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On Krull domains 

By 
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Introduction. One aim of this article is to provide for Krul l  domains  a s tar -opera t ion  
analogue of the following result: An integral  domain  D is a Dedekind  domain  if and  only 
if each nonzero ideal A of D is s trongly two generated. A nonzero ideal A of  an integral  
domain  D is called strongly two generated if for each x e A\{0} there is y e A such that  
A = xD + yD. Lantz and Mar t in  show in [17] that  a strongly two generated ideal is 
invertible. Fol lowing this lead we define a s trongly *-type 2 ideal, for a s tar -opera t ion *, 
as a nonzero ideal A such that  for each x e A\{0}, there is y ~ A* such that  (x, y)* = A*. 
Then in Section I we characterize Krul t  domains  in terms of s trongly *-type 2 ideals. 

Recently there has been considerable activity [1, 7, 12, 26] (some of it inspired by  an 
earlier preprint  version of the present paper)  in characterizing a Krult  domain  in terms 
of the , - invert ibi l i ty  of some or all fractional ideals of D. These results are interesting in 
that  they indicate that  most  of the character izat ions of Dedekind domains  have *-oper- 
a t ion analogues for Krul l  domains.  

In  Section 2 we continue this line of investigation by coordinat ing some of the recent 
results with some new characterizat ions of Krul l  domains  in terms of *-invertibility. 

1. Star operations and strongly .-type 2 ideals. Throughout  this paper,  we shall use D 
to denote an integral  domain  with quotient  field K. Also F(D) will denote the set of 
nonzero fractional  ideals of  D while f ( D )  wilt denote the subset of  finitely generated 
members  of F (D). We review the definition of s tar-operat ions (abbreviated *-operations). 

D e fi n i t i o n. A star-operation on D is a mapping A ~ A* of F (D) into F (D) which satisfies, for 
each a e K\{0} and each A, B ~ F(D), the following conditions 

(1) (a)* = (a), and (aA)* = aA*. 
(2) A ~ A*, and A* = B* whenever A ~ B. 
(3) (.4*)* = A*, 

A fractional ideal A e F(D) is called a ,-ideal ifA = A*. Moreover, for A e F(D), A is *-finite if there 
is B ~f(D) such that A* = B* and A is strictly *-finite if A* = B* and B ~ A. A star-operation �9 
on D is said to be of finite character if for each A ~ F(D), 

A* = w {B*tB ~ A and B � 9  

If * is of finite character, then *-finite and strictly ,-finite are equivalent properties. 
If A ~ F (D), define A - 1 = {x ~ K [ x A ~ D }. Then A is *-invertible if (A A - 1), = D. If * has finite 

character and A is *-invertible, then both A* and A-  1 = (A- 1), are strictly ,-finite [14, p. 30]. 
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R e m a r k s. Many elementary properties of star-operations can be found in [9, Section 32] where 
it is pointed out that the mapping A --* A* of I(D), the set of nonzero integral ideals of D, into I(D) 
that satisfies (1), (2), and (3) above has a unique extension to a *-operation on D. Moreover, for any 
star-operation �9 on D, there is always an associated mapping A ~ A *~ of F(D) into F(D) where .~ 
is defined by A *~ = { J * [ J  ~ A and J ~ f(D)}. The mapping *s is a star-operation of finite character 
and *s is equivalent to *, that is, B * =  B *~ for all B ef(D).  

If {D,},~ t is a family of overrings of O such that D = c~ D,, then {D~} induces a star-operation 
A ~ A* = ~ AD,. If, in addition, each D is a quotient ring of D, then we say that �9 is induced by 
quotient rings of D. 

Three particular *-operations have special significance: the d-, v-, and t-operations. The d-opera- 
tion is just the identity operation, that is, A d = A for each A e F(D). On the other hand, the mapping 
A -~ (A- ~)- ~ = A, = the intersection of all principal fractional ideals that contain A, is called the 
v-operation. The t-operation is defined by t = v~, or equivalently, for each A e F (D), 

A~ = {B~[B ~ A and BeT(D)}.  

Commonly v-ideals are called divisoriat ideals or reflexive ideals. 

