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Point Reconstruction from Noisy Images 
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Abstract. In this paper we treat the problem of determining optimally (in the least-squares sense) 
the 3D coordinates of a point, given its noisy images formed by any number of cameras of known 
geometry. The optimality criterion is determined by the covariance matrices associated with the 
images of the point. The covariance matrices are not restricted to be positive definite but are allowed 
to be singular. Thus, image points constrained to lie along straight lines can be handled as well. 
Estimation of the covariance of the reconstructed point is provided. 

The often appearing two-camera stereo case is treated in detail. It is shown in this case that, 
under reasonable conditions, the main step of the reconstruction reduces to finding the unique zero 
of a sixth degree polynomial in the interval (0, 1). 
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1 Introduction 

The reconstruction problem, when errors are 
present, has been studied by several authors. 
Blostein and Huang [1] and Rodrigues and 
Aggarwal [2] studied the effects of digitization 
errors in the images. However, these studies 
were limited to the special case of parallel 
camera geometry and were concerned mainly 
with the error analysis. Among recent works, 
the work of Deriche, Vaillant and Faugeras [3] 
should be mentioned. In their work recon- 
struction from line segments and end-points of 
line segments is studied. However, the covari- 
ances of the measurements are used only to 
determine the approximate covariance for the 
solution point, but do not enter into the func- 
tional to be minimized. Another approach, that 
has been proposed, is to use Kalman filtering, 
see e.g. Ayache and Faugeras [4]. However, a 
Kalman filter approach linearizes the problem 
and will therefore, in general, yield an approxi- 
mate solution. 

In this paper we have made the following as- 
sumptions: 

• The geometries (location of the optical center 
and orientation of the axes) of N cameras 
are known. 

*The authors are listed in random order. 

• The N images of a point p E R 3 have be.en 
identified and matched. 

• The error of every image point is normally 
distributed with zero mean and known co- 
variance matrix. 

Under the above assumptions the following 
problems are solved: 

® Compute the least squares estimate of the 
point p. 

• Compute an estimate of its covariance matrix. 

Since trinocular systems are common and 
furthermore in Photogrammetric applications 
points may appear in as many as 6 pictures, 
we have chosen to treat the problem for any 
number of images, N. However, the important 
case N = 2 is treated in detail. It is shown that 
the main step of the solution is reduced to find- 
ing the unique (under reasonable conditions) 
zero in the interval (0, 1) of a polynomial in one 
variable. 

The errors in the position of the images 
are assumed to be normally distributed with 
zero mean. 

The solution presented has the following fea- 
tures. First, the least squares estimation of p is 
formulated as an unconstrained minimization 
problem, where the functional to be minimized 
is determined by the metrics associated with 
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the covariance matrices of the measured points. 
The covariance matrices are allowed to be sin- 
gular, and thus linear constraints on the location 
of an images point can be incorporated in its 
covariance matrix. Secondly, the above formu- 
lation makes it possible, by using the implicit 
function theorem, to calculate an approximate 
covariance matrix for the solution point. 

The paper is organized as follows: 

• Section 2, Preliminaries and Notation, ex- 
plains the basics. 

• Section 3, Noise and Norms, is a general dis- 
cussion about the metric defined by a sym- 
metric positive (semi)definite matrix and the 
formulas it gives rise to. 

• Section 4, Reconstruction, treats in detail the 
problem at hand. The general case is stud- 
ied in subsection 4.1 and the case with rank 
deficient covariance matrices in 4.2. In 4.3 a 
plausible choice of the initial approximation 
necessary to solve numerically the problem 
is presented. The special two-camera case is 
studied in detail in 4.4. A short discussion 
about the plausibility of the solution is found 
in 4.5. 

2 Preliminaries and Notation 

We assume that images are formed according to 
the pinhole camera model with the image plane 
in front of the optical center, which is denoted 
by O. Points and their coordinates in R 3, with 
the exception of the optical centers, will be de- 
noted by lower case letters, e.g. p = (x ,y ,z ) ,  
whereas their images and their coordinates in 
the projective plane(s) will be denoted by upper 
case letters, e.g. P = (X, Y). The presence of 
at least two cameras makes it necessary to use 
subscripts or superscripts to indicate the cam- 
era or the coordinate system involved. If the 
optical center of a camera is located at a point 
with world coordinates T, the translation vec- 
tor, and if the orientation of the optical axis 
of the camera (z-axis) and the x- and y-axes 
of the projective plane, is described by a 3 x 3 
rotation matrix R then the transformations from 
the world (global) coordinate system, p, to the 
camera coordinate system, pC, and vice versa are 

hnage 

(x°'Y°) 7 

f . ~ S x  Sy ~-x 

Fig. 1. The camera  model.  

described by 

p~ = R T ( p -  T) p = Rp ~ + T (1) 

where the superscript T denotes transposition. 
For a real camera the optical axis does not 

necessarily intersect the image plane at the ori- 
gin of the image coordinate system, but at a 
point P0 = (X0, Y0). Finally the size of a pixel, 
in world coordinates, can vary in the X and Y 
directions. The size of a pixel in the X direction 
is Sx  and the size of a pixel in the Y direction 
is Sv. The distance from the optical center, O, 
to the image plane, the focal length is denoted 
b y f .  

