Math. Z. 189, 71-79 (1985) Mat?eeilg;acf‘igicflge

© Springer-Verlag 1985

C?*-Regularity for Partially Free Minimal Surfaces*

Gerhard Dziuk

Institut fiir Mathematik, Rheinisch-Westfilische Technische Hochschule,
Templergraben 55, D-5100 Aachen, Federal Republic of Germany

1. Introduction

Consider a configuration in Euclidean N-space consisting of a smooth Jordan
arc C having its end points P, and P on a smooth hypersurface S, but no other
points in common with S. Let B:={(u, v){u®>+v?> <1} and denote by 7B (6~ B)
its boundary portions in v>0 (v<0). Let Z(C,S) be the set of all surfaces x
=x(u, v)=(x1(u, v), ..., xy(u, v))e C°(B)n H**(B) which are bounded by C and S
in the following sense: x maps 0% B continuously and in weakly monotonic
manner onto C such that x(—1,0)=Ph, x(1,0)=PF and x(0,1)=PF for some
fixed third point on C, different from P, and B. The free boundary condition is
expressed as
lim  inf |x(u,v)—y|=0
(u,v) = (uo,v0) yes§

for (up,vo)e0™ B. This implies the continuity of the distance function dist(x, S)
but not the continuity of x itself. It is well known (see VI in [2]) that the
variational problem

§yul? +1y.? dudv—Min  (yeZ(C,S)) 1)
B

has at least one solution xeZ(C, S) which is a minimal surface, i.e. it solves the

system
AXZO, X, Xy =0, Ixu|:}xv| (2)

on B. Note that in general a minimal surface does not represent a minimum of
the corresponding variational problem.

There is satisfactory information concerning the behaviour of a solution x
of (1) at the “fixed” boundary portion; see [13], pp. 281-325. Roughly spoken
the result is that, up to ¢* B, x is as smooth as the curve C itself is. The crucial
point in proving regularity at the free boundary portion 6~ B is to show
continuity of x on Bud~B. For solutions of (1), ie. for area minimizing
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minimal surfaces, regularity at the free boundary has been proved by J.C.C.
Nitsche in [12], K.H. Goldhorn and S. Hildebrandt in [6] and by W. Jiger in
[10]. These results are to the effect that xe C**(Buad~B) if the supporting
surface S is of that class and is admissable in some sense. For k=3 this has
been proved by W. Jiger in [10]. The case Se C?* has been investigated by
J.C.C. Nitsche in [14]. M. Griiter, S. Hildebrandt and J.C.C. Nitsche in [8]
and the author in [4] proved regularity of the free boundary of stationary
points x of the variational problem (1) under slightly different assumptions. In
both papers the supporting surface S was assumed to be of class C>.

The aim of this paper is to manage the cases Se C** and Se C*(C"') which
means that we prove: xe C>*(Bud~B) in the first case and xe C**(Bud™ B)
for every ue(0,1) in the second case. The proof consists in reflecting a given
stationary solution x at the supporting surface S. W. Jédger proved in [10]
weak transversality for such stationary solutions and this we use to prove that
the reflected solution solves a quasilinear elliptic system of second order. In
general there is no continuity for solutions of such systems. But using the
conformality relations in (2) we may apply a method developed by M. Griliter
in [7] to prove regularity.

2. Results

First of all we have to specify what an admissable supporting surface S is. We
adopt W. Jdger’s notions since they are easy to verify. For example every
compact hypersurface S in RY given by f(x)=0, feC™*IR",R), Ff+0 on S,
represents such an admissable supporting surface.

Definition 1. Let S be an (N —1)-dimensional C™*-manifold in IR with the
following properties: For every point x,eS there is some neighbourhood U, of
Xo in RY and some real-valued function foe C™*(Uy) (m=2, 0<u<1) with 7,
+0in U and f(x)=0 iff xS U,. There is some positive number d and there
are functions &, a, neC"~*(U) in the strip U;={xeR"|dist(x,S)<d} such
that every xe U, can be written as

x=a(x)+&(x)n(x)

where a(x)eS, n(x) is normal to S in a(x) (|n(x)|=1) and [£(x)|=dist(x,S). In
addition to that we assume:

sup |[Pn| £ C,.

