TOWARDS A THEORY OF GLOBAL SOLVABILITY
ON [0, =) OF INITIAL-BOUNDARY VALUE
PROBLEMS FOR THE EQUATIONS OF

MOTION OF OLDROYD AND KELVIN-VOIGHT
FLUIDS

A. P. Oskolkov and R. Shadiev UDC 517.9

Classical global solvability on [0, ) is proved for initial-boundary value problems (30), (32), (33),
and (31), (32), (33) which describe two-dimensional motion of Oldroyd fluids and three-dimensional motion
of Kelvin—Voight fluids of orders L = 2, 3, ... .

1. As is well known, the governing equation for a linear viscoelastic fluid, which connects the stress deviator tensor
o and the strain rate tensor D has the form [1-4]:
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where L and M are related by one of three conditions: either M = L — 1, L =1, 2, ... (Maxwell fluid of order L), M =
L =1, 2, ... (Oldroyd fluid of order L), or M =L + 1, L =0, 1, 2, ... (Kelvin—Voight fluid of order L). A viscoelastic
fluid is also called a viscous fluid.
By integrating the governing equation (1) over t with the natural condition ¢(t) = 0 for t < 0, we obtain:
forM=L—-1,L =1,2, .. (Maxwell fluid)
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forM =L =1, 2, ... (Oldroyd fluid)
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form=L+ 1, L=1,2,.. (Kelvin—Voight tluid or medium)
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5(t)=ﬂ—,£ +J4/,°’D(£)+ gK d-0D@dt, p= X, w, 0. @
In (2)-(4), the kernel K;(t), i = 1, 2, 3 satisfies the differential equation
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and the Cauchy initial conditions

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A.
Steklova, Akademii Nauk SSSR, Vol. 180, pp. 121-141, 1990.

240 1072-1964/94/6802-0240$12.50 ©1994 Plenum Publishing Corporation



3K #
EO L- 5—7}-(0) aEL. -n-1 ,/‘”‘Lnf), 34 Mo )\LPMU 644.:),

6
w=0,4,. L‘ 4 ©
in which §;; is the Kronecker delta symbol and for simplicity, A_; = 0, Ay = 1, %,

= p,
Substituting (2)-(4) into the equations of motion of a continuous, incompressibie medium in the Cauchy form

%’+WP=’]{+M€, d/W"U'=O, %"%g*'v’i(ax ’

M
we obtain the integrodifferential equations of motion for linear viscoelastic fluids
foo-rM=L-1,L=1,2,.

.. (Maxwell fluid of order L)

d" SK(’c ra o+ qradp={, div v=0;

(8
for M =L =1, 2, ... (Oldroyd fluid of order L)

- Ju‘f’mr Ssz;—v)Avdfmgmdp%, divrv=0;
forM=L+1,L=1,2

&)
, ... (Kelvin—Voight fluid of order L)
4 ; .
wmwr o Lo ado=d. digr w=0 (10)
dv o ar-\K,d-o)avde + p {, diwr v=0.
4t Mgy Mo bV 7
System (8)-(10) is solved in Qp =

Q X (0, T), where Q is a bounded domain from E2 or B3, 0 < T
initial-boundary conditions:

< oo, with

Ult=o' (), TeQ; Ulaﬂ=0 t» (10%)

2. In the works of A. P. Oskolkov and his students N. A. Karazeevii and A. A. Kotsiolis (see [2-4]) it was shown

that the system of integrodifferential equations (8), (9), and (10) for the motion of Maxwell, Oldroyd, and Kelvin—Voight
fluids of order L. = 1, 2, ...

can be reduced by several methods to a system of differential equations. Specifically

L
2.1. We assume that the characteristic equation Q(p) = 1 + E Ap! = 0 has the simple roots {ag,}, m s e
=1
L: Qo) = 0, Q'(evyy,) # 0, and that these roots are real and negative: o, < 0, m = 1
form:

., L. Then kernels K(t) have the
y dgb .
Ky(h= zZ BYe, =i, (1

where the coefficients {3,1} are determined from the Cauchy initial conditions (6) and are written out explicitly in [4]. We
will assume that these coefficients are positive: 8,® > 0,i=1,2,3;m = 1

,i=1,2,3;m=1, .. L
We substitute (11) into (8)-(10) and assume that

" (qu A (1)

vwyds, m=4,...,L.
(]

(12)
It is easy to see that {u (1)} satisfy the differential equations
u
ﬂm-v—,tmumo, m=4,..,L. (13)
Then we obtain the equations of motion for Maxwell, Oldroyd, and Kelvin— --Voight fluids of order L = 1, 2, ... in
the form of the following system of differential equations:
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plus (13);

plus (13);
3 ﬂaamr Ju;%v z P ) A,y +guiadp= =4, dirv=0 (16)

plus (13).

