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Abstract.  In human females, both X chromosomes are 
equivalent in size and genetic content, and pairing and re- 
combination can theoretically occur anywhere along their 
entire length. In human males, however, only small re- 
gions of sequence identity exist between the sex chromo- 
somes. Recombination and genetic exchange is restricted 
to these regions of identity, which cover 2.6 and 0.4 Mbp, 
respectively, and are located at the tips of the short and 
the long arm of the X and Y chromosome. The unique 
biology of these regions has attracted considerable inter- 
est, and complete long-range restriction maps as well as 
comprehensive physical maps of overlapping YAC clones 
are already available. A dense genetic linkage map has 
disclosed a high rate of recombination at the short arm 
telomere. A consequence of the obligatory recombination 
within the pseudoautosomal region is that genes show 
only partial sex linkage. Pseudoautosomal genes are also 
predicted to escape X-inactivation, thus guaranteeing an 
equal dosage of expressed sequences between the X and 
Y chromosomes. Gene pairs that are active on the X and 
Y chromosomes are suggested as candidates for the phe- 
notypes seen in numerical X chromosome disorders, such 
as Klinefelter's (47,XXY) and Turner's syndrome (45,X). 
Several new genes have been assigned to the Xp/Yp 
pseudoautosomal region. Potential associations with clin- 
ical disorders such as short stature, one of the Turner fea- 
tures, and psychiatric diseases are discussed. Genes in the 
Xq/Yq pseudoautosomal region have not been identified 
to date. 

Historical perspective 

Interest in the pseudoautosomal region (PAR) and in the 
phenomenon of incomplete sex linkage arose more than 
70 years ago. Pairing between parts of the X and Y chro- 
mosomes in higher organisms was first observed in the rat 
(Koller and Darlington 1934), and incomplete sex-linkage 
first described in cyprinodont fishes and later in Droso- 
phila melanogaster (Aida 1921; Philip 1935). 

In one of the first attempts at linkage analysis in man, 
Haldane also claimed to find evidence for such partial 

linkage (Haldane 1936). The suggested candidates were 
genes that were preferentially handed down by a het- 
erozygous male to his male offspring (genes for xero- 
derma pigmentosum, achromatopsia, retinis pigmentosa, 
Oguchi's disease and epidermolysis bullosa dystrophica). 
Unfortunately, all of the examples proved to be wrong. 
They illustrate the difficulty of differentiating pseudoau- 
tosomal inheritance from autosomal and X-linked inheri- 
tance with variable penetrance. 

By examining spermatocytes in meiotic prophase, pair- 
ing was demonstrated to occur on the short arms of  X and 
Y (Pearson and Bobrow 1970; Moses et al. 1975). Repli- 
cation studies on premetaphasic sex chromosomes led to 
the postulation of functional homology between parts of  
the distal short arms of the X and Y (Mtfller and Schempp 
1982). In 1982, two papers appeared proposing similar 
models for genetic homology and crossing over within the 
X-Y pairing region (Burgoyne 1982; Polani 1982). It was 
argued that a single obligatory crossover, restricted to this 
homologous pairing region, should exist between the X 
and Y chromosomes and it was concluded that it would 
therefore behave like an autosomal segment. The term 
"pseudoautosomal" has since found general acceptance. A 
prediction arising from this hypothesis is that sequences 
within this region should exhibit varying degrees of par- 
tial sex linkage, depending upon their physical location 
within the PAR. Evidence from molecular studies of X 
and Y chromosomes in humans and mice has subse- 
quently been provided by identifying pseudoautosomal 
markers that recombine between the sex chromosomes, 
thus verifying these earlier predictions (Keitges et al. 
1985; Cooke et al. 1985; Rouyer et al. 1986a, b; Goodfel- 
low et al. 1986; Page et al. 1987a; Freije et al. 1992). 

Evolut ion of the sex chromosomes  
and the origin of the pseudoautosomal  region 

Evolution of  chromosome X and Y in mammals 

It is a generally accepted view that the dimorphic sex 
chromosomes evolved from a homomorphic sex chromo- 
some pair by gradual reduction of the Y, accompanied by 
a series of rearrangements (Ohno 1967). This view has 
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also found support from studies on reptiles and birds, sub- 
sequently used as model organisms (Ohno 1967; Singh 
and Jones 1985; Charlesworth 1991). The common past 
of  the sex chromosomes is still noticeable, emphasized 
by the observation that different X-Y homologous regions 
with varying degrees of  conservation have been found on 
both the long and the short arm of the human X and Y 
(Page et al. 1984; Cooke et al. 1984; Koenig et al. 1985; 
Page et al. 1987b; Brown et al. 1990; Fisher et al. 1990a). 