Using 

the image coordinates are transformed into a 
standard pinhole camera systems with f = Sx  
= Sy = 1 and X0 = 110 = 0, which will be used 
in the sequel. 

3 Noise and Norms 

It is assumed that the error associated with the 
image points obeys a Gaussian distribution with 
zero mean. This means that an image point, P, 
can be described by an average and a covariance 
matrix. The actual derivation of the covariance 
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matrix can be a difficult problem, but here we as- 
sume that the covariance matrices have already 
been derived. The problem of reconstruction 
from image point correspondences when the 
error associated with each image point is the 
quantization error and therefore not normally 
distributed, has been treated elsewhere [1] [2]. 
However, there are many situations where the 
errors in the coordinates of image points come 
from other sources. In such cases, the distri- 
bution of the errors can often be approximated 
by a Gaussian distribution. Moreover, the treat- 
ment presented here, allows singular covariance 
matrices, i.e. image points that are constrained 
to lie on lines or even to be considered as exact! 

3.1 The Covariance Matrix 

The covariance matrix C plays a crucial role in 
the following. This matrix is symmetric positive 
definite or semidefinite. Semidefinite covariance 
matrices incorporate linear constraints and vice 
versa linear constraints can be incorporated in 
covariance matrices, see e.g. the monograph of 
Arthur Albert [5]. If p is a stochastic variable 
with mean value p and a semidefinite covariance 
matrix C then p is constrained to vary inside the 
linear variety {~ + 7~(C)}, where 7~(C) denotes 
the range of C. E.g. the stochastic variable P 

(1  P = , with P = 

and rank-one Cp = (3) 
b e 

implies that P is constrained to vary along the 
line (+v  ~ vrd)P = :kv/~A + v~B where the 
negative sign is chosen if b _> 0, and the variance 
o f P i s  @ = a + c .  

Conversely, linear constraints can be incor- 
porated in covariance matrices. E.g. a point 
P E R 2 constrained to lie on a line a T p  = c, 
Ila[I2 = 1, with variance @ along this line can 
be considered as a stochastic variable in the 
whole of R 2 with covariance matrix given by 

= - 

Trivially, a quantity known exactly can be con- 
sidered as a stochastic variable with covariance 
matrix zero. 

If y is a function of a stochastic variable x, 
i.e. y = f (x) ,  then the covariance matrix of y, 
can be approximated by 

cy FC F r (4) 

where F is the Jacobian matrix of f .  The for- 
mula is exact if f is linear. 

3.2 Norms and Distances 

If the n x n covariance matrix C is of full rank 
i.e. positive definite, it defines an inner product 
and thereby a norm and a distance by 

y>c = ilxll  = 2 c  

oc( ,y) = i lk-vile (5) 

If the covariance matrix is rank deficient 
(dim(7~(C)) < n), we can still define a func- 
tion, which strictly speaking is not a norm but 
it will serve the purpose of measuring distances, 
by using the pseudoinverse C t instead of C -1. 
By abusing the notation and the term we shall 
call it a norm in RL 

I[Xt[ 2 = x T C ~ f x  ifx e ~(C)  

= cc otherwise (6) 

It is well-known that, under the assumption 
aTCa ~ O, the point x on the hyperlane aTx = c 
nearest, in the C-norm, to a given point y is 
given by 

aTy - c _ 

x = y C ' a  ( 7 )  

and that 

( a T y  --  C) 2 
(s)  

Note that the inverse (or the pseudoinverse) of 
C does not enter the formulas. They are valid 
for definite C as well as semidefinite C. The 
only restriction is that aTCa ~ 0. 

4 Reconstruction 

In this section we will determine the functional 
to be minimized, first in the case of full rank 
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covariance matrices, section 4.1, and then de- 
scribe the necessary modifications in order to 
deal with singular covariance matrices, section 
4.2. A method to find an initial approximation 
to the solution is presented in section 4.3. In 
the two camera, the solution is simplified into 
a minimization of a functional in one variable, 
section 4.4. 

4.1 Full Rank Covariance Matrices 

A point p = (x, y, Z) T is projected through a 
standard pinhole camera with extrinsic parame- 
ters R, T to (Xp, lip), which is given by 

( i ~ )  -- pT(p lT)RT(p_  -- T) (9) 

where p is the third column of R. 
Given the N measured images of p, the N lines 

passing through the image points and the corre- 
sponding optical centers will not, in general, pass 
through the same point. Our assumption about 
Gaussian distribution implies that the best p is 
the one that minimizes the sum of the squares of 
the corrections of the images of the point (mea- 
sured in the norms induced by the associated 
covariance matrices). 

The natural way of defining a distance be- 
tween the measured point M = (A, B) and the 
corrected point P = (Xv, Yp), which is the pro- 
jection of the solution point, is by using the 
covariance matrix of M, CM, i.e. 

d 2 = lIP - MtI~M (10) 

In order to determine the least squares solution 
p, the sum of the squares of the distances must 
be minimized. By using the expression from 
equation (9) it can be shown, after some ma- 
nipulations, that the squared distance can be 
written as 

d2 = (p - T)TQ(p -- T) = (p - T)TQ(p - T) 
[oT(p -- T)] 2 (p - T)TW(p - T) 

(11) 
where W = ppT is a rank-one 3 x 3 matrix and 
where Q is a 3 x 3 symmetric positive semidefi- 
nite matrix, the elements of which depend on 

the parameters of the camera, the coordinates 
A, B and the covariance matrix CM. 

o=.[o :] a T R T, where G = CM 1, 

Q is obviously semidefinite since the distance 
must be zero, when the projection of p coincides 
with the image point. 

