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F L U I D S  

A. P. Oskolkov and R. Shadiev UDC 517.9 

Classical global solvability on [0, o~) is proved for initial-boundary value problems (30), (32), (33), 
and (31), (32), (33) which describe two-dimensional motion of  Oldroyd fluids and three-dimensional motion 
of  Kelvin-Voightfluids of  orders L = 2, 3 . . . . .  

1. As is well known, the governing equation for a linear viscoelastic fluid, which connects the stress deviator tensor 

a and the strain rate tensor D has the form [ 1-4]: 

L ~ va 
(1) 

where L and M are related by one of  three conditions: either M = L - 1, L = 1, 2 . . . .  (Maxwell fluid of  order L), M = 

L = 1, 2 . . . .  (Oldroyd fluid of  order L), or M = L + 1, L = 0, 1, 2 . . . .  (Kelvin-Voight  fluid of  order L). A viscoelastic 

fluid is also called a viscous fluid. 

By integrating the governing equation (1) over t with the natural condition a(t) -- 0 for t < 0, we obtain: 

for M = L - 1, L = 1, 2 . . . .  (Maxwell fluid) 

I0 I( 4 (2) 

for M = L = 1, 2 . . . .  (Oldroyd fluid) 

a,>o Ja, o - ~LAL , -jo, o (3) 

for m = L + 1, L = 1, 2 . . . .  (Kelvin-Voight  fluid or medium) 

=, ~ d/~--'~L+4'AL,at+ 0 >t). (4) 

In (2)-(4), the kernel Ki(t), i = 1, 2, 3 satisfies the differential equation 

u ~c K, ~___o A~-~=O, ~,0 
and the Cauchy initial conditions 

(5) 
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~-O/b...,h- ~, (6) 

in which ~ij is the Kronecker delta symbol and for simplicity, X_ 1 - 0, k 0 -- 1, x 0 - v. 

Substituting (2)-(4) into the equations of  motion of a continuous, incompressible medium in the Cauchy form 

we obtain the integrodifferential equations of motion for linear viscoelastic fluids: 

for M = L - 1, L = 1, 2 . . . .  (Maxwell fluid of order L) 

dr" IIK, (~_,~)~,.r d,,~ + ~,ad, p = (8) 

for M = L = 1, 2 . . . .  (Oldroyd fluid of order L) 

-.P0 - (9) 

for M = L + 1, L = 1, 2 . . . .  (Ke lv in-Voigh t  fluid of  order L) 

-~-~ -,],1,--~- - ~ 6  0 6 ~ ' - 3 0 K ~ ( ~ - * ) A q ~  + ~'t,O.,d, p=~, d,iAr ~v=0. (10) 

System (8)-(10) is solved in Qr  - g x (0, T), where f~ is a bounded domain from E 2 or E 3, 0 < T _< oo, with 

initial-boundary conditions: 

1)'1~__0-~,(;~), a;E.Q.~ 1,t101=0, ~>~01 (10") 

2. In the works of  A. P. Oskolkov and his students N. A. Karazeevii and A. A. Kotsiolis (see [2-4]) it was shown 

that the system of integrodifferential equations (8), (9), and (10) for the motion of Maxwell, Oldroyd, and Ke lv in -Vo igh t  

fluids of  order L = 1, 2 . . . .  can be reduced by several methods to a system of differential equations. Specifically: 
L 

2.1. We assume that the characteristic equation Q(p) - 1 + ~ Xlp! = 0 has the simple roots {am}, m = 1 . . . . .  
l=l 

L: Q(~m) = 0, Q'(c~m) ~ 0, and that these roots are real and negative: c~ m < 0, m = 1 . . . . .  L. Then kernels Ki(t ) have the 
form: 

K , (b-~  -(~e "~ fll~ , ~ = 4 , 2 , 3 ,  (11) 

where the coefficients {B~(i)} are determined from the Cauchy initial conditions (6) and are written out explicitly in [4]. We 
will assume that these coefficients are positive: ~t(i) > 0, i = 1, 2, 3; m = 1 . . . . .  L. 

