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Abstract: In this paper we characterize the nucleolus (which coincides with the kernel) of a tree 
enterprise. We also provide a new algorithm to compute it, which sheds light on its structure. We show 
that in particular cases, including a chain enterprise one can compute the nucleolus in O(n) 
operations, where n is the number of vertices in the tree. 

1 Introduction 

In this paper we consider cost allocation problems defined on a tree enterprise. 
Such problems were essentially considered by several authors (Bird [ 1976], Claus 
and Granot [1976], Megiddo [1978], Granot and Huberman [1981], [1984], 
Granot and Granot [1992]). A special case, when the tree is a chain, 4 was studied 
by Littlechild [1974], Littlechild and Owen [1977], and Littlechild and Thom- 
pson [1977]. Megiddo [ 1978] produced an algorithm to compute the nucleolus of 
the tree enterprise 5 in O(n 3) operations, where n is the number of vertices of the 
tree. By using efficient mergeable heaps Galil [19801 has reduced the number of 
operations needed for Megiddo's procedure to O(n log n). 

In this paper we study the structure of the nucleolus 6 of the class of these 
enterprises; namely, we characterize the shape of the nucleolus in terms that are 

1 Partially supported by Natural Science and Engineering Council of Canada, grant A4181 
2 Supported by National Science Foundation, grant DMS-9116416. 
3 Partially supported by Natural Science and Engineering Council of Canada, grant A3998. 
, I.e. all arcs are located along a line. 
s Littlechild [1974], Littlechild and Owen 1-1977], and Littlechild and Thompson 1-1977] compute 

the nucleolus in the chain case. 
6 Since the corresponding games are convex, the nucleolus coincides with the kernel of the tree 

enterprise. 
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common to all the enterprises. Roughly, it is obtained by dividing the "debt" at 
each vertex between the residents at the vertex and the arcs leaving that vertex. 
Each resident is charged his part  of the debt and the same part  of the debt is added 
to the cost of each arc leaving the vertex, to form a new debt. All the above is 
coupled with a process called "elimination of an arc", which is performed at some 
arcs at which a player at the head of an arc is charged more than a player at the 
tail of the arc. The hardest part  of our analysis is to determine what arcs should be 
eliminated. This determination leads to a new and interesting algorithm to 
compute the nucleolus, which sheds more light on its structure. 

This paper is organized as follows: In Section 2 we prepare the background and 
introduce the necessary notation. In Section 3 we set up a system of equations and 
prove that they determine tt~e nucleolus. One interesting aspect here is the fact 
that the number  of equations is O(IN]), rather than o([g[2), where ]gl is the 
number of players. Section 4 provides a characterization of the nucleolus for the 
class of the tree enterprises. Section 5 provides examples which show that the 
above characterization is not sufficient in order to get to the nucleolus. One has to 
determine which arcs to eliminate. This is done in Section 6. In this Section we 
also present our alternative algorithm to compute the nucleolus. In Section 7 we 
show that further short cuts can still be made in the algorithm. In particular, we 
show that in the case of a chain enterprise we can compute the nucleolus in O(n) 
operations. 

2 The Tree Enterprise and its Game 

In this paper we consider a tree enterprise 8 :=  (V, E, a, b, N). Here (V, E) is a finite 
directed tree with vertex set V and arc set E. The set V contains a distinguished 
node 0, called the root of the tree. v The function a:E--,9t, called the arc-cost- 
function, associates with each arc e a cost a(e), interpreted as the cost to construct 
e. The function b:V-~9t, called the vertex-cost-function, associated with each 
vertex v a cost b(v), interpreted as the cost to construct v. All arcs are directed 
away from 0 and the construction of arcs not in the tree are regarded infeasible (or 
too costly). Other  interpretations are, of course, also possible. N = { 1, 2 . . . . .  n} is 
a finite set of players, each "located" at ("resides" at, "occupies") a specific vertex. 
We denote by v i the vertex occupied by player i and we denote by e i the arc 
entering v ~. We allow for several players to occupy the same vertex, in which case 
we call them neighbors. We also allow non-occupied vertices, in which case we call 
them public vertices. However, we assume that each player occupies exactly one 
vertex. Note that a and b may take negative values, interpreted as proceeds paid 

7 By ~176 directed tree" we mean a directed graph such that to each vertex there is a unique path from 
the root to that vertex. 
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to whoever constructs the corresponding arc, or vertex. The objective of the 
players is to connect themselves to the root (think of a cablevision network). 

With each enterprise g we can associate a cost 9ame F e:= (N; c), where, for each 
coalition S we define 

c(S) = minimal cost needed to join all members of S to the root 
via a connected subgraph of (V, E) (2.1) 

Remark 2.1: If a subgraph contains an arc, it is automatically assumed that it 
contains also its endpoints, unless stated otherwise. Thus, when S chooses 
a subgraph it has to pay all the costs of its arcs and their endpoints. 

Remark 2.2: As the costs are the costs to construct the arcs and vertices. If several 
players "use" an arc, or a vertex, they have to pay only once for the construction. 

Remark 2.3: Since a and b may take negative values, the optimal subgraph for 
a coalition need not be unique, nor need it be the natural subgraph 8 of S. It may be 
worthwhile for the members of S to construct additional acrs and vertices, in 
which case we say that it is worthwhile for S to swallow these additional parts. 

We shall denote by (V s, E s) the optimal subgraph for coalition S and if there are 
several optimal subgraphs (because of subtrees that cost noting, if added) then, 
unless specified otherwise, (VS, E s) will denote the unique subgraph which is 
maximal under inclusion. 

Remark 2.4: The empty coalition need not have a zero worth. By convention, it 
has to pay the cost of the root and, if it is worthwhile, it can swallow a connected 
subtree, connected to the origin. 

We shall encounter general trees as described above, but actually the main 
purpose of this paper is to determine the structure of the kernel and nucleolus of 
a game corresponding to a standard tree enterprise, defined subsequently. 9 

Definition 2.5: A tree enterprise 8 = (V, E, a, b, N) is called a standard tree enter- 
prise if 

(i) b(v) = 0 for each v in V, 
(ii) a(e) >_ 0 for each e in E, 

(iii) The root is not occupied, 

s Namely, the subgraph consisting of those arcs and vertices that  must  be traversed in order to join all 
members  of S to the root. 

9 Henceforth, we shall refer to the kernel/nucleolus of the tree enterprise and mean the ker- 
nel/nucleolus of  the correspondir~g game. A similar convention will apply to other solution 
concepts, such as the com. 
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(iv) All vertices are occupied, 
(v) Only one arc leaves the root. 

S tandard  trees, in which every vertex except the roo t  is occupied by exactly one 
player were discussed in Megiddo [1978] and Grano t  and H u b e r m a n  [1981]. 
Because b(v)= 0, s tandard  tree enterprises will be denoted g = (V, E, a, N). The 
following theorem enables us to deduce several facts, known  from the literature. 

Theorem 2.6:1~ The game associated with a s tandard tree enterprise is a convex 
game; 1 t i.e., 

~(7"w {~)1 - ~ ( r )  _< ~ ( s , o  {i))  - c(S), (2.2) 

whenever S ~ T and ir T (see Shapley [1971]). 

