cattabriga's inequality [2], we find v V w ~ H  1 and 

IvVwlm <lVlL~" IlVwll + IVvln4 IVwlL~+IVlL~ IlVVwll 
<c3/IPAv[I- IIVAwll 

for any v, weD A. Therefore [21, p. 18] the projection P(vVw) belongs to the 
Hilbert space H 1 ~ ~o = P H i ,  and the estimate 

IP(vVw)ln, <=c, ILAvLI " IIAwll (3.5) 
holds. 

The imbedding Theorems for fractional order spaces Hs(I2 ) with norm 

n n 2 \ 1 / 2  
I~0[m= I~01u~.+2 y~ j I~x~0(x)-~,q~(y)l dxdy) 

Inl=[sl fl• Ix--Y] 3+ 2(s-[s]) 

for the integer [s] < s <  [s] + 1 show, that the Hilbert space H 1 c ~  0 is con- 
0 1 tinuously imbedded in Hs(f2)c~gf o if se[0,1]. In the case se[  ,~] the space 

Hs(f2) coincides with the closure I?ls(O) in H~(f2) of the space of Ca-vector 
functions having compact support in O, Lions-Magenes [14, p. 55, Theorem 
11.1]. 2 

On the other side, /I~(I2) is (with equivalent norm) the interpolation space 
[I2II(f2),Ho]I_,FDns/~ for se[0,1], s~=�89 Lions-Magenes [14, p. 64, Theorem 
11.6], 2 D8,/2 = Hz(O) being the domain of the square root of the Laplacian B = 
( - A )  in H o. Finally, Fujita and Morimoto [253 have shown DB~/~2/s 
for se(0,2). Therefore we have H~(Q)~o=Da , /2  , thus P(vVw)~Da, for 

S 1 
e=~s[0,Z) and in addition (3.3) holds because of (3.5) and the continuity of the 

imbedding H a c H s. An immediate consequence is 

Corollary 3.1. For any H61der-continuous solution u~C~([0, T], DA) of (2.2) with 
v > O, the estimate 

[A"P(uVu)],<e5 sup [lAg(Oil [Au]~ 
holds, t~[o, rl 

2 The proof of this Theorem in [-14] is valid also under our assumption on Of 2 
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For the proof we only have to use (3.3) with v=u(t)-u(s), w=u(t) or w 
=u(s), respectively, for t, se1-0, T1. 

Remark 3.2. From Fujita and Kato's result 

I VlL~ <e IlA'vll, IIe(vVv)ll <-_c NAI/2vH IIA'vll, 

Ilp(vvv-wgw)ll <c(llA'vl[ HA1/2(v-w)II + IlAZ/Zwl[ [IA'(v-w)ll) (3.6) 

for any real number 7> 3, v, w~Da, [4, p. 273, Lemma 1.21, the HNder 
estimate 

[P(u Vu)] ~ __< c 6 (3.7) 

follows for the local strong solution ueC~([O, T1,DA, ) of (2.2) for any re(0,�88 
re( 3, 1) with 7 + v < 1, c 6 = c(crc~,~ + c~c~,~), % %,  denoting the constants from 
(2.3). 

Lemma3.2. Assume UoED a . . . .  PfECu([O,o~),Da~), e~(0,�88 Then we have 
[Au] ,<  oe for any v<min(e,/~,�88 

For the proof firstly we remark, that we may apply the operator A on both 
sides of (3.2). Namely, besides 12 also the term 11 in (3.2) belongs to Da, A 
commuting with the exponential e -tA of this operator. Finally I3~D A follows 
by [4, p. 281, Lemma 2.131 from the H/51der continuity of P(uVu) and P f  
which we have stated in Remark 3.2 or assumed for P f  respectively. 

