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On Krull domains

By

Jog L. Mort and MUHAMMAD ZAFRULLAH

Introduction. One aim of this article is to provide for Krull domains a star-operation
analogue of the following result: An integral domain D is a Dedekind domain if and only
if each nonzero ideal A of D is strongly two generated. A nonzero ideal 4 of an integral
domain D is called strongly two generated if for each x € A\{0} there is y € 4 such that
A =xD + yD. Lantz and Martin show in [17] that a strongly two generated ideal is
invertible. Following this lead we define a strongly *-type 2 ideal, for a star-operation *,
as a nonzero ideal A such that for each x € A\{0}, there is y € A* such that (x, y)* = A*.
Then in Section 1 we characterize Krull domains in terms of strongly =-type 2 ideals.

Recently there has been considerable activity [1, 7, 12, 26] (some of it inspired by an
earlier preprint version of the present paper) in characterizing a Krull domain in terms
of the *-invertibility of some or all fractional ideals of D. These results are interesting in
that they indicate that most of the characterizations of Dedekind domains have -oper-
ation analogues for Krull domains.

In Section 2 we continue this line of investigation by coordinating some of the recent
results with some new characterizations of Krull domains in terms of x-invertibility.

1. Star operations and strongly =-type 2 ideals. Throughout this paper, we shall use D
to denote an integral domain with quotient field K. Also F(D) will denote the set of
nonzero fractional ideals of D while f(D) will denote the subset of finitely generated
members of F (D). We review the definition of star-operations (abbreviated *-operations).

Definition. A star-operation on D is a mapping A — A* of F(D)into F (D) which satisfies, for
each a e K\{0} and each 4, B e F (D), the following conditions

(1} (&)* = (@), and (@ 4)* = aA*.
(2) A < A* and A* < B* whenever 4 < B,
(3) (4%)* = 4%

A fractional ideal A € F(D)1is called a *-ideal if 4 = A* Moreover, for 4 € F (D), A4 is =-finite if there
is B e f(D) such that 4* = B* and A is strictly =-finite if A* = B* and B £ A. A star-operation *
on D is said to be of finite character if for each A € F (D),

A*=U{B*|B< A and Be f(D)}.

If = is of finite character, then *-finite and strictly =-finite are equivalent properties.
IfAe F(D), define A~ = {x € K|xA < D}. Then 4 is =-invertible if (44 ~*)* = D. If + has finite
character and A is *-invertible, then both A* and A™! = (4™ )* are strictly *-finite [14, p. 30].
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Remarks. Many elementary properties of star-operations can be found in [9, Section 32] where
it is pointed out that the mapping 4 — A* of I (D), the set of nonzero integral ideals of D, into I'(D)
that satisfies (1), (2}, and (3) above has a unique extension to a =-operation on D. Moreover, for any
star-operation * on D, there is always an associated mapping 4 — 4* of F(D) into F{D) where *,
is defined by A* = {J*|J < A and J € f(D)}. The mapping =, is a star-operation of finite character
and #, is equivalent to =, that is, B* = B** for all B¢ f (D).

If {D,},.; is a family of overrings of D such that D = n D,, then {D,} induces a star-operation
A - A* = n AD,. I, in addition, each D is a quotient ring of D, then we say that « is induced by
quotient rings of D.

Three particular =-operations have special significance: the d-, v-, and f-operations. The d-opera-
tion is just the identity operation, that is, 4° = A for each 4 € F (D). On the other hand, the mapping
A — (A7) ! = A, = the intersection of all principal fractional ideals that contain 4, is called the
v-operation. The t-operation is defined by ¢t = v,, or equivalently, for each A € F (D),

A, ={B,|B< Aand Bef(D)}.

Commonly v-ideals are called divisorial ideals or reflexive ideals.

Definition. If A e F(D), and = is a star-operation on D, then A is called a strongly
*-type 2 ideal of D if for each nonzero a € A, there exists b € A* such that A* = (g, b)*.

First we extend a result of Lantz and Martin [17].

Theorem 1.1. If = is a star-operation induced by quotient rings of D, then every strongly
x-type 2 ideal of D is =~invertible.