D e f i n i t i o n.  If  A e F (D), a n d  * is a s ta r -opera t ion  on  D, then A is called a s t rongly  
�9 - type 2 ideal of  D if for each nonze ro  ~ e A, there exists b e A* such that  A* = (a, b)*. 

Firs t  we extend a result  of Lan tz  an d  M a r t i n  [17]. 

Theorem 1.1. I f  * is a star-operation induced by quotient rings o f  D, then ever}, strongly 
�9 -type 2 ideal o f  D is *-invertible. 

P r o o f. Let * be induced  by the family of quo t ien t  r ings { D , . } ~  and  let A e F(D)  be 
such that  A is a s t rongly *-type 2 ideal of D. Then  as A*D = AD~ for each ~ ~ I [9, p. 396], 
we conclude  that  A D~ is a s t rongly two genera ted  ideal of D , .  But  then  according  to [17], 
AD~ is an  inver t ible  ideal of D , .  

N o w  cons ider  (A-  i A)* D,. = (A -  i A) D~ = (A -  i D,~) (AD~). Since A is a s t rongly  *- 

type 2 ideal of  D, it follows that  A is a s t rongly v-type 2 ideal of  D. Hence  A* = (a, b)* 
implies tha t  A,  = (a, b)~ for a, b e Av. Therefore, A -  i = A~- 1 = (a, b)~- ~ = (a, b ) -  i 
= D : (a, b) and  A -  1 D~. = D,~: (a, b) D,. = ((a, b) D, . ) -  i ~ (AD~.)- 1. But  since the oppo-  
site c o n t a i n m e n t  is obvious,  A -  i D,. = (AD~.)- 1 for each ~. Hence,  c~ (A-  1 D~.) (AD,~) 
= c~(AD,.)-I(AD~.) = c~D~ = D. Thus,  ( A - i A )  * = D a n d  A is *-invertible.  

N o w  the character izat ion.  

Proposition 1.2. An integral domain D is a Krull domain if and only if 

(i) the family (D u [M e t - max (D)} induces the v-operation on D and 
(ii) each A ~ F (1)) is strongly v-type 2. 

P r o o f .  Suppose  that  (i) a n d  (ii) ho ld  a n d  let A e F ( D ) .  Then  A~ = ~ A D u .  So 
AvDM = A D u  for each max ima l  t-ideal M. By (ii) for each non-zero  a e ADM there is 
b ~ A D  u (= A~ DM) such that  A D  u = (a, b)D u .  Tha t  is AD M is s t rongly two generated 
and  thus  principal .  O n  the other  h a n d  as A~ = (a, b)o for some a, b e A~ (by (ii)) and  as 
A -  1 = (Av)- 1 we have A - 1 = ( t /a)  (~ (l/b). But  then  

A -  i DM = ( l /a)  D M (~ (I/b) D M 

= ((a, b)Du)  -1 = (((a, b)~DM)v) - i  = (ADM) -1. 
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Clearly as ADM is principal so is (ADM) -1. But then N (AA- i )DM = D, which 
MEt - maxD 

means that  A A -  1 belongs to no maximal  t-ideal of D, thus implying that  A is t-invertible. 
Now according to Jaffard [14] D is Krull if and only if each non-zero ideal of D is 
t-invertible. 

For  the converse recall from [5, p. 485, Corollary 1] the following statement:  "Let A be 
a Krull domain, K its field of fractions and g, _b and _c three divisorial ideals of A such that  
_a ~ _b. There exists x ~ K such that  _a = b n x_c." Now let _a be a divisorial ideal and 
x r  then a -1 ~ (1 /x )  and by the above result there is y 6 K  such that  _a -1 
= (l/x) c~ yD. So that _a = (x, y -  1)v. That  is, each divisiorial ideal _a is strongly v-type 2. 
Indeed to say that  every divisorial ideal is strongly v-type 2 is equivalent to saying that  
every non-zero ideal is strongly v-type 2. Combining this with the fact that  in a Krull  
domain t - max (D) induces the v-operation, we get the result. 

R e m a r k s. We have observed that Corollary 1 of [5, p. 485] can be used to conclude 
that  every divisorial ideal of a Krull domain is strongly v-type 2. This raises two ques- 
tions: 

(1) Does the statement "Every divisorial ideal is strongly v-type 2" characterize Krull 
domains? 