Putting t = s + h  for t, s~[0,T] and h > 0  we find the estimates 

h , 
l] a (11 (s + h) - 11 (s))ll = II e-SA( e-hA _ 1)Au ~ ]1 < _  iiZ 1 +~Uo II, 

using I-4, p. 280, Lemma 2.11], and 

IlA(I2(t)-I2(s))l] <= II(1 -e - ta )p( (uVu- f ) ( t ) - (uVu- f ) ( s ) ) l l  

+ fle-SA(1 --e-hA)P(uVu--f)(s)II 
h ~ 

<= 2([P(uVu)] v h ~ + [Pf]uh u) +~(llW e(uVu)(s)ll + [IW P f  (s) l[) 

<c7 h* if he[0, 1] 

for any v<min(e,#,�88 by Lemma 3.1, Remark 3.2 and the above Lemma from 
[41 again. Under the same restriction, a bound for [AI3] ~ follows by I-4, p. 281 
Lemma 2.13] from the H61der continuity of P(uVu) and P f  

Lemma3.3. Assume UoffD A . . . .  PfeCu(1-O, oe),DA~), eel0,�88 #>0.  Then 
Ila l+~u(t)ll is uniformly bounded on [0, T]. 

For the proof by the same conclusion as above we see from Lemma 3.1 and 
Corollary 3.1 with Lemma 3.2, that u from (3.2) belongs to DAI+,, eel-0,�88 For 
any such e we have uoeD A because of the continuous imbedding DAI+,cD A 
following from the momentum inequality 1-3, p. 159]. 

(a) Therefore a uniform bound on [0,T] for ]]Au(t)[[ results immediately 
from (3.2), if for the terms AI 2 and AI 3 we recall (3.6) or (3.7) and [-4, p. 281 
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Lemma 2.13], respectively, and because of 

IlA ~ +~Ii(t)ll < II A~+~uoll. 

(b) In the case ee(0,�88 from Lemma 3.1 and the uniform bound for IIAu(01] 
on [0, T] just established we get 

I] A1 +~I2(t) l l  =< II(1 - e-tA)A~P(uVu - f ) ( t ) ] l  

<= 2(][A~ P(u Vu)(t)]l + IlA~ P f (t) [I <- %. 
The estimate 

IIA1 +~I3(t)ll ~c9 "([A*P(uVu)]~ + [A~Pf]u)<=Clo 

follows by means of Corollary3.1 with Lemma3.2 and [4, p. 281, 
Lemma 2.13], 

In addition, a consequence of this Lemma of Fujita and Kato is 

Corollary 3.2. The H61der estimate CA1 +~I q o L 3j~<cl l  holds for all v<min(e,#, 1) if 
~e(0,�88 and, additionally, for all v<min(/~,�88 e=0. 

Namely for the proof in case ee(0,�88 we recall A~P(uVu- f )e  Cz([O, T], ~o) 
for any 2<min(e,#,�88 by Lemma 3.2 and Corollary 3.1 and by our assumption 
on P f  Additionally recalling Remark 3.2 we find P ( u V u - f ) e  Cz([0, T], Wo) for 

Lemma3.4. Assume uoeD A . . . .  PfeC.([O,  oo),DA.), g e l 0 , � 8 8  p .>O.  Then 
A 1 +eUe  Co(I-0 , T], Jfo) holds. 

Because of the last Corollary, for the proof we only have to verify the 
strong continuity of the terms Al+~I~ and A~+H2 in the representation of 
Al+~u from (3.2): Since A 1+~ commutes with e -ta, the exponential being 
strongly continuous on [-0, T], we have 

II A1 + ~(I1 (s + h) - 11 (s))l[ = [l(e-hA _ 1)VII ~ 0  

if h i0  with v=e-'AAl+~Uo . 
Finally, recalling Lemma 3.2 and Corollary 3.1 or Remark 3.2 in the cases 

ee(0,�88 or e=0, respectively, we are lead to the inequalities 

[IA 1 + ~(I2 (s + h) - I2 (s))I[ 

I1(1-e-~A)A~P((uVu-f)(s+h)-(uVu-f)(s))] l  

+ {1(1 --  e -hA) e-SAA*P(uVu - f ) ( s ) l l  

<c12'  h~+ [l(1 -- e-hA) vH "~0 

for h $ 0 with v = A~P(uVu- f )  (s), and similarly for A 1 + e(Ij(t)- l j ( t -  h)), j = 1, 2. 

Corollary 3.3. (a) Under the assumptions of Lemma 3.4 we have 
0tu~ Co(J0 , T], 2/fo ). 