Proof" Let R be an arbi t rary coalition. Because the tree is standard,  c(R) is the 
cost of  the natural  subgraph for R (Remark 2.3). We shall denote  this subgraphl  2 
by (Va, ER). Thus, 13 c(R)= a(ER). Let S c T and iCT. Note  that  (Vr~{~I,E r~{~}) 
contains (V r, Er), because in a directed tree, there is a unique path from the roo t  
to every vertex. Similarly, (V s~{i}, E s~{~}) contains (V s, ES). The set Er~{i}kE r is the 
set of  addit ional  arcs needed to connect  i to the root, given that  T is already 
connected to the root. Thus, 

c( T~  {i)) - c( T) = a(Er~{i}kEr). (2.3) 

Similarly, 

~ ( s ~  {i}) - c(S) = a(~S<'~\~s). (2.4) 

Relat ion (2.2) now follows from (2.1), because a >_ 0 and 
Es•(i)\E s ~ ETu{i}\E T. [] 

Corollary 2.7: A standard  tree enterprise has a nonempty  core - in fact, a regular 
core (Shapley [1971]).  Its kernel 14 consists of a unique point  in the core and 
therefore coincides with its nudeolus .  

Remark 2.8: Of the Condi t ions  of  Definition 2.5, only the first and the second 
were employed; therefore, Theorem 2.6 holds for a wider class of  trees, in which 

l o This theorem was mentioned in Granot and Huberman 1-1982]. 
~ Actually, a concave game. We shall use the terminology which refer to the games (N;-c). 

Similarly, we shall say "core", "nucleolus", etc. instead of "anti-core", "anti-nucleolus", etc_ 
2 Contrary to the general convention, when the optimal subgraph is not unique. 

13 a(E a) = ~{a(e):e6ER}. 
14 Which is also its prekernel (see (3.1)-(3.2)), because a convex game is 0-monotonic (Maschler and 

Peleg [1967]). 
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the other conditions may be violated. In fact, it is enough to require that for each 
vertex v i, b(v ~) + a(e i) >_ O. 

Remark 2.9: Conditions (iii) and (v) in Definition 2.5 are required only for 
simplification purpose. If the root is occupied, we can always add a zero-cost arc 
from a new unoccupied root to this root without changing the characteristic 
function. If several arcs leave the root, then, as has been observed by Megiddo 
[ 1978], the nucleolus is simply the cartesian product of the nucleoli of the various 
branches emanating from the root.1 

3 The Equations for the Kernel/Nucleolus of a Standard Tree 

We achieve the task at the head of this section by employing the reduced 9ame 
property that is satisfied by the prekernel (see, e.g. Peleg [1986]), when applied to 
certain 2-person reduced 9ames. The reduced game property will help us get some 
equations that must be satisfied by the kernel/nucleolus. We then prove that these 
are sufficient. Later we shall construct an algorithm for computing the ker- 
nel/nucleolus and prove its validity by showing that its outcome satisfies these 
equations. (The reduced game property will again be employed during the 
development of the algorithm.) 

We remind the reader that the prekernel of a cost game (N; c) is the set 

{xegV:x(N) = c(N) and su(x ) = szk(x), for all k, leN,  k r l}, (3.1) 

where 16 

sk~(x) = min {c(S) - x(S):Sgk, S}l}. (3.2) 

Notation 3.1: 

(1) An ordered pair of players (i,j) is a pair of adjacent 17 players i andL where 
j follows i. We shall denote by eq the arc from v i to v j, and also refer to it as the 
arc entering v j. 

(2) Let (i, j) be a pair of adjacent players. We denote by B~ the subtree of (V, E) 
rooted at v i and whose vertex set consists of v ~, and all vertices of the tree, such 
that the paths from the root to these vertices contain e~j. B~j will be referred to 
as the branch at v ~, in the direction ofj. We shall also denote by B~z the branch 

is This can also be proved with the help of Theorem 3.12. Granot  and Huberman [1981] proved 
a more general result. 

16 c ( S )  - x ( S )  is called the e x c e s s  of the coalition S at x. 
7 Namely, occupying the ez~dpoints of an arc. 
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B~i, if I is located somewhere after j, where j  is adjacent to i and is on the path  
from i to 1. We shall refer to Biz as the branch at v ~ in the direction of I. 

(3) We denote  by T~j [or  by Tit, see above] the subtree rooted  at the original root,  
consisting ofv ~ and all the arcs and vertices not  in B~j. We shall refer to it as the 
t runk at v i, away f r o m j  [from l]. 

(4) For  an arbi t rary  vertex v, we denote  by x(v) the expression Z{x~:v resides 
at v}. Fo r  a subtree W, we denote  by x(W)  the expression Z{x(v): v is a vertex 
in W}. 

(5) Fo r  a subtree W, we denote  by a(W) the expression Z{a(e):e is an arc in W}. 

The following lemma is taken from G r a n o t  and Maschler [-1994]. Essentially it 
appeared in Megiddo [-1978] and G r a n o t  and Hube rman  [1984]. 

Lemma 3.2: If x is a core point  of a s tandard tree enterprise g (Definition 2.5), 
then x > 0 and (see Nota t ion  3.1) for a pair  of adjacent players (i, j), 

x(Bij ) - x(v i) - a(Bij ) >_ O. (3.3) 

The left side of (3.3) is the amount  the players residing in Bij and not  in v i pay, 
under  x, above the cost of the branch. Thus, at a core point  these players pay at 
least the cost of the branch.  

The next lemma is a special case of a basic theorem in Grano t  and Maschler  
[1994~. 

Lemma 3.3: Let x be a core point  of a game F~ corresponding to a s tandard tree 
enterprise r  Let (i,j) be a pair  of adjacent players and let 
({i, j}; g{~/,j~) be the reduced game is on {i, j} at x. Then  this reduced game is the 
game corresponding to the reduced enterprise g = (V, E, a, b, {i, j}), where 

{ ~(v)= -x(v), 
b(v) x(v)+x,, 
b(v) x(v)+xj, 

if i and j do not  reside in v, 
if i resides in v, 
if j resides in v. 

(3.4) 

Remark 3.4: Lemmas  3.2 and 3.3 can be extended to general enterprises 
(V,E,a,b,N).  

Thus, the reduced enterprise on {i, j}, at a core point  x, is obtained from the 
original tree enterprise by removing all the players other  than i a n d j  and reducing 
by Xp the (originally zero) cost of the vertex where p resides, p # i, j. The reduced 
enterprise is no longer a s tandard tree. 

is The reduced game on a coalition S, at a core point x, of a cost game (N;c) is a game (S;~), where 
gs(R) = min{c(R u Q) - x(Q):Q ~_ SO}, all R _~ S. 
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L e m m a  3.5: Let x be a core point of a standard tree enterprise. Let (i, j )  be a pair 
of adjacent players. The characteristic function of the reduced game on {i, j }, at x, 
is given by 19 

{ ~{~,ji(i, j )  = x i + x j ,  

~{x j}(j.) = xi  q_ x j, (3.5) 
g~,j~(i) = rain {xl  + x j, a(Tii)  - x ( T i j )  + xi  },  

= o 

(see Notat ion 3.1). 
Note the simple structure of the reduced game: Two coalitions have the same 

worth and only two options are available to the third. 