The gradual process of  X and Y chromosome differen- 
tiation has been accompanied by the spreading of X-inac- 
tivation into the newly unpaired regions of the X chromo- 
some, an entirely mammalian innovation. Most of the hu- 
man genes known today to escape X-inactivation (with 
the exception of XIST and (UBE1; Brown and Willard 
1989; Brown et al. 1991), have a homologue on the Y 
chromosome. This homologue is either an actively ex- 
pressed gene on the Y, as in the case of  ZFX (zinc finger 
protein), and RPS4X (ribosomal protein $4) (Schneider- 
Gfidicke et al. 1989; Fisher et al. 1990b) or a pseudogene 
on the Y, as in the case of  STS (steroid sulphatase), KAL 
(leading to Kallmann Syndrome) and GSI (Yen et al. 
1987, 1992; Franco et al. 1991; Legouis et al. 1991). 
Thus, escaping X-inactivation seems to reflect a relic re- 
maining from the ancestral homologous chromosome 
pair. 

The observation that all X-Y homologous genes map to 
Xp (with the single exception of RPS4X) and escape in- 
activation has led to the hypothesis that these genes are of  
autosomal origin and have been acquired as later addi- 
tions to the sex chromosomes. This view is supported by 
the fact that genes on Xp are clustered on two different 
autosomes in marsupials and monotremes (Spencer et al. 
1991), which evolved from eutherians 150 and 170 mil- 
lion years ago, respectively (Graves 1987). It is therefore 
becoming increasingly evident that the long and short arm 
of the X chromosome have a different history (Watson et 
al. 1990; Spencer et al. 1991). 

Origin of the PARs 

Whereas the size and structure of  human PARs are well 
established (2.6 Mb on Xp and 0.4 Mb on Xq), little in- 
formation is available on the PARs of other mammals.  
Work on markers within the human Xp22.3 region, in par- 
ticular on STS, has provided compelling evidence that a 
pericentric inversion on Xp22.3/Yq 11.2 occurred about 40 
million years ago, when the higher primates diverged 
from the prosimians (Yen et al. 1988). Studies on STS in- 
dicate that this gene, together with two other known 
murine pseudoautosomal markers, Movl5  and Sxr, and 
three new telomere-related markers behave pseudoautoso- 
mally in, for example, prosimians and mice (Keitges et al. 
1985; Harbers et al. 1986; Yen et al. 1988; Eicher et al. 
1992). However, human STS is X-linked and like KAL, 
possesses a Yq-linked pseudogene; both pseudogenes are 
in reverse order on Yq compared with the situation on Xp 
(Yen et al. 1991; Bardoni et al. 1991), as are other loci 
from this linkage group. The homology of Xp22.3 and 
Yql 1.2 is still such that pairing and crossing over may oc- 
casionally occur, resulting in rare X-Y translocations 

(Ballabio et al. 1989; Yen et al. 1991). Interestingly, this 
linkage group of markers on Xp22.3 is immediately adja- 
cent to the PAR. This observation led to the hypothesis that 
the present day PAR represents only a part of a previous 
considerably larger segment of  homology that has been 
disrupted by pericentric inversion (the model of  "shrink- 
ing" or "gradual reduction" of  the PAR; Yen et al. 1988). 
So far, no markers from the PAR have been shown to have 
mouse pseudoautosomal homologues and no markers 
known from the mouse PAR are found within the human 
PAR. This suggests that there is complete divergence be- 
tween the PAR of mice and humans. CSF2RA and ANT3 
are highly conserved genes and it will be interesting to de- 
termine whether the murine homologues of  ANT3 and 
IL3RA also map to an autosome, as has recently been 
shown for Csf2ra (Disteche et al. 1992). 