The functional to be minimized is 

N N 

f (p )  = ~ - ( - ' P - - ~ -  - Ti)TQi(p - Ti) = Z di2 (13) 
i=1 i=1 

where the subscript i denotes the quantities as- 
sociated with the i:th camera system, and the 
minimization is to be done over all of R 3. In 
spite of the fact that the behavior of each sum- 
mand of f is perfectly understood, minimizing f 
is not at all trivial but can be done by traditional 
optimization techniques, e.g. Gauss-Newton di- 
rection methods. 

Since the individual components of f are 
smooth functions, except for p lying in a plane 
through the optical center parallel to the projec- 
tive plane, a necessary condition at the minimum 
point p is 

Of = , ~  2 
Op ~ (p - Ti)TWi(p - 7~) 

x [Qi(p - Ti) - d2Wi(p - Ti)] = 0 (14) 

The above formula implicitly defines the solution 
p as a function of the measured points in the 
images. Let Z = (A1,B1,Az,. . . ,  BN)  T, where 
(A1,B1), (A2,B2),.. .  are the measured image 
points. Then, by applying the implicit function 
theorem we get the derivative of p with respect 
to Z as 

Op _ [ O~f 1-1[ 02f 1 (15) 
oz lOpOpJ lopoz] 

where Op/OZ is a 3 x 2N matrix, 02f/OpOp is a 
3 x 3 matrix (the Hessian of f with respect to 
p) and 02f/OpOZ is a 3 x 2N matrix. 
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Computation of Op/OZ at the solution point 
provides an approximate covariance matrix of p 
by means of (4). 

[Op] T 

"Ci 0 

• " 0 

. , ° 

"'. ~ (16) 

o 

4.2 Rank Deficient Covariance Matrices 

If an image point has a rank-deficient covariance 
matrix this implies that the point must lie on a 
line (rank one) or is fully known (rank 0). Rank- 
deficient covariance matrices might not be very 
common in practice, and are included here only 
to make the analysis complete. 

When one or more of the covariance matri- 
ces are rank deficient the functional to be min- 
imized (13) must be suitably modified. Besides 
that, the minimization has to be carried out un- 
der constraints. However, these constraints are 
linear. Therefore, an easily derived linear trans- 
formation yields an unconstrained minimization 
problem in fewer variables. 

There are three different cases: 

• The covariance matrix C associated with the 
given image point is of full rank. In this case 
the corresponding summand of f in (13) re- 
mains unchanged and no constraint is issued. 

• The covariance matrix is a rank-one matrix. 
In this case the corresponding summand of 
f in (13) must be modified. The inverse of 
the covariance matrix must be replaced by the 
pseudoinverse which has a particularly simple 
form. In our case 

C =  [ :  be] , C i s r ank -one  

1 
c t  = + (17) 

In addition, a constraint must be added. In 
view of (3) and with the notation used there, 

it is easily seen that p must satisfy 

qT p = qTT 

where q = R ~ : F v  GAx/-a-v/'riB)" (18) 

The minus sign in the first component, :kx/~, 
(matched with the plus sign in the third com- 
ponent), is chosen when b > 0. R, T are the 
extrinsic parameters of the pertinent camera. 
The covariance matrix is zero. This is an 
unusual case and it is considered only for 
the sake of completeness. The corresponding 
summand of f is eliminated and two con- 
straints are added. The constraints describe 
that the point p must lie on the line joining 
the optical center and the image point. The 
constraints can be chosen as any two planes 
(not identical) containing the image point and 
the optical center. An easy choice 

qTp = qT r ql ---" R 

and q f p =  q~T qz = R (19) 

Each camera will yield 0, 1 or 2 constraints of 
the type qrp = e. The resulting m constraints 
can be collected to 

Q p = h ,  where Q i s m x 3  (20) 

The singular value decomposition of Q gives 

Q = E v r p  = UTh = h' (21) 
Zp t = h', where p' = VTp (22) 

Constraints on p are thus transformed into con- 
straints on p'. For each nonzero cr~ the cor- 
responding component of p' = (x', y', z') has a 
fixed value, p~ = h~/ai. For the o-~ values that 
are zero the corresponding component of p' is 
free to vary, unless h~ is not zero, in which case 
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the constraints are inconsistent. As a result of 
this transformation, we know how many (the 
rank of the matrix Q) of the first components 
of p' are fixed (and their values) and how many 
of the last components  of p' vary freely over 
all R. So p' can be divided into p' = (p~, p~) 
where p~ are constant(s) and /~ are variables. 
Every such p' gives rise to a point p = Vp',  the 
projection of  which into any of the cameras will 
lie at a finite distance from the corresponding 
measured point, i.e. 

d e = lIP - MIt~M = ( P  - M)TC~M(P - M )  
(23) 