Proof"  Both coalitions {i, j} and {j} have to pay the cost of the path from the root 
toj.  By Lemmas 3.2 and 3.3, it is worth their while to swallow every arc and vertex 
of the tree; hence, their worth is c ( N )  - x ( N \ { i ,  j}) = x~ + xj. As to coalition {i}, 
again, by Lemmas 3.2 and 3.3, we need to consider only two options: either to 
swallow v j, knowing that xj will not be paid back, and then to continue and 
swallow all the tree, or swallow only the trunk Tij. []  

L e m m a  3.6: The prekernel of a 2-person cost game ( { i , j } ; c ) ,  where c ( ~ ) - - 0 ,  
c(i) = a, c ( j )  = c(i, j )  = b, consists of the unique point ((a/2), b - (a/2)). 

Proof' .  The results follow from (3.1) and (3.2). []  

L e m m a  3.7: Let x be the kernel/nucleolus point of a standard tree enterprise 
g (Definition 2.5), then, for every pair of adjacent players (i, j )  and every pair of 
neighbors {p, q}, x must satisfy 

I 
x i = a(Ti j  ) - x (T i j ) ,  if x j  >_ a(Ti j  ) - x (T i j ) ,  

x i = x j ,  if x j  < a(Ti j  ) - x ( T i j ) ,  
xp = xq, (3.6) 

x ( N )  = c(Nl .  

Proof"  By Corollary 2.7 x is also the prekernel point. The last equation follows 
from (3A). The previous one follows from the fact that p and q are symmetric 
players (substitutes) (see Maschler and Peleg [-1966]). The first two equations 
follow from (3.5) and from the reduced game property of the prekernel.Z~ Indeed, 
by Corollary 2.7, Lemma 3.6 and (3.5), 

X i = [a(  Tij ) --  x (  Tij ) + x i ] / 2  , if x i + x j  >_ a( Tij ) - -  x (  Tij ) + xi ,  
(3.7) 

x~ [xi  + x j ] / 2 ,  if x~ + x j  < a(Ti j )  - -  x(Ti~) + xi .  

Equations (3.6) are equivalent to (3.7). []  

19 We sometimes omit curly braces that should surround members of a coalition. 
2o Namely, if (S;~s) is the reduced game on S, at x, where x is a prekernel point then xS:= {xl}i~s is 

a prekernel point of the reduced game. 



226 D. Granot et al. 

Corol lary  3.8: If (i, j)  is a pair  of adjacent players in a s tandard tree game and 
x satisfies (3.6), then x j  > x i. 

The last conclusion makes sense intuitively. P l aye r j  needs all the arcs that  are 
used by player i and an addit ional  arc. He should therefore pay at least as much as 
player i. 

Corol lary  3.9: Equat ions  (3.6) are equivalent to each of the following: 

xi = a(Tij) - x (Ti j )  and x j  > a(Tij) - x(Tif l ,  

x~ = xj and x~ < a(T~j) - x(Tii) ,  

Xp ~ Xq~ 

x(N)  = c(N). 

if Xj ~ Xi, 

if x s < x~, (3.8) 

x i =  x(Bi j )  - a(Bij  ) - x (v  i) and x j  > x(Bi j  ) - a(Bij ) - x(vi), 

xi = xj and x j  < x(Bi j  ) - a(Bij)  - x(vi), 

Xp ~ Xq~ 

x ( N )  = c(N).  

if Xj ~> Xi, 

if x j  <_ xi,  (3.9) 

Proof'. Suppose (3.6) holds. By Corol lary  3.8, xj < x i cannot  hold. If xj > x i then 
x~ = a( T~ ) - x (  T~j) and xj > a( T~j) - x (  T~j). If x~ = xj then xj > a( Tii ) - x (  T~j) 
would imply x~ > x~, which is a contradict ion.  Thus, (3.8) is satisfied. We omit  the 
proof  that (3.8) implies (3.6). Equat ions  (3.9) follow since c(N) = a(Bo) + a(To) and 
x ( N )  + x(v i) = x(Bi j  ) + x (T i j  ). [] 

Corol lary  3.10: Let x be the kernel point  of a tree enterprise & Let (i, j) be a pair  
of adjacent players (Nota t ion 3.1). Then 

x i <_ x(Bi j )  - a(Bij ) - x(vi); (3.10) 

i.e., a player residing at v i never pays more  than the amount  the players after him 
on a branch Bij pay above the cost of the branch. 

Proof: Formula  (3.9). [ ]  

L e m m a  3.11: A payoff  vector x satisfying (3.6), or equivalently (3.8) or (3.9), is 
nonnegative.  

Proof." Suppose not, then, by Corol lary 3.8 x 1 < 0, where v 1 is adjacent to the root  
and the charges x k to players along each path  are negative until they start to 
become nonnegative,  if at all. The  players i who pay a negative amount  pay less 
than the cost of the arcs e i, because the cost function a is nonnegative.  As soon as 
we arrive at a pair (i, j) of adjacent players, in which x i < 0, xj >_ 0, by the first 
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equation of (3.9), the players in B~j other than those residing at v ~, pay together less 
than the cost of their branch by the amount Ix~l. This happens on every branch 
B~,j for which x~ < 0 and xj > 0, so altogether, x ( N )  < c(N), in contradiction with 
(3.9). [] 

Equations (3.6) (or (3.8), or (3.9)), express the fact that a prekernel point satisfies 
s~j(x) = s~(x) for each pair of adjacent players and that it is a preimputation in 
which neighbors pay the same amount. Equations (3.1), however, require that 
Skt(X ) = Stk(X ) for each pair of distinct players. Fortunately, for a standard tree 
enterprise the additional requirements are satisfied automatically, as the follow- 
ing theorem shows. 

Theorem 3.12: If x satisfies (3.6) (or, equivalently (3.8), or (3.9)), then x is the 
prekernel point, and therefore, the kernel/nucleolus point of the standard tree 
enterprise. 

For the proof we need the following two lemmas. 

Lemma 3.13: If x satisfies (3.6), then for every k, l, k v a l, there exists a subset S, 
containing k but not l, for which S k , z ( x ) : = m i n { c ( R ) - x ( R ) : k s R ,  lq~R}= 
c(S) - x(S), such that either S = N\{1} ,  or (VS, E s) = Tql for some player q. 

Proof'. Let S be such a coalition, for which s u is achieved.Formally, (V s, E s) can 
employ vertices not occupied by members of S, but since x _> 0 (Lemma 3.11), we 
may assume that S contains every player i, when v~e V s, with exception of l, (even 
if v% vS). Suppose that q~S  and let Bqr be a branch not in the direction ofl .  Since 
0 <_ xq <_ x(Bqr ) - a(Bqr ) - x(vq), we shall diminish the excess if we include Bqr in 
(V  s, ES). Thus, we can assume that S contains every Bq~, not in the direction of/, if 
it contains q. Moreover, if l e V  s then (VS, E s) is the full tree and S = N \ { l } .  If 
Ir V s then, in view of the above, and since (V  s, E s) is a connected graph, con- 
nected to the root, S must be of the form Tq~ for some q in the path from the root 
to I. [] 

Lemma 3.14: Let x satisfy (3.6). Consider a path from some v 1 to some vr+ 1 whose 
vertices are v l , v z , . . . , v q ,  vq+l , . . . , v , , v r+ 1 and let m l , m 2 , . . . , m q ,  mq+l , . . . ,  
mr, m r + 1 be players located at the vertices of the path, respectively. Suppose that 
Xml = x,,~ = . . . .  x , , ,  < Xm,+ ~ < "'" <__ Xm. < X . . . .  under these conditions, 

a( Tmr J - x( T,,w,r) < a( T,,,~,,,~) -- x( T,,~m,), (3.11) 

a(Tmq,.)-- x(T,.e. ) < a(T,. . . . . .  ) -  x(T,. . . . . .  ), (3.12) 

