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1. Introduction 

Consider a configuration in Euclidean N-space consisting of a smooth Jordan 
arc C having its end points P~ and P2 on a smooth hypersurface S, but no other 
points in common with S. Let B : =  {(u, v)lu2 + v2< 1} and denote by ~?+B (0-B) 
its boundary portions in v > 0  (v<0). Let Z(C,S)  be the set of all surfaces x 
= x(u, v) = (xl(u, v),..., xN(u, v))e C~ c~ H 1' 2(B) which are bounded by C and S 
in the following sense: x maps ~?+B continuously and in weakly monotonic 
manner onto C such that x ( - 1 , 0 ) = P 1 ,  x(1,0)=Pz and x(0,1)=P3 for some 
fixed third point on C, different from P~ and P2. The free boundary condition is 
expressed as 

lira inf Ix(u, v) - y l  = 0  
(u,v)  ~ (uo,vo) y ~ S  

for (uo, V o)6~-B. This implies the continuity of the distance function dist (x,S) 
but not the continuity of x itself. It is well known (see VI in [2]) that the 
variational problem 

ly,12 +ly~12 dudv--. Min (yeZ(C,S))  (1) 
B 

has at least one solution x~Z(C,S)  which is a minimal surface, i.e. it solves the 
system 

Ax=O, xu'x~=O, Ix=l=}xvl (2) 

on B. Note that in general a minimal surface does not represent a minimum of 
the corresponding variational problem. 

There is satisfactory information concerning the behaviour of a solution x 
of (1) at the "fixed" boundary portion; see [-13], pp. 281-325. Roughly spoken 
the result is that, up to ~ § x is as smooth as the curve C itself is. The crucial 
point in proving regularity at the free boundary portion ~?-B is to show 
continuity of x on B u O - B .  For solutions of (1), i.e. for area minimizing 
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minimal surfaces, regularity at the free boundary has been proved by J.C.C. 
Nitsche in [12], K.H. Goldhorn and S. Hildebrandt in [6] and by W. J~iger in 
[10]. These results are to the effect that x~Ck'U(Bu~-B) if the supporting 
surface S is of that class and is admissable in some sense. For  k>_-3 this has 
been proved by W. J~iger in [10]. T h e  case ScC 2'" has been investigated by 
J.C.C. Nitsche in [14]. M. Griiter, S. Hildebrandt and J.C.C. Nitsche in [-8] 
and the author in [4] proved regularity of the free boundary of stationary 
points x of the variational problem (1) under slightly different assumptions. In 
both papers the supporting surface S was assumed to be of class C 3. 

The aim of this paper is to manage the cases SeC 2'u and S~C2(C 1'1) which 
means that we prove: xECZ'"(BuO-B) in the first case and x~CI'"(BuO-B) 
for every #~(0, 1) in the second case. The proof consists in reflecting a given 
stationary solution x at the supporting surface S. W. J~iger proved in [10] 
weak transversality for such stationary solutions and this we use to prove that 
the reflected solution solves a quasilinear elliptic system of second order. In 
general there is no continuity for solutions of such systems. But using the 
eonformality relations in (2) we may apply a method developed by M. Griiter 
in [-7] to prove regularity. 

2. Results 

First of all we have to specify what an admissable supporting surface S is. We 
adopt W. J~iger's notions since they are easy to verify. For example every 
compact hypersurface S in NN given by f (x )=0 ,  f~Cm'U(IRN, IR), Vf+O on S, 
represents such an admissable supporting surface. 

Definition 1. Let S be an (N-1)-dimensional  Cm'U-manifold in IR N with the 
following properties: For every point xo~S there is some neighbourhood U 0 of 
Xo in IR N and some real-valued function fo~Cm'"(Uo) (m>2, 0N#<__I) with Vfo 
+t=0 in Uo and f ( x ) = 0  iff x~Sc~ Uo. There is some positive number d and there 
are functions 4, a, n~Cm-i'"(Ud) in the strip Ue={x~NUldist(x,S)<d} such 
that every x~Ud can be written as 

x = a(x) + ~(x) n(x) 

where a(x)eS, n(x) is normal to S in a(x) ([n(x)]=l) and ]~(x)l=dist(x,S). In 
addition to that we assume: 