We substitute (11) into (8)-(10) and assume that 

(12) 

It is easy to see that {urn(t)} satisfy the differential equations 

~--~nLv'-,%l* m 0, m,=~,...,l.. (13) 

Then we obtain the equations of  motion for Maxwell, Oldroyd, and Ke lv in -Voigh t  fluids of  order L = 1, 2 . . . .  in 
the form of the following system of differential equations: 

241 



~ - - ~  y~  z~,u,m + 

(14) 

plus (13); 

b 

(15) 

plus (13); 

~l~ , ~A~" , (3)^ ,. ~ )5(m, ~) ~.dA~p=¢~¢l/,~=0' (16) 

plus (13). 
Systems (14)-(160 are solved in Q~ - 9(0, oo), ~ E E n, n = 2, 3, for initial-boundary conditions 

'0"h;~.0=17o(X', %m,{~;__0=0, XE~;  'lJ'l~.Q=%~li~=0 , ~;,~0. (17) 

2.2. We now assume that the characteristic equation Q(p) = 0 has nonsimple roots {~m} of multiplicity nm: m = 1, 
.... N < L ~ n m = L m. As before, we will assume that the roots {am} are real and negative: C~rn < 0, m = 1 . . . . .  N. 

m 

Then the kernels Ki(t) have the form: 

K/, ( ~ ) . ~  ~.. o ~(+m,) -~ s (18) 

the coefficients {/~ms (i)} are determined as before from the initial Cauchy conditions (6) and are assumed to be positive:/~ms (i) 
> 0 .  

We substitute kernel (18) into the integrodifferential equations (8)-(10) and assume 

,N. (19) 

It is easy to see that the functions {Ums} satisfy the following system of differential equations 

ag~ " ~ J  (20) -~-"-V"-~m'Wao=U, ,~.f, -'Sl'C,m,.s-,c, Lm'~'mn=O, ,~=,t,...,~m-,I. 

Then we obtain the equations of motion for Maxwell, Oldroyd, and Kelvin-Voight fluids of order L = 1, 2, ..., 
respectively, in the form of the following systems for differential equations 

~L~" ~ ' ~ 7 '  (#- , t l  ' +---J-_ '  ] 
~,oPmS A ms ~tao~e-~, ~ % r = O ,  (21) ~L~ ~ -  

plus (20); 

plus (20); 
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~,~ u v ,I,,.4 s -O  

(22) 

(23) 



plus (20). 
Systems (21)-(23) are solved with the initial-boundary conditions: 

lZ "=0, 'lJ" I~i].= $t,l, rl, Sl &Q.--O, "~0 .  (24) 

The network of equations (20), which relate v and {Urns}, s = 0, 1 . . . .  n m - 1, is easily transformed to the set of 

equations 

V,=((~_,)!-~, 4,KoK a r 9s+~-K~Xm~ 
t - )  t~s+ 4 m , ~ '  5=0,4 . . . .  ,~4m-q, (25) 

K=0 

only v and one of Urns, s --- 0, 1 . . . . .  nrn - 1, enters into each of these equations. In (25), Cs+l  k are the binomial coeffi- 

cients, and for consistency, ( - 1 ) !  - 0! - 1. It follows from (24) and (20) that the S-th equation in (25) is solved for initial 

conditions 

~as I" -0, xe.~q, ?=0,4,. . . ,s;  s = 0 , 4 , . . . , ~ ' ~ - 4 .  (26) 

2.3. Another variant for reducing the system of integrodifferential equations (8)-(10) to a system of coupled differen- 

tial equations was given in the works of A. P. Oskolkov [2, 3]. Specifically, we introduce into (8), (9), and (10) new 

unknown functions wi(x, t), i = 1, 2, 3, with the help of 

L-'I . (,i~ 
~<X, ~ = ~ KiJ,- f, )v"Cx,>lr) d'I/, - (27) °c0-~s~' ~ ~>~ =v. S=O u ~ % 

By differentiating by t the first of equations (27) I times, l = 0, i . . . . .  L, multiplying the resulting equation by kl, summing 

over l = 0, 1 . . . . .  L, and using (5) for Ki(t) and the second equation from (27), we obtain the identity 

From this identity, by equating the null coefficients for derivatives 

~= O,4,...,~L-t, , 

we obtain the following algebraic system for the coefficient {%(i)}, s = 1 . . . . .  L - 1, and {3@)}, s = O, 1 . . . . .  L; 

"0 ~ K~, 0,) X (4b <L~)=~, ~ A~, °'a4(O)~; =7". ~ga, ~=O,4,...,fdL-;l. (28) 