The equation (11) can now be written as 

d 2 = 
( p  - T ) T Q ( p  -- T )  

( p  - T ) T W ( p  - T )  

(Vp '  - T ) T Q ( V p  ' -- T )  

(Vp, - T)rW(VV - T) 
(p '  - T')TVTQV(p ' -- T') 

(p '  - T ' ) T V T W V ( I ¢  - T ' )  

(p'  - T ' ) T Q ' ( p  ' -- T') 

(p '  - T ' ) T W ' ( p  ' - T ' )  
(24) 

where T'  = VTT and W' = v T w v .  Further- 
more 

0 / =  v~R -(C~M)~ M~C~M] R~V (25) 

The functional to be minimized is 

N t i T I i t (p  - T~) Q~(p - T~) 

i=l  

N 

= 

i = 1  

(26) 

The minimization is unrestricted and we can 
proceed exactly as before. At the minimum point 
the derivatives with respect to p'~ should be zero 
and we have 

Og _ 0 (27) 
o ~  

The equation (27) implicitly defines p" as a func- 
tion of M, and exactly as before the covariance 
of p" can be  computed. To get the covariance 
of p' we simply border  the matrix by zeroes to 

get a 3 x 3 covariance matrix. This gives 

cp,= % 

and since p = V / w e  have 

Cp = V C v V  T (29) 

4.3 Initial Approximat ion for  the Point 
Reconstruction Problem 

A plausible initial approximation to the recon- 
structed point is the point p which is clos- 
est to the rays defined by the optical centers 
of each camera and the corresponding image 
points. These rays, li, can be written 

h = o~ + z(P~ - O d  = s~ + a t i ,  ~ , Z  ~ R 

(30) 

where 

sTtl = 0, tTitl = 1 (31) 

This representation, which is unique up to the 
sign of h, makes the solution easier. Given a 
point p in R a, the squared minimum distance 
from this point to the line, s + o~t is 

d 2  = HP - sll 2 - ( t T p )  2 

= pTp _ 2sTp + 8T s __ (tTp)2 (32) 

Given N cameras (and therefore N lines) the 
problem is to find the point p minimizing the 
sum of the squared distances to these lines, i.e. 

N 

min ~ d~ 
P ERa i = 1  

N 

= min ~-" pTp _ 2sTp + sTs~ _ (tTp)2 (33) 
PER s .= 7-71 

At the minimum the derivative with respect to 
p should be zero, i.e. 

N 

0 Z ~ I  dff = y ~ ( 2 p  - 2si - 2(tTp)t i)  = 0 (34) 
Op ~=1 
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which can be rewritten as 

p - - - - ~ p =  I -  P =  N i = I  

7" = [tlt2 " " " tN] (35) 

The matrix 
1 T A = I -  - ~ T T  (36) 

is nonsingular unless 

tl = +t2 . . . . .  +tN (37) 

which implies that all rays li are parallel. This 
can be seen as follows: T T  T is a symmetric 
positive semidefine 3 × 3 matrix. As such its 
eigenvalues are 3 nonnegative real numbers, the 
sum of which is 

N 

Ai(TTT) = t r ( T T  T) = t r (TTT)  
i=1 

N 

= E tTt~ = N. (38) 
i=1 

Since the eigenvalues of A are 

1 - I A i ( T T T ) ,  i = 1,2,3 (39) 
N 

the matrix A is singular if and only if 

,k l (TT T) = N, A2(TT T) = A3(TT T) = 0, (40) 

i.e. T T  T is a rank one matrix. Since rank(B) = 
r a n k ( B B  T) = rank(BTB)  for all matrices B , T  
must be a rank one matrix. Since the ti: s are 
unit vectors, equation (37) follows. An initial ap- 
proximation to the reconstructed point is there- 
fore given by 

( p =  I ~ (41) 

except when all ti are parallel. In the latter case 
it is easy to prove that tl spans the nullspace 
of A. This together with the fact that ~ is or- 
thogonal to tl, gives the initial approximation 

p = ~ + T t l ,  V v E R  (42) 

However, this is an unusual case, and should 
normally not occur. 

4.4 Special Solution for the Two-Camera Case 

Very often the reconstruction problem is solved 
for two-cameras, i.e. N = 2. Formula (14) 
would yield a system of 3 polynomial equations 
of degree 6 in 3 variables, the coordinates of p. 
However, in this special case, the problem can 
be solved as follows: Consider the one param- 
eter family {~r~, A E R} of epipolar planes, i.e. 
planes containing the optical centers. The pa- 
rameterization is chosen so that Tr0 corresponds 
to the plane of the family containing the left 
image point and ~rl to the plane containing the 
right image point. For each epipolar plane it is 
possible to find a best reconstruction point as 
follows. Each epipolar plane defines two epipo- 
lar lines, i.e the intersection lines of the epipolar 
plane with the two image planes. For each of 
the two epipolar lines, the point on the line 
that is closest to the image point, as well as its 
distance from it can be determined. The two 
points define two rays, the intersection of which 
is the best reconstructed point for the chosen 
epipolar plane. This implies that it suffices to 
determine the epipolar plane on which the best 
reconstruction point lies, i.e. to determine the 
best A (a one-variable problem) instead of de- 
termining the best p (a three-variable problem). 
It turns out the functional to be minimized has 
the form 

= ( 1  - 
+ = fL( ) + ( 4 3 )  

where r and q are second degree polynomi- 
als, the coefficients of which depend on the 
image coordinates, the covariance matrices and 
the camera geometry. Minimizing f leads to 
finding the roots of a sixth degree polynomial. It 
seems obvious that the best reconstructed point 
will lie on an epipolar plane passing between 
the two image points, i.e. 0 < ~ < 1. However, 
due to strange camera geometries and/or special 
covariance matrices the solution can actually lie 
outside this interval. Below it will be shown that 
under reasonable conditions there is a unique 
zero in the above interval. 