Consequently, the minimum of a(Tmpmp+l ) - X( Tmp~+ l), 1 < p <__ r, along this path 
is achieved when T,,v,,~+l = T,,q,,q+ 1. 
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Proof" Since Xmq < Xmq+l, it follows from (3.9) that  xmq = x ( B m , , J  - a(Bm,m) - 
x(v mq) and Xml < x(Bmlr% ) - a(Bmlm~ ) - x(vm~). Thus, 

a( Tmqm) -- x (  Tmqmr ) = a( Tmlm, ) - x(  T,,.,,,,) 

+ a(Bmlm~) -- x(Bmlm~) + x(v  ml) 

- -  [a(Bm~m~ ) - -  x(Bmqm~ ) "q- X(Vmq) "] 

= a ( T m , m , ) - -  x(T,,,,.m~,) 

+ a(Bmlmq ) -- x (B~mq ) -t- x(vmO -t- Xmq 

< a(T~,m,~) -- x(T~,mq ) -- x, , .  + Xm~ 

= a( r,,,~m,) - x(  r,,,~,.). 

This proves (3.11). 
Again, by (3.9), 

a(Tm . . . . .  ) -  x(T,.  . . . . .  ) = a(T,,,,~mr)- x(T,,,~,m,) 

+ a(B,,,,~,,,,.) -- x ( S  . . . .  ) + x(v''q) 

- -  [ a ( B  . . . . . .  ) - -  x ( B  . . . . . .  ) + x(v'nr)~] 

= a(T~v,O - x(T,,w~ ) - Xmq 

- -  [a(B . . . . . .  ) - x (B  . . . . . .  ) + x(vm~)] 

>_ a( r,.,~m,.) - x(  rm.,.,.) - x,,,q + x,,,~ 

> a(Tm, m) - x ( T m ~ J ,  

because Xm~ > Xm~. This proves (3.12) 
Realizing that  v~ could be any vertex beyond Vq and that  v~ could be any vertex 

prior to vq, we conclude that  the min imum of a(Tm, m~ ~ 1) - x ( T ~ m ~ + ) , I  _< p < r, 
along our  path  is indeed reached 21 when p = q. [ ]  

P r o o f  o f  Theorem  3.12: Let k and l be two distinct players. Consier the paths 
from the roo t  to v k and to fl and let v m be the last vertex which is c o m m o n  to bo th  
paths. (We allow m = k, or  m = l.) We wish to determine a coali t ion S of lowest 
excess c(S) - x(S), containing k and not  containing ! and to determine its excess 
Skl(X ) (see (3.2)). This coalit ion certainly contains m, so, by Lemma 3.13, we can 
assume that  (VS, E s) is either the full tree, or (VS, E s) = Tq~, where q is a player 
located on the path  from m to l, mq va I. Let v ml := v% vm~,. . . ,  I) mt : =  1) l be the vertices 
of the path  f rom m to I. Ifxml = Xm~ = . . . .  Xm~ < m . . . .  <_ ... < X z then, by Lemma 
3.14, we can assume that  q = m,. In this case, by (3.8), Skz(X ) = a(Tm~z) -- x(T, , . l )  = 

21 We remind the reader that Tmpmr and T~pmp+l are the same trunk. 
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Xmr : X m. If Xml = Xm~ = . . . .  X~ we claim that we can assume that ( V  s, E s) is the 
full tree. Indeed, if (VS,  E s) = Tq, and we add to it the rest of the tree, then we 
subtract from the excess the amount  x(Bql  ) - - a ( B q , ) -  x ( v  z) - x l ,  where xz was 
subtracted, because, by definition, l~ S. By (3.9), this expression is not smaller than 
xq - x~ = 0. It follows that Sk,(X ) = c ( N )  --  x ( T )  + x I = x z = x m. We have proved 
that in both cases Skz(X ) = Xm. Interchanging k with l we obtain that also 
Slg(X ) = x m. This proves that x is the prekernel point and therefore, the kernel/ 
nucleolus point. [] 

4 The Proto-Nucleolus and the Structure of the Kernel/Nucleolus 
of the Standard Tree Game 

In this section we shall modify the equations (3.9) and show that the modified 
version has a unique solution. We shall then show in what respect to nucleolus 
differs from this solution. 

T h e o r e m  4.1: Let g be a standard tree game. The system of equations 

x i = x ( B i j  ) - a (Bi j  ) - x(vi) ,  for all pairs (i, j) of adjacent players, 
xp = xq, whenever p and q are neighbors, 
x(N)  = c(N), 

(4.1) 

has a unique solution, called the proto-nucleolus of 8. 

C o n v e n t i o n  and  N o t a t i o n  4.2: We assume that the vertices of(V, E) are numbered 
v o := the root, vl, v2,. . . ,  vn in such a way that the path from the root to a vertex v k 
in (V, E) does not pass through a vertex of higher index. Figure 1 provides an 
example of such a labeling. 

For  a vertex v, we denote by dv the number of residents at v plus the number of 
arcs leaving v. We call dv the  d e g r e e  o f v .  Clearly, dv _> 2 ifv is not an endpoint and 
not the root of (V, E). We denote by i(v) a player residing at v and by e(v) the arc 
entering v. 

We shall now describe an algorithm, and later prove that it yields the unique 
solution to equations (4.1). 

A l g o r i t h m  4.3: To obtain the proto-nucleolus. We process all vertices in depth 
first search order. 

S tep  O. Initialize by charging each resident of v 1 the amount xi(v, ) = a(e(v l ) ) /dv  1. 
Proceed to v2, if v 2 exists; otherwise terminate. 
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Step 1. Suppose vertex v h has been the last to be processed. If vertex v k follows v h 
(i.e. (v h, Vk)eE ) then process vertex v k by charging each resident of v k the amount  
Ix  h + a(e(vk))]/dv k. If, on the other hand, v h is an endpoint of(V, E) then backtrack, 
to find a vertex vz, which has been processed and which has a follower vertex v, 
that has not been processed. Proceed to process vertex v t by charging each 
resident of v, the amount  Ix z + a(e(vt))]/dv ,. If no such vertex v z exists, terminate. 

Verbally, by this algorithm each resident of a vertex v is charged 1/dv of the 
"debt" and this same amount  is added as a debt to the cost of each arc leaving v. 
Figure 1 shows the resulting charges. In this and in the following figures, the 
residents of a vertex are encircled. The cost of arcs are placed near the arcs and the 
charges are typeset in bold. 