Systems (14)-(160 are solved in Q,, = Q(0, o), @ € E", n = 2, 3, for initial-boundary conditions

vl,% T, (X), umlt_ =0, xe{l; Vlm ’“'affo’ 120, 17

2.2. We now assume that the characteristic equation Q(p) = 0 has nonsimple roots {c,} of multiplicity n,: m = 1,
LN<L E n, = L. As before, we will assume that the roots {c } are real and negative: oy < 0O, m =1, ..., N.

Then the kernels K;(t) have the form:

K, th= 55" ﬁ‘:ﬂv’stse“mt, as)

m={ §=0
the coefficients {8} are determined as before from the initial Cauchy conditions (6) and are assumed to be positive: 8@

> 0.
We substitute kernel (18) into the integrodifferential equations (8)-(10) and assume

5 a (f
um(h—g -0 ymyds, 5=04,.., My ti =i, _N. a9
It is easy to see that the functions {u,} satisfy the following system of differential equations

7t U dmbme=Ys 3t Sy sy~ dmWins=0y 5=y, 1.

Then we obtain the equations of motion for Maxwell, Oldroyd, and Kelvin—Voight fluids of order L = 1, 2, ...,
respectively, in the form of the following systems for differential equations

% w‘éé pﬁismmqwdp% erv=0,} ey
plus (20);
4 N ot (z)
4 Juo av 2. Bs Mg + qrodp= ~{, divv=0 } (22)
plus (20); |
dv_ ﬂ’%Atv j&;!» v m§ sz PmsA%msWW'dfP"{ dirv=0 (23)
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plus (20).
Systems (21)-(23) are solved with the initial-boundary conditions:

o= u = X Q' = =

v b= VoK), Wims be 0, xellj Vlaﬂ %ms’eﬂ 0, ]WO (24)

The network of equations (20), which relate v and {uy}, s = 0, 1, .., ny, — 1, is easily transformed to the set of
equations

54}4 K aS""l‘Kums

((5“’)' Z\ 1) C5+4 m'—"ab‘s—ﬂ‘ K s 5-’-‘0,’1,...,%",,“’!, (25)

only v and one of u, s = 0, 1, ..., n, — 1, enters into each of these equations. In (25), C,4 K are the binomial coeffi-

cients, and for consistency, (—1)! = 0! = 1. It follows from (24) and (20) that the S-th equation in (25) is solved for initial
conditions

ims
a‘tp , "‘O’ X€Q, P=O,4,...,s; S=O,4,...,va“'{, (26)
=(

2.3. Another variant for reducing the system of integrodifferential equations (8)-(10) to a system of coupled differen-
tial equations was given in the works of A. P. Oskolkov [2, 3]. Specifically, we introduce into (8), (9), and (10) new
unknown functions wy(x, t), i = 1, 2, 3, with the help of

W Pw _S K. - - W Puy,
szo"‘s TG E-00mAT, oy =i sz =, Q7
By differentiating by t the first of equations (27) [ times, / = 0, 1, ..., L, multiplying the resulting equation by A;, summing
over [ = 0, 1, ..., L, and using (5) for K;(t) and the second equation from (27), we obtain the identity

L btgek, Lo gt L +

j i &
e% M E‘o P T 28 tzoA Zdﬁ T
From this identity, by equating the nuil coefficients for derivatives

Loy
9 Wy, ~L=O,4,...,2L_'!;

nr
we obtain the following algebraic system for the coefficient {o}, s = 1, ..., L — 1, and {(®},s = 0, 1, ..., L;
e ¥ Ky 4 _ ) A
FICAVIRD S R AT, zu 1=04,...,2L-1.
O hajes-1=d 7 RIERRIE ij=! ¢ ” (28)

Likewise, the motion of Maxwell, Oldroyd, and Kelvin—Voight fluids of order L = 1, 2, ... can be described
respectively by the following systems of coupled differential equations:

0 3w,
i ”’Kax AZ”“(S gl
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s
e
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in which the coefficients {e P}, s =1, ..., L — 1 and (v}, s=0,1,...,L,i=1,2, 3, are determined from algebraic
system (28).
Systems (29)-(31) are solved with the initial-boundary conditions

Pu;

vft U g b =0, 5=0,,...,l+1, er,vlm w&,afo 0. 32)

3. The theory of classical solvability of the initial-boundary value problems (9), (10%), and (10), ( 10*) is constructed
inthe worksof A. P. Oskolkov for the most general integrodifferential equations of motion of Oldroyd fluids of order L =
1, 2, ..., and for Kelvin—Voight fluids of order L = 0, 1, 2, ... on the finite time interval 0 < t < Y < oo, (For a com-
plete bibliography of Oskolkov’s works on this problem, see [2-4].)