sup I Vnl < C1. 
Ua 

Under these conditions we call S an admissable support ing surface of class 

Let us look now at the basic variational problem (1) presented in the 
introduction. Since we are concerned with the free boundary portion only we 
may localize the situation by cutting out a neighbourhood of a point in c~-B 
and we may achieve the following situation by conformal mapping. At this 
point it is obvious that our restriction to the special boundary configuration (C, S) 
is only for the sake of simplicity. 
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Defini t ion2.  Let x e C ~  be a solut ion of (2) on Q+={(u ,  0 l l u l < l ,  

0 < v < 1} where 1 = ( - 1, 1) x {0}. We call ye  C~ + \ I) c~ H 1' 2(Q +) admissable  
relative to x, if 

lira dist (y(u, v), S) = 0 (3) 
(u, v) ~ (uo, 0) 

for every U o S [ - 1 ,  1] and if y = x  on OQ+ \ / .  x is called s ta t ionary  if 

d~d j+ ly~)l~ +ly~O)12 dudv =o = 0 (4) 

exists for admissable  y(~) = x + ez (~) (J el < eo). 
We now are able to formula te  our  results: 

Theorem. Let S be an admissable supporting surface of class C"'"(m~N, m>_> 2, 
0-<#_-< 1) and let x be a stationary minimal surface on Q+. Then 

xGcm'u(Q+uI), /jr 0 < p < l ,  

x~Cm-i,~(Q + uI )  for every vs(O, 1), if # = 0  
and 

xeC"'~(Q+uI)  forevery ve(0,1), /f # = 1 .  

As the reader  will see, the classes C m-~ ' l  for S generate  the same regulari ty 
propert ies  for x as SaC ~'~ does. F r o m  now on we will assume the assumpt ions  
of the theorem to be satisfied. Because of  (3) we find some ~ > 0  such that  
x ( ( ~  \ I ) ~  Ud, where Q~- = {(u,v)llu[ < 1, 0 < v < 6 } .  

3. Prel iminary L e m m a t a  

In  [10], L e m m a  1 W. J~tger proves  weak transversal i ty of  s ta t ionary  free 
minimal  surfaces on the free boundary :  

1. L e m m a .  For every eP~C~(Q + u I) 

1 

l im S (xv-n(x)" xvn(x))" q)du =0.  (5) 
v ~ 0  --1 
v:>0 

Let us reflect the solut ion surface x at the suppor t ing  surface S 

, , (x(u,v) in (u,v)~(~- 
y t u ' v ) = ) x ( u , - v ) - 2 ~ ( x ( u ,  -v))n(x(u,  -v))  if (u,-v)~Q~- (6) 

and claim that  y solves some quasi l inear  elliptic system on Qo={(u,v)}lu]<l, 
I v l<6}.  We int roduce some abbrevia t ions  related to the reflection mapp ing  y 
= F ( x ) = x - 2 r  Define the matr ices  H, B and T by Hik=~ . . . . .  Tik=6ik 
--2nlnk (i, k = l , . . . , N )  and B = ( I - 2 ~ H )  -1. Then the following relat ions are 

�9 0F aF  
easily verified: Hn = O, H T  = TH = H, ~xx = TB- 1, det ~ = - 1 + O(d) for small  

d, F=F-I~C'~-~,u(Ua), ~ o F =  - 4 ,  noF=n,  H o F = B H ,  B o F = B  -1. 
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2. Lemma .  There is some 6 > 0  such that y is in HI '2 (Qa)~CI(Qa\ I  ) and for 
every test function ~b ~ I2I 1' 2(Qa) c~ L~(Qa) we have: 

Ay ,  "~b,+ Ayv" ~bvdudv= y f" ~bdudv (7) 
O~ Q6 

and 
Ayu'Ayv=O, IAy,I =[Ayvl (8) 

on Qa \ I, where we have set A = I, f = 0 on Q~ and A = B(y)-1, 

f = 2(H(y)y,. B(y) - l y "  + H(y) yv. B(y) -~ y~) n(y) 

-- 2(n(y)- y,, H(y)y, + n(y). y~ H(y)yo) 

on Q~- = {(u, v)[ lu[ < 1, - c5 < v < 0}. 