(b) I f  in addition feCo([O,r],Ho), then also (3.1) V p = ( 1 - P ) ( f - u V u  
+ Au)e Co(J0 , T], Ho) holds. 
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For the proof of (a) we state, that in the evolution Eq. (2.2} the terms 
P{uVu) and Au are strongly continuous on [0,T3 by Remark 3.2 or Lemma 3.4 
with e=0, respectively (for the latter recall uoeD A because of the continuous 
imbedding DAI +o c D a mentioned in the proof of Lemma 3.3). 

(b) By means of Cattabriga's estimate (3.4) we see, that the unique solution 
u(t)~H2, Vp( t )eH o of 

- A u + V p = g ( t ) ,  V.u=0 ,  u[oa=0 

with g = ( f - u V u - O , u ) e C o ( [ O , T ] , H o )  is strongly continuous. Therefore we 
have 

AueCo([O,T],Ho) and VpeCo([O,T],Ho). 

Finally the Eq. (3.1) follows by subtraction of (2.2) from (2.1) because of A =  
- P A  for u(t)e~fl c~H v 

Evidently, Lemma 3.4 and the last Corollary verify Theorem 3.1. 

4. The Compatibility Conditions for Navier-Stokes Solutions, 
which are Strongly Continuous in Dal+, at t = 0, s > ~  

Let u, Vp be the local solution of (2.1) on a time interval [0, T], on which (2.3) 
is valid. We prove 

Theorem4.1. Assume uECo([O,T],DAI+~), e> 1, Pf~Co([O,T],DA,). Then the 
compatibility condition 

(Pf (O)-P(uoVuo)+PAuo) loa=O [22, p. 20] (4.1) 

holds in the sense of the fractional order space H2~_~(Og2 ). I f  in addition, 
feCo([0 ,  T-I, H 2=), then the compatibility condition 

( -  A Uo + Vp(0))[ea =f(0)10a [7, p. 14] (4.2) 

follows with Vp(0) from (3.1). 

For the proof, because of the continuous imbedding DA= c DA, for any fl < ~, 
ss ~! *q thus it suffices to consider the cases t4, 2a, 

D A,/2 = IDA,,,  ~o31 -s = I21~(f2) ~ ~fo ~ Hs 

with s = 2 s e @  1], [14, p. 64, Theorem 11.6] and [25]. 3 
Recalling the continuous imbedding H1 c Hs, we conclude the strong con- 

tinuity in H s of the term P(uVu) in 

a t u = P f - P ( u V u ) + A u  (2.2) (4.3) 

3 See footnote on p. 144 
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from the estimate 

IP(uVu(O-ugu(s))lm<%.lIA(u(O-u(s))[I sup [I/u(~)[I 
z~[0, T] 

by Lemma 3.4 with ~ = 0, the estimate above resulting from (3.5). The other two 
terms on the right side of (4.3)being strongly continuous in DAocH ~ on [0, T] 
by our assumption, from (4.3) we get OtuECo([O,T],H~) and therefore 
c3~ulo~ Co(J0, T], Hs_~(0f2)) on the boundary [14, p. 41-42 Theorem 9.4]. 4 
Since ?,u[ee=0 for t > 0  because of the boundary condition u[oe=0, our 
result is the compatibility condition 

0 = lim (~ u)10a(t) -- (PfO) - P(uo Vuo) + PAuo)[0~. (4.4) 
t;o 

If, in addition, f ~  Co(J0 , T], H~), we have 

Pf(O)-  e(u o Vuo) + PAu o = P ( f ( 0 ) -  u ovu o + Auo) (4.5) 

by definition of Weyl's orthogonal projection P, which for the function g =f (0)  
-uoVuo + AuoeH o reads 

P g = g - V q  (4.6) 

with the unique generalized gradient VqeH o. From this we conclude 

Vq=(1 - P )  g=Vp(0) (4.7) 

with Vp(0) from (3.1). Since due to [14, p. 41-42, Theorem 9.4] 4 the boundary 
value f(0)10~ belongs to H,_+(~?O) and because of uoVuo[oe=O, the result of 
the last Eqs. (4.4)-(4.7) together is the compatibility condition (4.2). 

The author thanks Professor v. Wahl for a hint to the special r61e of the value s=�89 for the 
spaces H,. 
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