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Abstract. This work continues our considerations in [15], where we discussed 
existence and regularity results for the mean curvature flow with homogenious 
Neumann boundary data. We study the long time evolution of compact, smooth, 
immersed manifolds with boundary which move under the mean curvature flow 
in Euclidian space. On the boundary, a Neumann condition is prescribed in a 
purely geometric manner by requiring a vertical contact angle between the unit 
normal fields of the immersions and a given, smooth hypersurface ~7. We deduce 
estimates for the curvature of the immersions and, in a special case, we obtain a 
precise description of the possible singularities. 
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1 Introduction and main results 

During the last years, hypersurfaces evolving under various geometric flows have 
been studied intensively; besides questions concerning existence and uniqueness, 
there has always been great interest in determining the "long time behaviour" of 
solutions, In the case of compact, convex hypersurfaces without boundary, the 
hypersurfaces will typically shrink to a point within a finite time Tc. Hereby 
the growth rate of the second fundamental form A as t approaches Tc can be 
used to classify the possible singularities: If there is a constant K such that 
IAI 2 < g ( Z c  - t )  Vt, the singularity is said to be of type 1, otherwise it is called 
a type-H-singularity. Huisken proved [10] that convex hypersurfaces moving by 
mean curvature end up in a type-/-singularity, whereas it was shown by Angenent 
[3] that the curve shortening flow for plane curves developing a cusp produces 
a type-H-singularity. Rescaling the hypersurfaces appropriately often yields a 
better description of what actually happens as t --* Tc: For the mean curvature 
flow Huisken [10] established the convergence of the rescaled hypersurfaces to 
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a "round sphere" in the C~- topology .  Later [11] he obtained a complete clas- 
sification of the possible t ype - / l im i t  surfaces with nonnegative mean curvature. 
Further results concerning this topic are due to Andrews [2], Hamilton [7], Stone 
[13], and others. 

Evolving hypersurfaces with boundary often have been described as graphs 
of a scalar function w : (2 • [0, T] ~ P~. For given Neumann boundary data on 
0J2 • [0, T], a solution will typically converge to a hypersurface which moves 
by translation; the speed of  the translation is determined essentially by the angle 
at which the hypersurface meets the boundary. This result was established in the 
two-dimensional case by Altschuler, Wu [4]; in the special case of  an orthogonal 
contact angle (but in arbitrary dimensions), Huisken [12] proved the existence 
of a unique solution which converges to a minimal surface as t > ~ .  Further 
results concerning a wider class of  evolution equations are due to Guan [6]. 

This work continues our previous considerations in [15], where we discussed 
existence and regularity results for the mean curvature flow with a homogenious 
Neumann boundary condition. We prescribe boundary data on an arbitrary smooth 
hypersurface ~7 and study the long time behaviour of  solutions to given smooth 
initial and support hypersurfaces; in a special case, we obtain a precise description 
of the possible singularities. 

The results presented here are part of  the author 's  Dissertation [14], the 
research upon which has been carried out during the years 1992-1994 and under 
the excellent tutorship of  G. Huisken. 

1.1 Preliminaries 

In our notation, we follow our previous work [15]. Thus, M n denotes a compact, 
smooth, orientable n-manifold (n _> 1) with compact, smooth boundary OM ~, 
a smooth hypersurfacein p~+l and F0 : M n ~ Rn+l a smooth immersion with 
M0 := Fo(M n) and 

(1.1) OMo = Mo fq E ,  (v0,/~ o Fo)(x) = 0 Vx E OM n, 

where ~'o,/~ are unit normal fields to M0, ~7, respectively. We consider a family 
of  smooth immersions F : M n • [0, Tc) > ~n§ ; as usual, we denote the in- 
duced metric by (9ij) and the second fundamental form by A = (hij); H := 9 ij hij 
is the mean curvature, H := - H  v the mean curvature vector of  the immersions 
and A := 9iJ ~ ~. the Laplace-Beltrami operator on M n. We characterize quan- 
tities on .,U by an upper or lower index E. The Einstein summation convention 
is used; hereby, the range of greek indices is from 1 to n + 1, whereas capital 
arabic indices range from 1 to n -  1 and small arabics from 1 to n. Summation 
indices on ~ are denoted by ~, 3, lc, ... We then define 

Definition 1.1 (Mean curvature flow with Neumann boundary condition) Let 
~U,, Fo and F be as before. F is said to move under the mean curvature flow 
with homogenious Neumann boundary condition, if 
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(1.2) 

 F(x,t) = n ( x , t )  

F(. ,0)  = Fo, 

F(OMn, t )  C 

= 0 

V(x, t) E M n x [0, Tc), 

V(x,t) E OM n x [0,Tc), 

V(x, t) E OM n x [0, Tc). 