Proof: Since ~ o x = 0  on I cont inuously  we may  chose 6 > 0  small enough for 
our  calculations. Fo r  ~beC~(Q~) and small e > 0  we derive f rom the harmonic i ty  
o f x = y  on Q+:  1 

yu 'C) .+y~ '~vdudv= - ~ x~.q)du[~=~. (9) 
e2 ,  o.2 - 

On the lower half  plane the si tuat ion is more  complicated.  Let  us agree for the 
following lines to take x, x,  and x~ in (u, -v) .  On Q;-: 

y, = T(x) B(x)- 1 x. ,  y~ = -- T(x) B(x)-  i xo. 

F r o m  this and x , ,  + xv, = 0 we infer: 

y , . q ~ , + y , . q ~ d u d v = 2  ~ ( (n(x)x , . x , ,+H(x)x , .xv)n(x)  
Q2 \ Oi- Q2 \ Q~ 

+ n(x).x.H(x)x. + n(x)'x~H(x)xO. ~-~(x)  H(x)x~" ~o 
i 

+ ~(x)H(x)x~" q~dudv - ~ (x~ -2n(x).xvn(x))(u,e).q~(u, -e)du.  
- 1  

We combine  this with (9) and get: 

Ayu .~ .+ay~ .ga~dudv= ~ f -gadudv 

1 

- ~ ~ (u ,  ~). (~(u, ~ ) -  ~(u, - ~)) du 
- 1  

1 

- 2  ~ (xo -n(x)"  xv n(x))(u, e)" (b(u, - e )  du. 
- 1  

Transversa l i ty  (5) completes  the p roof  for e---, 0. 
M. Grfi ter  proved  in [7], (2.5) Proposi t ion  a fundamenta l  inequali ty for 

surfaces given in conformal  parameters .  In our  s i tuat ion y is a smoo th  function 
on Q a \ I  closely related to x. Here  this inequali ty is derived easily by using 

3 

that  dx/dw is ho lomorph ic  and ~ (dxk/dw) 2 -  0 on Q +, if x is not  a constant.  
k = i  

3. Lemma .  Assume that x(QJ \ I ) cUa /2 .  Then for every ball B(wl ,r)={w 
=(u,v)[ l (u ,v)- (ubO)l<r}~Qa (wl=(ul ,0)~I)  and for every Wo 
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=(Uo, Vo)eB(wx, r)'-.I we have: 

l imsupp-2  ~ [y.12+lY~12dudv>(~-2dClt  2 
o~o,o>0 B( ... .  )~(wllr(w)-y(~o)l<p} ---- + 2 d ~ ]  2n. (10) 

Now we are going to prove the main Lemma of this paper. It will enable us to 
prove continuity of y in w~el. The most important step is to control the 
integral in (10) from above uniformly in Wo. 

4. Lemma. Let Wx, B(wl,r ) and w o be as in 3. Lemma and assume that 
x(Q~ \ I ) ~  Ud/6. Then there is some R o > 0  such that for every Re[O, Ro] from 

inf l y -y(wo) l>R (11) 
OB(Wl,r) 

it follows that 
R < C2( ~ lyul ~ + lyJ ~ du dr?/2. 

B(w~,r) 

7he constants Ro and C2 depend on d and C~ only. 

Proof Chose ,~eCI(IR) such that 0 < 2 < 1 ,  2 '>0,  2 = 0  on ( - o o , 0 ] ,  2 =1  on 
I-e, oo), 2 > 0  on (0, oo) where s is some positive number to be specified later�9 Let 
us define 

~y-y(wo)  on Q~ 
Z=ly-y(wo)-2~(y)(n(y)-n(y(wo)))  on Q~- 

and introduce the test function 

~={~2(p--]z]) on B(wl, r) 
elsewhere, 

where pc(0, (1-dC1/3)R) ,  q5 is a test function for (7) since 4~=0 for [z[ =>p and 
[zl>[y-y(wo)l-d/3[n(y)-n(y(wo))l>(1-dC1/3)ly-y(wo)] for [z]<p, so that 
(11) gives us ~ = 0  on 8B(wl,r). Thus we may insert ~b into (7) and estimate the 
integrands separately on Q~ and (2;-. On Q2-c~B(wl, r) we have: 