Ug

Under these conditions we call S an admissable supporting surface of class
cmH,

Let us look now at the basic variational problem (1) presented in the
introduction. Since we are concerned with the free boundary portion only we
may localize the situation by cutting out a neighbourhood of a point in 0™ B
and we may achieve the following situation by conformal mapping. At this
point it is obvious that our restriction to the special boundary configuration (C, S)
is only for the sake of simplicity.
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Definition2. Let xeC%Q* ~I) be a solution of (2) on Q% ={(uv)llul<1,
0<v<1} where I=(—1,1)x {0}. We call yeC%Q" ~I)n H*} Q") admissable
relative to x, if

lim  dist(y(u,v),S)=0 (3)

(u,v) = (1o, 0)

for every uge[ —1,1] and if y=x on 8Q* \I. x is called stationary if

d
= [ PP dude] =0 @
dS o+ £=0
exists for admissable y®=x+529 (|¢g| <ep).

We now are able to formulate our results:

Theorem. Let S be an admissable supporting surface of class C™#(melN, m=2,
0= pu=1) and let x be a stationary minimal surface on Q*. Then

xeC™H(Q* UI), if 0<p<l,

xeC’”‘l’v(QJr ul)  for every ve(0,1), if u=0
and
xeC™ Q" ul) for every ve(0,1), if u=1.

As the reader will see, the classes C™~*! for § generate the same regularity
properties for x as Se C™° does. From now on we will assume the assumptions
of the theorem to be satisfied. Because of (3) we find some 6>0 such that
x(Q; ~I)cU,, where Q; ={(u,v)||lu| <1, 0<v<8}.

3. Preliminary Lemmata

In [10], Lemmal W. Jdger proves weak transversality of stationary free
minimal surfaces on the free boundary:

1. Lemma. For every @ CHQ* )

lim } (xp —n(x)" x,n(x))- ®du=0. (5)

v—>0 1

Let us reflect the solution surface x at the supporting surface S
x(u,v) in (4,v)eQy
Y, v) = (u, ) (u, v)€Q;5 . ) ©)
X(M, _U)_zé(x(ua _U))n(x(u> _U)) if (M, *U)GQB

and claim that y solves some quasilinear elliptic system on Q;={(u,v)|ju| <1,
lv[<d}. We introduce some abbreviations related to the reflection mapping y
=F(x)=x—2¢(x) n(x). Define the matrices H, B and T by H;.=¢, .., Te="0u
—2mny (i, k=1,...,N) and B=(I —2¢ H)~'. Then the following relations are
) e oF 0

easily verified: Hn=0, HT=TH=H, a~=TB‘1, deta—Fz —1+0(d) for small

x x
d, F=F leC" bMUy), (ocF=—¢ noF=n HoF=BH, BoF=B~1,
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2. Lemma. There is some 3>0 such that y is in H"*Qs)n CY(Qs~1) and for
every test function ®e H%(Q;) nI2(Q;s) we have:

{ Aye @+ Ay, @,dudv= | f-®dudv 7
Qs Qs
and

Ay, Ay, =0, |Ay/=|4y,| (8)
on Qs 1, where we have set A=1, f=0o0n Q;} and A=B(y)" !,

f=2(Hy)y,-BO»)~ 'y, +H®)y, BG) ' y)n(y)
—2(n(y)- v, Hy)y, +n)-y, H»)y,)
on Q5 ={u,v)luj<l, —d<v<0}.

Proof: Since ox=0 on I continuously we may chose 6>0 small enough for
our calculations. For ¢e C§(Q;) and small ¢>0 we derive from the harmonicity
of x=yonQ": L
I v @ty @, dudo=— [ x," dul,_,. ©)

Q5 ~o; -1

On the lower half plane the situation is more complicated. Let us agree for the
following lines to take x, x, and x, in (4, —v). On Q; :

Yu=T(X)Bx)""'x,, y,=—T(x) B(x)"x,.
From this and x,,+x,,=0 we infer:

I v @ty @pdudo=2 [ ((H(x)x, x,+H(x)x,"x,) n(x)
[N [N 0y
+n(x) - x, H(x)x, +n(x)-x, H(x)x,) & —E(x) H(x)x, D,

+&¢(x)H(x)x, D, dudv— I (x, —2n(x)- x,1(x) (4, &) P(u, —e)du.

We combine this with (9) and get:

| Ay, @,4+A4y, @, dudv= | f-@dudv
Qs~ Qe Qd\Qe

— } x,(u, &) (DP(u, &) — P(u, —¢&))du

-2 } (x, —n(x)" x, 10Ny, &) P(u, —e) du.