1.2 Main results 

In [15], we proved the following existence result: 

Theorem 1.2 Let ~7, lVlo be as before. Then there exists a unique solution w 
equation 1.2 on a maximal time interval [0, Tc). This solution is smooth for t > 0 
and in the class C 2§ (with arbitrary 0 < a < 1)for t > O. Moreover, if  
Tc < oo, then 

sup{IAI2(x, t):x E M  n} --~cx~ as t ~ Tc. 

This work is devoted to the study of the singularity which develops as t ~ Tc, 
if E7 and Mo are (strictly) convex hypersurfaces. Under the further restriction that 
E7 is umbilic, i.e. the boundary of a ball B~ +1 or a hyperplane, we can prove 
that convexity of the Mt as well as a pinching condition for the eigenvalues of 
the second fundamental form A are preserved under the mean curvature flow 
equation 1.2. Modifying an idea of Tso [16], this yields an upper bound on the 
growth rate of the second fundamental form of the Mr. Using an appropriate 
rescaling technique and applying results of Hamilton [8] (concerning hypersur- 
faces with pinched second fundamental form) and Huisken [10] (on the behaviour 
of compact hypersurfaces without boundary), we finally arrive at the following 

Theorem 1.3 Letn >_ 2, .~  = B~ +1 (R = oo allowed), E = Og z, and let Mo C 
be a strictly convex, imbedded hypersurface satisfying equations 1.1. Then the 
hypersurfaces Mt of  the solution to equation 1.2 shrink to a single point on ~7 as 
t --~ Tc < oo, ending up in a type-l-singularity. Moreover, there is a sequence 
tk --* Tc such that, rescaling the Mtk appropriately, the rescaled hypersurfaces 
converge in the C ~176 to a hemisphere with boundary on a hyperptane. 

We emphasize that the requirement of ~7 being umbilic is needed exclusively 
to establish the conservation of the convexity and pinching condition. Conse- 
quently, the Theorem holds for arbitrary convex support hypersurfaces ~, when- 
ever conservation of convexity and pinching can be guaranteed for the solutions 
of equation 1.2. Furthermore, all techniques (except for the rescaling procedure, 
where Hamilton's compactness result requires n > 2) are valid for plane curves. 
Since - as we shall see - the conservation of a positive lower bound on H already 
follows from the convexity of ET, we obtain 
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Proposition 1.4 Let 22 be the smooth boundary of  a convex domain ~ C ~2, 
and let ~ have uniformly bounded curvature. Furthermore, let Mo C ~ be a 
convex, imbedded curve satisfying equations 1.1. Then the curves of  the solution 
to equation 1.2 shrink to a single point on 22 as t --+ Tc < oct. 

2 The Neumann boundary condition 

We begin with analyzing the given Neumann boundary condition: 

(2.1) ( ~ , , # o F ) ( x , t ) = O  V(x,t)E OM n • [0, T] .  

Differentiating this equation with respect to time yields 

Proposition 2.1 Le tp  = F(x ,  t) E OM n x (0, T]. Then 

(VH,  #)(p)  = (H . SA(v, v))(p) . 

Proof. ~v=d ~TH for t > 0, according to [t0], Lemma 3.3. Moreover, 

d # ( F ( x ,  t)) = d t z ( ~ F )  = dlz(H) = - H  dtz(v)  . 

Hence, from equation 2.1 we obtain 

o = ( v a ,  a )  - H (g ,  = ( V n ,  - S t ( v ,  

[] 

Next, we want to differentiate equation 2.1 with respect to a tangential space 
direction. This is best done using an orthonormal moving frame on Mt for a 
fixed t _> 0: We define orthonormal vector fields el, ...,en+l in ~n+l such that 
forp ~ E n M t  

e l f p ) , . . . , e n _ l ( p ) E r p ( 2 2 N U , ) ,  en(p)=/~(p),  en+l(P)=v(P).  

This means that the ec~, ei, ex are an orthonormal basis for the tangent bundles 
T ~  n+1, TMt, T(22 NMt), respectively t. We describe the covariant derivative in 
]R ~+~ by 

~ e~ =: F~ z e~ .  