Proof. Let = be induced by the family of quotient rings {D,_},.; and let A € F (D) be
such that 4 is a strongly #-type 2 ideal of D. Then as A*D = A D, foreacha e I[9, p. 396],
we conclude that A D, is a strongly two generated ideal of D, . But then according to [17],
AD,_is an invertible ideal of D;,.

Now consider (47 A)* D, =(A"* 4)D,, = (A"' D, ) (AD,). Since 4 is a strongly *-
type 2 ideal of D, it follows that A is a strongly v-type 2 ideal of D. Hence 4* = {(a, b)*
implies that A, =(a, b), for a, be A,. Therefore, A~ = A4, ' =(a,b); ' =(a, b)~*
=D:(a,b)and A™*D, =D, :(a,b) D, = ((a b) D,))"' =(AD,))”". But since the oppo-
site containment is obvious, A™' D, = (4D, )" for each a. Hence, n (47" D, }(4D,)
=n(4D,) " (4AD,) = "D, = D. Thus, (A~ A)* = D and A is *-invertible.

Now the characterization.

Proposition 1.2. An integral domain D is a Krull domain if and only if

(i) the family {Dy | M €t — max (D)} induces the v-operation on D and
(il) each A € F (D) is strongly v-type 2.

Proof. Suppose that (i) and (ii) hold and let A< F(D). Then A, = nADy. So
A, D, = AD,, for each maximal ¢-ideal M. By (ii) for each non-zero a € AD,, there is
be ADy (= A, D) such that AD,, = (a, b) D,,. That is AD,, is strongly two generated
and thus principal. On the other hand as A, = (4, b}, for some a, b € 4, (by (ii)) and as
At =(4,)" " we have A~ ! = (1/a) n (1/b). But then

AT Dy = (1/a) Dy {(1/B) Dy
= (@ b)Dy) " = (@ ), Dyy)y) ™" = (ADy) ™"
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Clearly as AD,, is principal so is (4Dy)"". But then (|  (44~')D, = D, which
Met — maxD
means that A4~ ! belongs to no maximal t-ideal of D, thus implying that 4 is t-invertible.

Now according to Jaffard [14] D is Krull if and only if each non-zero ideal of D is
t-invertible.

For the converse recall from [5, p. 485, Corollary 1] the following statement: “Let A be
a Krull domain, K its field of fractions and g, b and ¢ three divisorial ideals of A such that
a < b. There exists x € K such that ¢ = b~ xc¢.” Now let g be a divisorial ideal and
xea\(0) then g~! < (1/x) and by the above result there is ye K such that ¢!
= (1/x) N yD. So that g = (x, y~1),. That is, each divisiorial ideal g is strongly v-type 2.
Indeed to say that every divisorial ideal is strongly v-type 2 is equivalent to saying that
every non-zero ideal is strongly v-type 2. Combining this with the fact that in a Krull
domain t — max (D) induces the v-operation, we get the result.

Remarks. We have observed that Corollary 1 of [5, p. 485] can be used to conclude
that every divisorial ideal of a Krull domain is strongly v-type 2. This raises two ques-
tions:

(1) Does the statement “Every divisorial ideal is strongly v-type 2” characterize Krull
domains?

(2) Are Krull domains characterized by the property announced in Corollary 1 of
[5, p. 485]; that is, are Krull domains characterized by the statement: “For divisorial
ideals 4, B, and C of D such that 4 £ B, there is an element x € K, the quotient field of
D, such that A = BNnxC”?

The answer to both questions is no, unless the v-operation is induced by localizations
at maximal t-ideals of D. To explain this asssertion let us recall some definitions. In
[5, p. 551] an integral domain D is called pseudo principal if the group of divisibility of
D is a complete lattice ordered group. In such an integral domain every divisorial ideal
is principal and hence strongly of v-type 2. Indeed the statement of Corollary 1 of
[5, p. 485] is also satisfied by pseudo principal ideal domains. But there are non-Krull
examples: a valuation domain with value group R [4, p. 551], the ring of entire functions
[25] and the polynomial rings thereof [25] and [2].

On the other hand, if we decide to give Krull domains a closer look we can prove the
following slightly stronger result.