Likewise, the motion of Maxwell, Oldroyd, and Kelv in -Voigh t  fluids of order L = 1, 2 . . . .  can be described 

respectively by the following systems of coupled differential equations: 

L-~ 

l 

~ &  ^-(z~s~- d~" ar = d , ~  w~ = 0 (30) 

• L , "0~ ., v S=0 u~, 

a _(~)) ~sw~ ~ OljAr,0"= d,/,tri, tr~ = 0  (31)  ' o ' = $ - ' . h  ~s , .S=O 
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in which the coefficients {~s(i)}, s = 1 . . . . .  L - 1 and {%(i)}, s = 0, 1 . . . .  , L, i = 1, 2, 3, are determined from algebraic 
system (28). 

Systems (29)-(31) are solved with the initial-boundary conditions 

{,=70, s-0,4,...,L'1, xeO~ 1718a'-1,0"~,[O£Z=0, J~O. ( 3 2 )  

3. The theory of classical solvability of the initial-boundary value problems (9), (10"), and (10), (10") is constructed 

in the works of A. P. Oskolkov for the most general integrodifferential equations of motion of Oldroyd fluids of order L = 

1, 2 . . . . .  and for Kelvin-Voight fluids of order L = 0, 1, 2 . . . .  on the finite time interval 0 < t < Y < oo. (For a com- 

plete bibliography of Oskolkov's works on this problem, see [2-4].) 

In the works of N. A. Karazeevii, A. A. Kotsiolis, and A. P. Oskolkov, the theory of global classical solvability on 

[0, oo) is constructed for the initial-boundary value problems (15), (17), and (16), (17) for two-dimensional flow of Oldroyd 

fluids of order L = 1, 2 . . . .  and three-dimensional flow of Kelvin-Voight fluids of order L = 0, 1, 2 . . . .  (see [4] for a 

detailed bibliography of these works). On this basis, they construct the theory of attractors and the dynamic systems which 

give rise to two-dimensional initial-boundary value problem (15), (17), and three-dimensional flow of Kelvin-Voight fluids 

of order L = 2, 3 . . . . .  This is done for the case when the coefficients {C~s(i)}, s = 0, 1 . . . . .  L - 1 and {3,s(i)}, s = 0, 1 . . . .  

L of systems (30) and (31) satisfy the following conditions: 

(33) 

Conditions (33) are by no means necessary and can be considerably weakened. 

THEOREM 1. Let the conditions be satisfied: fl is a bounded domain from E2; 09 ~ C2+~; v0(x) ~ C2+'~({/) ¢q 

H(~); f(x, t) ~ Loo(0, T; Ca(0)) O L:z(QT), 0 < c~ < 1; ft ~ L2 (QT), 0 < T < oo, and let (33) be satisfied. Then the 

initial-boundary value problem (30), (32) has a unique solution (v; 22): 

(mnHc (34) 

and the following estimate holds for this solution: 

• . . ,  9~ ~L,,~(o,T~C~(g);~lr*i~lgo~(o,T~e,~(E)) 4 
(35) 

c~ 01170 II -'/ . (~ . )  ( 2 )  • (£) (~ 
2~'~r 8 S+~ 5 05+~ 

in which the constant C 1 does not depend on T < oo. 

THEOREM 2. Let the conditions be satisfied: fl is a bounded domain from E3; 09 ~ C2+% v0(x ) @ C2+C~({~) O 

H(P,); f(x, t) ~ L~,(0, T; Ca(0)) rq L2(QT), 0 < a < 1; ft ~ L:2 (QT), 0 < T < oo, and let (33) be satisfied. Then the 

initial-boundary value problem (31), (32) has a unique solution (v, w3): 

3%rq L o(0,T; H (36) 

and the following estimate holds for this solution: 

• gLII 0llj~ ;"41[ . . . .  ,~-_.~X4,~ll~O'_,.fl,#n~,(Z;,ts~,) i (37) 

s " "  05+t"  05  / /~  

where, as before, the constant  C 2 does not depend on T < oo. 