Note that the FX~ are not the usual Christoffel symbols which are deduced by 
using local coordinates; especially they are not symmetric with respect to the 
lower indices. Instead, using the relations between covariant derivatives and the 
second fundamental form: 

~ i e j  = Ve, ej - A ( e i ,  e j ) v  , ~  1 / =  A ( e i ,  e p ) e p  , 

(2.2) ~ e 9 = ~Ve~ e 3 - ~4(e~,e3)/~, ~ = ~4(e~, ep)ep,  

l Recall the range of the various summation indices ! 
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we obtain the following equations2: 

(2.3) F ~ = - F ~ , ~ ,  F i~=-a (e i , e j ) ,  

425 

/7~ = - ~ ( e ~ , e j ) .  

Finally, a straightforward calculation yields for the covariant derivative of sym- 
metric tensors T, T~ on Mr, ~ ,  respectively: 

(VekT)(ei,e:) = d(T(ei,ej))(ek) - F ~  T(ep,ej) -['fly T(ei,eq), 

(2.4) (EVe~Tz)(e~,ej) = d(T~(e~,e3))(e?~)_~p ~ TE(ep,ej)_Fk~ T~(e~,eo)" 

Using these relations, we can differentiate the Neumann boundary condition in 
a tangential space direction: From equations 2.1 and 2.2, we derive 

0 = (~ u, I~) + (v, ~ l~) = A(et, ~) + SA(et, u ) .  

Since e~(p), ..., e , - l ( p )  span the tangent space Tt,(.U, N Mr), we obtain 

Proposition 2.2 Letp E ,UAMt, v E TpMt andw := v - ( v , l~ ) I z  E Tp(MtAE) 
be the projection of  v onto Tp 27. Then 

A ( w , # )  = - ~ 4 ( w , u )  and 

A(v,/~) = -~4(w,  u) + (v,/~)A(/~,/z). 
[] 

Moreover, we have a relation between the covariant derivatives of the second 

fundamental forms of Mt and E in tangential directions: 

Proposition 2.3 Let p E ~7 N Mt and v, w E Tp(.E fq Mr). Then 

(Vv A)(/z, w) = - ( S V v  ~4)(v, w) 

-A(v ,  ee ) SA(ep, w) - A(w, ep) ~4(ee, v) 

+ A(p,, ~) SA(v, w)  + A(v, w)  EA(v, u ) .  

Proof. Using equations 2.2 through 2.4 with T = A, we obtain 

(Ve~A)(#,ej) = d (A(# , e j ) ) ( e l ) -  ~A(el ,ee)A(ee,ej)  

- F ~  A(/~, eQ) + ~4(et, ej)A(l~, !~) . 

Analogously, for Ts  = ZA: 

(ZVe,~A)(u, ej)  = d(EA(v, ey))(el) - A(el ,ee)  ~A(ee,ej) 

- F ~  EA(v, eQ) + A(eI, e j )  ~A(v, v ) .  

Now, according to Proposition 2.2, we have A(/z, es) + ~A(v, e j )  _= 0 on the 
boundary and hence d (A(#, e j ) + EA(v , e j ) ) (el) = O . Thus we obtain the result 
by summing the above equations. [] 

2 Here and in the sequel we replace the indices n ,n+t by the somewhat more suggestive notation 
/z~/l 
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We finish this section by summarizing the results. If  we define 

hij(x,t) := A(ei ,ej)(x, t)  , Vk hij(x,t) := (Vek A)(ei ,ej)(x, t)  

etc., we have: 

Theorem 2.4 On the boundary ENMt ,  the components of the second fundamen- 
tal forms of Mr and ~U, are related by the equations 

(i) hul = - h ~  , 

- VI hus - hteh~ - hjphpSl +huuh ff  + h H h L ,  (ii) ~71huj = E E 

(iii) ~7 u H = H h E 

[] 

Note that the equations (i), (ii) are valid for t > O, whereas equation (iii) 
requires t > O. 

Remark 2.5 Given a point p = F(x , t )  E ~ N Mr, we can introduce local co- 
ordinates around p such that the vector fields el(if) := o~ en(p) := 

o-~F(x,t)  = p(p)  and en+l := v(x , t )  are orthonormal at p ;  this relates the 
formalisms of orthonormal moving frames and local coordinate systems. 