Proof  o f  Theorem 4.1: Denote the expression x(Bij  ) -- a(Bij ) - x(v i) by s(Bij) and 
call it the surplus o f  the branch Bij at x; for this is the amount  that the players of B~j, 
not residing at v i pay under x, above the cost of the branch. Let T(v ~) be the 
subtree of(V, E) consisting ofv ~ and all the vertices and arcs whose paths from the 
root do not cross v ~. Denote a(T(vi)) - x(T(v~)) + x(v i) by deficit T(v i) and call it 
the deficit o f  T(v i) at x. This is the amount  that the players of T(vi), not residing at 
v ~, pay below the cost of T(v~); namely, the amount  "pushed upward" by these 
players, that has to be paid in order to cover the costs of the tree. By (4.1), all the 
surpluses of the branches rooted at v ~ as well as the amounts charged to the 
residents of v ~ must add up to x~dv ~, because x~ = s(B~j) for each branch B~j. This 
sum must cover the deficit of T(v~), at x, so 

xidv i = deficit T(v;), (4.2) 
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for each player i. Now, deficit T(vl )  = a(e(vl)), so xi(vl ~ = a(e(vl))/dv 1, in accord- 
ance with Step 0 of Algorithm 4.3. Consider now a vertex v k that follows a vertex 
v h. By (4.2), 

xitvk ) dv k = deficit T(Vk) = a(T(Vk) ) -- x(T(Vk) ) + X(Vk) 

= a(e(vk) ) + deficit T(vh) -- Xh[dV h -- 1] 

= a(e(v,)) + XhdV h -- XhdV h + X h 

= Xh + a(e(vk)), 

in accordance with Step 1 of the algorithm. []  

In general, the proto-nucleolus is different from the nucleolus of the game. For  
example, the charges in Figure 1 violate Corollary 3.8. Accordingly we shall refer 
to arcs eu:= (v i, v j) for which x i > x j  as bad arcs. We shall now describe a pro- 
cedure whereby one eliminates a bad arc, or, equivalently, one condenses the 
players residing at the endpoints of a bad arc. 

Definition 4.4: El iminat ion o f  an arc~condensation o f  players. Let ~ = (V, E, a, N) 
be a standard tree enterprise and let (i, j)  be a pair of adjacent players. By 
eliminating the arc e u [condensing the players 22 i and j ]  we mean a process 
whereby one deletes the arc, adds its cost to the cost ofe i, places all the players of 
v j at the vertex v i and replaces every arc (v j, v k) by an arc (v ~, vk), having the same 
cost. Formally, after the condensation we obtain a standard tree enterprise 
~u:= (~',/~, ~i, N), where 

(1) all residents of v j now reside at v ~, 
(2) v\{vJ} 
(3) # = eX{e,j, ejk for all k's adjacent to j} w {eik:(j, k) were adjacent players in g}, 
(4) 

[ a(e), if ee  E c~ ff~, e # e(vi), 
~(e) = ~ a(e(v')) + a(e(vJ)), if e = e(vi), 

[a(ejk ), if e = e i k  and ( j , k )  were adjacent players in g. 
(4.3) 

Note that if several arcs are eliminated consecutively, the resulting tree does 
not depend on the order of elimination. The following theorem and corollary 
show that if we knew in advance which pairs of adjacent players are charged the 
same amount  in the nucleolus, we could have computed the nucleolus in O(n) 
steps. 

~2 We are abusing the language: Actually we condense all the players in v J with all the players in v ~. 
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T h e o r e m  4.5: Let I be a fixed set of pairs of adjacent players in a standard tree 
g = (V, E, a, N). The system of equations 

x i = x (B i j  ) - a(Bi j  ) --  x(vi),  

X i ~ X j, 

Xp -~- Xq, 

x ( N )  = c(N) ,  

for all pairs of adjacent players (i, j), not in I, 
for all pairs (i, j) in I, 
whenever p and q are neighbors, (4.4) 

has a unique solution. It is the proto-nucleolus of the tree obtained by condensing 
all the pairs in 1. 

Proof'. By Theorem 4.1, it is sufficient to show that the system (4.4) is replaced by 
an equivalent system if we eliminate just one arc e u, for (i, j ) ~ I  and replace I by 
I \ { ( i ,  j)}. Indeed, the equations in the last three rows remain unchanged and 
either the first equation, for a particular (i, j)  in the first row remains unchanged 
or the equivalent equation (in view of the last one) xi  = a ( T  u) - x(T~j)  remains 
unchanged. [] 

T h e o r e m  4.6: If the proto-nucleolus of a standard tree enterprise is such that 
x i < x j, whenever (i, j) are pairs of adjacent players, then the proto-nucleolus is 
the kernel/nucleolus point of the tree. 

Proof" In this case equations (3.9) are satisfied. The result now follows from 
Theorem 3.12. [] 

Theorems 4.5 and 4.6 show that the structure of the nucleolus is the structure of 
a proto-nucleolus of a related tree, in which some pairs of adjacent players were 
condensed. Indeed, if I consists of all the adjacent pairs, who receive equal 
payments in the nucleolus, then, after condensing them, we obtain a tree whose 
proto-nucleolus charges (in both games, by Theorem 4.5) are nondecreasing 
along the paths. By Theorem 4.6, this proto-nucleolus is the nucleolus of both 
games. 

Which pairs should be condensed - that will be studied in Sections 5-6. For 
future applications let us draw the following conclusion: 

Coro l lary  4.7: I f / i s  a subset of pairs of adjacent players that are charged equally 
at the nucleolus, 23 then the original tree and the tree obtained by condensing the 
pairs in I have the same kernel/nucleolus. 

23 These need not be all the pairs with this property. 
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Fig. 2. Good arcs may turn out bad 
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5 Examples 

It seems from Theorem 4.6 and from the discussion in the previous section that it 
is enough to eliminate bad arcs (i.e. arcs, e,j, where x~ > xj in the proto-nucleolus) 
until one arrives at a game whose proto-nucleolus is equal to its nucleolus. 
Unfortunately, this is not the case! In this section we shall provide some examples 
which show what can go wrong. 

Example 5.1: Consider the tree enterprise of Figure 2. 

The proto-nucleolus of this tree enterprise turns out to be (1, 2, 2, 2, 2, 1, 1, 1) 
and arc e56 is bad. By eliminating this arc we derive a new tree enterprise, whose 
proto-nucleolus is (1,2, 2,2, 1.25, 1.25, 1.25,1.25). Now e45 is bad and after its 
elimination the proto-nucleolus becomes (1, 2, 2, 1.4, 1.4, t .4, 1.4, 1.4). Now e34 is 
a bad arc, and after its elimination the proto-nucleolus is (1, 2, 1.5, 1.5, 1.5, 1.5, 
1.5, 1.5). Still, arc e23 has to be eliminated and the final outcome is (1, 19, 13, 

3 13 13 13, 13). This is the nucleolus of the resulting game (Theorem 4.6). It is 
also the nucleolus of the original game, because it satisfies, e.g., (3.9). This example 
shows that during the process of computing the proto-nucleolus, some calcula- 
tions may turn out to be in vein. 

Example5.2: Consider the tree enterprise on the top left side of Figure 3, in which 
we also placed the proto-nucleolus. 

We see that arcs elz,e13 and e24 are bad. We proceed to eliminate e13 (top 
right) and still e12 and e24 are bad. So, we eliminate e12 (bottom left). Still, e14 is 
a bad arc and we eliminate it (bottom right). Finally we arrive at the nucleolus of 
the last tree, which is (255, 255, 255, 25~, vu~s~, 4911,~, 102~). It is not the nucleo.lus of 
the original tree, as can be checked by examining (3.9). The nucleolus of the 
original tree is (25.8, 25.8, 25.9, 25.8, 85.8, 42.95, 102.95). We shall show in the next 
section that it can be obtain by an elimination first of e24 , followed by an 
elimination of e12. The reader can try these eliminations now and see how the 
previously bad arc e13 now becomes a good one and should not be eliminated to 
begin with. 

This example shows that the order in which elimination of arcs (condensation 
of players) is made makes a difference. Next section we shall show that processing 
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the eliminations of bad arcs in a right order does indeed bring us to the nuc- 
leolus. 