The existence of a PAR has been shown in man (see 
above), in mouse (Keitges et al. 1985) and in chimpanzee 
(Weber et al. 1987). Marsupial X and Y chromosomes, 
however, do not undergo obvious homologous pairing and 
a chiasma has not been found (Sharp 1982). Nevertheless, 
the association of X and Y chromosomes at one or both of 
their ends suggests the existence of a common region that 
could be small. 

In summary, the origin and the evolution of the PAR in 
different mammmalian species remains a major open 
question. This puzzle will, however, be resolved within 
the next few years with the availability of new, highly 
conserved pseudoautosomal markers and comparative 
mapping studies. 

Structure of  the PAR on Xp/Yp 

The 2.6-Mb human PAR is located at the distal tip of  the 
short arm of the X chromosome, band Xp22.3, and at the 
tip of the short arm of the Y chromosome, band Ypll .32.  
Characterisation of DNA within light and dark bands has 
revealed a series of interesting associations (Holmquist et 
al. 1982; Korenberg and Rykowski 1988; Bickmore and 
Bird 1993). Chromosomal band Xp22.3 is a Giemsa-neg- 
ative band and displays the expected high density of CpG 
islands that serve as gene markers in all vertebrate species 
(Bird 1986, 1987). Because of the early replication of this 
region in the cell cycle (Schempp and Meer 1983), this 
band was thought not to be subject to random X-inactiva- 
tion. A diagram of the CG richness of  the pseudoautoso- 
mal region is shown in Fig. 1, with respect to five differ- 
ent enzymes of different CG classes (Bickmore and Bird 
1993). One striking feature is the high density of  cleavage 
sites within the most distal 500 kb of the PAR (Brown 
1988; Petit et al. 1988; Rappold and Lehrach 1988). Most 
of the individual variation in different CG cleavage sites 
seems to occur in this CG-rich chromosomal subregion. 
To date, it is not clear whether this feature of  the most dis- 
tal region mirrors an extremely dense area of  genes, simi- 
lar to, for example, the mouse major histocompatibility 
complex, MHC (Steinmetz et al. 1987), or a stretch of 
noncoding, very GC-rich DNA with structural features 
possibly related to the initiation of pairing within this re- 
gion close to the telomere. 
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Fig. 1. Cleavage sites of rare cutting enzymes in 
the PAR. Enzymes NotI, BssHII, EagI, ClaI and 
SalI are grouped into 4 different classes depen- 
dent on their frequency in CpG islands (Bick- 
more and Bird 1993) and are depicted as shorter 
or longer lines see box above). Partially methy- 
lated cleaveage sites are shown in brackets" 
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Fig.2. Physical map of the PAR. Five CpG 
islands (B2-6) are marked distal of MIC2. 
ANT3 is associated with the CpG island B5. 
Physical locations were determined by pulsed 
field gel analysis (Brown 1988; Petit et al. 1988; 
Henke et al. 1991) 

A closer evaluation of the rare cutter restriction cleavage 
sites within the PAR reveals at least five different CpG is- 
lands distal to MIC2 (see Fig. 2); we have named these is- 
lands B2-B6 because of the presence of at least one BssHlI 
cleavage site in each of the islands. B2 and B3, 120 and 
220 kbp distal to the MIC2 gene respectively, were isolated 
from a chromosome BssHII jumping library (Poustka et al. 
1987) in two subsequent chromosomal jumps (G. Rappold, 
unpublished results). Methylation studies in different tis- 
sues indicated true CpG islands. Subsequent sequence 
analysis around the islands and screening of five different 
cDNA libraries, however, failed to reveal any transcribed 
products. We therefore concluded that this is attributable 
either to a narrow stage-specific or temporal-specific ex- 
pression pattern of the potential genes involved, or to the 
existence of "dead islands" that are associated with re- 
cently inactivated genes or pseudogenes. The only well- 
known example of an unmethylated CpG island that is not 
associated with a functional gene is the gto~2 pseudogene at 
the human o~-globin locus (Fischel-Ghodsian et al. 1987). 
Other non-processed pseudogenes have lost their CpG is- 
lands through methylation and mutation. 

