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Localization Properties of Direct Corner Detectors* 

KARL ROHR 
Arbeitsbereich Kognitive Systeme, Fachbereich Informatik, Universitiit Hamburg, Vogt-KOUn-Str. 30, 
D-22527 Hamburg, Germany 

Abstract. In the past, several approaches for directly determining corners in gray-value images have 
been introduced. The accuracy of an approach has usually been demonstrated experimentally by 
comparing its results with those obtained by previous schemes. In this contribution we analyze 
localization properties of existing direct corner detectors by using an analytical model of gray-value 
corners. For the different approaches we derive implicit equations constraining the corner points and 
numerically evaluate their locations. Since a gray-value corner is generally defined as the curvature 
extremum along the edge line, we also compute this position and take it as the reference location 
for a comparison of the investigated approaches. 
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1 Introduction 

Direct approaches for detecting corners use 
(local) operators directly applied to the gray val- 
ues without segmenting the image in advance, 
e.g., by concatenating edge points. Of primary 
interest for the application of a certain approach 
is the robustness, the computational expense, 
and the accuracy of localization. Even small 
measurement errors in the image plane can lead 
to large discrepancies in the determination of 
the 3D position or the shape of an object in a 
depicted scene. Therefore, accurately localizing 
prominent image features is important. In ad- 
dition, if two corners are relatively close to each 
other, then a more accurate approach may be 
more helpful in resolving this situation. 

In the present paper we analyze localization 
properties of different gray-value corner detec- 
tors applied to L-corners of a certain class. 
Since the quantitative model of Rohr [25], [26] 
is used, our results are valid for aperture angles 
/3 in the whole range of 0 ° < /3 < 180 ° . For 
each approach we derive an implicit equation 
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characterizing the localization of corner points, 
numerically compute the positions in the range 
of 0 ° </3 < 180 °, and compare them with the 
desired position. In contrast to this, Deriche 
and Giraudon [9] compute the corner positions 
for only certain values of /3 and considered 
only some of the approaches analyzed in the 
present paper. 

It will be shown that for the gray-value sur- 
faces employed, the approaches considered le, ad 
to different results and that without additional 
steps they do not correctly localize the searched 
position. For general (generic) surfaces it has 
already been proved by Rieger [23] that the 
corner detector of Kitchen and Rosenfeld [![6] 
does not find the searched position and that 
the corner conditions of Nagel [20] cannot be 
satisfied for any point. 

In the following, we first discuss the usual 
definition of corner points. Then we describe 
our analytical model of an L-corner and evaluate 
the position of the curvature extremum along 
the edge line. This position will serve as a 
reference location for the direct approaches of 
Beaudet [1], Dreschler and Nagel [11], Kitchen 
and Rosenfeld [16], Zuniga and Haralick [30], 
Nagel [20], F6rstner [13], Harris [22], Rohr [24], 
Biota et al. [5], and Brunnstr6m et al. [7]. 
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Fig. 1. Qualitative results of different approaches for finding 
L-corners. 

point were introduced by Rohr [25], [26] and by 
Deriche and Giraudon [9]. Rohr fitted a para- 
metric model to the observed intensities (see 
also [27], [28] for more efficient approaches), 
whereas Deriche and Giraudon exploited the 
results of a direct corner detector for images of 
different amounts of smoothing and, in addition, 
used the position of edge points found with the 
Laplacian-of-Gaussian (LOG). The classical di- 
rect corner detectors, however, try to determine 
the position #L (in some cases this is assumed 
implicitly). Obviously, the systematic error ob- 
tained should be compensated in further inter- 
pretation steps. Since direct corner detectors 
are generally designed to localize the point ~'L, 
we will compare their effectiveness with respect 
to this position. 