(2) Are Krull domains characterized by the proper ty  announced in Corollary 1 of 
[5, p. 485]; that is, are Krull domains characterized by the statement: "For  divisorial 
ideals A, B, and C of D such that A ~ B, there is an element x ~ K, the quotient field of 
D, such that  A = B n x C " ?  

The answer to both questions is no, unless the v-operation is induced by localizations 
at maximal  t-ideals of D. To explain this asssertion let us recall some definitions. In 
[5, p. 551] an integral domain D is called pseudo principal if the group of divisibility of 
D is a complete lattice ordered group. In such an integral domain every divisorial ideal 
is principal and hence strongly of v-type 2. Indeed the statement of Corollary 1 of 
[5, p. 485] is also satisfied by pseudo principal ideal domains. But there are non-Krull  
examples: a valuation domain with value group R [4, p. 551], the ring of entire functions 
[25] and the polynomial  rings thereof [25] and [2]. 

On the other hand, if we decide to give Krull domains a closer look we can prove the 
following slightly stronger result. 

Proposition 1.3. Let A be a non-zero ideal of a Krull domain D and let x ~ A\{0}. Then 
there exists y ~ A such that (x, y)o = Av. 

To prove this proposi t ion we need the following lemma which is a slight deviation from 
a well-known statement for divisorial ideals. 

L e m m a  1.4. L e t  A be a non-zero  integral  ideal o f  a Kru l l  domain  D such that  

A v = P(1,1) n P("2) c ~ . . .  n P,("') 

where  each P~ is a rank  one pr ime ideal o f  D and each n~ is a posi t ive  integer. Then  there is at  least  one 
z ~ A such that  

(Z) = -lP("l)'~" 2P("2) n . . .  n P~(') n Q ~ l )  n . . . n Q(t ~ )  

f o r  some (poss ib ly  empty)  set  o f  rank  one pr ime ideals {Q4} where  each m] is a posi t ive  integer. 
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P r o o f. If the total number of rank one primes of D is finite, then every ideal of D is principal 
and the proposition holds vacuously. So we assume that the number of rank one primes of D is 
infinite. Also if A is divisorial the existence of z e A with the claimed property is well-known [8]. So 
we assume that A is not divisorial. Now as 

A~ = p~(D)ADe and as A~ = c~P~("); 

we conclude that for each i (=  1, . . . ,  r) there is, x i s A such that x~ Dpi = ADe~ = Pf~ Dp,. In short 
Vpi (xi) = n~ for i = 1 . . . . .  r where Vpi is the valuation corresponding to the ring Dec By rearranging 
the prime ideals Pi we may assume that Vpl (xi) = n i , Vp2 (xi) = n 2 . . . . .  Vp~(xl) = n~. If s = r, we 
are done. If s < r we find y e A  such that Vp~(y) = n~, i = 1 ,2 , . . . , s  + 1. For this pick k~+t ~ J 
__. pi(~ + i) (~. . .  n P~("~+ 1) n A with Vp~ + i (k,+ l) = n~+ i. But then x 1 + k~+ 1 ~ A and Vp~ (x 1 + k~+ l) 
--- n, for i = 1, . . . ,  s + 1. Proceeding in this manner we can find z e A with the required property. 

P r o o f o f P r o p o s i t i o n 1.3. We cons ider  two cases accord ing  to whe ther  or  no t  

A v = D. If Av = D and  x e A\{0} ,  then  (x) = P~"') n Pz ("2) n . . .  n P,("-) where  each P~ is a 

r ank  one  p r ime  ideal  of  D and  each a~ is a posi t ive  integer.  Since A $ P1 u . . .  u P, ,  there 

is a y e A \ ( P  1 u . . .  u P,) [16, T h e o r e m  124]. But  then (x, y) is con ta ined  in no r ank  one  

p r ime  ideal  of  D and  so (x, Y)v = D. 