6 An Algorithm for Computing the Kernel/Nucleolus 
of a Standard Tree Game 

In this section we characterize those arcs that should be eliminated in order to 
reach the nucleolus. We empoly our characterization to construct an algorithm 
for computing the nucleolus, which is different from the one constructed in 
Megiddo [1978]. The characterization and the algorithm shed more insight into 
the structure of the nucleolus. 

Unlike many other algorithms, including Megiddo [1978], that compute the 
nucleolus of a game via successive minimizations of highest excesses (maximiza- 
tions of lowest excesses in a cost game), see e.g. Maschler [1992], our algorithm 
does nothing of this kind. It starts with the proto-nucleolus, which is often a kind 
of approximation of the nucleolus, and it generates k successive cost allocation 
vectors, k _< n, the last one being the nucleolus. 

As has been shown in the previous section, it all boils down to the question 
which players should be condensed. To make the right decision we shall have to 
study more deeply the process of condensation. The following well-known temma 
will prove useful. 

L e m m a  6.1: If b i > O, i = 1, 2 . . . . .  t then 

a t  + a 2 + . . .  + at 

bl  + b2 + .. .  + bt 

is a weighted average of the terms r i = (ai/bi); the weights being b i /Z}=  1b j, 
i =  1,2 . . . . .  t. 

Note that the weights are all positive, so, if min~= 1 rl < maxt~= 1 r~, the average is 
strictly between the minimum and the maximum. 

N o t a t i o n  6.2: For  adjacent players (i, j), we denote by hj the expression 

a(eij) 
hj - dr-- U-  -1' (6.1) 

(see Notat ion 4.2 for the definition of dr). 

Note that h i is not defined if v j is an endpoint occupied by a single player; 
otherwise the denominator in (6.1) is a positive integer. 
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Lemma 6.3: Let  x be the proto-nucleolus of a standard tree enterprise. Let  (i, j) be 
a pair of adjacent players, then xj is a weighted average of x, and h j, whenever hj is 
defined. 

Proof'. By the construction of the proto-nucleolus, 

xi + a(eij) 
xj = dv j 

xi + a(eij) 

1 + (dv j - 1)' 

which is the average of xi/1 and hj (Lemma 6.1). []  

Lemma 6.4: Let 1 be a successor of player i, who is not a single residend of an 
endpoint (so that h~ is well defined). Let x be the proto-nucleolus of the standard 
tree enterprise. Then, x~ is a weighted average of the numbers xi and the hq's, 
where q is taken over all vertices intermediate between i and l, including l, but not 
including i. 

Proof'. By induction on the number of arcs from i to I. The case of one arc was 
proved in Lemma 6.3. The passage from t - 1 arcs to t arcs follows from the fact 
that a weighted average of weighted averages is a weighted average. [] 

Based on the previous lemma, we now show that the payments in the nucleolus 
are weighted averages of known quantities. Again, we shall be concerned with 
a standard tree enterprise g = (V, E, a, N) and its game F e = (N; c), but we shall 
assume that each endpoint is occupied by at least two players. Such enterprises/ 
games will be called enterprises/games of class A. For  these enterprises hj is 
defined for eachj. We denote by 1 a player who resides at v 1 - the son of the root. 

Lemma 6.5: Let x and z respectively be the proto-nucleolus and the nucleolus of 
a standard tree game F e belonging to class A. Let i be an arbitrary player. With 
this notation, z~ is a weighted average of x 1 and hSs, wherej  is taken over some, 
possibly all, players who do not reside at v t. 

Proof: By Corollary 4.7, the nucleolus z is the proto-nucleolus of some tree game 
3, obtained fi'om g by condensing arcs of a set I, I ~ E, where I is the set of pairs of 
adjacent players that are charged equally at the nucleolus. For  an arbitrary 
player i, consider the vertex f~ in g and let h~ be the quantity that corresponds 
to this player. Let J, J _ I, be the set of arcs in ~ that collapsed to ~. Then 

(i) If~ i is not the son of the root, i.e. i fg i r ~1, then 

- a(e(vi)) + Z e ~ J  a(ej) 
hi  ~- d v  i - 1 + ~ e j ~ j ( d v j  - 1)' 
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where j  is a fixed player in v j, the tail node ofej,  for each ej in J. Therefore,  h~ is 
a weighted average of h i and the hi's, j 6 J  (Lemma 6.1). 

(ii) I f g i =  ~ then 

a(e(vl)) + ~.e~sa(e i) 
x l  = dr1 + y~j~s(dv  j -  1)' 

which is a weighted average of xa and the hSs, j E J  (Lemma 6.1). 

The  proof  concludes by referring to Lemma  6.4. [ ]  

Fo r  the next lemma we adopt  the notation: 

sX(Bij): = x(Bi  i) -- a(Bij  ) - x (v  ~) = a(Tii ) - x(Tij) ,  (6.2) 

which holds for an imputa t ion  x and a pair of adjacent players (i, j). 

L e m m a  6.6: Let x and z be the proto-nucleolus and the nucleolus, respectively, of 
a s tandard tree game F e belonging to the class A. Fo r  any pair (i, j) of adjacent 
players, 

(1) z i <_ s~(Bii), and x i = sX(B0; 
(2) If z i < z i then z i = sZ(Bij); 
(3) z 1 _< xi; 
(4) If h i _> x i for a l l j  not  residing at v ~, then z~ = x~ and z 1 = s~(B~i) for a l l f s  

adjacent  to 1. 

Proof'. (1) is a reformulat ion of(3.10) ad (4.1). To  prove (2) let $ and I be as in the 
proof  of the previous lemma. F r o m  zi < zj it follows that  (v ~, vJ)(~l (Corol lary 4.7) 
and therefore (i, j) remain adjacent players in & By (1), above, zi = sZ(BO, because 
the condensat ions leading to ~ do not  change sZ(Bij). We shall prove (3) by 
contradict ion.  Suppose x 1 < z 1 then, since x 1 = a(e(vl))/dv 1, it follows from (1) 
that  a(e(vl)) = x l d v  1 < z ldv  1 <_ z(v 1) + Z{sZ(BIj):j adjacent to 1} = z ( N ) -  
c(N) + a(e (v l ) )= a(e(vl)). This is a contradict ion.  (4) follows from L emma  6.5. 
Indeed, z 1 is a weighted average of  x t and some hfs, j not  residing at v s. Thus, 
h i > x 1 for all suchj ' s  implies that  z t > x~. But, by (3), z 1 _< x 1, so equali ty holds. 
To  complete  the proof,  suppose that  for some (1, j) in E, s~(B1 j )  is not  equal to zl. 
Then, since z (N)  must cover the cost of the tree, a(e(vl))  = z(v 1) + Y~{sZ(Bt,j):j 
adjacent to 1} > z(v 1) + Zl"(number of sons of v 1) = dv l z l  = d v l x l  = a(e(vl)), 
which is a contradict ion.  [ ]  

Lemma  6.7: Let x be the proto-nucleolus  of a s tandard tree game. If arc eij is 
a bad arc z4 then x i > xj  > h~. (The last inequality holds only if h~ is defined.) 
Conversely, if either x i > hi, or  xj > hj for a pair of adjacent players then eij is 

24 I.e. (i, j) are adjacent players and x i > xj. 
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a bad arc. Ife~j is a good  arc, then x~ <_ x j  <_ hi. (The last inequali ty holds only if hj 
is defined.) Conversely,  if (i, j) is a pair  of adjacent  players  and either x i < hi, or 
x j  <_ hi, then e~j is a good  arc. 