2 Definition of Corner Points 

Under the assumption that the 3D edges of 
polyhedral objects in a depicted scene are ideally 
sharp and that the recording camera does not 
disturb the intensities, a 3D corner is imaged 
to the solid straight lines of an L-corner in 
figure 1 if only two 3D edges of it are visible. 
The searched corner point is located at the 
position ~'0. If we take into account the blur 
caused by a band-limiting camera and determine 
those points where the gray-value gradient gets 
extremal in the direction of the gradient (e.g., 
using the approach of Canny [8] or of Korn 
[17]), then we qualitatively obtain the dashed 
curve. Now it is plausible to define the corner 
point #L as the curvature extremum along this 
line. Indirect approaches that determine the 
curvature extremum along concatenated edge 
points as well as direct approaches in general 
try to determine this position. If, instead, we 
intersect straight lines fit to edge points, then 
we qualitatively obtain the point #1. Since in 
general the detected edge points lie inside the 
sector of the L-corner, #1 lies to the right of 
#0 and the straight line approximation yields a 
position of ~ to the left of ~L. 

The preceding argument shows that if we 
can assume ideal sharp edges in the scene, we 
should use the image position ~0 for a 3D in- 
terpretation. Approaches for determining this 

3 Analytical Description of an L-Corner 

The mathematical description of gray-value cor- 
ners in this paper supposes ideal sharp (step) 
transitions smoothed by a Gaussian filter. This 
implies, for example, ideal sharp 3D edges and 
the blur of the imaging system to be describ- 
able by Gaussian smoothing. A quantitative 
model of this kind for L-corners was intro- 
duced by Berzins [4] and is used in the work 
of Deriche and Giraudon [9]. A similar model 
can be found in [2] and [15]. These models 
agree with the qualitative model sketched in 
[10] and [20]. De Micheli et al. [19] model 
a Y-corner. The quantitative model of Rohr 
[25], [26] describes gray-value variations of an 
arbitrary number of intersecting edges, i.e., L-, 
T-, Y-, and Arrow-corners and more complex 
gray-value structures created by superimposing 
model functions of an L-corner. By fitting this 
model to real intensities it has been demon- 
strated that under certain assumptions the struc- 
tural gray-value variations can adequately be de- 
scribed (see also [3]). Giraudon and Deriehe 
[14] use an extension of the model in [4] and 
[19] for describing structures with three inter- 
secting edges. 

The model function of an L-corner in [25] and 
[26] exploits the symmetry of the structure with 
respect to the x axis (see figure 2) and is valid 
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Fig. 2. C h a r a c t e r i z a t i o n  o f  a n  L - c o r n e r .  

for aperture angles/3 in the whole range of 0 ° < 
/3 < 180 °. In contrast to this, Berzins [4] derives 
three functions for an L-corner, the first valid for 
0 ° </3  < 90 °, the second valid for/3 = 90 °, and 
the third valid for 90 ° < /3  < 180 °. Our model 
comprises these three functions and results from 
the superposition of the first function of Berzins 
[4] and a function obtained by reflecting this first 
function about the x axis. One advantage of our 
formulation is that the derivation of the partial 
derivatives of the model function we need is 
less tedious. Moreover, more complex corners 
(e.g., T-, Y-, Arrow-corners) are also obtained 
by superposition of model functions of the L- 
corner. With the image coordinates 2-= (x, y) 
and z-'# = (x, - y ) ,  the height of the gray-value 
wedge a, and the degree of smoothing cr = 1, 
our model of an L-corner can be described as 

gML(2,, /3, a) = a ( M ( 2 , , / 3 )  + M ( 2 , # , / 3 ) )  
= a ( ¢ ( x )  - - . . ( 2 , # ,  /3)), 

0 ° < /3  < 180 °, (1) 

where 

M(2,,/3) = ¢(a7) - m(2,,/3), 

Y m(2,,/5) = D(¢, t (  - Cz)d~. 
o o  

Here ¢(£) = ¢(x)¢(y), D(£) = G(x )¢ (y ) ,  C ( x )  
is the Gaussian function, ¢(x) is the Gaussian 

error function i.e., 

a ( x ) =  1 ~ e " 

¢(x) = 
o o  

t = tan(/3/2), and G = t x - y .  A 3D plot of 
this L-corner for /3 = 90 ° , a = 1, and a = 1 is 
depicted in figure 3. 