Analysis of the proof of the theorem of global classical solvability on [0, oo) of the initial-boundary value problems 

for the Navier-Stokes equations and the equations of motion for linear viscoelastic fluids (see [2-5]), shows that it is 

sufficient to prove the following to establish theorems 1 and 2. One must prove the existence on the whole on [0, oo) of a 

unique generalized solution in the sense of O. A. Ladyzhenskaya [5] of problem (30), (32) or problem (31), (32), respective- 
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ly. In other words, the existence of the generalized solution with finite norms max  I! vt; 0w2×/0t . . . . .  0LW2x/0t4 [1 2,0 + 
0~t~T 

il V x0W2/0t,. 3Lw2x/3t411 QT for problem (30), (32) and the generalized solution with finite norms m a x  tl Vtx; 0w3/0t, 
• "  ' ' O~t~T 

.... 0LW3x/0t4112,0 + U Vtx; 0W3x/Ot . . . . .  3LW3x/3t4 11 2,Q T for problem (31), (32) must be proved. Having done this, the 

embedding theorem of S. L. Sobolev and the theorem of classical solvability of the corresponding linearized problems with 

constant coefficients whose solution norms do not depend on T _< ~ can be used to prove theorems 1 and 2 throughout the 

total volume. 
In turn, to prove the existence theorems on the whole on [0, ~ )  of the unique, generalized solution in the sense of 

O. A. Ladyzhenskaya for problems (30), (32) or (31), (32), it is known to be sufficient to obtain an a priori estimate on the 

whole for the norms which enter into the definition of the generalized solution in the sense of Ladyzhenskaya. We now turn 

to the problem of obtaining these a priori estimates. 
We multiply the first of the equations of (30) by v, integrate over ~2 and over t from 0 to t <__ T and make use of the 

second equation in (30). By integrating by parts over x, we obtain: 
_ - , q ,  

We integrate the last group of integrals on the left by parts over time t, and estimate the resultant integrals by using the 

H61der and Cauchy inequalities. Then by using (33), and applying the H61der, Friedrich and Cauchy inequalities for the 

estimate of (f, V)LQ ~, and maximizing over t ~ [0, T], we obtain the estimate: 

(Ho W r-llo )+ 
(39) 

. . . .  (~) ,(~). ~.~(~Z) ~ . ( ~ ) ~  

Carrying out the same procedure for (31), (32), we obtain the estimate: 

:z ~ L-,I f.SS%x ~ L-~ ~Sw; x ~, H: z 

0.< ~.< Y "-,"E, , ~ 5=0 s -o  

Q, - q .  
We further differentiate the equations in (31) by t, multiply the first resultant 

L 

~ 3/s(3)0s+lw3/Ot s+l and integrate over ~ and t from 0 to t <_ T. By integrating by parts over x, we obtain: 
s=0 

i ~ (,x,s Ts+~, ,z~ 

4 

(4o) 

equation by 3v/0t - 

(41) 
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We estimate the integral ~r t = -- f VktVtVx dx with the help of the H61der and Young inequalities, and the well- 

Dt 
known inequality of Ladyzhenskaya [5, Chap. 1] 

~ ~ o ~ ~ (42)  ll rll ,  ll r  ,a f2 eE, 
and the already proved estimate (40), in view of which max II Vx II 2,fl t -< (A2/z-1)'A = B2: 

0~t<T 
,~ ~' t$ ~/~ 41~, ' ~/~ 

" W~ l}xllg~'l" Cnum~' IJVxll~,~t, #I~1] ¥'~ I]~,..O.,.l; ' O"~l~'< W. 

Having done this, we now integrate the last group of integrals On the left in (41) by parts over t, and estimate the 
resultant integrals with the help of the H61der and Cauchy inequalities. Then by using (33), and applying the Holder, 

Friedrich and Cauchy inequality for an estimate of (ft, vt)2,flt, using (43) and the easily proved estimate for the solution of 
(31), (32) (see [5, Chap. VI], [6]) 

~, (~) . 
II'vCx, ll'trt, Ilaro z,.o.) (44) 

we obtain the inequality: 

q, (, q., b-'~ 

= ~]~4 IIg,(~.l; numB~#, IlVxig,.f~tll ];l]~,,0,+(j~,C,d/,)ll~.~ll~,(~ t- (45) 

=--.c, 7 Vx R,,,m, ~,,a.,,t~es , O<<.'f,~T. 