There is as yet no information available on the gene 
associated with the CpG island B4 at position 1500 kb 
from the telomere. CpG island B5, at position 1300 kb 
from the telomere, is associated with the gene encoding 
an ADP/ATP translocase (Schiebel et al. 1993; Slim et al. 
1993b). B6 at position 470-520 kb from the telomere 
represents a cluster of  potential CpG islands, or, as men- 
tioned before, a structural CG-rich region whose function 
still has to be elucidated. A similar accumulation of rare 
cutter enzyme cleavage sites has been described in the 
HLA complex in man with five CpG islands within 50 kb 
(Ragoussis et al. 1991) and at the surfeit locus in mouse 
with four CpG islands within 32 kb (Huxley and Fried 
1990). It will be interesting to determine whether this sec- 
tion of the PAR also represents such a gene-rich area. 

Physical maps of the human pseudoautosomal region 
on Xp/Yp have been constructed using pulsed field gel 
analysis (Brown 1988; Petit et al. 1988; Rappold and 
Lehrach 1988; Henke et al. 1991). The PAR with its ap- 
proximate physical length of 2.6 Mb represents 3%-5% 
of the human Y chromosome (because of Y heterochro- 
matic variation) and 1.6% of the X chromosome. The 
physical extent of  the pseudoautosomal region can be 
verified by a yeast artificial chromosome (YAC) contig 
covering the whole region. Pseudoautosomal YACs have 
been isolated f rom different libraries (Foote et al. 1992; 
Slim et al. 1993a; Ried et al., in preparation), and a high 
instability and chimaera rate was seen. Recombination 
studies on YAC clones in yeast have recently shown 
that the level of recombination (and gene conversion) is 
maintained as in its natural context on the chromosome 
(Ross et al. 1992). The high frequency of  recombination 
in male meiosis and the presence of many minisatellite 
sequences in the PAR may therefore contribute to the 
high degree of instability and chimaerism of YACs from 
this region. 

The interface between sex-specific and pseudoautoso- 
mal sequences is the pseudoautosomal boundary (PABY 
and PABX), defined as the proximal limit of recombina- 
tion in the PAR (Ellis et al. 1989). In man, the pseudoau- 
tosomal boundary on Xp/Yp is marked by an Alu repeat, 
followed by a 220-bp stretch of reduced (78%) homology 
(Ellis et al. 1989). Sequences proximal to this block are 
non-homologous and sex-specific. Studies on Old World 
monkeys and great apes have indicated that the Alu repeat 
did not create the boundary seen in man, but instead was 
inserted at the pre-existing boundary after the Old World 
monkeys and great ape lineages diverged (Ellis et al. 
1990). No information is available yet on the structure of 
the pseudoautosomal boundary on Xq/Yq. 

The distal boundary of the PAR is the telomere. Telom- 
eric DNA at the end of all chromosomes consists of  the 
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simple repeated sequence (TTAGGG)n of variable length 
(Moyzis et al. 1988). In humans, the range is between 2 
kb and 20 kb, with the telomeres in germ cells being con- 
siderably longer than those in somatic cells (Cooke and 
Smith 1986). Proximal to these conserved repeats, a com- 
plex mixture of  chromosome-specific short repetitive se- 
quences have been described for several chromosome 
ends, extending over several kb (Brown et al. 1990; Cross 
et al. 1990); however, there are no specific data as yet on 
these subterminal repeats of  Xp and Yp. 

Various lines of  evidence suggest that the human PAR 
on Xp/Yp contains an especially high density of mini- 
satellite sequences (Cooke et al. 1985; Simmler et al. 
1985; Page et al. 1987a; Rouyer et al. 1990). It has been 
argued that minisatellites represent recombination hot- 
spots involved in chromosome pairing, and/or play a role 
in the initiation of meiotic recombination, which would 
explain their prevalence in the PAR (Jeffreys et al. 1985; 
Steinmetz et al. 1987; Chandley and Mitchell 1988; Royle 
et al. 1988). Structural studies on several pseudoautosomal 
tandem-repeats show copy number variations between in- 
dividuals. Loci DXYS 14, DXYS20 and DXYS78, for ex- 
ample, exhibit a 0.3-3 kb, 10-50 kb and 5-30 kb variation 
range, respectively, between individuals (Page et al. 1987a; 
Inglehearn and Cooke 1990; Armour et al. 1990). It is con- 
ceivable that other VNTR (variable number of tandem re- 
peats) loci in the PAR display similar features. Extrapolat- 
ing from these observations, one may argue for a possible 
length polymorphism of the PAR as a whole. Whether het- 
erozygosities of  pseudoautosomal length differences have 
an influence on meiotic segregation remains to be shown. 