Proposition 1.3. Let A be a non-zero ideal of a Krull domain D and let x € A\{0}. Then
there exists y € A such that (x, y), = A,.

To prove this proposition we need the following lemma which is a slight deviation from
a well-known statement for divisorial ideals.
Lemma 1.4. Let A be a non-zero integral ideal of a Krull domain D such that
A, =P AP ... .AP

where each P, is a rank one prime ideal of D and each n, is a positive integer. Then there is at least one
z € A such that

@=PM AP . AP AQM A A QM

Jor some (possibly empty) set of rank one prime ideals {Q;} where each m; is a positive integer.
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Proof. If the total number of rank one primes of D is finite, then every ideal of D is principal
and the proposition holds vacuously. So we assume that the number of rank one primes of D is
infinite. Also if 4 is divisorial the existence of z € A with the claimed property is well-known [8]. So
we assume that A is not divisorial. Now as

A,= ()} ADp andas 4,=nPM;
PeX! (D)

we conclude that for each i(=1,...,r) there is, x; € 4 such that x;, Dp; = ADp, = P D,,. In short
Vp;(x;) = n;fori=1,...,r where Vp;is the valuation corresponding to the ring D, . By rearranging
the prime ideals P, we may assume that Vp,(x,) =n,, Vp,(x) = #s,..., Vp,(x)) = n.If s =r, we
are done. If s <r we find ye A4 such that Vp,(y)=n;, i=1,2,...,5 + 1. For this pick k,,  €J
= PM¥V~  AP® Y~ A with Vp,, (ks 1) =,y Butthen x; + k., € A and Vp,(x; + kyyy)
=nfori=1,...,5 + 1. Proceeding in this manner we can find z € A with the required property.

Proofof Proposition 1.3. We consider two cases according to whether or not
A, =D.If A, = D and x € A\{0}, then (x) = P{*) " P{"> ... n P where each P;is a
rank one prime ideal of D and each g, is a positive integer. Since A & P, U ... U P,, there
isayeA\(P,v...uP,))[16, Theorem 124]. But then (x, y) is contained in no rank one
prime ideal of D and so (x, y), = D.

If, on the other hand, 4, # D, then let A, = P{"™ ~...n P where each P; is a rank
one prime ideal of D and each n, is a positive integer. Then by Proposition 1.2 there exists
z € A such that

(@) = PP (.. AP A QM ... )

for some (possibly empty) set of rank one prime ideals {Q;} where each m; is a positive
integer. If

X) =P ... APP AT A .. AT c 4

where each T, is a rank one prime ideal and each a; and each b; is a positive integer. Then
gznfori=1,..,r

Suppose that by rearranging the P;’s,a; = n;fori =1, ... gand g; > nfor i > g. Invok-
ing [16, Theorem 124] again we can select u € P{*"’ n... A P{*"?sothatu ¢ Py, ..., P,.
Then (x,uz) is such that (x,uz)D,=A4D, for i=1,...,r. Note that
uzD+ A=AET,u...uT, so, by [16, Theorem 124], there exists ae A such that
uz+ad¢Tyu...uT,. But then (x, uz + a), = 4,

These results léad to the following conclusion.

Corollary 1.5. Let D be an integral domain such that {D,,| M € t — max (D)} induces the
v-operation on D. Then the following equivalent:

(1) D is a Krull domain.

(2) For each Ac F(D) and for each a € A\{0} there exists b€ A such that A, = (a, b),.

(3) Each A e F (D) is strongly v-type 2.

(4) Each divisorial A € F (D) is strongly v-type 2.

(5) For every triple of divisorial ideals A, B, C of D with A < B there exists x € K such
that A=BnxC.
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Proof. (1) —» (5) is Corollary 1 of [5, p. 485] (5) —» (4) as observed in the proof of
Proposition 1.2, (4) — (3) is trivial and (3) - (1) is Proposition1.2. Now (1) — (2) is
Proposition 1.3 and (2) — (3) is trivial.

Remarks. If the family {M,} is the set of maximal ideals of D, then {D,, } induces the identity
star-operation, that is, the so-called d-operation. Moreover, a strongly d-type 2 ideal is strongly two
generated in the sense of Lantz and Martin [17] and, therefore, must be invertible. An obvious
corollary is that D is a Dedekind domain if and only if every nonzero ideal of D is a strongly d-type
2 ideal.