-1

Transversality (5) completes the proof for ¢ —0.
M. Griiter proved in [7], (2.5) Proposition a fundamental inequality for
surfaces given in conformal parameters. In our situation y is a smooth function

on Q;~ 1 closely related to x. Here this inequality is derived easily by using
3

that dx/dw is holomorphic and Y (dx,/dw)*=0 on @, if x is not a constant.
k=1

3. Lemma. Assume that x(Q?\I)c Uyz. Then for every ball B(w,r)={w
=, 0)||w,0) —(u,0/<r}€Qs  (wy=(uy,0el) and  for  every  wy
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=(uy, vo)€B(wy, 1)1 we have:
1-24C,

2
m) 2m. (10)

limsup p~2 i Dl dudoz

p=0,p>0 B(w1,7) n{w||y(w)—y(wo)| <p}

Now we are going to prove the main Lemma of this paper. It will enable us to
prove continuity of y in wyel. The most important step is to control the
integral in (10) from above uniformly in wy.

4. Lemma. Let w,, B(w,,r) and w, be as in 3. Lemma and assume that

x(QF ~I)< Uys. Then there is some Ry,>0 such that for every Re[0,R,] from
inf |y —y(wo)|>R (11)

8B(w1,r)
it follows that

R=ECy( | Iyd*+Iy > dudv)'

B(wi,r)
The constants Ry and C, depend on d and C; only.

Proof. Chose Ae C}(R) such that 0<A<1, /=0, A=0 on (—00,0], A=1 on
[e, 00), A>0 on (0, 0} where ¢ is some positive number to be specified later. Let

us define _
Zz{y—y(wO) on QF
Yy —y(wo) —2&(y)(n(y) —n(y(wo))) on Qs

and introduce the test function

e zA(p—|z) on B(wy,r)
o elsewhere,

where pe(0,(1 —dC,/3)R). @ is a test function for (7) since =0 for |z|=p and
|lz[2 |y = y(wo)l —d/3In(y) —n(y(wo)| = (1 —d C,/3)|ly —y(wo)| for [zI<p, so that
(11) gives us =0 on 0B(w,,r). Thus we may insert @ into (7) and estimate the
integrands separately on Q5 and Q5. On Qf N B(w,r) we have:

2 2
Ay, B+ Ay, By =(pd> + 1y Alp —1z|)—((ﬁyu) + (Hy) )1zl (0 ~12l)

21y +1y, P =1z —Fp A (p—2])). (12)
Here we used the conformality relations (8) with 4=1. On Q5 N B(wy,r) we
get:
Ay, @,+Ay, D,

={IBy)" 'y > +IBy) 'y > =2((»)- y,BG) " v, +n() ¥, B) 'y,

z .V z .V
'(n(y)—n(y(wO)))}Z(p—lZI)—{(mB(y) v.) +(m BO) 3.
A z

-2 (Vl(y)'yu|zI “BO) "' yu+n(y) v,

© (1Y) =n(y(wo)))} |21 A(p —12])
Z(IBO)™ vl + 1B~y (1 = C3p) Ap —lz) =3p (1 + C3p) X(p —|2])), (13)

BO)1y,) —
B () y”)IZI
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C3=2C/(1—dC,/3). In this estimate we have used (8) with A=B(y)~! and
[n(y) —n(y(wo))| = Cyly —y(wo)| (C3/2)p since |z| < p.
The right hand side of system (7) can be estimated from above as follows:

[ @= CallBO)™ 1 yl* +[BO)™ 1yl p Alp —2)). (14)

If we write

Plp)i= [ (Ay>+14y.|*) Ap~lz])dudv,

B(wy,r)

estimates (12), (13) and (14) give us:

(1=C3p)P(p)—3p(1+ C50) P'(p) < Csp P(p),
whence

d
*3;(/)‘2(1 +Cap) P()=Csp~2(1+ Csp) ¥lp)

and integration from p; to p,, 0<p<p,<(1 —dC,/3) R yields

P12+ Cypy) Plp,)SeSP27r0 p3 21+ Cyp,) ¥lp,).

The right hand side of this inequality can be estimated from above by

Cepz? | lyd*+ly.l?dudy

B(wy,r)

and the left hand side from below by

Cip72 | Mp—1y—ywo)D(p* +1y,l?) dudv,

Bwir)
where we have written p=p,/(1+dC,/3).
We take €(0, p) and employ the properties of 4 to arrive at

p? ] P+l dudvS Copy® | 1y +1y,|* dudv.