For our comparison of corner detectors we 
need partial derivatives of (1). Since our model 
is symmetric to the x axis, the corner points 
are located on the line y = 0. Therefore in 
the following we only need to evaluate the x 
coordinates of the positions. If  q = V~ + t 2, 
x' = x /q ,  Go = G ( x ) / v ~ ,  Do = G( t x ' )¢ ( x ' ) ,  
Ao = tx 'Do, and B0 = ( 1 -  ( tx ' )2)Do are used, 
the partial derivatives of the model function for 
y = 0 calculate to 

9x = 2atDo, 
q 

9~ = 0, (2a) 

2at ( G o g ~  = - -  - tAo), q2 

g~u = O, 

2at 1 

2at 
g~.xx = - - ~ - ( ( 1  + 2t~)x'Go + t2Bo), 

g ~  = O~ 

9~.yy = ~ ( t 2 x ' G o  - BO), 

9yuu = O, (2c) 

where the subscripts denote partial derivatives 
in x and y directions. To make the paper more 
readable we often drop the dependencies on the 
image coordinates 2,. 

4 Curvature Extremum Along the Edge LinLe 

As mentioned in section 2, it is plausible to 
identify the corner point 2,L with the curvature 
extremum along the edge line (see figure 1). In 
our case the edge line is defined as the line 
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Fig. 3. 3D plot of the L-corner model (fl = 90 °, a = 1, ~r = 1). 

where the magnitude of the gray-value gradi- 
ent becomes extremal in the direction of the 
gradient (sketched as the dashed curve in fig- 
ure 1). With the gradient Vg and the Hessian 
H expressed as 

gy ' 

the edge line is given by (see e.g., [8]) 

= ( V g ) r H V g  
2 = + 2g a a y + = 0. (3) 

The position ~L = (XL, 0) is obtained if we 
intersect this line with the straight line y = 0. 
Inserting the explicitly derived partial derivatives 
of our model in (2) into (3), we obtain the 
implicit equation 

O ( x ' )  -- t2x'¢(x ') = O, (4 )  

which constrains XL (see [27]). From (4) it 
follows that the corner position is independent 

L 1 

0.75 

1.5 

.25 

of the height a. By the definition of our model 
this equation is valid in the whole range of 0 ° < 
fl < 180 °. The numerically computed positions 
xL as a function of/3 are displayed in figure 12 
in section 6 (bold-faced curve; x0 assumed to 
be located at z = 0). If fl = 90 °, for example, 
we get XL = 0.71567. Positions for different 
amounts of smoothing a are obtained by scaling 
the x coordinates; e.g., doubling the value of a 
leads to twice the value of XL. 

Although it is intuitively plausible, we are not 
sure that Z'L actually is a curvature extremum. 
For general (generic) surfaces Rieger [23] has 
shown that the necessary condition for a cur- 
vature extremum along F(:~) = 0 consists of 
several hundred terms containing partial deriva- 
tives up to the fifth order. Here, we derive this 
condition by using implicit differentiation and 
show for our L-corner model that this condition 
is actually satisfied in ~L. 

If, in a certain point on an implicitly given 
curve F(~) = 0, we have F~(~) ~ 0, then in a 
small neighborhood of this point there exists a 
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function x = x(y) such that F(x(y) ,  y) = 0 and 

~ ( y )  = vAx(u),  y) v. (~(y) ,  y) (5) 

[61. In our case we have £~(2"r) = 2 g~ga~z < 0 
since g~ = ((2at)/q)G(tx')¢(x') > 0 and g~= = 
-((2ata)/qa)(1 + z2)G(tx')¢(x ') < 0 in ~g (for 
t > 0 and a > 0), and therefore (5) is valid. Re- 
peated differentiation of (5) leads to xuu(y ) and 
xyuu(y). For a curvature extremum along x(y) 
the derivative of the curvature n(y) must vanish: 