In the works of N. A. Karazeevii, A. A. Kotsiolis, and A. P. Oskolkov, the theory of global classical solvability on
[0, o) is constructed for the initial-boundary value problems (15), (17), and (16), (17) for two-dimensional flow of Oldroyd
fluids of order L = 1, 2, ... and three-dimensional flow of Kelvin—Voight fluids of order L = 0, 1, 2, ... (see [4] for a
detailed bibliography of these works). On this basis, they construct the theory of attractors and the dynamic systems which
give rise to two-dimensional initial-boundary value problem (15), (17), and three-dimensional flow of Kelvin— Voight fluids
of order L = 2, 3, ... . This is done for the case when the coefficients {1}, s = 0,1, ..., L — land {y®},s =0, 1, ..,
L of systems (30) and (31) satisfy the following conditions:

a‘(w) (4/) W, .. “ 33)

>.. >o¢L1 >0, 0<g e <3”4 <yo, 1=1,3.

Conditions (33) are by no means necessary and can be considerably weakened.

THEOREM 1. Let the conditions be satisfied: Q is a bounded domain from E?; 90 € C2+e; yy(x) € C2+(Q) N
H(Q); f(x, t) € L (0, T; CxQ)) N LyQp), 0 < a<1;f €Ly (Qp), 0 <T < o, and let (33) be satisfied. Then the
initial-boundary value problem (30), (32) has a unique solution (v; 2,):

dwp 3wy
T

and the following estimate holds for this solution:

(v, vy, )eLo@ T C @M@, 0T Ctantay (34)

L«M
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<Gilimoly i o cay Ht"zca i ’”W”( At dgy) ’W”Qﬁ: %),

in which the constant C; does not depend on T <

THEOREM 2. Let the conditions be satisfied: {2 is a bounded domain from E3; 3@ € C2+; vy(x) € C2+a(Q) N
HQ); f(x, t) € L0, T; CoQ) N LyQp), 0 <a < 1;f €L, (Qp), 0 <T < o, and let (33) be satisfied. Then the
initia]-boundary value problem (31), (32) has a unique solution (v, wy):

w; wz,%%‘c-’i 69}:'{3)€Lm(0T CH* DN HQ) (36)

and the following estimate holds for this solution:

AW W
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where, as before, the constant C, does not depend on T < oo,

Analysis of the proof of the theorem of global classical solvability on [0, <o) of the initial-boundary value problems
for the Navier —Stokes equations and the equations of motion for linear viscoelastic fluids (see [2-5]), shows that it is
sufficient to prove the fbllowing to establish theorems 1 and 2. One must prove the existence on the whole on [0, o) of a
unique generalized solution in the sense of O. A. Ladyzhenskaya [5] of problem (30), (32) or problem (31), (32), respective-
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ly. In other words, the existence of the generalized solution with finite norms max [ v dwo, /0, ..., 3w,y /att Hz o+
0xt<T
| vix@War/3t, .., 3Lwa,/3t4] 5, for problem (30), (32) and the generalized solution with finite norms ~ max vy dway /o,
Oxt<T
, Olwsy,/ott Hz 0 + Vi dws /ot ..., 3hwa,/att]|, o for problem (31), (32) must be proved. Having done this, the

embeddlng theorem of S. L. Sobolev and the theorem of classical solvability of the corresponding linearized problems with
constant coefficients whose solution norms do not depend on T < oo can be used to prove theorems 1 and 2 throughout the
total volume.

In turn, to prove the existence theorems on the whole on [0, o) of the unique, generalized solution in the sense of
0. A. Ladyzhenskaya for problems (30), (32) or (31), (32), it is known to be sufficient to obtain an a priori estimate on the
whole for the norms which enter into the definition of the generalized solution in the sense of Ladyzhenskaya. We now turn
to the problem of obtaining these a priori estimates.