From (45) and (40) with the help of the "integral" version of Gronwall's lemma [see below (53) and (54)], we obtain 

the estimate 
l; 

-~C,~t;x~ C~ Vxl] ~-c~¢'xp(~,,Azc ~) (46) ~,,~ o 
and then from (45) and (46), by maximizing over t, we find the estimate: 

" q 

o 

(47) 

Estimate (47) is in fact the required global a priori estimate for the norms with enter into the definition of the 
generalized solution in the sense of Ladyzhenskaya for initial-boundary value problem (31), (32). 

Similarly, by differentiating the equations in (30) by t, multiplying the first of the resultant equations by 0v/at, 
integrating over ft and over t from 0 to t < T, and then integrating by parts over x, we obtain the equality: 
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---I[1[Kt:"O't:l"tx~ ~ x ~ ' t ) o , ~  - 4 0 ~, +g~ IZ + ({~,~)~,~ +~(~v,(x, } ~,.o. 'e"t.-.~ tl't';xll.z,.a), 

We now estimate the integral ~.t = - 

(48) 
O<'t,,< T. 

f VktVtVxkdX with the help of the HOlder and Cauchy inequalities and 

Ladyzhenskaya's inequality [5, Chap. 1] 

ilvll~,.o. 4 .  ~z ~, o 4 ~. II"¢~,O.(llgxll~,.%, gv~w~ (-.q.), fie E~i (49) 

I ~.~l,<~ IIU'x I[~,~., llg ~ m. ilv~ It. ,-, ..4~ II.tr,,. L ,, + u, ~x~ ^ I Ir .d. 
-,~1: z,,,t; ~ ^~ z,~l~ ~ ~RI~ t ~,.~Z L (50) 

0&.~T. 
Then, we integrate over time t the last group of integrals on the left in (48) an estimate, as before, the resultant 

integrals with the help of HOlder and Cauchy inequalities. Then using (33), we once again apply the HOlder, Friedrich and 

Cauchy inequalities for an estimate of (ft, vt)2,W use (50) and the easily proved estimate for the solution of (30), (32) (see [5, 

Chap.VI]) 

I1%(×, o)II~,~q 4 %(l l{(x, O)ll~z,.O., • {~1 litro ~,~), (51) 

to obtain the inequality (compare to (45)): 

I1~,¢ + C4o ,, lI,~ (x, o)ll~,.a, (52) 

0 

It is easy to see that Gronwall's lemma admits the following equivalent ("integral") formulation: if the function y(t) 

satisfies on (0, T) the inequality 

~(b.~ f Fc~)~c,v)d,,v+C44, ~(.bcL4(o,T), (53) 
0 

then 

view of which 

¢~(~) 4 0d, t e f ~  ( f F(~:)d'f), 0.4 ~ 4 T. (54) 
o 

By applying this lemma to y(t) - II Vt II 2,at 2, F(t) - if-1 II Vx !i 2,fit 2 and using the already proved inequality (39), in 

I! Vx [I 2,QT 2 <-- ~-iA1, we obtain from (52) the estimate 

and then from (52) and (55), by maximizing over t, we have: 

(55) 

+c3T__. II + .< 

(56) 
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Estimate (56) is the required global a priori estimate for the norms which enter into the definition of the generalized 

solution in the sense of Ladyzhenskaya of the initial-boundary value problem (30), (32). 

4. The solvability of the initial boundary value problems for the hydrodynamic equations on the infinite time interval 
[0, oo) is necessary not only for construction of a theory of attractors, that is, the global theory of hydrodynamic stability [7], 

but also for the construction of a local theory of hydrodynamic stability, that is, the stability theory for steady-state and 

periodic (and also quasiperiodic) solutions of the hydrodynamic equations. The principle of linearization, or the first 
Lyapunov method, have been used since the time of A. M. Lyapunov and A. Poincar6 for the construction of local stability 
theory for nonlinear equations. Lyapunov was concerned with operator differential equations of the first order 

~ i'k(~)u+ K(%)--T(~), I+(o)=%o (57) 

with bounded operators A(t) and K(u) in Banach spaces [8], and with the Navier-Stokes equations and those of magneto- 
hydrodynamics [9, 10], which lead to (57) with unbounded operators A(t) and K(u) acting in a Hilbert space H. In his 

classical works, based on the principal of linearization of such systems of differential equations, Lyapunov made it clear that 
the justifying principle for linearization in local stability theory for (57) is based on three facts: 