Genetics  of  the PAR 

Pairing and recombination in meiosis 

During meiotic prophase, physical contact between the 
homologous chromosomes results in pairing and synapsis, 
and consequently in the formation of a synaptenomal com- 
plex. Chromosome synapsis and genetic recombination are 
related events, and recent observations suggest that recom- 
bination provides the basis for pairing and not vice versa, 
as generally assumed (reviewed in Roeder 1990). 

Pairing of human chromosomes usually starts at sites 
very close to the telomere (Laurie and Hult6n 1985). On 
the sex chromosomes, the initiation of pairing and the 
obligatory crossover event take place within the pseudo- 
autosomal region. Crossing over within the PAR was ob- 
served first cytogenetically (Hult6n 1974; Solari 1980) 
and was then established with molecular probes following 
the segregation of restriction fragment length polymor- 
phism (RFLP) alleles in pedigrees (Cooke et al. 1985; 
Simmler et al. 1985; Rouyer et al. 1986a, b; Page et al. 
1987a; Freije et al. 1992). Pairing of the sex chromosomes 
has been noticed not only between the Xp and Yp regions, 
but occasionally also between Xq and Yq in electron-mi- 
croscopic studies of  meiotic prophase cells (Chandley et 
al. 1984; Speed and Chandley 1990; see Fig.3). Only 
recently has the existence of a small second PAR with 
crossover events between Xq and Yq been demonstrated 
(Freije et al. 1992). 

Fig.3. Pairing of the human sex chromosomes X and Y in the early 
stages of pachytene, examined by electron microscopy (Chandley 
et al. 1984), The separation of the axial elements of X and Y in 
both chromatid strands has occurred and dense bodies, associated 
with the lateral elements, become visible. The synaptenomal com- 
plex of the pairing region of X and Y at this stage comprises ap- 
proximately one third or more of the total length of the Y chromo- 
some. Note the association of Xp and Yp, and of Xq and Yq. Cour- 
tesy of Drs. P. Goetz and A. Chandley 

The extent of pairing between Xp and Yp is variable, 
including the PAR and most of the short arm of the Y 
chromosome (see Fig.3), and extending in some cases 
into the long arm of the Y (Chandley et al. 1984). It is 
not known what causes the homologous parts to become 
precisely aligned; it seems probable, however, that pro- 
nounced homology over very long stretches of  DNA is 
not required. 

Errors in pairing and recombination 

X-Y pairing has been hypothesised as a prerequisite for 
the completion of male meiosis (Burgoyne 1982). Bur- 
goyne and others have argued that primary spermatocytes 
containing univalent X and Y chromosomes do not pro- 
duce functional sperm. Meiotic and segregation data in 
mice from Sxr-carrier males and XY* males (these are 
mice which have a rearranged Y and in which the PAR 
occupies an interstitial position) showed that all func- 
tional sperm are derived from spermatocytes with sex 



chromosomes that paired and that had an XY chiasma 
(Keitges et al. 1987; Cattanach et al. 1990; Hale et al. 
1991). Whether X-Y pairing per se or X-Y recombination 
is a prerequisite for producing functional sperm is still an 
open question. 

X-Y dissociation leads to sterility; in other words, the 
obligatory crossover is an indispensable condition for the 
reproduction of the individual. This was recently shown 
by a particulary striking example that involved crosses be- 
tween two species of  mice. These studies demonstrated a 
95% dissociation rate on the hybrids, which were sterile, 
compared with a 3%-4% X-Y dissociation rate in the 
parental strains (Matsuda et al. 1991, 1992). Genetic di- 
vergence of the pairing region can thus contribute to re- 
productive barriers existing between species and to the 
process of speciation. 

In humans, male individuals lacking X-Y pairing are 
also known to be sterile. A reduced recombination fre- 
quency leads to incorrect segregation, and to 47,XXX or 
47,XXY individuals (Hassold et al. 1991). Occasionally, 
the obligatory X-Y crossover occurs outside the PAR (il- 
legitimate recombination); in this case, the testis-deter- 
mining factor (TDF or SRY), which is located just 5 kb 
proximal to the pseudoautosomal boundary on Xp/Yp 
(Sinclair et al. 1990) may be transferred to the X chro- 
mosome.  This illegitimate crossover event  results in 
46,XX individuals who display a male phenotype (Page 
et al. 1985; Petit et al. 1987). The reciprocal product is 
a Y chromosome deleted for SRY, as found in some XY 
females with gonadal dysgenesis (Levilliers et al. 1989). 