We multiply the first of the equations of (30) by v, integrate over Qand over t from 0 to t < T and make use of the

N

RICH w“a“ WQ“ +ZZ o @ SS@sz il W”‘dxd‘t‘-— m"“ﬁ({v 2,0, 0<t«T
Q

second equation in (30). By integrating by parts over X, we obtain:

L-2
4 (2) (2) [¢)] Wax
+ZZ< T L

W) w Py
+ZoL {
s

vl WM 10, &8s I s |

(38)

pRII N 2,0 s=0m=0 T )y 7505 BE™
T
s#m, SEm+l, m+s+i.

We integrate the last group of integrals on the left by parts over time t, and estimate the resultant integrals by using the
Holder and Cauchy inequalities. Then by using (33), and applying the Hélder, Friedrich and Cauchy inequalities for the
estimate of (f, V)2,QT’ and maximizing over t € [0, T], we obtain the estimate:

2 2
) ) (>)213w2x

2 @
Ow(fwug,g:%( g ~d gy )y (T~ T N2 158 l, _Qt)+

(39

@ Dy i e @ (2) w

o6, (i g gy min BT Z ll-mé—*}l Lo n fnz &FA
Carrying out the same procedure for (31) (32), we obtain the estimate:
Pwi 9
o (IWH Pk lo, +c3 U 112 0) *C ZZ %s H IR

(40)

<, “i ﬂ’f./““ ’wox "i Q“f‘"cﬂ).{"“; a = Az‘
$ 4 ! T

We further differentiate the equations in (31) by t, multiply the first resultant equation by dv/dt =
L
E v 3as 1w, /8t5*1 and integrate over Q and t from 0 to t < T. By integrating by parts over x, we obtain:
s=0

P il
i""t"zﬂ 2'WX’t"2,Q+J"‘4"meQTS 4‘3’&‘3’“ t“%xu

20

2
4
Z,.Qt

+ZZ¢°(3) ) SQSTSJ«LW}&MM- Sg LA dxdt+

$=(0 m=0
t

Tt L-2
+i (5)4 Wf)” wexu + % S% ( &w I;z @ ﬂ%ts—%&“
(41

] 2
# )y 0+ UB 0N o+ 4, O 9+ 1 12 )
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We estimate the integral Jvt = — f VieViVy, dX with the help of the Holder and Young inequalities, and the well-
nt
known inequality of Ladyzhenskaya [5, Chap. 1]

Wi, 0, < ) I, o, 1l 0, YreW, @, Q,eE’ “2)
and the already proved estimate (40), in view of which max [v,|, o = (Ap~hH% =By
Oxt<T
< 3/4 L1 3%
el il M T ol -

6%”"“”2},@;‘:%"\3% “VX"“L M“Vtum , 0<t< 'T’

Having done this, we now integrate the last group of integrals on the left in (41) by parts over t, and estimate the
resultant integrals with the help of the Hélder and Cauchy inequalities. Then by using (33), and applying the Holder,
Friedrich and Cauchy inequality for an estimate of (f;, Vt)zygl, using (43) and the easily proved estimate for the solution of
(31), (32) (see [5, Chap. VI, [6])

2

_ u%u,owﬁ,ﬂw rwmx,onrﬁ,ﬂs Cs (0l g, I l,.0) (44)
we obtain the inequality:
aSﬁ Wéx
"’t”z,mg*/‘“””xt”wv +/"‘”%X"MT 3 4= o“ g ’mt *
s
*cq Z “ gtsg T “‘t Chum z/“1 "VH ,,(z,t”Vtiuz_Q +(PCg) ”ftNga @5)
# ¢l 30, ‘”"m} ’%” qum, Vt"m +(fa) 5#”2 apt 0=

Ec?Hv.,. %,0, V‘Fuz,mb*c? » o OsBeT,

From (45) and (40) with the help of the "integral" version of Gronwall’s lemma [see below (53) and (54)], we obtain

the estimate
T

2 b3 -
" vtnz’g,ts Gg CW{C‘;!J‘HV""%‘QMJ’C} s c& CWP(‘,%,'AZC; ), (46)

and then from (45) and (46), by maximizing over t, we find the estimate:

S+
a wsx 9 v

‘gfgfm(” %,.{b *ju’" tx"g, *0 2” 7 ” %Sﬂ Lﬂy/‘,‘

scg{m?uvtn%[ﬂv,uz %dc}scgw;% ap; Agen ))=Cs

(47)

Estimate (47) is in fact the required global a priori estimate for the norms with enter into the definition of the
generalized solution in the sense of Ladyzhenskaya for initial-boundary value problem (31), (32).