4.4.1 Deriving the Functional. Instead of first 
finding the epipolar lines and then calculating 
the distances on the image planes the formulas 
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Fig. 2. Determination of the best point on a given epipolar 
plane. Note that due to the distance measure using the 
covariance matrices the distances are not measured orthog- 
onal to the epipolar lines in the Euclidean sense, but in the 
metric induced by the covariance matrices. 

(7) and (8) allow us to treat the problem directly 
in R 3. 

The left image point Pz can be considered 
as a point in R 3 with coordinates expressed 
in the left camera system (XL, YL, 1) T. The 
associated 2 x 2 covariance matrix CL must be 
suitably modified to a 3 x 3 matrix, by bordering 
it with zeroes. In the left camera coordinate 
system the point and its covariance matrix are 
given by 

I:001 pL = PL = GL = 

Similarly, in the right camera coordinate sys- 
tem the point PR and its covariance matrix are 
given by 

(x:) i:001 P~ = PR = GR = 

Choosing, for definiteness, to work in the left 
camera system, the coordinates of the point pL n 
are given by 

pL R = MT + RT(TR - TL) 

where M = RTnRL 

and its associated covariance matrix must be 
modified to MTGR M. 

An epipolar plane, ~ra, contains OL, i.e. the 
origin of the left camera coordinate system, the 
optical center of the right camera OR, with 
coordinates R T ( T R -  TL), and a point lying 
on the line passing through PL and PR, say 
p~ = Ap L + ( 1 -  A)p L for some A E R. The 
normal of 7ra is then a~ = pa x On. The distance 
from PL to 7r~ is given by equation (8). The 
numerator is given by 

( a~ ;~ )  2 = [p~, oR ,  pf]2 
= [@L + (1 -- A)p z, OR, pZ]2 

= (1 ~2r_z  
- j w , ,OR,  p~] 2 

Similarly, the numerator of the distance from 
PR to IrA is 

T L 2 A 2f~L OR, pL12 
( a ~ p R )  = t e R ,  z ,  

The coordinates of the normal a~ are given by 

a~ = [@z + (1 - A)(MTpR + RT(TR -- TL))I 

x RT(TR -- TL) (44) 

= [ApL + (1 -- A)MTpR] x RT(TR -- TL) (45) 

= R [ [ ( ~ n z p z  + (1 - ~)nRPR) 

× (TR -- TL)] = Rz%~ 

where 

b~ = (ARLPL + (1 -- )ORRpR) X (TR -- TL) 

Thus the objective is to find that )~, that mini- 
mizes the functional 

f ( ~ )  = [pz ,  p . ,  oR]  2 

× 

If the image points lie in a epipolar plane then 

[PL, PR, OR] = 0 i.e. I(A) = 0 

and there is noting to minimize. The point p can 
be found as the intersection of the two coplanar 
rays defined by the image points and the cor- 
responding optical centers. If [PL, PR, OR] ¢ 0 
then we have to minimize 

(1 - ~)2 ,X2 

f($) = bT~-~[-'~ba + bTRRGRRTbx 
_ - -  /k 2 

(1 A) 2 + - fL(A) + IR(A) (46) 
r(A) q(A) 
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Thus the main step of the reconstruction prob- 
lem is solved by minimizing a one-variable func- 
tional. Once A is determined, the points on ~ra 
closest to the image points are determined by 
(7), and the intersection of the two rays can be 
trivially determined. 

The quantities involved in the computation of 
the denominators, beside the covariance matri- 
ces, are 

o~= M T , 3 = M  

3" = RTL(TR -- TL), 6 = R~(TR - TL) (47) 

We have that the denominator of fz is 

r(A) = (~ × 3" + )`(pL × 3' - ~ × 3'))~ 

x G L ( a x 3 " + A ( p L  X3"--aX3,))  (48) 

a second degree polynomial, the coefficients of 
which can be expressed in terms of the follow- 
ing constants 

a = (a x 3")TGL(a X 7) 

B = (pL × 7 ) T a L ( ~  x 7) 

C = (PL X 7)TGL(PL X 3'). (49) 

We get 

/L(),) -- (1 -- ),)z 
r()`) 

(1 - )`)2 

= A + 2 ( B  - A) ) `  + ( C  - 2 B  + A)) `  2 (50 )  

Note that A and C are the GL-norms (in 
the extended meaning) of the vectors oe x 7 and 
PL × 3' respectively, and that B is their GL-inner- 
product. It is trivial to see that the Cauchy- 
Schwartz inequality remains valid in this ex- 
tended meaning of norms and inner-products. 
The Cauchy-Schwartz inequality gives B 2 <__ AC, 
which simply states that the discriminant of the 
denominator is nonpositive, i.e. the denomina- 
tor is nonnegative. 