Proof: We know that  x j  is an average of x~ and  hi. If eij is a bad  arc then x i > x j, 
hence, xj > hi. Conversely,  ifx~ > hj then x~ > xj > hj and the same holds i f x j  > h i. 
In either case e~j is a bad  arc. 

Ife~j is a good  arc then x~ ___ x~, so xj _< hi. Conversely,  ifx~ _< hj then xe _< xj _< hj 
and the same holds if xj _< hi. In either case eq is a good  arc. [ ]  

We  shall be interested in bad  arcs e~j for which hj is minimal.  It  will turn  out  that  
these shouId be eliminated. 

L e m m a  6.8: Let x be the proto-nucleolus  of a s tandard  tree game. Suppose 

(a) arc eij is a bad  arc, 
(b) hj < h~ for all bad  arcs e~l. 

Then: 

(i) I f  v k is a vertex for which x k <_ hi, all successors v ~ of  v k satisfy x k <_ h~, provided 
that  h~ is defined. 

(ii) If v k a vertex for which x~ >_ hj, all successors v ~ of v ~ satisfy h~ >_ hi, provided 
that  h~ is defined. 

Proof: 

(i) By contradict ion.  Suppose h l < x k for some successor I of  k. Wi thou t  loss of  
generali ty we assume that  1 is a first such successor; i.e. 

hq >>_ x k for all q strictly intermediate  between k and I. (6.3) 

Let  p be the father of I. I f p  = k then xp = xk. If  p # k then, by L e m m a  6.4, x~ is 
a weighted average  of x k and  the h~'s, for q intermediate  between k and  p. 
Thus,  xp > xk, because of(6.3). In bo th  cases, therefore, xp _> x k. But x k > h~, so 
xp > h~ and epl is a bad  arc (Lemma  6.7). Nevertheless,  h l < x k <_ hi, in 
contradic t ion to the minimal i ty  of hj (condit ion (b)). 

(ii) By contradict ion.  Suppose  h I < hj for some successor l of k. Again, we can 
assume that  1 is a first such player; i.e. 

h~ >_ h i for all q strictly in termediate  between k and  1. (6.4) 

Let  p be the father of I. If  p = k then xp = x k. If  p # k then xp is a weighted 
average of x k and the hq's, for q in termediate  between k and p. Now,  x ,  >>_ hj 
and hq >_ h2, by (6.4), so xp > hi. But then xp > h~, because hj > h~, so, by 
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Lemma 6.7, epz is a bad arc and again we get a contradiction to the minimality 
of hi. [] 

Notation 6.9: Let (i, j) be a pair of adjacent players in g. Let y be a positive scalar. 
We denote by gY(B~j) an enterprise defined on B~j, whose cost function a' satisfies 
a'(e(vi)) = a(e(vJ)) + y and a'(e) = a(e) for all other arcs in Bij and whose player set 
is the set of the original players in B~j, except those residing at v ~. Denote the game 
of this enterprise by (B w y; c'). Note that c' is a function of y. 

Lemma 6.10: Let z be the nucleolus point of a standard tree enterprise g. Let (i, j) 
be a pair of adjacent players. The game (B~j, sZ(Bij); c') is the reduced game at z, of 
the original game, reduced on the player set S consisting of the players in B~j that 
do not reside at v ~ (see footnote 18). 

Proof: Let R be a subset of S. Denote by T R the subtree of Bij for which c'(R) 
is attained. Then, c'(R) = a'(Tg) = a(TR) + sZ(Bij) = a(TR) + a(Tij ) -- z(Tii ) = 
c(R w Tij) -- z(T~) = min {c(R w Q) - z(Q):Q ~_ Tgj) }. The last equality follows 
from Corollary 3.10 and Lemma 3.11. Indeed, for Q ~_ T~j, TRu r , j \  TRuQ, is a union 
of branches Bkt, the surplus of each, at z, is non-negative, so c(R w Q) - z(Q) > 
c ( R u  TI j ) -  z(Tij). [] 

Corollary 6.11: Let (i, j)  be a pair of adjacent players in a standard tree enterprise 
and let z be its nucleolus. With this notation, the nucleolus o f F ' : =  (Bij, sZ(B~j), c') 

is the restriction, z s, of the nucleolus of g to the player-set S consisting of the 
players in B~j that do not reside at v ~. 

Proof: F~ is convex; hence, its nucleolus coincides with its prekernel (Maschler, 
Peleg and Shapley [-1972]). By the reduced game property (footnote 20) and 
Lemma 6.10, z s is the prekernel of F '  and, therefore, its nucleolus, because ~ is 
also a convex game. [] 

Corollary 6.12: Let (i, j) be a pair of adjacent players in a standard tree enterprise 
g. Let x be the proto-nucleolus of & With this notation, the proto-nucleolus of 
(Bij, x~, c') is the restriction of x to the player-set S consisting Of the players in Bij 
that do not reside at v ~. 

Proof'. The proof is a direct consequence of Algorithm 4.3. In fact, the computa- 
tion of the proto-nucleolus of (Bij, x~, c') proceeds exactly along the same steps as 
the computation of the proto-nucleolus of ~, done after reaching v i. [] 

The next theorem will identify an adjacent pair (i, j) for which z i = zj in the 
nucleolus point z. 

Theorem 6.13: Letxandzbetheproto-nucleolusandthenucleolusofas tandard  
tree enterprise d ~ of the class A. If (i, j) is a pair of adjacent players such that 
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a. e o is a bad  arc, 
b. h r is minimal  a m o n g  all hz, for bad arcs evl, 

then z i = z r. 

Proof'. Let us assume that  the vertices of ~ are indexed so that  root,  
v~, v 2 . . . .  , v k, Vg = v ~, is the unique pa th  f rom the root  to vertex v ~. Since e~j is a bad  
arc, x i > x j  > hj ( L e m m a  6.7). 

Consider  v~; i fx  I < hj then, by L e m m a  6.8(i), all successors v~ of vertex v 1 satisfy 
x I _< h~. Thus,  by L e m m a  6.6(4), z 1 = x t = s~(Bt~). Now,  by Corollar ies  6.11 and  
6.12, the proto-nucleolus  and the nucleolus of (B I z, z l; c') are the restrictions of  
the proto-nucleolus  and the nucleolus of (N; c) to the player  set consisting of 
players  in Baa tha t  do not  reside at vl, respectively. Thus,  in order  to prove  that  
z~ = zr, it is sufficient to p rove  it for the enterprise (B12 , zl; c'). If  in (B12, zl;  c') it 
happens  that  x z < hi, we repeat  the above  a rguments  to conclude that  z z = x 2 
and that  we can restrict ourselves to (B23, z2; c'). However ,  since x~ > hi, after 
k steps, k _< i, we shall end up with a game (Bk(k+ 1), Zk; C') in which x k ~ h r and for 
which we have to show tha t  zi = z r for its nucleolus poin t  z. Thus,  wi thout  loss of 
generality, we can assume that  x~ > hi. Then,  by L e m m a  6.8(ii), it follows tha t  at 
all successors ofvt, h~ > h r. By L e m m a  6.5, z~ is a weighted average ofx~, and some 
hl's. Since xt  _> h r and h I >_ h r at all v~, we conclude that  z~ _> h r. 