Similarly, by differentiating the equations in (30) by t, multiplying the first of the resultant equations by dv/dt,
integrating over  and over t from O to t < T, and then integrating by parts over x, we obtain the equality:

@ wa sz“ 1w )“8 sz“
m

2
%muz of i, t"za*z"“s Fs P z 4 T

o A e
St | e it
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SS%‘W dxdb+( ﬁ»%a 2(“%“0"” ol oxnz,n)r

(48)
Gy 0¢thg T.
We now estimate the integral f}.[ = - f ViViVy,dx with the help of the Holder and Cauchy inequalities and
Qt
Ladyzhenskaya’s inequality [5, Chap. 1]
4 2 2 94 2

Il o, <2100 0, Ml g5 YveW, ), Qet’; (49)

ST I o 191, o 10l o <Ryl o4 I 1
Idp 1< xt2.0y th2,0Q4 xt 2,84~ 2 Z-Q X ZQ t!ﬂt (50)

0<t<T.

Then, we integrate over time t the last group of integrals on the left in (48) an estimate, as before, the resultant
integrals with the help of Holder and Cauchy inequalities. Then using (33), we once again apply the Holder, Friedrich and
Cauchy inequalities for an estimate of (f;, Vt)z,ﬂg use (50) and the easily proved estimate for the solution of (30), (32) (see [5,
Chap.VI})

¢4]

I, (%, 0>|!m\c9<i|¥(x 0l 05 1751,.0), 51

to obtain the inequality (compare to (45)):

Ilv.bllzQ Z!ivxtllmucchi—-tm—h </w gnvumnvtu df“

ey 14, uz o, Cn .0l g, 1, um) (52)

.
- 2 2
< 45)111& Iy 0, 1%l 0, 4 +C,, (1, Iy,0,5 Cip)s 0<b< T,

It is easy to see that Gronwall’s lemma admits the following equivalent ("integral") formulation: if the function y{t)
satisfies on (0, T) the inequality

1
WKS Fmymdr+Cy, fhelyo.n, (53)
0 .
then
17
4#(4:)$ Cu %P(S Fioyde), 0¢tgT. (54)
0

By applying this lemma to y(t) = | v]| Z,Qtz, Ft) = u= v, 2,93 and using the already proved inequality (39), in
view of which | vy, o2 < w7!A, we obtain from (52) the estimate

2 -
Iy, g, < Cueap i Ay 0<1<T, (55)

and then from (52) and (55), by maximizing over t, we have:

V)

o5
(“Vt“zg‘fcsz HW“ "'f’“ x’o“z +0qu18%5+ i 944(“./*.2'449/1@{./"‘:%4})-

(56)
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Estimate (56) is the required global a priori estimate for the norms which enter into the definition of the generalized
solution in the sense of Ladyzhenskaya of the initial-boundary value problem (30), (32).

4. The solvability of the initial boundary value problems for the hydrodynamic equations on the infinite time interval
[0, o0) is necessary not only for construction of a theory of attractors, that is, the global theory of hydrodynamic stability [7],
but also for the construction of a local theory of hydrodynamic stability, that is, the stability theory for steady-state and
periodic (and also quasiperiodic) solutions of the hydrodynamic equations. The principle of linearization, or the first
Lyapunov method, have been used since the time of A, M. Lyapunov and A. Poincaré for the construction of local stability
theory for nonlinear equations. Lyapunov was concerned with operator differential equations of the first order

A4 Ackyu+ Kan=chy, w0)=u, 57)

with bounded operators A(t) and K(u) in Banach spaces [8], and with the Navier —Stokes equations and those of magneto-
hydrodynamics [9, 10], which lead to (57) with unbounded operators A(t) and K(u) acting in a Hilbert space H. In his
classical works, based on the principal of linearization of such systems of differential equations, Lyapunov made it clear that
the justifying principle for linearization in local stability theory for (57) is based on three facts:

1. local single-valued solvability of the nonlinear problem (57) in the neighborhood of the fundamental solution
(being studied for stability) on the entire semiaxis t = 0;

2. the correctness of nonlinear problem (57), which means that its solution u(t) belongs to the same space H; C H,
that it belongs to at t = 0, and continuously changes in the norm of H; for continuous variation in this norm of the initial
conditions u, (for example, for the Navier —Stokes equations, H = J(Q), H; = H(®)) [53];

3. the single-valued solvability of the linearized (on the fundamental solution) problem corresponding to (57), on the
entire semiaxis t = O in this same space H;, and the knowledge that the solution operator Z(t, s) of this linearized problem
has the properties of an analytical semigroup.