(z ;(z 
Ay.'fI'.+Ay~'~b~=(lyula +lyvtZ)2(p-lzl)-(  ~( .y ,  + ~( .y ,  )lzl2'(p-lzl) 

> (ly.l 2 + I y f ) ( 2 ( p  - I z l ) - � 8 9  z (p  - I  zl)). (12) 

Here we used the conformality relations (8) with A=I .  On Q[c~B(wa, r) we 
get: 

A y , ' # u + A Y v ' r  ~ 
= { [B(y ) -  1 y.i  2 + [ B ( y ) - I  y~l 2 _ 2 (n (y). y .  B(y)-2 y .  + n(y). Yv B(y) 1 y j  

�9 (n(y)--n(y(wo)))}2(p--[z])-- .B(y)-~yu)2+ ~ . B ( y ) - i y , )  

- 2 (n(y) " y,,~[ " B(y)- l yu + n(y) " y~z] " B(y)- ' y.) ~z[ 

�9 (n(y) -n(y(wo)))}  Iz[ 2 ' 0  -Izl)  

>([B(y)-ly.]Z +[B(y)-~y. le)((1-Csp)2(p-[z])- �89 + Cap)2'(p-lz])), (13) 
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C3=2C1/(1-dC1/3). In this estimate we have used (8) with A=B(y) -~ and 
In(y)-n(y(Wo))l < C1 [Y- y(wo)] <(C3/2)p since [zl <p- 

The right hand side of system (7) can be estimated from above as follows: 

If we write 

f .  fb < C~(IB(y)-I Y~I 2 + IB(y)- ~ y~l 2) p 2(p -Izl). (14) 

r j" ([Ayul2+lAyvlZ)2(p-lzl)dudv, 
B(w 1, r) 

estimates (12), (13) and (14) give us: 

(1 - C3p) ~U(p)-�89 + C3p) 7J'(p)<= C4p ~(p), 
whence 

d 
- - - ( p - 2 ( 1  + Cap) 7J(p)) < C5p-2(1 + C3p) 7'(p) 

dp 

and integration from Pl to P2, 0 < p l  <P2 < ( 1 - d C 1 / 3 )  R yields 

P{2( 1 + C3p1) 7J(Pl)<=eCs(P2-P~lp22(1 + C3P2) ~(P2). 

The right hand side of this inequality can be estimated from above by 

C 6 P 2 2  ~ [y.12 +lyvl 2 dudv 
B(w t, r) 

and the left hand side from below by 

CTp -2 ~ 2(P-IY-y(wo)I)(IY, I2+Iy~12) dudv, 
B(w 1,r) 

where we have written p = p ~/(1 + d C 1/3). 
We take e~(0, p) and employ the properties of 2 to arrive at 

p-2 ~ ly.lZ+lySdudv<Cspy2 ~ [yja+lyvlZdudv" 
B(wl,r) n{w] [y(w)- y(wo)l <p-e} B(wl,r) 

For e ~ 0 ,  p--*0 and p2~(1-dC1/3)R we infer from 3. Lemma for some 
constant C2 the inequality 

6 2 2 < = R - 2  S [y~I2+IY~I 2dudv 
B(wl,r) 

which proves the Lemma. 

4. Proof of the Theorem 

First of all let us recall that 4. Lemma states the smallness of inf[y-y(wo)l 
taken over OB(wl, r) for small Dirichlet integral uniformly in womB(w1, r)\  I. As 
we shall show now this and the Courant-Lebesgue Lemma imply the con- 
tinuity of y in wl. 
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5. Lemma. y6 C~ ) for every v~(O, 1). 