2. Krull domains and z-invertibility. In this section we collect several other equivalent
formulations for a Krull domain stated in terms of ¢-invertibility. First we need some
terminology and one simple proposition. If #, and *, are two *-operations defined on D,
then =, is finer than #, if Ax; S Ax, for each A € F (D). In particular, if *, is finer than
*,, then any *, ideal is a =,-ideal forif 4 = A4,,then 4 € A4, € Ax, = A. Furthermore,
if #, is finer than *, and *, is of finite character then *, is of finite character.

Proposition 2.1. Suppose *, and *, are x-operations defined on D where *, is finer
than *,.

(1) If Pis anintegral *,-ideal of D maximal among the set of non-*-invertible *,-ideals
of D, then P is a prime ideal of D.

(2) If =, is a =-operation of finite character, then the set of *,-ideals that are non-
*, -invertible is inductive.

Proof. (1) If Pis not a prime ideal of D, then there are elements a, b € D\ P such that
abe P.Letl = (P,a)x,and J = P:I. Then I and J are ,-ideals of D properly containing
P since ae I and b e J. Therefore, by the maximality of P, I and J are *-invertible.

Next we assert that P = (IJ)x, . To see this we need only prove that J = (P1~ s, be-
cause (PI™')s, =J implies that (P~ %, D)x, =(J1)s, =PI ' D)y, =(PU "I )%,
= (P)x, S P+, = P. But P < (P)s, 50 Py, = Py, = P and P =((PI™")s, I)+,. Thus,
we show (PI™')4, =J. Since P<I implies PI"'cII™' =D which implies
PII"' g P, PI™* < J. Therefore, (PI )&, = J+, S J&, = J. On the other hand, the
definition of J implies JI=(P:I)I < P. Hence, (JI),.:1 = P*2 =P and
(TDs, I ey S (PT Dny. But ((IDuy I ey, = (T Daw, = Jx, since I is
*,-invertible. Also since J is a #,-ideal, Jx, =J. Therefore, J = (JI« I ')y,
S (PI™")4, € J and we conclude (P1™1)4, = J and, therefore, P = (I )x, -

Since I and J are both *,-invertible it follows that P is *,-invertible. This contradiction
completes the proof of (1).

(2) Let (C,) be a chain of *,-ideals that are each non-#;-invertible. Let C = U C,. We
know that C is a *,-ideal because *, is of finite character. For if B is any finite set
contained in C, B g C,, for some «0 and then By, S (C, o)+, = C,o € C. Therefore
C = U {By,| B is a finitely generated ideal contained in C}. If C is *,-invertible, then
obviously C is *,-invertible. But then, as *, is of finite character C = (cy,..., ¢;)«,
[14, p. 30]. This leads to the conclusion that C = C, for some «. But this contradicts the
fact that each C, is non-#,-invertible.

36*
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Corollary 2.2. Let * be a x-operation defined on an integral domain D. If P is an integral
*-ideal maximal among the set of non-%-invertible ideals of D, then P is a prime ideal of D.

Proof. Let , = % = *, in the statement of Proposition 2.1.

Corollary 2.3. If P is an integral v-ideal of D maximal among the set of all non-invertible
v-ideals of D, then P is a prime ideal of D.

Proof. Let #, be the d-operation where 4; = 4 and let %, be the v-operation.

Corollary 2.4. If there is one non-t-invertible t-ideal of D, then there is a non-t-invertible
prime t-ideal of D.

Proof. Apply the above remark to the t-operation and use the fact that t is a
*-gperation of finite character to obtain a maximal non-t-invertible ideal of D by Prop-
osition 2.1 (2).

An integral domain D is a Mori domain if D satisfies the ascending chain condition (ACC) on
integral v-ideals. Nishimura [21, Lemma 1] originally published a result later rediscovered by Querre
[22, Theorem 1], namely: an integral domain D is a Mori domain if and only if every 4 € F (D) is
strictly v-finite.