If, on  the o ther  hand,  A v 4: D, then  let Av = p~,o n . . .  n p(,r) where  each  P~ is a rank  

one  pr ime ideal  of  D and  each n~ is a posi t ive  integer.  T h e n  by P r o p o s i t i o n  1.2 there exists 

z 6 A such tha t  

(z) -- p~,l) c~ . . .  (~ p(,r) n {2(1 "~) n . . .  c~ Q}"~) 

for some  (possibly empty)  set of r ank  one  pr ime ideals {Q j} where  each m~ is a posi t ive  

integer.  If  

(x) = P l ,  ') n . . .  n P(~r) c~ Ti (bl, n . . .  n Tt (b~) _c_ A 

where  each  T k is a r ank  one  pr ime ideal and each a~ and  each b] is a posi t ive  integer.  T h e n  

a i >= n i for i = 1, . . . ,  r. 
Suppose  tha t  by rea r rang ing  the P~'s, a~ = n i for i = 1 . . . .  q and a~ > n for i > q. I nvok-  

ing [16, T h e o r e m  124] aga in  we can select u e Pt  (2"~) n . . .  n pq(2,~) so that  u r Pq+ i . . . . .  P~. 

T h e n  (x, uz)  is such tha t  (x, uz) Dp~=ADp~ for i = l  . . . . .  r. N o t e  tha t  

u z D  + A = A ~ T 1 w . . .  u T~ so, by [16, T h e o r e m  124], there  exists a e A  such tha t  

u z  + a di T1 w . . . w T t. But  then  (x, u z  + a), = A~. 

These  results lead to the fo l lowing conclusion.  

Corollary 1.5. L e t  D be an integral domain  such that  { D u [ M e t - m a x  (D)} induces the 

v-operat ion on D. Then  the fo l lowing  equivalent:  

(1) D is a K r u l l  domain.  
(2) F o r  each A e F (D ) and f o r  each a ~ A\{0} there ex is ts  b e A such that  A v = (a, b)v. 

(3) E a c h  A e F ( D )  is s t rongly  v- type  2. 
(4) E a c h  divisorial A ~ F ( D )  is s trongly  v- type  2. 
(5) F o r  every triple o f  divisorial ideals A ,  B,  C o f  D wi th  A ~= B there ex is ts  x e K such 

that  A = B n x C .  
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P r o o f. (1) ~ (5) is Corollary 1 of [5, p. 485] (5) ~ (4) as observed in the proof  of 
Proposition 1.2, ( 4 ) ~  (3) is trivial and ( 3 ) ~  (1) is Proposit ion 1.2. Now ( I ) ~  (2) is 
Proposit ion 1.3 and (2) ~ (3) is trivial. 

R e m a r k s. If the family {M,} is the set of maximal ideals of D, then {Du, } induces the identity 
star-operation, that is, the so-called d-operation. Moreover, a strongly d-type 2 ideal is strongly two 
generated in the sense of Lantz and Martin [17] and, therefore, must be invertible. An obvious 
corollary is that D is a Dedekind domain if and only if every nonzero ideal of D is a strongly d-type 
2 ideal. 

2. Krull domains and t-invertibility. In this section we collect several other equivalent 
formulations for a Krull domain stated in terms of t-invertibility. First we need some 
terminology and one simple proposition. If  *~ and *2 are two *-operations defined on D, 
then *~ is finer than *2 if A,~ ~ A ,  2 for each A ~ F(D). In particular, if "1 is finer than 
*2, then any *2 ideal is a *i-ideal for ifA = A ,  2, then A ~ A,a ~ A ,  2 = A. Furthermore, 
if *1 is finer than *2 and "2 is of finite character then *i is of finite character. 

Proposition 2.1. Suppose *i and *2 are *-operations defined on D where *i is finer 
than *2. 

(1) I f  P is an integral *2-ideal of D maximal among the set of  non-*a-invertible *2-ideals 
of  D, then P is a prime ideal of  D. 

(2) I f  *2 is a *-operation of  finite character, then the set of *2-ideals that are non- 
* i-invertible is inductive. 

P r o o f. (1) I f P  is not  a prime ideal of D, then there are elements a, b ~ DkP such that 
ab E P. Let I = (P, a ) ,  2 and J = P :  I. Then I and J are *z-ideals of D properly containing 
P since a e I and b e J. Therefore, by the maximality of P, I and J are *a-invertible. 