1. local single-valued solvability of the nonlinear problem (57) in the neighborhood of the fundamental solution 

(being studied for stability) on the entire semiaxis t _> 0; 
2. the correctness of nonlinear problem (57), which means that its solution u(t) belongs to the same space H 1 C H, 

that it belongs to at t = 0, and continuously changes in the norm of H I for continuous variation in this norm of the initial 

conditions u o (for example, for the Navier-Stokes equations, H -= J(f~), HI - H(~)) [53]; 
3. the single-valued solvability of the linearized (on the fundamental solution) problem corresponding to (57), on the 

entire semiaxis t _> 0 in this same space H 1, and the knowledge that the solution operator Z(t, s) of this linearized problem 

has the properties of an analytical semigroup. 
Having in mind the construction in the future of a local stability theory for the equation of motion of a Kelvin- 

Voight fluid, we will show in this work the global, single-valued solvability on the entire semiaxis t _> 0 of the initial 

boundary value problems (16), (17), and (31)-(33). This is done for the equations of motion of a Kelvin-Voight fluid in the 

most natural class of functions from the point of view of the theory of hydrodynamic stability [9, 10]: 

tr, x, Lz(q ) (58) 

and v(x, t) satisfies either (16) or (31) almost everywhere in Q~. Strictly speaking, we will prove the necessity of a priori 

estimates of the solutions of the initial boundary value problems (16), (17), and (31)-(33), on the basis of which the existence 

of solution (58) to these problems is easily proved by the Galerkin method [5]. It will also be clear from the estimates we 

obtain, that the initial boundary value problems (16), (17) and (31)-(33) are correctly posed in H(f~) and WzZ(f2) ('1 H(f~). 

4.1. We first examine the initial boundary value problem (16), (17). The following estimate was obtained for its 

solution in [4]: 

(59) 

Let ~ be the Stokes operator [5, Chap. 1]. For the solution of (16), (17), for vt _> O, the equation 

l. 

is valid. We integrate this by parts over x, using the H61der and Cauchy inequalities, and apply the embedding theorem for 
W22(Q) in C((~) (recalling that f~ E E 3) and the second fundamental inequality for the Stokes operator 7~ [5]. In view of 
these, the following inequality holds: 

1.~t ~ ^K .Q~ (61) 
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,,, ~, Ci(.a) z .~ z 
,<~4 IIAv~,.O.t+ ~ II~x IIc,.o. ~AVlI~,.% , f~:',0. 

Then, by assuming "7(f, >.- II Vx II~z,~ ~+.k" 11 ~ ~" II ~,~ ~+ ~ .p t li ~ '~ t 11 Z, ~ ,~ we obtain the ~nequa,iiy: 

_ _ _  II~xli~,.o.¢Td,)+c~(¢~)ll'~,l,). i , h>0. (62) 

Integrating (62) over t from 0 to t and using the Cauchy initial conditions (17), we obtain the inequality: 

L, n ~ +( gxll,, ,~÷ju, liAiJ', II~,_o,) -.< 
$ (63) 

..< C~,g x z .. ll~,fl,~(¢)dir+C~(ll~,Q,,) II%xlI,9. , IiA% lli,.o.), ~;>0, J 
o 

and to this, using the fact that because of (59), [[ v x II 2,~t 2 E LI(0, co) and 11 v x 1] 2,Q~ 2 -< /z 1-1A 1 , we apply the "integral" 

variant of Gronwall's lemma (mentioned in Sec. 3) to obtain: 

~(~),,< %Pxx.p<fc411v ) 11 ~ _ d,¢')-.< c~ e,,x,p(~42~]~A,i)~ A~, I;>0. (64) 
0 ~lZ g 

Then, by integrating (62) once again over t from 0 to ~ over the whole volume, using (59) and (64), and maximiz- 

ing over t _> 0, we obtain the estimate: 

g 
(11 fx I I . . .  7 ~  ~ Ais II °,-, + ~ .IB#, II A ' ~  II A'lr II~,Q=: 