,~,(u) = N (1 + ~(u))~/=] 
(1 + 4 ( y ) ) ~ A y )  - 3 ~ ( y ) ~ ( y )  

= 0, (6) 

i.e., 

(1 + ~:~(y))*~(v) - 3 ~ ( y ) 4 ~ ( y )  = o. (7) 

To show that this condition is satisfied in :gL 
for our L-corner  model, we exploit the symme- 
try of the model function with respect to the 
x axis (cf. (1)) and apply a temma of Whitney. 
This lemma states that for a locally differen- 
tiable 6 '~ function f (x ,  y) that is even in g 
(i.e., f ( x , - y )  = f(x ,  y)) there exists a func- 
tion jr(x, y) such that f (x ,  g) = jr(x, y2) [18]. 
No method is given for constructing ]'(x, y). 
However,  by using Whitney's Lemma we can 
get information about  the partial derivatives of 
f (x ,  y) without knowing jr(x, y) (and without 
the need for evaluating the partial derivatives 
of f(x,  y) explicitly). 

For our model we obtain the partial deriva- 
tives as listed in the appendix. Setting y - 0, 
we get g~ - g~y = g~xy = gyuy = 0, which is 
in accordance with (2). If, in addition, we use 
the knowledge that g~ is extremal in Z'L, i.e. 
that g ~  = 0 (gi  must lie on T'(:~) and therefore 
(3) has to be satisfied), then the very exten- 
sive general condition for a curvature extremum 
reduces to 

2 3g~y(gxg~yy + 2gyy(2g~g~yy 2 + g~,)) 
- g~g~(6gyyg~yyy + g~gx~y~u = O. (8) 

If we also use the information of vanishing 
fourth-order derivatives for y = 0 (9~xy = 
gx~yu = 0), we get 

g ~ g x ~ x g ~  = O, (9) 

which is actually valid since 9~uyu = 0. Thus 
the condition for a curvature extremum in ~L is 
satisfied. Assuming that terms of the sum do not 
compensate, we see that partial derivatives of the 
fifth order are really necessary to determine x~L. 

5 Direct Approaches for Determining Corners 

5.1 Beaudet (1978) 

The approach of Beaudet  [1] exploits the de- 
terminant of the Hessian matrix __H, which gives 
significant values near corners. Therefore  we 
have to determine local extrema 

DET(~-) = d e t H  
2 = g,~g~v - g~y ~ extremum, (10) 

which satisfy the necessary conditions DET~ = 
D E T  u --- 0. For our analytical L-corner  model  
and for y = 0 these conditions lead to 

gxxgxyy q" gyygxx:e = O. (11) 

From the preceding equation we get the implicit 
equation 

(1 + 3t2)x'G~(x ') 

+ ( ( - i  + t ~) + (1 + 3t ~ - 2t4)~ '~) 
x ~(~')¢(~')  

+ 2t2x'(1 - (tx')2)¢2(x') = O, (12) 

which has two solutions, a negative local ex- 
tremum and a positive local extremum (xB,~ and 
XBp; hyperbolic and elliptic points of the gray- 
value surface). For different aperture angles p 
and smoothing values o- these extrema are dis- 
placed. Setting /~ = 90 ° (t = 1, q = x/2) with 
x* = x/v'2, we obtain the equation 

x* (2G2(x *) + x*G(x*)O(x*) 

+ (1 - x*2)¢2(x*)) = O, (13) 
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Fig. 5. DET(0, Y) for /3  = 90 °. 

for which the first solution, xB,~ = 0, is obvious. 
The second solution, xBp = 1.65653, has been 
determined numerically. The graph of DET for 
/3 = 90 ° and y = 0 is displayed in figure 4. 
The positions XBn and XBp as a function of /3 
are plotted in figure 12 in section 6 (lightface 
solid curves). 