Segregation of pseudoautosomal minisatellite loci: 
the genetic map 

Genetic map expansions have been observed in telomeric 
and subtelomeric regions of  different human chromo- 
somes, reflecting a higher recombination rate per physical 
length unit in these regions (reviewed in Rouyer et al. 
1990; NIH/CEPH Collaborative Mapping Group 1992; 
Harris and Higgs 1993). The PAR exhibits these sub- 
telomeric features in a particularly striking way. Recom- 
bination during male meiosis is markedly higher; an ap- 
proximately 10-fold difference exists between the fre- 
quencies of  recombination in male and female germ cells 
on Xp/Yp (Rouyer et al. 1986a, b; Page et al. 1987a; 
Henke et al. 1993) and an approximate 5-fold difference 
in the PAR on Xq/Yq (Freije et al. 1992). The molecular 
basis of these differences in recombination is not known. 
Previous genetic maps, using RFLPs from the PAR on 
Xp/Yp, have established a linear gradient of recombina- 
tion with frequencies of approximately 50% at the X-Y 
telomeres and 0% at the pseudoautosomal boundary 
(Cooke et al. 1985; Rouyer et al. 1986a, b; Goodfellow et 
al. 1986; Page et al. 1987a). It has been proposed that the 
recombination frequency could be used to estimate the 
position of any locus within this region, implying that 
there is only one crossover event and that the genetic dis- 
tances are strictly additive (Rouyer et al. 1986a, b). In 
contrast of the findings in the PAR of the mouse (Harbers 
et al. 1986; Soriano et al. 1987), no double crossover has 
been described as yet in the human PAR. 
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Whereas the entire PAR may be seen as a region prone 
to high recombination in male meiosis, this is definitely 
not the case in female meiosis. In the latter, the recombi- 
nation rate in the overall PAR on Xp/Yp is comparable to 
the X chromosome average. A hot spot of  recombination 
is, however, located between loci DXYS20 and DXYS78 
within 20-80  kb from the telomere (Henke et al. 1993). 
In this telomere-adjacent region only, male and female re- 
combination rates are very similar - an observation whose 
biological significance, if any, is as yet unknown. 

A comparison of the genetic and the physical map al- 
lows us to correlate centimorgans with kilobases. On the 
PAR on Yp there are, on average, around 53 kbp of DNA 
per centimorgan (based on a physical and genetic map 
length of 2560 kbp and 48.5 cM in male meiosis) and 
480 kbp correspond to 1 cM in female meiosis (Henke et 
al. 1993). 

The reason for certain segments of  the genome exhibit- 
ing highly elevated or low recombination rates remains an 
enigma. Extreme examples are seen in Drosophila males 
and silkworm females, with a complete absence of recom- 
bination. Recent experiments artificially altering the chro- 
mosome size of  Saccharomyces cerevisiae have shown 
that chromosome length has a direct effect on the rate of  
recombination (smaller chromosomes lead to higher re- 
combination rates) (Kaback et al. 1992). It has also been 
demonstrated that recombination differences are influ- 
enced by chromatin structure or by the binding of specific 
proteins at predetermined sites (White et al. 1991; Ponti- 
celli and Smith 1992). In D. melanogaster and S. cere- 
visiae, for example, the frequency of meiotic recombina- 
tion is altered by the proximity of certain chromosomal 
structural elements, such as the centromere or large blocks 
of  heterochromatin. The movement  of  a hotspot from its 
original place to another location fails to enhance recom- 
bination (Ponticelli and Smith 1992). Eukaryotic hotspots 
are therefore more complex than can be explained by sin- 
gle sites, and the exact nature of  the chromosomal context 
necessary for hotspot activity remain to be elucidated. 