Suppose  now by contradic t ion tha t  z~ :~ zj. Then,  by  Coro l la ry  3.8, z~ < z j, so 
that  by L e m m a  6.6(2), z i = s~(Bij). Consider  now the smaller  sub-tree game 
(B~j, zi; c') and let y be its proto-nucleolus ,  so 

a(e(vr)) + zi 

YJ dv r -  1 + 1' 

which is a weighted average o fz  i and hi. Since zi > hi, it follows that  yj < z~. Now,  
by Corol la ry  6.11, the nucleolus of  (B~j, z~; c') is the restriction of z to the players in 
B~j, not  residing at v~; therefore, by L e m m a  6.6(1), zj < yj < z~ in contradic t ion to 
the assumpt ion  tha t  z~ < zj. Thus  z~ = z r. [] 

Corollary 6.14: One can remove  f rom Theo rem 6.13 the restriction which limits 
the enterprises to be f rom class A. 

Proof'. Suppose  g is such that  player  k is a sole occupant  of an endpoint .  Let  (p, k) 
be the pair  of adjacent  players  ending at k, then epk is not  a bad  arc, because the 
cost function is non-negat ive.  Let  ~ be an enterprise obta ined  f rom g by deleting 
the arc epk and placing player  k at the previous vertex, v p. We claim that  o ~ is 
strategically equivalent  to Fe, because only costs of  coali t ions containing k were 
modif ied by a decrease of a(epk ). Since the nucleolus is covar iant  under  strategic 
equivalence, the two nucleoli are equal, except for z k tha t  has been lowered by 
a(%k ). NOW k is no longer a sole occupan t  of an endpoint .  
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Note  that neither hp nor xp changed during the passage from ~ to ~ because the 
number  of arcs emanating from p decreased by 1, but the number  of occupants in 
v p increases by 1. We can repeat this procedure for every player who is a sole 
occupant of an endpoint until finally we obtain a game of class A. If the conditions 
of Theorem 6.13 hold for the original game, they also hold for the last game so, 
by the theorem, z i = z j, because the same equality holds for the last game and 
p layer j  did not move during the process. []  

We are now in a position to provide an algorithm for computing the nucleolus 
of a standard tree enterprise. 

The  main algori thm 6.15: 

Step 1. Compute  the proto-nucleolus. Algorithm 4.3. 
Step 2. If there are no bad arcs, stop. 
Step 3. If there are bad arcs, choose a bad arc ei~, for which h i = a(eO/(dv i -  1) is 

minimal and eliminate this arc (ties may be broken arbitrarily) (Defini- 
tion 4.4). 

Step 4. Return to Step 1. 

Theorem 6.16: Algorithm 6.15 leads to the nucleolus of the original game. 

Proof'. At every iteration, the number  of arcs is reduced by one, so the algorithm 
stops after at most  n iterations. By Corollary 4.6, we get at each iteration a tree 
enterprise, whose nucleolus coincides with the nucleolus of the previous tree 
enterprise. This is true, because we only condense pairs (i, j) of adjacent players 
for which we know, by Theorem 6.13 and Corollary 6.14, that the players receive 
equal amounts  in the nucleolus of this tree. Consequently, all iterations yield trees 
with the same nucleolus. The proof  then concludes by observing that when the 
process terminates there are no bad arcs; therefore, the proto-nucleolus of the 
final tree is equal to its nucleolus (Theorem 4.6). []  

7 Shortcuts in Algorithm 6.15. The Case of a Chain Enterprise 

Megiddo [1978] provides another algorithm to compute the nucleolus of a stan- 
dard tree game. His algorithm calls for examining all closed sets with respect to 
various vertices. 25 In contrast, Algorithm 6.15 examines only bad arcs with 
respect to the proto-nucleolus. Thus, for example, if there are no bad arcs, the 
proto-nucleolus is equal to the nucleolus, and since it is computed in O(n) steps, 

25 A set of vertices S is said to be closed with respect to a vertex v if it contains v, if every vertex in S is 
a successor ofv and for each vertex v~ in S, S contains all the vertices on the path from v to v r 
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we have here a fast method  to get to the nucleolus. This si tuation occurs, for 
example, in a binary tree enterprise in which each vertex is occupied by a single 
player and the costs are nonincreasing along paths. 26 In m a n y  cases there are 
only few bad arcs and only few condensat ions are required. In general, there is no 
need to recompute  the proto-nucleolus from the beginning, because m a n y  of  the 
entries x~ remain unchanged after a condensation.  To identify a bad arc % one 
does not  have to compute  x / I t  is enough to compare  xi with hj (Lemma 6.7). 
Sometimes there is even no need to search for a minimal h r. One such case 
is a chain 27 enterprise, first studied in Littlechild [1974], in Littlechild and 
T h o m p s o n  [1977] and in Littlechild and Owen [1977] for the airport  game. 

Atyori thm 7.1: Computing the kernet/nucteotus o f  a chain enterprise. C o m p u t e  the 
proto-nucleolus in accordance with Algori thm 4.3, Each time you  reach a bad arc 
eliminate it and if this elimination turns an immediate previous arc a bad one, 
eliminate it too  z8, etc. By the time you have processed the last arc you  have 
arrived at the nucleolus. 

Proof" The p roof  rests on the observat ion that  the order  of  condensat ions is not  
important ,  as long as one condenses the same players, now, suppose we proceed 
by Algori thm 6.15, compute  the proto-nucleolus and eventually eliminate a bad 
arc e~, leaving behind a few other  bad arcs. Before any condensation,  the 
proto-nucleolus satisfies 

x ,  + a(ei) x i + a(ej) 
and (7.1) x~ - dv ~ x j  - dv j , 

where (u, i) is a pair of adjacent players. After the condensation,  the resulting 
vector 2 satisfies 

x ,  + a(e i) + a(e j) xi(dv i - 1) + xjdv j 

Yci= 2 1 -  dv i + dv j - 1  = (dr i - 1 )  + dv j (7,2) 

and we see that 2 i = 2j is a weighted average of  x i and x j, strictly between them, 
because x~ > x~, dvi>_ 2 and dr1>_ 1. This means that  xi decreased. Thus,  if 
xi-  1 < xl then, after condensat ion it may  happen that  x~_ 1 > )~; but  if x i_ 1 > x~ 
then, after condensation,  x~_~ > 2~. Thus, condensat ion may  turn a previous 
good  arc bad, but  it can never turn a previous bad arc good. This feature holds for 
all previous arcs. thus, working in accordance with Algori thm 6.15, we are sure 
that  eventually we will eliminate all bad arcs prior to v ~ (and, perhaps, addit ional 
arcs). If this is the case, we might  as well eliminate a bad arc as soon as it is 

26 The verification of this fact is straightforward and we leave it to the reader. 
zv A chain is a tree whose arcs are located on a single path. 
28 As we did in Example 5.1 
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encountered, because by doing so we obtain a game having the same nucleolus as 
the original game (Corollary 4.7). [3 

Theorem 7.2: Algorithm 7.1 can be performed in O(n) operations, where n is the 
number of vertices. 

Proof: Passing in the upward direction is carried on in n steps, each of which 
requires a number of calculations which is constant, independent of n 29 (formula 
(7.1)). Each move in the downward direction involves a single comparison and 
possibly an elimination of an arc. By (7.2), the number of calculations needed for 
each elimination is a constant, and at most n - 1 arcs are eliminated. If there is 
a comparison without elimination it is done just once, before proceeding in the 
upward direction. Thus, all calculations are done in linear time in n. []  
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