It should be noted that Deriche and Giraudon 
[9] claim that XBn is not a local extremum in all 
directions. This is intuitively hard to understand, 
especially if we look at the graph of DET for 
/3 = 90 ° at X B n  -~- 0 in the y direction (figure 5), 
which exhibits a local extremum in this direction 
also. For the special case of/3 = 90 ° the Hessian 
of DET in XB,~ is DET~=DETuy-DET2~y = (16 -  
7r2)/(87r2) 2 > 0. Since D E T ~  = (4 + ~r)/(87r 2) > 
0, DET surely has a local minimum in XB,~ 
(a 2D function f (~)  has a local minimum if 
f~fuy - f~y > 0 and f~, > 0 holds at a certain 

point). A proof for general values of/3 leads to 
very lengthy calculations that we have not yet 
been able to carry out. 

5.2 Dreschler and Nagel (1981) 

Dreschler and Nagel [11] describe an approach 
that exploits the local extrema of DET (see 
also [20] and [29]). At XL (the point of 
extremal curvature in the line with maximal 
gradient in the direction of the gradient) we 
have DET = 0 since at this point we have 
g~  = g~.~ = 0. Dreschler and Nagel [11] in- 
terpolate the local extrema of DET in order 
to find the position XL (see [10]). If the in- 
terpolation could be performed exactly, then, 
indeed, the position XDN = XL would be ob- 
tained. Using linear interpolation (which is 
more realistic in comparison with the actual 
implementation), for /3 = 90 ° we obtain the 
position ZDN = (XBn "{" XBp)/2  "~ 0.82826. The 
positions for general values of/3, also computed 
by using linear interpolation, are depicted in 
figure 12 in section 6. 

5.3 Kitchen and Rosenfeld (1982) 

With the gradient magnitude [Vg[ = ~ and 
the vector Vg ± = (-gy, gx) T perpendicular to 
the gradient, the differential operator of Kitchen 
and Rosenfeld [16] consists of 

KR(~) = (Vg±)THVg± 
Ivgl 

2 g~g.vy - 2g~gyg~y + g2g~ 

+ 

--* extremum (14) 

and represents the curvature of a plane curve 
(isophote, level curve) multiplied by ]Vg[. For 
V = 0 the conditions KR~ = KRu = 0 result in 
g~yu = 0 and therefore in 

t~x'G(x ') - (1 - (tx')2)¢(x ') : 0, (15) 

which yields the corner positions xKR repre- 
sented by the boldfaced dashed curve in figure 12 
of section 6. For/3 = 90 ° we get xKrt = 1.18783 
(see figure 6). To improve the accuracy of lo- 
calization Kitchen and Rosenfeld [16] propose 
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considering only edge points (maximal gradi- 
ent in the direction of the gradient) as can- 
didates for corners. With this additional step 
the searched corner position XKR = xL actually 
would be obtained if the edge points could be 
localized exactly. 

5.4 Zuniga and Haralick (1983) 

Zuniga and Haralick [30], in contrast to Kitchen 
and Rosenfeld [16], directly use the curvature 
of a plane curve 

n(Z ' )  = (VgJ- )THVg± 
IVgl 3 

KR(e)  
- [Vg[ ~ extremum (16) 

under the assumption that only edge points are 
considered as candidates for corners. Somewhat 

surprisingly, the application of their operator 
does not yield an extremum in x direction on 
y = 0 (see figure 7 for fl = 90°); i.e., the 
conditions derived from (16), 

g~g~,vy - g~:xgyu = 0 (17) 

and 

G2(x ') + x 'G(x ' )¢(x ' )  - ¢2(x') = 0, (18) 

cannot be fulfilled. Therefore, for detecting cor- 
ners, the extremal property of ,~(~) is exploited 
only in y direction. The localization in x di- 
rection relies merely on the determination of 
edge positions. 