Next we assert that P = (IJ)*l" To see this we need only prove that J = ( P I -  1),~ be- 
cause ( P I -  a), a = J implies that ((PI - 1), 11),a = ( J I ) ,  1 = ( P I -  ~ I)*1 = ( P ( I -  ~ I),~),~ 
= (P)*~ ~ P*z = P- But P ~ (P)*I so P,~ = P*z = P and P = ( (PI -~ ) , t  I) ,~.  Thus, 
we show (PI -~)* l  = J "  Since P~=I  implies P I - I ~ = I I - ~ D  which implies 
P I I  - i  c= p, p 1 - 1  ~= J. Therefore, ( p I - i ) ,  1 __ J*i  ~ J*2 = J" On the other hand, the 
definition of J implies J I = ( P : I ) I ~ P .  Hence, ( J I ) , ~ = P , ~ P , 2 = P  and 
( ( J I ) , ~ I - a ) , t  ~= ( P I - t ) , ~ .  But ( (JI ) , t  I - t )*1  = (J(II-1)*~)*a = J*~ since I is 
*l-invertible. Also since J is a *z -ideal, J* l  = J "  Therefore, J = ( J I , 1 I - 1 ) , l  

(P I - 1 ), 1 ---- J and we conclude (P I - a ) ,  1 = J and, therefore, P = (I J ), i" 
Since I and J are both * ~-invertible it follows that P is *~-invertible. This contradiction 

completes the proof  of (1). 
(2) Let (C,) be a chain of *z-ideals that are each non-*l-invertible. Let C = w C~. We 

know that C is a *z-ideal because *z is of finite character. For  if B is any finite set 
contained in C, B = C,o for some 0~0 and then B,  z ~ (C,o), z = C,o ~ C. Therefore 
C = u {B,  21B is a finitely generated ideal contained in C}. If  C is *~-invertible, then 
obviously C is *2-invertible. But then, as "2 is of finite character C = (e~ . . . . .  Ck),z 

[14, p. 30]. This leads to the conclusion that C = C, for some c~. But this contradicts the 
fact that each C, is non-*l-invertible. 

36* 
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Corollary 2.2. Let * be a *-operation defined on an integral domain D. I f  P is an integral 
�9 -ideal maximal among the set of  non-*-invertible ideals of  D, then P is a prime ideal of  D. 

P r o o f. Let "1 = * = *2 in  the s ta tement  of P ropos i t i on  2.1. 

Corollary 2.3. I f  P is an integral v-ideal of  D maximal among the set of  all non-invertible 
v-ideals of  D, then P is a prime ideal of D. 

P r o o f. Let "1 be the d -opera t ion  where Ad = A and  let *2 be the v-operat ion.  

Corollary 2.4. I f  there is one non-t-invertible t-ideal o f  D, then there is a non-t-invertible 
prime t-ideal of  D. 

P r o o f. Apply  the above r emark  to the t -opera t ion  and  use the fact tha t  t is a 
*-opera t ion  of finite character  to ob ta in  a max ima l  non- t - inver t ib le  ideal of D by  Prop-  
osi t ion 2.1 (2). 

An integral domain D is a Mori domain if D satisfies the ascending chain condition (ACC) on 
integral v-ideals. Nishimura [21, Lemma 1] originally published a result later rediscovered by Querre 
[22, Theorem 1], namely: an integral domain D is a Mori domain if and only if every A ~ F(D) is 
strictly v-finite. 

In [18] we obtained an analogue of Cohen's Theorem for a v-domain D. We showed that if each 
prime t-ideal of a v-domain D is a t-ideal of finite type, then each t-ideal of D is of finite type and, 
therefore, D is a Mori domain. One might attempt to prove that result by weakening the assumption 
on D say, for example, by assuming only that D is integrally closed. The following example shows 
that our result in [18] is the best possible. 

E x a m p I e. It is well-known that Q + x R Ix] is a Mori domain [3] where Q and R are respectively 
the fields of rational and real numbers. In a similar fashion we can establish that T = (~ + xR Ix], 
where (~ is the algebraic closure of Q in R, is an integrally closed Mori domain. Moreover we claim 
that D = Q[~] + xR[x] is an integral domain such that: 

(1) Every prime t-ideal is either principal or equal to xR Ix]. (See [20].) 
(2) xR [x] = (x/a, x/fl)v where ct and fl are algebraically independent over Q(n). 