In [18] we obtained an analogue of Cohen’s Theorem for a v-domain D. We showed that if each
prime t-ideal of a v-domain D is a t-ideal of finite type, then each ¢-ideal of D is of finite type and,
therefore, D is a Mori domain. One might attempt to prove that result by weakening the assumption
on D say, for example, by assuming only that D is integrally closed. The following example shows
that our result in [18] is the best possible.

Example. Itis well-known that Q@ + xR[x]is a Mori domain [3] where Q and R are respectively
the fields of rational and real numbers. In a similar fashion we can establish that T = Q + xR[x],
where ( is the algebraic closure of Q in R, is an integrally closed Mori domain. Moreover we claim
that D = @[r] + xR[x] is an integral domain such that:

(1) Every prime t-ideal is either principal or equal to xR [x]. (See [20].)
(2) xR{[x] = (x/x, x/B), where a and B are algebraically independent over Q (x).

Proof. Observe that E,#
o’ B 2

. Now every element of (x/a) n (x/f) has to be of the

X
=B
()G
il PN it
2 * B X X
type x* f (x) where f(x)e R[x]. So 3 = R[x]. Consequently, E,E = xR[x]. Neverthe-
X v
a
less the ring D is not a Mori domain since {(x/z') D}{>., forms an infinite ascending chain of v-ideals

of D.

A prime ideal P of an integral domain D where P is minimal over an integral t-ideal
is itself a t-ideal; in particular, if P is minimal over an ideal A of the type A = aD:bD
where (0) &= 4 =& D, then P is a prime ¢-ideal, called an associated prime of (a principal
ideal aD of) D[6].
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Theorem 2.5. Let D be an integral domain. Then the following are equivalent:

(1) D is a Krull domain.
(2) Every A e F(D) is t-invertible. (In the terminology of Jaffard [14], D is t — f total)
(3) Each prime t-ideal of D is t-invertible.
(4) Each t-ideal A € F (D) is t-invertible.
(5) Each associated prime ideal of D is t-invertible.
(6) D is completely integrally closed and each maximal t-ideal of D is t-invertible.
(7) D is completely integrally closed and each maximal t-ideal of D is divisorial.
(8) D is completely integrally closed and each t-ideal A € F (D) is divisorial.
(9) D is a Mori domain and each prime v-ideal of D is v-invertible.

(10) D is a Mori domain and each v-ideal of D is v-invertible.

(11) D is a Mori domain and completely integrally closed.

(12) D is a Mori domain and P D, is principal for each prime t-ideal of D.

Proof. (1) = (2) by [14, p. 82]. Obviously (2) = (3) and Corollary 2.4 shows (3) = (4).
Clearly (4) = (5).

Now let us prove (5) = (6). Using (b) of the proof of Theorem 1 of [18] we conclude
that D is completely integrally closed and using (c) of the same theorem we conclude that
every associated prime ideal of D is rank one. Because each associated prime is t-invert-
ible (and hence strictly v-finite) we conclude, from Lemma 1.4 [18], that every associat-
ed prime is a maximal ¢-ideal. This in turn implies that every maximal z-ideal must be
an associated prime (since it contains one). Hence each maximal t-ideal of D is t-invert-
ible.

(6) = (7) is easy since if a t-ideal is t-invertible, it is strictly v-finite and hence is a v-ideal
(divisorial ideal). To show (7) = (2) all we need prove is that (447 1), =D for all
A€ F(D). Suppose on the contrary that for some A € F(D), (4A~1), + D. Then, there
must exist some maximal t-ideal P such that (447%), < P. But then A4A~! < P implies
that (44~1), < P,= P, and this contradicts the fact that D is completely integrally
closed.

Clearly (1) = (8) = (7). Moreover, (2) = (9) since (2) implies each 4 € F(D) must be
strictly v-finite.

Next to show that (9) => (10) we note that in a Mori domain every (-ideal is a v-ideal.

Clearly (10) = (11) by [9, p. 421]. Next we show (11) = (12). For each 4 € F(D),
(441, = D since D is completely integrally closed. But since D is a Mori domain 4 and
A™? are strictly v-finite so (447 1Y), = (447 1), = D.