3 Curvature bounds 

This section is devoted to the study of the mean curvature of the hypersurfaces 
Mt of a given solution to equation 1.2. The evolution equation for H is (cf. [10], 
Corollary 3.5) 

(3.1) A H = A H  + IAI2 H 
Ot 

3.1 Estimates from below 

Theorem 3.1 Let H (., O) >_ O. Then H >_ 0 ohM n • T]; moreover, if  H (., O) 
O, wehaveH > 0  k/t > 0 .  

Proof According to Proposition 2.1, we have (VH,  p)(p)  = (H -SA(v, v))(p). 
Thus, regarding the evolution equation 3.1, the conditions of the weak maximum 
principle proved in [15], Theorem 3.1, are fulfilled for H ;  hence H > 0 is 
preserved. Now the strong maximum principle (e.g. [15], Corollary 3.2) yields 
the result. [] 

Theorem 3.2 Let .F, be convex with respect to the exterior 3 normal field p, and 
let H(.,  0) > Co > 0. Then H > Co for all t E [0, Tc ), and the maximal time 
interval [0, Tc ) for the solution is bounded by Tc <_ to := T-~o. 

3 For a definition of exterior, see [15]. section 1. 
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Proof. The solution u(t) of the ordinary initial value problem 

~-u = 1 u 3 u ( 0 )  = Co d~ n 

is given by u(t) = Co. (1 - 2 c Z t / n )  -1/2. Now, using the simple algebraic 
1 2 identity [A[ 2 > ~H , we see that the function ~(x, t) := H(x, t) - u ( t )  fulfils the 

following differential equation: 

(~t -- A ) w  > 1 3 I ( H  2 
_ g(H - u  3) = -ft .  + H u + u Z ) ( H - u )  =: e (x , t )W.  

Moreover, by the convexity of • and since u > 0, we have on the boundary 

(V~,t~) = ~A(v ,v)H > SA(v ,v )H - Sa(v ,u)u = ~ ( v , u ) ~ .  

Thus, the result again is a consequence of the above cited maximum principles. 
O 

It can easily be seen that the above estimate on the maximal existence in- 
terval is sharp for convex hypersurfaces without boundary, since the sphere St 

R 2 n homothetically shrinks to a point in Tc = ~-g = yC~o = to. Thus, to can also be 

reached in the boundary-case: Let ~ be a cone, 2[7 = O ~  and Mo part of a 
sphere S~ such that the center of the sphere coincides with the vertex of the 
cone. Note that the boundary condition is fulfilled as Mt shrinks homotheticalty 
to the vertex of the cone. Now, the natural question is whether this is the only 
setup with maximal existene time of the solution. We prove: 

Theorem 3.3 Let ,~  C R n+l be a convex domain with smooth boundary ~7. Let 
F be the solution of equation 1.2, where Mo has strictly positive mean curvature. 
Then Tc = to if and onIy if .Y~ is a cone with vertex p and Mo C SRfp ). 

Proof We define U(t) := minu, H(x, t) and obtain from the proof of Theorem 
3.2 

U(t) > Co - ~ "  

Now, using Theorem 3.2, we conclude that in order to obtain Tc = to, actually 
equality must hold; thus U(t) fulfils the ordinary initial value problem 

_a U = I U 3 U(0) = Co dt n ' 

Nov,' we consider the function ~(x, t) := H(x, t) - U(t). Since for every t due 
to the compactness of M n there exists a zero of ~(., t), by the stronff maximum 
principle we conclude ~ = 0 Vt; thus H(., t) -~ U(t) on lift. This in turn 
implies VH ~_ 0 and Proposition 2.1 yields ~4(u, u) = 0, since H > Co > 
0. Furthermore, from AH -- 0 and the evolution equations for H and U we 
conclude IAI 2 = �88 2 and thereby that the Mt are spheres. Finally the equation 

~ u  = VH ([10], Lemma 3.3) implies u(., t) = const(t), and so these spheres 
must be concentric; the result follows. O 

We remark that this proof equally holds for the boundaryless case: Here the 
only way to obtain the maximal existence interval of a solution which starts with 
strictly positive mean curvature is Mo being a sphere. 
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3.2 Estimate from above 

As we have seen, it is not hard to establish lower bounds on H under reasonably 
weak conditions. In contrast, it is much harder to control the increasing of H from 
above; this can be done if the Mt are guaranteed to be convex. Now convexity of 
the Mt is preserved in the special case of ~7 being umbilic, cf. Theorem 4.4. Thus 
in the sequel we will require .,U to be the boundary of a sphere or a hyperplane, 
but we emphasize that the following method also applies to arbitrary convex 
hypersurfaces ET, if by any means we can guarantee that convexity of the Mt is 
preserved. 