5.5 Nagel (1983) 

Nagel [20] proposes determination of corners by 
the following conditions: 

g~ ~ extremum, g.~ = 0, 

g ~  = O, guu ~ extremum, (19) 

where the local coordinate system should be 
aligned in such a way that 9~y = 0. From 
these conditions the following equations carl be 
obtained: 

9u = 0, (20a) 

g =  = 0, (205) 

g~yu = O, (20c) 

gyuu = O. (20d) 

After the coordinate system has been fixed (here 
9xy = 0), these four conditions have to be satis- 
fied at corners (and, moreover, all other points 
should be excluded by these conditions). How- 
ever, already two conditions uniquely determine 
a point on a sufficiently general 2D surface. 
Therefore for general (generic) surfaces all four 
conditions in (20) can never be satisfied in any 
point (see [23]). For special surfaces, however, 
it could be possible that these conditions are 
fulfilled. 

In the following we consider the conditions 
of Nagel [20] for the special surfaces of our 
L-corner model. From (2) we see that 9xu = 0 
holds for y = 0; i.e., the local coordinate system 
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is fixed as required in [20]. Also, for all points 
on y = 0 we have 9u = 9yuu = 0. Therefore 
conditions (20a) and (20d) are satisfied. If, 
in addition, we require condition (20b) to be 
fulfilled, we get the position XL defined by (4). 
At this point we have 

2at 2 
g~uy = --4-( ( tx) - 1)Do, q ~  (21) 

and setting this partial derivative to zero (con- 
dition (20c)) yields XN = 1/t( t  > 0). Choosing 
/3 = 90 ° gives XN = 1, which does not satisfy 
condition (20b) since the solution of this condi- 
tion evaluates to XL ~ 0.71567 (see section 4). 
For arbitrary values of /3 and simultaneously 
satisfying conditions (20b) and (20c), 

has to be fulfilled. Plotting fy(/3) reveals that 
(22) is fulfilled only for /3 = 0 (figure 8); i.e., 
for all L-corners there is no point on y = 0 that 
satisfies the conditions of Nagel [20]. 

5.6 FOrstner (1986), Harris (1987), and Rohr 
(1987) 

The corner detectors of FSrstner [13] and Harris 
(Plessey corner detector; see Noble [22]) use 
the matrix 

9~. g~gu (23) 
c = \g-:o7  / ' 

0.03 

0.025 

0.02 

0.015 0 Z 
0 005 

-; -2'.s -i . . . .  

[ d e t c / t r a c e C ]  ( x ,  0 ) 

0 . 0 3 5  b e t a = 9 0 ^ e  

1 5  2 5  3 3 5  4 4 . 5  ~ -  x 

Fig. 9. [det  C / t r a c e  C_C] (x, 0) f o r / 3  = 90 °. 

which represents average values of components  
of the gray-value gradient. This matrix results 
from a straightforward generalization from 1D 
to 2D of the considerations in F6rstner [12] con- 
cerning the geometric precision of correlation 
methods. Developing the gray-value gradient 
up to a first-order expansion yields the matrix 

G__ ~ Vg(Vg)  T + c__H 2 (24) 

in [21], which has been used in [24] for detecting 
corners. The parameter  c is a measure for 
the size of the area over which the gradient 
components are averaged. For all approaches 
analyzed in this section we use the expression 
in (24), where it is understood that this is an 
approximation to (23). 

To detect corners F6rstner [13] evaluates 

det C 
t ~ ( z )  ~ maximum. (25) 

This is equivalent to minimizing the inverse of 
(25), as done by Harris [22]. For our L-corner 
model, the graph of d e t C / t r a c e C ( £ )  for /3 = 
90 ° on y = 0 is depicted in figure 9. Setting 
the partial derivatives of  (25) equal to zero for 
y = 0 yields the requirement 

4 9~9~uu + cg~(9~(2g~9~9,uu + gZuu) 
c 3 3 + (9~,9~vu + 9uug~))  = 0. (26) 

The localized positions XF can be  seen in fig- 
ure 12 of section 6 (light face dashed curve). 
Here,  we assume 3 × 3 operators in (24), for 
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which we have c = 2/3. Fo r /3  = 90 ° the posi- 
tion is mr = 1.09673. 