(1) = (12) is well known since a prime ¢-ideal P of a Krull domain D is such that D,
is a DVR. Conversely (12) = (1) since for each prime z-ideal P of D, Dp is a DVR [4].

Remarks. The equivalence of (1) and (11) of Theorem 2.5 was proved originally by Nishimura
[21]. In Theorem 2.5, we have improved the proof of one of our own earlier results. We showed in
[18] that an integral domain D is a Krull domain if and only if each associated prime ideal of D is
t-invertible. There we proved the sufficientcy in two steps. First, we showed that if every associated
prime ideal of D is t-invertible, then D is a Priifer v-multiplication domain where every maximal
t-ideal of D has rank one. Then, using the notion of Kronecker function ring, we established that
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indeed D is a Krull domain. In the present proof we avoid the Kronecker function ring detour.
Another proof of this result also appears in [12]. Finally, (1) = (6), was improved by Kang [15] to: D
is Krull if and only if every minimal prime of a principal ideal of D is t-invertible.

Corollary 2.6. An integral domain D is Krull domain if and only if every maximal t-ideal
is t-invertible and rank one.

Proof. The implication (=) is well-known. For the converse note that under the
condition every associated prime is a maximal ¢-ideal. Next apply (5) of Theorem 2.5.

Remarks. Now it is easy to see how the proofs of the following statements should go.

(1) D isa UFD if and only if every maximal t-ideal of D is principal and of rank one.

(2) Dis alocally factorial Krull domain if and only if every maximal z-ideal of D is invertible and
of rank one.

(3) D isalmost factorial if and only if every maximal ¢-ideal P is of rank one and for each such prime
ideal P there is n such that (T™), is principal. (See [24] or [8] for the definition of almost factorial
domains.)

(4) D is locally factorial almost factorial domain if and only if every maximal t-ideal P is of rank
one and for each such prime ideal P there is n such that P* is principal.

(5) D isa Dedekind domain if and only if every maximal ¢-ideal of D is of rank one, maximal, and
t-invertible.

Statement (5) can be restated as: D is Dedekind if and only if D is a field or every maximal ideal
of D is invertible and of rank one.

Note that in each case the condition requiring each maximal t-ideal P to be of rank one is
important.

Example. In R =Z + xQ[x] every maximal ideal is a ¢-ideal and is principal. But because
maximal t-ideals of the type pZ + xQ [x] are not rank one, R cannot be a UFD or a PID. Another
example: let R be a valuation ring where the maximal ideal M is principal and dim R > 1. Then the
maximal ¢-ideal M is t-invertible yet R is not a UFD or a PID.

We have shown that if every associated prime ideal P of an integral domain D is
t-invertible, then D is a Krull domain. We now ask the question: Suppose that every
maximal t-ideal of D is t-invertible, what additional conditions on D ensure that D is a
Krull domain? We listed one condition in Theorem 2.5(6). The Mori condition is suffi-
cient, but this condition can be weakened to one concerning the ascending chain condi-
tion on principal ideals. We say that D satisfies the strong ACCP if D and D, satisfy the
ascending chain condition on principal ideals for each maximal t-ideal M of D.

Proposition 2.7. If D satisfies the strong ACCP and if every maximal t-ideal M of D is
t-invertible, then D is a Krull domain.

Proof. By Corollary 2.6 all we need show is that each maximal ¢-ideal of D is of rank
one. For this we note that if M is a maximal t-ideal of D, then M D,, is principal because
M is t-invertible. Let MD,, = pD,, where pe M. Now the ACCP in D,, ensures that
MD,, is of rank one for if x e n (M D,,)* and x # 0, then we have the infinite ascending
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chain of principal ideals in Dy, : (x) € (x/p) S (x/p?).... Thus, x = 0 and M D,, is of rank
one.

Corollary 2.8. A Mori domain D is a Krull domain if and only if each maximal t-ideal
of D is t-invertible.

Remark. It is easy to see that an integral domain D with the ascending chain condition on
principal ideals is a UFD if every maximal t-ideal of D is principal. This observation raises a question
about the use of the strong ACCP property in Proposition 2.7. It is plausible that Proposition 2.7
may need only the ascending chain condition on principal ideals of D.
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