Having in mind the construction in the future of a local stability theory for the equation of motion of a Kelvin--
Voight fluid, we will show in this work the global, single-valued solvability on the entire semijaxis t = O of the initial
boundary value problems (16), (17), and (31)-(33). This is done for the equations of motion of a Kelvin—Voight fluid in the
most natural class of functions from the point of view of the theory of hydrodynamic stability [9, 10]:

0y Uy Ve Vs Vo Vit € Lig (Qo) (58)

and v(x, t) satisfies either (16) or (31) almost everywhere in Q,,. Strictly speaking, we will prove the necessity of a priori
estimates of the solutions of the initial boundary value problems (16), (17), and (31)-(33), on the basis of which the existence
of solution (58) to these problems is easily proved by the Galerkin method [5]. It will also be clear from the estimates we
obtain, that the initial boundary value problems (16), (17) and (31)-(33) are correctly posed in H(Q) and W22(Q) N H(D).

4.1. We first examine the initial boundary value problem (16), (17). The following estimate was obtained for its
solution in [4]:

gmazliv N I F Byl ly 0 )l a*?“e'ﬁx"%

y 9 i (59)
e A 1127Q)+[(m|1 Juuvoxuz VR I, oA
Let A be the Stokes operator [5, Chap. 1]. For the solution of (16), (17), for vt = 0, the equation
L ~ -
Tsfu=tep v, vy o2 prBug Boy o=, o (60)

is valid. We integrate this by parts over x, using the Holder and Cauchy inequalities, and apply the embedding theorem for
W,2(Q) in C(Q) (recalling that & € E3) and the second fundamental inequality for the Stokes operator A [5]. In view of
these, the following inequality holds:

3 . )
|\ v, Bvdx|¢mace vl o, o 130N, o 4 Cylyl, o JRVI] &
sztK X Q0 A%, 0,SLERI, 0 I8V, ¢ (61)
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Then, by assuming %(hE oy UZ’ Q1;+ - 1A ”2’ Q t+~£z=:i‘m HZ“{ l? 3,04 We obtain the inequality:

2 I R LA £20

‘Zﬂ’

' it Lo Kot A o oy
Y Byl AV "z,Qt*,fE gl Vgl o <G00 piDI I g Yt C I nay 0 170 (62)
Integrating (62) over t from O to t and using the Cauchy initial conditions (17), we obtain the inequality:
q(tmg z 0 ymdmc 4! 0] mroxug leiﬁv,, nﬁ Q)%
t (63)
ce Il o yodre, 0y, o 5 i, o, TRl ), 120
Sl ity Q,Qﬂ ) 33T Q7 TVoxig, 0y Ay, uz,g); ’

and to this, using the fact that because of (59), | vx]l, 02 € Ly(0, ) and Ivillag 2 = w17 *Ay, we apply the "integral”
variant of Gronwall’s lemma (mentioned in Sec. 3) to obtain:

t
13<~t>scswp(&c4wx P dey< cpeapleg iy Ap=Ay, 150, (64)
X

Then, by integrating (62) once again over t from 0 to e over the whole volume, using (59) and (64), and maximiz-
ing over t = 0, we obtain the estimate:

) & 2 2
%(l!vx llz’ﬂgjwﬂzwllz ,ﬂt+£1 gy lawgl, »ﬂt)+ P lavly o +

+Z:Id{1ﬁ£ uzmguza \CUWA AQ+c2u¥n 0 +swoxumw law, !12 0= A (65)

Furthermore, for vt = 0, the equality

L ~ ~
T wsfugh=(oyt Ui By B2 ylug, Ky q, =t BU4)2,00 (66)

is also valid for the solution of (16), (17). We now integrate (66) by parts over x and use the Holder and Cauchy inequality
and the embedding theorem for W22(Q) in C(Q) and the estimate which results from (65) H AVZ’Q‘Z < pz“lA3, t = 0, thanks
to which the inequality

| fov, Avtdkawxivi 115, 0,147, 1, o < CDIATY, o
Q"t 't

w (67)
Huxly g, 1A% 1y 0, <% uwtuﬂ’ﬂtmm A I, ﬂz o, 120,

is valid. Then, integrating over t from 0 to oo and using (59), in view of which |v, “2,sz < u;'A;, we obtain the
estimate:

2
xtl] +j&iiA1J’tI\M +Z}£HA1J% +nm(j&4ﬂmﬂlz’ﬂt+

(68)
% A -
F_wlﬁﬂlwﬂzﬂ )¢ Gy )H“Z’a;cw,ﬂ, YAA HAmu:ﬁ =A,.