B(wi,r)n{w]ly(w)—y{wo)| <p—¢} B(wi,r)

For ¢—0, p—0 and p,—(1—-dCy/3)R we infer from 3. Lemma for some
constant C, the inequality

C3?<R™2 | [yl +lyl*dudo

B(wi,7)

which proves the Lemma.

4. Proof of the Theorem

First of all let us recall that 4. Lemma states the smallness of infjy —y(wo)l
taken over 8B(wy,r) for small Dirichlet integral uniformly in woeB(w,7)~1. As
we shall show now this and the Courant-Lebesgue Lemma imply the con-
tinuity of y in wy.
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5. Lemma. ye C%¥(Q,) for every ve(0,1).

Proof. Let w;el and let 6 >0 be small enough. Assume that B(wy,7)€Q;. For
given Re(0,R,y] we chose r, from (0,7, ] such that

Caol | 1pl®+ysl*dudv)®* <R.

B(wi,r2)

According to the Lemma of Courant-Lebesgue (see [9]) there is some r; from
[72/2,7,] with

osc y=(n/log2):( [ |yul*+|y.l? dudv)®.

@B(wy,r3) B(wi,r2)

5. Lemma gives us for r=r3 and woeB(wy, 1)~ 1:

inf [y—y(wo)|=R.
0B(wy,r3)
On account of

[yWo1) —y(Wo2)l 1y (Wo1) —y(W) +|y(w) —y(wW")| +[y(w") =y (wo2)l

(Wo1, Wo2EB(wy,13), W, w'edB(wq,r3)), we obtain that

ly(Wo1) —y(Wo2)| = CoR
or

osc ySCoR
B(wy,r3)
and y is continuous in wy.
The system (7) can be written as

| yu @uty, @pdudv=| [ P+g, P+ g, P, dudo
Qs Qs

with suitable g +1g2| = Cro(|y.l +1v,]) sup |€(y)]. Since the oscillation of y on

é
small balls is small we may apply TheorQemS from [3] to get Holder continuity
for every Holder exponent.

Thus we have proved the crucial starting regularity of the free boundary.
For Se C** (u>0) higher regularity follows from well known regularity results.
But since we assume S only to be of class C*(C*!) we have to prove Holder
continuity of the first derivatives of x. This will be done by reflection of the
complex derivative of x.

6. Lemma. xe C**(Q" Ul) for every ve(0,1).

Proof. First of all we observe that xe HV?(Q;,n Q") for every pe[l, o), where
Owy={uv)||lul<1-46, |v|<1—5}. This follows easily from the fact that x is
harmonic on Q* and Hélder continuous on @* U for every Holder exponent:

2
IXu(Wo) [ +[x,(Wo)|=—  sup  |x(w) —x(wo)l.
Uo {wliw—wol <vo}
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But then ¢(x)eH"?(Qun Q%) and 4&(x)eIf(Qusn Q") because of (15). &(x)
vanishes on I and from Theorem 15.1 in [11] we obtain:

E(x)e Cl’”(Qw,]mQT) for every ve{0,1) and &> 4.

In order to prove the same regularity for x itself we employ a reflection trick
for the complex derivative dx/dw=(x,—ix,)/2, (W=u+1iv).
We define

dx N

%(W) on @
Fw)= dx
T(x(W))E(W) on Q.

and show that for every complex valued function @ from C§(Q )

| Fozdudv= | GPdudv
Q) Qs

where G=0on Q% and
N oT dx; _ dx
Gw)= — Y ——(x{(W)) (W) -=(W
(9)= = 30 & xt) 00 )
on Q7. This is done in the same way as in the proof of 2. Lemma, if we make
use of transversality (5) and of £(x),=n(x) x,=0 on the real axis. Theorem 1.17
in [15] says that

P =Fy(w)— | 2

Q(é )

- dodp

(z=a+ip) almost everywhere on Qe+ and F, is some holomorphic function.
Since GelI? for every p<oo, Theorem 1.20 in [15] gives us: FeC%"(Qp)
(6" >§") for every ve(0,1). Thus 6. Lemma is proved. The proof of our theorem
follows directly from 6. Lemma if we use well known results on boundary
regularity of Dirichlet and Neumann problems (see Theorem12.1 in [11],
Theorem 6.26 in [5] and Theorem 6.2 in [1]. We only have to formulate the
boundary value problems. x is a solution of the problem

A4x=0o0n 0%, x,=¢(x),n(x} on I
and &(x) solves

Aé(xX)=H(x)x, x,+H{x)x, x, on O, £(x)=0 on I (15)
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