Similarly the right term of the objective func- 
tional is 

A2 
f R ( ) ` ) -  q()`) 

)`2 

D + 2 ( E  - D))` + ( F  - 2 E  + D))` 2 

(51) 

where the constants appearing in the denomi- 
nator are given by 

D = (pR x 6 ) r a R ( p R  × 5) 

E = (PR x 5)rGR(/~ x 5) 

F = (Z × e ) T a R ( Z  × 6) (52) 

The critical points of f()`) are the zeroes of 

f'()`) 
= -(1-A)q(A)2(2r(X)+(1-A)r'(A))+Ar(A)2(2~r(A)ZqfA)2 (53) 

Computing the zeroes of fl  can be carried out 
by using any polynomial solver applied on the 
numerator (which is at most of degree 6). There 
are some special geometric configurations that 
are worth noting. 

1. The normal to an image plane is orthogonal 
to the line connecting the optical centers. For 
definiteness, let us suppose that the normal 
of the left image plane (the 3 rd column of 
RL) is orthogonal to T R -  TL. This implies 
that 73 = 0. In this case fz reduces to a 
perfect square, and the polynomial the zero 
of which must be computed is at most of 
5 th degree. The same conclusion is reached 
if 63 = 0. If both "/3 = 63 = 0 then both fL 
and fR are perfect squares and the degree of 
the polynomial reduces to 4. 

2. Both normals are orthogonal to the line con- 
necting the optical centers and parallel to 
each other. In this case we have in addition 
that m33 = 1 and the other elements of the 
3 ra row and column of M are zeroes. Thus 
we have in addition a3 = ~a = 1 and there- 
fore both denominators reduce to constants 
and the minimization is trivial. 

To find all the roots of the polynomial can be 
time consuming and therefore it will be shown in 
the next section that, under reasonable conditions, 
the zero that provides the global minimum of f 
is a zero in the interval (0, 1), which, moreow~r, 
is the unique zero in this interval. 
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fL 

1 "lambda 

Fig. 3. General  sketch of the  dis tance functions.  Note that  the maxima can occur on ei ther side of  the minima.  

4.4.2 Sufficient Conditions for  a Global Mini- 
m u m  o f  f in (0, 1). Instead of treating f we 
shall t reat  the two summands fL and f n  sepa- 
rately. Figure 3 provides a qualitative sketch of  
fL and fa .  

We have 

1 1 
IL(O) = ~ J R ( l ) =  

1 
f L ( O 0 )  

1:'-.~ fL(A)  = C -- 2 B  + A 

1 
JR(co) ":--~ fR(A) F - 2E + D 

fL(O) < f c ( c o )  ¢:~ 2 B  - C > 0 

fR(1) < fR(co)  ¢* 2 E  - D > 0 

By using elementary arguments we shall prove 
that the two conditions, 2B - C > 0 and 2E  - 
D > 0, confine the global minimum of f to the 
interval (0, 1). We also have 

2 
A()~) = 7 ( A  - 1)(B + (C - B)A) 

rka )- 

where ~ = 1 is a zero and ), = ~ is either a 
zero or a pole. 

2 
f~(),) = q(A) 2 (),(D + (E  - D))0)  

where ,~ = 0 is a zero and A = ~ is either a 
zero of a pole. 

In addition we have 

2s(A) 
= " 

where 

s(A) = (4B 2 - 2AB - AC)  

+ 6(AB + B C  - 2B2)A 

- 3(2B - C)(C - 2B + A),X 2 

+ 2(B - C)(C - 2B + A),k 3 
# _ tl 2(4B2-2AB-AC) 

S (O) - 

ft!R( "~ ) =  2(D2-3D(F-2E+D)A2-2(E-D)(F-2E+D)'X3)q(,~)3 

f "  0 " 2(4E2-2EF-DF) 

(54) 

i.e. f~(1) and f~(0) are positive, whereas the 
signs of f~(0) and f~(1) coincide with those of 
4B  2 - 2 A B  - A C  and 4E 2 - 2 E F  - D F  respec- 
tively. 

Let  us examine fL. We have 

PROPOSITION 1. The condition 

2B : C > o (55) 

implies that f achieves its global m i n i m u m  at a 
point  )¢ >_ O. Moreover, the condition 

4B  z - 2 A B  - A C  > 0 (56) 

implies that f~(A) > 0 for  all ,k E (0, 1). 

Proof. We have the following three cases: 

1. The discriminant of r negative, i.e. 
B 2 - A C  < O. 
This implies that fL is bounded.  The deriva- 
tive o f  fL has two zeroes. The zero at 
)~ = ~ corresponds to the maximum of 
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fL, whereas the zero at A = 1 corresponds to 
the minimum. We also have 

lim f~,(A) = 0 (57) 

The condition 2B - C > 0 implies that B > 
and this places the number ~ -c ,  where fL 
achieves its maximum, outside the interval 
[ -1 ,  11. 
Moreover, B must be positive and therefore 

2B 
t ~ ( 0 )  = - A2 < 0  

Let  us examine the two possible locations of 
the maximum of f z  and their implications. 