Furthermore, for vt _> 0, the equality 

b 
°T% ('b"; {'IDt} ) ~- (irt'i"I'rK'lYx 241'C '~'lYs~-Jx" ~'IY-~N "fi~ A U'~' ~'IJ"~)9""(II:={4' ~ 17~) R"'O'g , (66) 

is also valid for the solution of (16), (17). We now integrate (66) by parts over x and use the H61der and Cauchy inequality 

and the embedding theorem for W22(11) in C(9) and the estimate which results from (65) ]i Av2,ot 2 -< ~-1A3, t _ 0, thanks 

to which the inequality 

I S irK V'X KA'tr~ dxi.< ~ Ill' U~'X l~ ,~ i t  Air,  B.~,.O(.< e ( a )  I A'tr ~z,.e,~ ' 
aS .0.~ 

(67) 

• II'l;'x II~,at ' IIA% II~,.0.t ,< ~" II A'O't~ e l , II~,.t2t+t,(-O-),/z )Aslivxll~,.% ~o,  

is valid. Then, integrating over t from 0 to oo and using (59), in view of which Ilvxll2,Qo2 _< f f l - 'A1, we obtain the 

estimate: 

(68) 

It follows from (65), (68) and Friedrich's inequality that the following global a priori estimate for the solution of 

(16), (17) is valid: 

eru~ I1~ V'x,~x I1,, ,, ÷ II v', ay x ,%,  trxt ' , aYxx, lrx× ~ ltzz, O~ "< c (A 4 - Ae) 
£,~0 ~'~ 

(69) 
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From (69) follows the existence of a unique global solution on the entire semiaxis t ~ 0 of initial boundary value problem 

(16), (17). This solution has properties (58) and satisfies (16) almost everywhere in Q~. It exists for the following conditions 

on the problem data: [2 is a bounded domain from E 3 with boundary 3f~ C C2; f(x, t) ~ L2(Q~) ~ L2,1(Q~); v0(x ) 
W22( a )  (q H(fb. 

4.2. We now examine problem (31)-(33). For vt _> 0, the inequality 

L 

is valid for the solution of this problem. From this, using the equation/~v = E °et(3)(O~7~w3/Ot~), integrating by parts over 
1=0 

x, and by parts over time t in those terms with w 3, using the H61der and Cauchy inequality, and using (33) and (61) as well, 
we obtain: 

,NIle. aa+c ,, .,.,.o oo .,-e o 
+, t; O.t, 

 foxll ,a, f,,O. (71) 

From (71), assuming y(t) - II II 2, we obtain the inequality 

~(.~)..</,C4 IUrX ~, (72) 

0 

and from this, by using Ilvxll2,a, e El(0, oo) and  [[Vxl[i,Q~ 2 ~ /zl-lA2,3 which follows from (40), and by applying the 

"integral" version of Gronwal's lemma, we have the inequality: 

" t~ 
~, :Z ¢~ ,~ -t 

We now use (39) and (73) in inequality (71), and maximize the latter over t > 0 to obtain the estimate: 

tvO , ~ z,  ~, Q,, . 

Furthermore, for vt _> 0 the equality 

(74) 

L 

is also valid for the solution of (31)-(33). We integrate (75) by parts over x, and using 2w t = ~ Ts(3)(as+l~w3/0ts+l), we 
s=0 

integrate by parts over t those terms with w 3. We then use the H61der and Cauchy inequality condition (33) and also apply 

inequality (44) and an estimate which comes from (44) 
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IIA'tq;(x, O)ll ,sp IIg 

Finally, applying the already proved estimates (40), (47), and (74), in view of which 

(75') 

[14r x I~,,O.2]~,AS, Tj's llvxtll~,,s 2 e~ h s ;  ~fozl[/Hrll~z%-<fl. a~ (76) 

and using inequalities coming from (76): 

(2t; J0 -~i; (77) 

0,,~ 0 

we obtain the inequality: 

I1% 

@ 

With the help of Gronwall's lemma and (40), we obtain from (79) the estimate: 

II ~ ~ _, _,-,  ~ l l , ,~dF  cg~p(~,k~ esA~,~) ' o<+~.<~, (8o) 

and then from (79) and (8), by maximizing over t E [0, ~ ) ,  we have the estimate: 

{iI'0"X~,It~.,12f'I'wtA'IiA1/'f,[i~,.('/? C3,, ~ ,, ~'-~"gi-" i,~;.0.~.} + (81) 

I.-~ .~S+~A,tlra t, 9. -~ -~-t 

From estimates (40) and (74), valid for vt > 0, and from (81), valid for vT _< co, fol]ows the existence on ~e 
entire semiaxis t _> 0 of a unique, global solution of the initial boundary value problem (31)-(33), which has the following 

properties: 

9~ g 9, ~Z 
.~ta¢__ II~,vx,~xxllo ,-, +ll'O'x,'lrxxll . + ~ .  II'~x~,A'lS~, L ,-, +IIA~ll -<~oo (69,) 

This solution exists for the following conditions on the problem data: ~2 is a bounded domain from E 3 with boundary 09 C 

C 2 , 

{ ( x , b e  L#.Q:,)nLe,4cQ:=), <~{eL~(Q®), ~o(x)~W~(..O.) n H(9.). 