Proof Let w ~ l  and let 6 > 0  be small enough. Assume that B(wx, ra)~Qa. For 
given RE(0,Ro] we chose r2 from (0, ra] such that 

62( [, lY,12 +ly~12 dudv)~ <R. 
B(wbr2) 

According to the Lemma of Courant-Lebesgue (see [9]) there is some r3 from 
[r2/2, r2] with 

osc y<(~/log2)~( ~ lYul2+lY~lZdudv) -~. 
OB(w 1, r3) B(wl, r2) 

5. Lemma gives us for r=r3 and wocB(wl, r3)',.I: 

inf [Y-y(wo)I~R. 
OB(wl,r3) 

On account of 

ly(wo~) -y(wo2)l _-< [y(wol) -y(w')l + ly(w') -y(w")l + ly(w") -y(wo2)[ 

(Wol, Wo2eB(wl, r3), w', w"~B(wl,  r3)), we obtain that 

ly(wol)-y(wo2)l _-< C9R 
o r  

osc y<= C9R 
B(wl,r3) 

and y is continuous in wa. 
The system (7) can be written as 

[, Y,'~,,+ Yv" ~vdudv= [, f" ~b+gx'~b,+g2" cI)vdudv 
Q~ Qa 

with suitable [gll + Ig~_[ < C,o(lY, t + ly~[) sup [{(Y)I. Since the oscillation of y on 
Oa 

small balls is small we may apply Theorem 3 from [3] to get H61der continuity 
for every HSlder exponent. 

Thus we have proved the crucial starting regularity of the free boundary. 
For  Se C 2'" (#> 0) higher regularity follows from well known regularity results. 
But since we assume S only to be of class C2(C 1'1) we have to prove HSlder 
continuity of the first derivatives of x. This will be done by reflection of the 
complex derivative of x. 

6. Lemma. xeCl'V(Q + wI) for every ve(O, 1). 

Proof First of all we observe that x~HI'v(Q(~)c~Q +) for every p~[1, oo), where 
Q(a)={(u,v)llu[<l-6, I v [ < l - 6 } .  This follows easily from the fact that x is 
harmonic on Q + and H61der continuous on Q + ~ I  for every H61der exponent: 

2 
Ix,(wo) I + Ixv(w0)l < - -  sup Ix(w) - X(Wo)l. 

Vo {w[lw-wol <vo} 
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But then ~(x)eHl'p(Qo)r~O+ ) and A~(x)~LP(Q(6)~Q +) because of (15). ~(x) 
vanishes on I and f rom T h e o r e m  15.1 in [11] we obtain:  

~(x)~Cl"~(Ow)~Q+) for every re(0 ,1)  and 6'>3. 

In order  to prove  the same regulari ty for x itself we employ  a reflection trick 
for the complex derivat ive dx/dw = (x, - ix,)~2, (w = u + i v). 

We define 

F(w)=_[~w(W ) on Q+ 

[ T(x(O)) dd~_(v~ ) on Q - .  

and show that  for every complex valued function ~ f rom C~(Q(~,)) 

F~dudv= ~ G~bdudv 
Q(6,) Q(~,) 

where G = 0  on Q + and 

OT dxj dx 
G(w)= j=l ~Xj (X (~)) ~WW(~) d~ (~A~) 

on Q - .  This  is done  in the same way as in the p roof  of 2. Lemma ,  if we make  
use of  t ransversal i ty  (5) and of ~(x), = n(x)'xu=O on the real axis. T h e o r e m  1.17 
in [15] says that  

F(w)=Fo(w)-i ! G(Z) dc~dfl 
Q( ":, Z - -  W 

(z=c~+i~) almost  everywhere  on Q(o,,) and Fo is some ho lomorph ic  function. 
Since GeLP for every p < o o ,  T h e o r e m  1.20 in [15] gives us: FeC~ 
(fi'">cY') for every re(0,  1). Thus  6. L e m m a  is proved. The  proof of our  theorem 
follows directly f rom 6. L e m m a  if we use well known results on bounda ry  
regulari ty of Dirichlet  and N e u m a n n  p rob lems  (see Theorem12.1  in [11], 
Theorem6.26  in [5] and T h e o r e m 6 . 2  in [1]. We only have to formula te  the 
bounda ry  value problems,  x is a solut ion of the p rob lem 

Ax=O on Q+, x~=r on I 
and ~(x) solves 

A~(x)=H(x)x,'x~,+H(x)x~'xo on Q+, ~(x)=O on I. (15) 
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