( X X )  -1 .Noweveryelemento(x/o:)~(x/fl)hastobeofthef P r 0 0 f. Observe that ~, ~ x 2 

type x 2 f (x) where f (x) �9 R [x]. S o  -- R [x]. Consequently, x x2 B ' fl v = x R [x]. Neverthe- 

less the ring D is not a Mori domain since {(x/~ i) D} ~= 0 forms an infinite ascending chain of v-ideals 
of D. 

A pr ime ideal P of an  integral  d o m a i n  D where P is min ima l  over an  integral  t-ideal 
is itself a t-ideal; in  part icular ,  if P is min ima l  over an  ideal A of the type A = aD : bD 
where (0) + A ~e D, then P is a pr ime t-ideal, called an  associated pr ime of (a pr incipal  
ideal aD of) D [6]. 
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Theorem 2.5. Let  D be an integral domain. Then the following are equivalent: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

D is a Krull domain. 
Every A ~ F (D) is t-invertible. (In the terminology of  Jaffard [14], D is t - fl total.) 
Each prime t-ideal o f  D is t-invertible. 
Each t-ideal A ~ F(D) is t-invertible. 
Each associated prime ideal o f  D is t-invertible. 
D is completely integrally closed and each maximal t-ideal o f  D is t-invertibIe. 
D is completely integrally closed and each maximal t-ideal o f  D is divisorial. 
D is completely integrally closed and each t-ideal A E F(D) is divisorial. 
D is a Mori domain and each prime v-ideal of  D is v-invertible. 
D is a Mori  domain and each v-ideal o f  D is v-invertible. 
D is a Mori  domain and completely integrally closed. 
D is a Mori  domain and PDp is principal for each prime t-ideal o f  D. 

P r o o f. (1) ~ (2) by [14, p. 82]. Obviously (2) ~ (3) and Corollary 2.4 shows (3) ~ (4). 
Clearly (4) ~ (5). 

Now let us prove (5) ~ (6). Using (b) of the proof  of Theorem 1 of [18] we conclude 
that D is completely integrally closed and using (c) of the same theorem we conclude that 
every associated prime ideal of D is rank one. Because each associated prime is t-invert- 
ible (and hence strictly v-finite) we conclude, from Lemma 1.4 [18], that every associat- 
ed prime is a maximal t-ideal. This in turn implies that every maximal t-ideal must be 
an associated prime (since it contains one). Hence each maximal t-ideal of D is t-invert- 
ible. 

(6) ~ (7) is easy since if a t-ideal is t-invertible, it is strictly v-finite and hence is a v-ideal 
(divisorial ideal). To show (7)=~(2) all we need prove is that (AA-1),  = D for all 
A ~ F(D). Suppose on the contrary that for some A ~ F(D), (AA-1)t ~ D. Then, there 
must exist some maximal t-ideal P such that (AA-1) t  ~= P. But then A A - 1  ~= p implies 
that ( A A - I ) ,  ~= P, = P, and this contradicts the fact that D is completely integrally 
closed. 

Clearly ( 1 ) ~  ( 8 ) ~  (7). Moreover, ( 2 ) ~  (9) since (2) implies each A ~ F(D)  must be 
strictly v-finite. 

Next to show that (9) =~ (10) we note that in a Mori domain every t-ideal is a v-ideal. 
Clearly ( 1 0 ) ~  (11) by [9, p. 421]. Next we show ( 1 1 ) ~  (12). For  each A ~ F ( D ) ,  

( A A -  ~)~ = D since D is completely integrally closed. But since D is a Mori domain A and 
A -  1 are strictly v-finite so ( A A -  1) t = ( A A -  ~)~ = D. 

(1) ~ (12) is well known since a prime t-ideal P of a Krull domain D is such that D e 
is a DVR. Conversely (12) ~ (1) since for each prime t-ideal P of D, Dp is a DVR [4]. 

R e m a r k s. The equivalence of (1) and (11) of Theorem 2.5 was proved originally by Nishimura 
[21]. In Theorem 2.5, we have improved the proof of one of our own earlier results. We showed in 
[18] that an integral domain D is a Krull domain if and only if each associated prime ideal of D is 
t-invertible. There we proved the sufficientcy in two steps. First, we showed that if every associated 
prime ideal of D is t-invertible, then D is a Prfifer v-multiplication domain where every maximal 
t-ideal of D has rank one. Then, using the notion of Kronecker function ring, we established that 
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indeed D is a Krull domain. In the present proof we avoid the Kronecker function ring detour. 
Another proof of this result also appears in [12]. Finally, (1) ~ (6), was improved by Kang [15] to: D 
is Krull if and only if every minimal prime of a principal ideal of D is t-invertible. 