• A =  BB_---~>I. 

In the interval ( -c~ ,O) , f z  is strictly de- 
creasing from f i (oo)  to fz(O). Therefore, 
fr(A) > fL(0) for all A E ( - ~ , 0 ) .  Since 
fR is nonnegative and fR(0) = 0 we get 
that f(A) > f(0)  for all A E ( -c~ ,0) ,  i.e. f 
achieves its global minimum at some point 
in the interval (0, oo). The point A = 0 is 
excluded since f ' (0)  = -~-~ < 0. 

By combining (57) with the two zeroes 
of f~, it is obvious that the three zeroes 
zl < z2 < z3 of f~ are located as follows 

B 
- c ~  < zl < 1 ' ( 2 : 2  < ~ <Z ,3  ,((2<) 

B - C  

Since f"(1)  > 0 the condition f~(0) > 0, 
i.e. 4B 2 - 2AB - AC > 0, guarantees that 
zl < 0 and that f~(A) > 0 for all A E (0, 1). 

• A = BB_---~ < --1. 

In the interval ( - c % 0 ) , f z  is strictly in- 
creasing from f i ( ~ )  tO achieve its max- 
imum at ~ and then strictly decreases 
to fL(O). Therefore, fr(A) > fL(O) for all 
), E ( - ~ , 0 ) .  With the same reasoning 
as above we see that f achieves its globai 
minimum at some point in the interva~ 
(0,  

The three zeroes zl < z2 < z3 of f "  are 
located as follows 

B 
- - ~ < Z  1 < ~ < Z  2 < 1  <z3 < ~  

B - C  

fl 
Since f"(1) > 0 the condition f~(0) > 0 
guarantees that z2 < 0 and that f~(A) > 0 
for all A ~ (0, 1). 

2. The discriminant equal to zero, i.e. B 2 -  

AC = 0 and A ~ C. 

In this case the denominator of fL is a perfect 
square which does not reduce to a constant. The 
point ~ is a pole of f z  and its derivatives. 
We have 

fL(A) = (1 - A) 2 
( C -  2B + A)(A - ~--~-OBc) z 

2C 
] ~ ( A )  = ( C  - B ) ( C  - 2 B  + A )  

A - 1  
× 

(a_ 
- 4 C  

]~(A) = (C - B ) (C  - 2t3 + A) 

A 2 B - 3 C  
2 B - 2 C  

X 
(A B 4 - B--zV) 

The reasoning, concerning the location of the 
global minimum of f is analogous to that of the 
previous case. The word maximum is replaced 
by infinity. There is only one zero of ]L. It 
is obvious that the second condition guarantees 
that f~ is positive throughout the whole interval 
[0, 1]. 

3. The discriminant equal to zero, i.e. B 2 -  
AC = 0 and A = C. 

In this case the denominator reduces to a 
constant. No discussion required. [] 

Examining J'R yields in an almost identical way 

PROPOSITION 2. The condition 

2E - D > O (58) 

implies that f achieves its global minimum at a 
point A* < 1. Moreover, the condition 

4E 2 - 2EF - D F  > O (59) 

implies that f~(A) > 0 for all A E (0, 1). 
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\ 
epip01 ~ = 0  

= 1  

Left image 

Fig. 4. The normal situation. The distance between the point PL and the epipolar line for A = 0 is much smaller than the 
distance to the epipolar line for ,k = e¢ and much smaller than the distance to the epipole. Note that the distances are 
measured using the covariance matrices. This implies that all points on the drawn ellipse lie at the same distance from the 
point PL, which is the center of the ellipse. 

Combining the two propositions yields that 

1. The conditions 2/3 - C > 0 and 2E - D > 0 
imply that f achieves its global minimum at 
a point A* E (0, 1). 

2. The conditions 4B 2 -  2 A B -  AC > 0 and 
4E 2 - 2EF - D F  > 0 imply that the second 
derivatives of fL and fR are positive through- 
out (0, 1), and therefore their sum f is strictly 
convex in (0, 1). This implies that it has only 
one minimum in this interval. A* can be 
found by computing the zero of a polynomial 
of degree at most 6, which is a very simple 
numerical problem. 

Remark. The conditions 55-56 and 58-59, are 
sufficient, but not necessary. Therefore, even if 
these conditions are not satisfied, there might 
still be a unique zero in the interval (0, 1) that 
gives the minimum. 

4.5 Justifying the Term "Reasonable Conditions" 

The above conditions are easy to use as the 
quantities involved will be calculated anyhow. 
When valid, the only iterative part of the al- 
gorithm is the computation of A*, within the 
interval (0, 1). The rest of the quantities are 
given by explicit formulas. However, in order 
to be helpful the conditions must be satisfied 
in situations that occur in practice. The fol- 
lowing discussion is meant to show that this is 
the case. To do so we will illustrate three dif- 
ferent situations graphically. After this we will 
show an example of a camera setting where the 
conditions are not fulfilled for some points. 