4.3. The results obtained in Secs. 4.1 and 4.2 have yet another aspect. Based on the results of Sec. 4.2 and methods, 
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well-known in the theory of partial differential equations, for increasing the smoothness of generalized solutions of boundary 

value and initial-boundary value problems of mathematical physics [5, 11, 2-4], theorem 2 of our work can once again be 
proved on the global classical solvability of the initial-boundary value problem (31)-(33) on the semiaxis t > 0. And, on the 
basis of the results of Sec. 4.1, we can prove theorem 2.1 of [4] on the global classical solvability of (16), (17) on the 

semiaxis t > 0. 
4.4. As already noted above, to justify the principle of linearization in the local theory of hydrodynamic stability, it 

is necessary to have at least local single-valued solvability of the corresponding nonlinear initial-boundary value problem in 
the neighborhood of the fundamental solution v*(x, t) (that being studied for stability) on the entire semiaxis t >__ 0. In this 

section, we will show that: 
1. initial-boundary value problem (16), (17) has a single-valued, global solution on t _> 0 in the class of solutions 

(69) in the neighborhood of any fundamental solution v*(x, t) from class (69); 
2. initial-boundary value problem (31)-(33) has a single-valued, global solution on the semiaxis t _> 0 in the class of 

solutions (69,) in the neighborhood of any fundamental solution v*(x, t) from class (69,). 
If v*(x, t) is the fundamental solution of (16), (17) from class (69), then by seeking the solution of (16), (17) in the 

form v = v* + u(x, t), we obtain for u(x, t) the following initial-boundary value problem: 

• = o ~, (82) 

'x=-~-,~s%, s=4, .... L, (x,-L)eQ,, 

~l~:0=~z0(x), u5 ~=0=0, xe;2, ~la~=~+s ac=0, t~,,0. (83) 

Similarly, if v*(x, t) is the fundamental solution of the initial-boundary value problem (31)-(33) from class (69,), 

then by seeking the solution of (31)-(33) in the form v ---- v* + u, we obtain for u(x, t) the following initial-boundary value 

problem: 

+~o,~p= 0, dar~=0 
L s 

~=5-" y(3) 0 ,tr tv-~EO ~s 9~ s , ,~,,,, ,.,~o 

(84) 

u[t:o='U,o(x); ~ +,=o=0, s=o,,f,...,L-4, xefl; 
o, 

(85) 

The following is true: 
THEOREM 3. 'Let f~ be a bounded domain from E 3, Of] E C 2, Uo(X ) E W22(f~ ) A H(f~). Then: 

1) for vv*(x, t) from class (69), the initial-boundary value problem (82), (83) has a unique global solution u(x, t) 

from class (69) on the semiaxis t _> 0; 
2) for Vv*(x, t) from class (69,), the initial-boundary value problem (84), (85), (33) has a unique global solution u(x, 

t) from class (69,) on the semiaxis t ___ 0. 
To prove theorem 3, it is sufficient to obtain global a priori estimates for the solution of (82), (83) in class (69) and 

global a priori estimates for the solution of (84), (85), (33) in class (69,), after which the existence of the solutions is easily 

proved by Galerkin's method [5, 11]. The proof of these estimates is basically analogous to the proof of (69) for the solution 
of (16), (17), and to that of (81) for the solution of (31)-(33) respectively. This is because equations (82) and (84) differ from 
(16) and (31) respectively, only in the presence of linear terms Vx*(OU/OXk) + (OV*/OXk)U k with "good" v*(x, t) and therefore 
are omitted (see [12]). 
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In conclusion, we thank O. A. Ladyzhenskaya, corresponding member of the Academy of Sciences of the USSR, for 
her stimulating attention to our work. 
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