Corollary 2.6. An integral domain D is Krull  domain i f  and only i f  every maximal t-ideal 
is t-invertible and rank one. 

P r o o f. The impl ica t ion  ( ~ )  is wel l -known.  F o r  the converse note  tha t  unde r  the 
cond i t ion  every associated pr ime is a max imal  t-ideal. Next  apply (5) of Theorem 2.5. 

R e m a r k s. Now it is easy to see how the proofs of the following statements should go. 

(1) D is a UFD if and only if every maximal t-ideal of D is principal and of rank one. 
(2) D is a locally factorial Krull domain if and only if every maximal t-ideal of D is invertible and 

of rank one. 
(3) D is almost factorial if and only if every maximal t-ideal P is of rank one and for each such prime 

ideal P there is n such that (T")t is principal. (See [24] or [8] for the definition of almost factorial 
domains.) 

(4) D is locally factorial almost factorial domain if and only if every maximal t-ideal P is of rank 
one and for each such prime ideal P there is n such that P" is principal. 

(5) D is a Dedekind domain if and only if every maximal t-ideal of D is of rank one, maximal, and 
t-invertible. 

Statement (5) can be restated as: D is Dedekind if and only if D is a field or every maximal ideal 
of D is invertible and of rank one. 

Note that in each case the condition requiring each maximal t-ideal P to be of rank one is 
important. 

E x a m p 1 e. In R = Z + x Q [x] every maximal ideal is a t-ideal and is principal. But because 
maximal t-ideals of the type pZ + xQ Ix] are not rank one, R cannot be a UFD or a PID. Another 
example: let R be a valuation ring where the maximal ideal M is principal and dim R > 1. Then the 
maximal t-ideal M is t-invertible yet R is not a UFD or a PID. 

We have shown that  if every associated pr ime ideal P of an  integral  d o m a i n  D is 
t-invertible,  then D is a Kru l l  domain .  We n o w ask the ques t ion:  Suppose  that  every 
max imal  t-ideal of D is t-invertible,  what  addi t iona l  condi t ions  on  D ensure  tha t  D is a 
Kru l l  d o m a i n ?  We listed one cond i t ion  in Theorem 2.5 (6). The  Mor i  cond i t ion  is suffi- 
cient, bu t  this cond i t ion  can  be weakened to one concern ing  the ascending chain  condi-  
t ion  on  pr incipal  ideals. We say that  D satisfies the s t rong A C C P  if D and  D M satisfy the 
ascending  chain  cond i t ion  on  pr incipal  ideals for each max imal  t-ideal M of D. 

Proposition 2.7. I f  D satisfies the strong A C C P  and i f  every maximal t-ideal M o f  D is 
t-invertible, then D is a Krull  domain. 

P r o o f. By Coro l la ry  2.6 all we need show is that  each max imal  t-ideal of D is of r ank  
one. F o r  this we note  that  if M is a max imal  t-ideal of D, then M D  M is pr incipal  because 
M is t-invertible. Let M D  M = pD M where p ~ M. Now the A C C P  in D M ensures that  
M D M  is of r a n k  one for if x e c~ (MDM)" an d  x + 0, then  we have the infinite ascending 



Vol. 56, 1991 Krull domains 567 

chain  of pr incipal  ideals in  D M : (x) ~ (x/p) ~ (x/p 2) . . . .  Thus,  x = 0 and  MD~t is of  r a n k  

one. 

Corol lary 2.8. A Mori domain D is a Krull domain if and only if each maximal t-ideal 
of D is t-invertible. 

R e m a r k. It is easy to see that an integral domain D with the ascending chain condition on 
principal ideals is a UFD if every maximal t-ideal of D is principal. This observation raises a question 
about the use of the strong ACCP property in Proposition 2.7. It is plausible that Proposition 2.7 
may need only the ascending chain condition on principal ideals of D. 
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