In Figure 4, the normal situation is illustrated 

for the left camera. The epipole is outside the 
image and the distance between the epipolar 
planes corresponding to the two image points 
(A = 0 and A = 1) is small. Furthermore the 
covariance matrices for the measurements give 
rise to a distance measure where the ellipses 
representing points at equal distance from PL 
are not too elongated. If the situation is the 
same in the right image, the solution is given by 
a unique A in the interval (0, 1). In Figure 5, 
a more unusual situation is illustrated. Due 
to the very elongated ellipses, corresponding 
to points of equal distance from the measured 
points, it is possible that the distance to the 
epipolar line corresponding to A = 0 is longer 
than the distance to the line corresponding to 
A = c¢. Therefore there is a possibility that the 
minimum is outside the interval (0, 1). In the 
third example, Figure 6, it is not the shape of 
the ellipses that gives rise to a strange behavior, 
but the closeness of the epipolar point to PL. 
This is due to the geometry of the cameras and 
is further illustrated in the following example. 

4.5.1 An Example of a Camera Setting. We 
present here an example of a specific camera 
configuration where the given conditions fail for 
certain points. This neither implies that the 
solution is outside the interval (0, 1), nor that 
there are more roots than one in this interval. 
As mentioned before the conditions are suffi- 
cient but not necessary. When two cameras are 
used for stereo it is common to arrange them in 
a symmetric way, either with their optical axes 
parallel or with a symmetric vergence. Such a 
setting will be used as an example, see Fig- 
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~ = 0  

Fig. 5. A very unusual situation. Covariance matrices giving 
rise to elongated ellipses with special or ientat ion can give 
a distance from PL to the epipolar line for ,~ = oo smaller 
than the distance to the  line for ,~ = 0. 

= 0  0 < ) , < 1  

Fig. 6. Special camera  configurations influences the distances 
and can make the maximum value of fL occur inside the 
interval (0, 1), despite that  the  covariance matrices gives 
points on equal  distance from PL as circles. 

ure 7. In the example the vergence angle is 90 °. 
This unusually large angle is chosen in order to 
make it possible to illustrate a situation where 
the "reasonable conditions" are not fulfilled for 
all points. 

We will study a plane through the center of 
the images, with a rather wide opening angle of 
45 ° . If small errors for the measured points are 
assumed t then the vectors PL, PR, and TR - TL 
will be (almost) in the same plane. Referring 
to equation (47) and (48) this means that the 
quantities a x 7 and PL x 7 will be parallel vectors 
and can be written 

O~ × ~y ~ k l ~  , PL × q/ ~ k2 ~ (60) 

where ~ is a unit vector. Nothing that a is PR 

TR 

Fig. Z A two camera setting with the cameras  at right angles. 
The  plane depicted, viewed from above, is a plane contain-  
hag the optical centers and approximately passing through 
the centers of the  images. The  dark areas represent  3D 
points, the projections of which fail to satisfy the  "rea-  
sonable conditions", concerning the left camera.  The  small 
black area to the  right corresponds to points for which the  
first criterion, 2B - C > 0 fails. The  large black area to the 
left contains points for which the second derivative criterion 
is not fulfilled. See text for more  details. 

expressed in the left coordinate system and using 
the notation, from Figure 7 we have 

a × 7 = IPRI]Ta-  TL]sin(r  + v2)~ 
1 

-- cos(v2) ITR -- TLI sin(r + v2)~ 

sin(r + 
_ cos(vj2)v IT n _ T L I ~  (61) 

PL X 7 = IPLIITR -- TLI sin(r + vl)~ 
sin(r + 

_ COS(Vl)I )v  IT " -  TLi~ (62) 

The constants A,B and C, see equation (49), 
can now be written as 

sin(r + v2) 
A -  - 

sin(r + v2), 
x ~-os@~ ITR - TL]n 

sin(r + va) 2 
- ~ -  ~ I T R -  TLI2~TGL~ (63) 

cos( 2) 

B = sin(r + v~)sin(r + v2) 
cos(v1) cos( 2) 
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x ]TR - TL]2~TGL~ (64) 

sin@ + ,Ol) 2 I T  R _ TLIa~TGL ~ (65) 
C= COS(Vl)2 

This implies that  

2 B - C > 0  

2sin(r  + v2) sin(r + vl) 
~" cos(v2) cos(v1) > 0 (66) 

In the same way 

4B 2 -  2 A B -  A C  > 0 

3sin(v + vi) 2sin(r  + v2) 
> 0 (67) cos(  ) cos( 2) 

In Figure 7 the small area  to the right corre- 
sponds to the par t  of  3D space where the first 
condition (55) is not fulfilled whereas  the larger 
area  to the left corresponds to the par t  of  space 
( =  combinat ions of  points in the images) where 
the second condition (55) is not fulfilled. The 
same reasoning applied to the right image will 
give a similar result, but with left and right in- 
terchanged.  

If  one combines the result for the left and 
the right camera  it is clear that  the "reasonable  
condit ions" are valid for most  combinat ion of 
points in the two images. In more  common  situ- 
ations, with a vergence angle ~50 ° or less (=  the 
optical axes are more  parallel) the reasonable 
conditions are valid for all image points. 
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Notes  

1. An error of 10 pixels in an ordinary image corresponds 
to an angle error of about 1 °, and will therefore effect 
the discussion only to a limited extent! 
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