The corner  detector  of Rohr [24] (see also 
[26]) evaluates 

det C(2-) ~ maximum, (27) 

which gives the condition 

gz(g~gxuu + 9z*gy,v) 
+ c9~(9~9~uv + 9uug~x~) = O. (28) 

The localized points xrt with this approach are 
also displayed in figure 12 of section 6 (lightface 
dotted curve). For /3 = 90 ° we have xrt = 
1.01947 (see also figure 10). 

5.7 Blom et al. (1992) and BrunnstrOm et al, 
(1992) 

Recently, Blom et al. [5] introduced a new direct 
corner  detector  that is a modified version of the 
one proposed by Kitchen and Rosenfeld [16]. 
Their  cornerness measure, 

BRK(~) = - (Vg±)T H V f  - 

extremum, (29) 

is the numerator  of  (14) and has been chosen 
in such a way that the detector  satisfies a cer- 
tain invariance property. The same cornerness 
measure is also used in Brunnstr6m et al. [71. 
The graph of this measure for /3  = 90 ° on y = 0 
is depicted in figure 11. From (29) we obtain 

I a ;  
k " \. xB~K 

3 xb*~ 

2 XT? D 

xSp 
1 

) beta 

Fig. 12. Local iza t ion  resul ts  of  d i f fe ren t  a p p r o a c h e s .  

the conditions 

g~Yxyy + 2gx~gyu = 0 (30) 

and 

2G2(z ') + (2 - 3t2)x'G(x')¢(z ') 
+ (1 - 3( tx ' )2)¢=(x  ') = 0 (:31) 

and the corner  positions znea~ as plotted in Fig- 
ure 12 of section 6 (lightface dashed-dotted 
curve). For /3 = 90 ° the position is zBrtK = 
0,86849. 

6 Comparison and Discussion 

Figure 12 shows the localized positions z of the 
different approaches as functions of the aperture  
angle/3 for our L-corner  model on the symmetry 
line y = 0 and for a Gaussian blur of ~ = 
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Ix-xL 

} xBRK 

A 3% 4; ~; A 9; lds l~o l~s ~so 16s ~;o 

Fig. 13. Absolute  deviations from x L for the approaches in figure 12. 

1. Positions for different amounts of blur are 
obtained by z(cr) = za .  The height a of the 
L-corner has no influence on the positions. 

From figure 12 we see that, with the excep- 
tion of the negative extremum ZBn of DET, when 
the approach of Beaudet [1] is used all localized 
positions are larger than XL (as the curvature 
extremum along the line with maximal gradient 
in the direction of the gradient) and for/~ ~ 0 
they move to oo. The absolute deviations of the 
positions to XL are shown in figure 13. Dreschler 
and Nagel [11] determine the corner point by 
interpolating the two extrema of Beaudet [1]. 
The positions found by linear interpolation are 
for aperture angles ~ > 3 0  °, the closest to zL. 
With an exact interpolation the desired posi- 
tion XDS = XL would actually be obtained. On 
the other hand, to find ZL the position of edge 
points could be incorporated in the manner of 
Kitchen and Rosenfeld [16] or of Zuniga and 
Haralick [30]. However, when edge points are 
exploited, all other approaches investigated in 
this paper (with the exception of Nagel [20]) 
also would find zL. The operator of Beaudet 
[1] could be treated analogously if we sepa- 
rately considered the negative or the positive 
extremum of DET. 