It follows from (65), (68) and Friedrich’s inequality that the following global a priori estimate for the solution of
(16), (17) is valid:

) 2
MAx [0, 0 U ke + 10,0504 s Vit Vs Uyt 1y~ <CA - A))= (69
onll X xxhg Q'O e Vs B Fxxd Mg, Qg 1) )

249



=As(1y 0, Ml s Wil g, 1% 1, i 4

From (69) follows the existence of a unique global solution on the entire semiaxis t = 0 of initial boundary value problem
(16), (17). This solution has properties (58) and satisfies (16) almost everywhere in Q,,. It exists for the following conditions
on the problem data: Q is a bounded domain from E? with boundary 4Q C C2; f(x, t) € Ly(Qu) N Ly 1(Q); vpx) €
W,2(Q) N H(®). ’

4.2. We now examine problem (31)-(33). For vt = 0, the inequality

I(U"W)E”Wﬂfv A LZ4 (3 8%4; 4 _
AR ' 17K XK./"L M AT leg _‘f')AU Qt {Alfd@ (70)
"
L
is valid for the solution of this problem. From this, using the equation Av = Ea,(3)(3’Aw3/8t1), integrating by parts over
1=0

X, and by parts over time t in those terms with w3, using the Holder and Cauchy inequality, and using (33) and (61) as well,
we obtain:
t

10y 1A, +ﬂ4§§mm%a+c“2||9%s }\ +cHZ|laa,os llw (Q{/‘/«}l)§111&l{iﬂtﬂgvﬂiﬂtd,t+
i
2~ 2 .
)M” + (Mo "2 Q“‘"Av I Q+°"f)1 147, “2 Q)¢ g,""x uz,ﬂtuAvuz,ﬂtdh C?J(”“%Qm’

Wocly 00 1R, 1y 03 17 420, (1)

From (71), assuming y(t) = | Av I 2’9t2, we obtain the inequality

(72)

t
Yb)< Ju“g Sou Uy Hi’ 04 (@)AT +Cyp

and from this, by using || vy 0% € L1(0, %) and Ivill2.0.2 < n1~'Az 5 which follows from (40), and by applying the
"integral” version of Gronwal’s lemma, we have the inequality:

t
!lz’hrl tsf;emp(gjk 04“17)(29 dr)<& eiju WM “) AQ, (73)

We now use (39) and (73) in inequality (71), and maximize the latter over t = 0 to obtain the estimate:

ma(lty H;,Q M Kv!lj’ﬂ )%S@n Z\fr Faxdb+

(74)
L~ a AW, 1 a y
+C37 Sz_:ma/x “ la.tS 21Qt ‘f 3 $20 | ats H <C4A2jlf1 A2’5+ C3 = A3‘

Furthermore, for vt = 0 the equality

?2y i di= [ B0, g, 40
.I('U’, W)—& (’%{*U VXK{;'*'VKJGW /M’ 3102 ./WIAU{: ; W‘L AU’D):L-Q (42 f)l,ﬂt (75)
L

is also valid for the solution of (31)-(33). We integrate (75) by parts over x, and using Av, = Y 7,@(@+T1Aws/3t5+1), we
s=0

integrate by parts over t those terms with w;. We then use the Holder and Cauchy inequality condition (33) and also apply
inequality (44) and an estimate which comes from (44)
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Finally, applying the already proved estimates (40), (47), and (74), in view of which
fIVUM <pihye Dugly g < 'ty max”MHJﬂt A, 76)

and using inequalities coming from (76):

[ty pavydxdis Stmlvl'ﬂﬂxwg Q &, o db<
Q" 0 24 A (77)

b . y
4800(9) llmrlmt!&Aviiz,ﬂtuvxtﬁz’ﬂtdts%(;Avtui% —@M—IWX "za ‘1K, !2

2}4
t $
Sg 7,4 MMXOWSWW bl o ﬂmnpll2 Q dt¢ C-Q)& il a (78)
Qly' 0
2 %
lavy g b€ Fles [ 0 Lol sl dr,

we obtain the inequality:

L
Aw 0" AW
'Wb”zﬂ"f“iwt"aa*f” LA +0332HW+—’ Z’Qt+ 1 2| %%Ha“ SCsat iyt Ca (it W, 2040 (9

1

f Il

With the help of Gronwall’s lemma and (40), we obtain from (79) the estimate:

¥ 12
I = ¢ f Pl g 4% 5 0,07

2
A -1 ~f -{
"”t“z,@ff" Coeap(p fy Cohyg) ,  0<Tsm, (80)

and then from (79) and (8), by maximizing over t € [0, o), we have the estimate:

S‘H

W{"beﬁwwﬁwtfm” Z atﬁ“ Hzﬂt}

L4 (81)

S+4 - 2 A
+cl{ % Z ”eate;ws H +./u4 “A'U't “Z,Qms Cg (4+ﬂew?{fkﬂ'{ CSAM})

From estimates (40) and (74), valid for vt > 0, and from (81), valid for ¥T < oo, follows the existence on the
entire semiaxis t > 0 of a unique, global solution of the initial boundary value problem (31)-(33), which has the following
properties:

2
0, 2 2 2
ngooullv x Ul o 0Tl o mffwu%,wt L.a AT, o <oo (69.)

This solution exists for the following conditions on the problem data: € is a bounded domain from B3 with boundary 4Q C
C?,

foby el (Qnly @), 4Ly Q) MW, () NHQ).

4.3. The results obtained in Secs. 4.1 and 4.2 have yet another aspect. Based on the results of Sec. 4.2 and methods,
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well-known in the theory of partial differential equations, for increasing the smoothness of generalized solutions of boundary
value and initial-boundary value problems of mathematical physics [5, 11, 2-4], theorem 2 of our work can once again be
proved on the global classical solvability of the initial-boundary value problem (31)-(33) on the semiaxis t = 0. And, on the
basis of the results of Sec. 4.1, we can prove theorem 2.1 of [4] on the global classical solvability of (16), (17) on the
semiaxis t = 0.

4.4. As already noted above, to justify the principle of linearization in the local theory of hydrodynamic stability, it
is necessary to have at least local single-valued solvability of the corresponding nonlinear initial-boundary value problem in
the neighborhood of the fundamental solution v*(x, t) (that being studied for stability) on the entire semiaxis t > 0. In this
section, we will show that:

1. initial-boundary value problem (16), (17) has a single-valued, global solution on t = 0 in the class of solutions
(69) in the neighborhood of any fundamental solution v*(x, t) from class (69);

2. initial-boundary value problem (31)-(33) has a single-valued, global solution on the semiaxis t = O in the class of
solutions (69,) in the neighborhood of any fundamental solution v*(x, t) from class (69.).

If v¥(x, t) is the fundamental solution of (16), (17) from class (69), then by seeking the solution of (16), (17) in the
form v = v* + u(x, t), we obtain for u(x, t) the following initial- boundary value problem:

“-ﬂé&;" iy A 9“+17* 3“’ {ZHMHWP 0,

, ‘ (82)
U= 9%5 -‘*SMS’ 5=/',-.-,L, (X,‘L)éQm

wt=0=uo(x>, us]t=o=0’ xe; u]m=ws}m=o, t70. (83)

Similarly, if v*(x, t) is the fundamental solution of the initial-boundary value problem (31)-(33) from class (69,),
then by seeking the solution of (31)-(33) in the form v = v* + u, we obtain for u(x, t) the following initial-boundary value
problem:

du_ Qou W, x0u i »a%w
g s M, 5 yack i
] +uadp=0, divu=0 (84)
-5 O P »
w=2. ¥ g (%1€ Qe
u[ =Ug(X); Pw =0, s=0,..,L-4, xel;
t=0 (ASAZ /a.bs T ’ [AERER y y (85)

oWy =0 tro.

The following is true:

THEOREM 3. Let Q be a bounded domain from E3, 40 € CZ, uy(x) € W,%(Q) N H(Q). Then:

1) for vv*(x, t) from class (69), the initial-boundary value problem (82), (83) has a unique global solution u(x, t)
from class (69) on the semiaxis t = 0; _

2) for ¥v*(x, t) from class (69,), the initial-boundary value problem (84), (85), (33) has a unique global solution u(x,
t) from class (69,) on the semiaxis t = 0.

To prove theorem 3, it is sufficient to obtain global a priori estimates for the solution of (82), (83) in class (69) and
global a priori estimates for the solution of (84), (85), (33) in class (69,), after which the existence of the solutions is easily
proved by Galerkin’s method [5, 11]. The proof of these estimates is basically analogous to the proof of (69) for the solution
of (16), (17), and to that of (81) for the solution of (31)-(33) respectively. This is because equations (82) and (84) differ from
(16) and (31) respectively, only in the presence of linear terms v, *(du/dx,) + (3v*/0x )y, with "good" v*(x, t) and therefore
are omitted (see [12]).
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