Minisatellites may also act as recognition sites for spe- 
cific enzymes that directly or indirectly promote recombi- 
nation (Rouyer et al. 1990; Chandley and Mitchell 1988; 
Wahls et al. 1990) and many of these are found within the 
pseudosomal regions. Yet, whatever the underlying rea- 
sons for recombination are, the PAR marks a unique area 
for investigating the structural components required for 
homologous recombination in mammals.  

Genes in the pseudosomal region 

Interest in the biological phenomena of the PAR has been 
a major impetus for the isolation of numerous sequences 
of  this region. In particular, genes operating in the region 
of highly differential recombination rates between male 
versus female raise important questions. Six human (and 
one murine) pseudoautosomal genes have been described 
to date and their location with respect to the distance from 
the telomere is depicted in Fig.4. 

MIC2 is the first pseudoautosomal gene described in 
man (Goodfellow et al. 1983, 1984, 1986; Smith et al. 
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1993). As it maps just 95 kb distal to the pseudoautosomal 
boundary, next to a CpG island, it constitutes an important 
reference point on the physical and genetic map. MIC2 is 
a ubiquitously expressed housekeeping gene. It encodes a 
cell surface antigen (defined by the monoclonal antibody 
12E7) and is involved in cell adhesion processes, e.g. in 
the spontaneous rosette formation of erythrocytes (Gelin 
et al. 1989). Recently a second pseudoautosomal locus, 
cross-reacting with two exons of  MIC2,  has been de- 
scribed (Smith et al. 1993). 

XE7 represents a pseudoautosomal gene, which was 
isolated fi'om an inactive X cDNA library (Ellison et al. 
1992). XE7 appears to be ubiquitously expressed and al- 
ternative splicing results in two very hydrophilic protein 
isoforms (Ellison et al. 1993). Presently there is no clue to 
its biological function. Its physical location within the 
PAR has been determined by a combination of YAC 
screening and PFGE (Ried and Rappold, unpublished re- 
suits). 

ASMT (acetylserotonin methyltransferase or hydroxy- 
indole-O-methyltransferase) catalyses the final reaction 
in the synthesis of  the hormone melatonin, which is se- 
creted from the pineal gland. This enzyme was cloned by 
sequence homology to a bovine ASMT gene and has been 
genetically mapped within the PAR adjacent to the marker 
DXYS17 (Yi et al. 1993). It has been suggested as a can- 

didate for psychiatric disorders (Yi et al. 1993) because of 
(1) its tissue-specific expression in brain and retina (and 
the interesting observation that individuals with bipolar 
illness or seasonal affective disorder exhibit an altered 
sensitivity to light) and (2) previous association and link- 
age studies of pseudoautosomal markers in schizophrenia 
patients (Crow 1988; Crow et al. 1989; Collinge et al, 
1991; d 'Amato et al. 1992). 

ANT3 (adenine nucleotide translocase) represents a 
highly conserved gene from the ADP/ATP translocase 
family. It catalyses the exchange of ATP and ADP across 
the mitochondrial membrane and thus plays a fundamen- 
tal role in the energy metabolism of the eukaryotic cell 
(Cozens et al. 1989). This pseudoautosomal gene was iso- 
lated by cross-hybridization with a microdissected clone 
from the chromosomal subregion Xp22.3 (Schiebel et al. 
1993; Slim et al. 1993b). Sequencing of the cDNA re- 
vealed its identity with a previously characterised member 
of the translocase family (Cozens et al. 1989). Expression 
studies indicated that ANT3 is a housekeeping gene and 
that it escapes X-inactivation (Schiebel et al. 1993; Slim 
et al. 1993b). Interestingly, a homologue of ANT3, viz. 
ANT2, maps to the long arm of the X chromosome and 
undergoes X-inactivation. The two genes provide the first 
evidence of two closely related genes, one on Xp and the 
other on Xq, that show striking differences in their X-in- 
activation behaviour. 

IL3RA (interleukin receptor subunit c0 has properties 
characteristic of  the cytokine receptor family. It maps 
close to and proximal to CSF2RA, distal to ANT3 (Kre- 
mer et al. 1993; Milatovich et al. 1993). Interestingly, 
IL3RA and CSF2RA share the same ~ subunit, whereas 
the ~z subunits are distinct. 