If such additional steps (interpolation or in- 
corporation of edge points) are disregarded and 
only measures that have to be maximized or 
minimized are considered (this is what we are 
really looking for), the following can be said. 
For reasons of clarity, we have selected the 

× 

I i "  I 

i I ' ,  % 

4 L ~',, l 

t i"., \ 
\ :" %,L 

3 ~k~F' , ' : \  X 
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Fig. 14. Localization results of approaches  in figure 12 that  
optimize a certain cornerness measure  and yield only one 
extremum for an L-corner.  

curves of approaches from figure 12 that opti- 
mize a certain cornerness measure and, in addi- 
tion, yield only one extremum for an L-corner, 
and we have plotted them again in figure 14. 
The best result relative to ZL is obtained with 
the approaches of F6rstner [13] and of Blom et 
al. [5], which are indicated by the positions zF 
and ZBRK, respectively. For t3<35 ° the curve 
of ZF is closest to zg, whereas for /~ > 35 ° this 
is the case for ZBrtK. It is interesting that the 
curve of ZBRK is close to the curve of XDN. If 
the units of the z axis are identified with pixel 
positions, for ~ > 20 ° (10 °) the (absolute) de- 
viation of XF from zL is smaller than 0.7 (1.3) 
pixels. For f l>65  ° the localization xrt using 
the approach in Rohr [24] is slightly better than 
XF. The distance of the positions xKR (result- 
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ing from the measure in Kitchen and Rosenfeld 
[16]) to xr, is always larger than for XF, x~rtK, 
and xrt. The positive extremum XBp found with 
D E T  by Beaudet  [1] is furthest from XL, and 
for decreasing values of/3 it is asymptotic to the 
curve of XKR. For /3<65 ° (35 °, 20 °) the posi- 
tion xB,~ is closer to XL than xKrt(xrt, ZBRK), and 
for /3< 7 ° the localization is better than for all 
other approaches. With the approach of Zuniga 
and Harafick [30] no corner points can be lo- 
calized without incorporating edge points. We 
have also shown that the conditions of Nagel 
[20] for the gray-value surfaces investigated in 
the present paper cannot be used for determin- 
ing corners. 

If we consider the results with respect to local- 
izing the point x0, then for/3 < 135 ° the positions 
XB,~ are the best ( remember  that we assumed 
x0 = 0; see figures 1 and 12). I n  the whole 
range of 0 ° < /3 < 180 ° the absolute deviation 
from x0 is always smaller than 0.9 pixels. For 
/3 = 90 ° x0 is located exactly. 

It is also worth noting that for small angles 
/3 enormous deviations can occur. For /3  = 1 °, 
for example, the deviation of xnv and XKrt with 
respect to XL is larger than 100 pixels. For 
more realistic values, e.g., /3 = 10 °, we have 
XBp ~ xKn ~ 11.5 pixels (the deviation with 
respect to XL is approximately 9 pixels); i.e., 
assuming the blur of the original image to be 
a0 = 1 and processing the image with a Gaussian 
filter of aF = 1 (2) leads to a displacement of 
the positions of  A x  = ((a~ + a2F) 1/2 -- ao)xBp --~ 
4.8 (14..2) pixels. In these cases, approaches 
that track those points for different amounts 
of image smoothing may have problems (see, 
e.g., [91). 

Since real images are discretized, quantized, 
and corrupted by noise, in further investigations 
the influence of  these effects on the perfor- 
mance of the different corner detectors should 
be analyzed. 

Appendix 

Partial derivatives of the model function g(x, g) 
used in section 4 are as follows: 

g~ =Y~, 

gu = 2yyy; 

g ~  = g ~ ,  

g~u = 2y~'~, 
2 2~ 9uu = 2(yy + y gyy); 

9x~z = g:~xx, 

g~u~ = 2(Y~v + 2Y2Y~uu), 

2 2~ 9uyu = 4y(39uu + Y 9uuu); 

gT,3~XX ~ ~'gxxxx 

gxzxy = 2y'ffzzxy, 

gxxuu = 2(Y~,xu + 2YZYx~y), 
g~uuu = 4y(3y~yu + 2y2g'~uyu), 

g~uuy = 4(3ffuu + 12y2ywu + 4y4guyuy); 

g~uuy = 4y(3g'~uu + 2Y2Y~xuuu) • 
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