CSF2RA (colony stimulating factor receptor 0t): Gran- 
ulocyte-macrophage colony-stimulating factor (GM- 
CSF) is a growth and differentiation factor that acts on the 
cells of  the monocyte/macrophage lineage (Gough and 
Nicola 1990). The cell surface receptor for GM-CSF 
(CSF2RA) is composed of two subunits, 0~ and ~, of which 
the c~-chain gene has been genetically and physically 
mapped to the PAR (Gough et al. 1990; Rappold et al. 
1992; see Fig.4). CSF2RA represents the most distally lo- 
cated pseudoautosomal gene so far functioning in a re- 
gion with a 27% recombination frequency (Henke et al. 
1993). Either the X or the Y chromosome is lost in about 
25% of acute myeloid leukemias, suggesting that a reces- 
sive oncogene may be involved in the genesis of acute 
myeloid leukemia subtype M2 (Gough et al. 1990). Loss 
or X-inactivation of both copies of  this gene would be ex- 
pected to generate cells that are unresponsive to GM-CSF, 
as indeed has been found (Gough et al. 1990). 

A summary of the available information on the six so 
far known human pseudoautosomal genes is given in 
Table 1. Does the genomic organisation of  a pseudoauto- 
somal gene reflect the unusual recombination rates in 
male meiosis? Are their exons considerably smaller than 
the average for mammalian genes, and their introns con- 
siderably larger? Are genomic gene sizes smaller than 
average? Are pseudoautosomal genes preferentially genes 
for which a certain degree of genetic divergence would 
have a selective advantage? Preliminary data suggest that 



Table 1. References to gene isolation and 
characterisation are given in the text. Physi- 
cal mapping within the PAR was done by 
PFGE using genomic DNA derived from 

MIC2 lymphocytes of 46,XX individual AH and 
by YAC screening. Reference point is the XE7 
telomere. Physical locations are based on a ASMT 
physical map length of the PAR of 2560 ANT3 
kbp (as determined for individual AH). IL3RA 
The physical location of ASMT is taken 
from Slim et al. (1993a) CSF2RA 
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Gene Physical Orientation Genomic No. cDNA Expression 
location size [kb] exons 

2470 Tel-Cen 52 10 1 .24 Ubiquitous 

1600-2000 ? 11 6 3.23 Ubiquitous 

1600-1850 ? > 6 ? 1 .25 Pineal gland, retina 

1 300 Cen-Tel 5.9 4 1.3 Ubiquitous 

1180-1300 Tel-Cen ? >4 1.5 Haemopoietic cells 

1180-1300 ? > 45 > 5 1.8 Haemopoietic cells 

none o f  these is very likely. Gene  sizes range f rom 5.9 kb 
(ANT3)  to 52 kb (MIC2).  Exon sizes are smaller  than av- 
erage in some genes (e.g. MIC2) ,  but larger than average 
in others (e.g. A N T 3  and XE7).  There  are no data as yet  
on the genetic  d ivergence  o f  pseudoautosomal  genes.  

The  unusual  mode  of  inheri tance of  pseudoautosomal  
genes, with varying degrees  o f  partial sex l inkage,  also 
st imulated the proposal  of  a wide range o f  hypothesis  con- 
cerning different diseases. Indeed,  all traits that appear to 
be inheri ted in an autosomal  fashion but that cannot be as- 
s igned to an autosomal  l inkage group may result  f rom a 
pseudoautosomal  gene. 

Since this region escapes X-inact ivat ion,  some genes 
that it contains are thought to lead, in a dosis-dependent  
way, to some of  the features seen in Turners syndrome 
(45,X). Associa t ion  studies be tween short stature and ter- 
minal  delet ions o f  both Xp and Yp have  pointed to a 
pseudoautosomal  locat ion o f  one o f  the growth genes 
(Ballabio et al. 1989; Henke  et al. 1991; Ogata  et al. 
1992a, b). Short  stature represents one o f  the cardinal and 
consistent  features o f  Turner syndrome.  Molecu la r  studies 
on several  patients with partial monosomies  o f  the PAR 
(with or wi thout  short stature) suggest  that the critical re- 
gion for the putat ive growth gene is the region 50 -1300  
kb f rom the te lomere  (Henke et al. 1991; Ogata  et al. 
1992a, b). It wil l  be interesting to find out which other 
diseases are associated with genes located in the PAR. 
Surprises are guaranteed over  the next few years. 
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