In this section, we apply a technique due to Tso [16] who studied closed 
hypersurfaces moving under the Gauss-Kronecker-flow. 

Assumpt ion  3.4 For the remainder of this section we let ~ = B~ +l or ~ be 
a half space and ~7 = 0 ~ .  Furthermore, F is the solution of equation 1.2 with 
Mo C ~ being an imbedded, convex hypersurface. 

Thus all Mt will be imbedded hypersurfaces due to [15], Corollary 4.5, and since 
H(. ,0)  > 0, this will equally hold for t > 0 (Theorem 3.1). Finally, convexity 
of Mt for t > 0 follows from Theorem 4.4 below. 

We start our considerations by establishing evolution equations for some 
auxiliary functions: First, there exists 6o > 0 and a neighbourhood ~ := {p C 
•n+l : distn+t(p, ~ )  < 60} of E7 such that the distance function 

g : ~ , R ,  9(P) := distn+l(p, ~ )  

is well defined on ~ and smooth on ~ \ E 7  and fulfils the estimates 

(3.2) IIDyI[ -< 1, [D20I < C1, 

where C1 = CI(SA) > 0 depends only on the curvature of ~ .  Moreover, i fp E ,U, 
we have 

(3.3) (Dg, l~)(P) = - 1 .  

Lemma 3.5 (The distance function) The function d : M n • [0, T] ~ ~ ,  
d (x , t) := (goF )(x, t ) fulfils the evolution inequality 

I(~ - Z~)d(x, t)l < n Cz,  

where the constant C2 > 0 depends only on ~A. Furthermore, 

( V d , / ~ o F ) = - I  on OMnx[O,T],  and IlVdll_<l on 9 .  

Proof A straightforward calculation yields 

(~t - A)d(x, t) = _gij .  (D2goF)(o~F, b_~x~ F)(x,  t) ; 

thus the evolution inequality for d follows from equation 3.2. Analogously, the 
boundary behaviour is a consequence of 
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(Vd, t~oF)(x, t) = (DgoF , IzoF)(x, t) . 

Finally, j l V d l l  2 = IlOatl z on ~ ;  again, equation 3.2 yields the result. [] 

We remark that for convex hypersurfaces ~ we have ( o  _ A)d _> 0; unfor- 
tunately, this turns out to be the wrong sign for the desired estimates. 

Lemma 3.6 (The supportfunction) The functions : M n • > 1~, s(x , t )  := 
(u,V)(x,t) futfils 

(O _ A)s(x , t )  = -IAIZ + 2s H Vt > O , 

(VS,l~oF) = A(Fr, l~oF) on the boundary ; 

hereby F r is the projection o f F  onto the tangent hyperplane of Mt. 

Proof The evolution equation was proved by Ecker and Huisken [5]. The bound- 
ary condition is obtained by a straightforward calculation. [] 

Now we let p E ~ be the origin of a coordinate system in 1~ n§ and we 
choose tr > 0 and T,~ > 0 such that s(. , t)  _ 2or on [0, Tu]. (This is possible due 
to the convexity of the imbeddings Mr.) We then consider the function 

f : M n x [ O , T , , ]  , R , f ( x , t ) : = H ~ b O d ( x , t ) ,  
S - - O "  

~b : F,+ ....... > l;'.+ being a C2-function which will be chosen later. 

Lemma 3.7 For t > O, we have 

o" (s-u) r 2 - ~  + 211Vlll~odl) f 2 

+ ( n  (;'2) o-~odl + 129":~ g''' odJ)  f 

+ (VQ, Vf> ,  

hereby O := 2 log(~) and C~ := ll~lJ~ = sup(I~I~) : V ~ .~ }. 

Proof Using equation 3.1 and Lemmata 3.5, 3.6, we obtain by a straightforward 
calculation 

( ~ - A f t  "< f ~@~(-aIAIE+2H) + f l ~ o d l n C z  

( 2~''2-'~0'' od) llVdll 2 
- :.+. +: ,, . 

+ 2 Cod /V,-a V f \  

Moreover, we compute (Vs, Vd) = A(F r,  Vd) , and thereby 

l(Vs,Vd)t _~ IAt IIFtl tlVdll - 
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Putting this into the above evolution equation for f and using the inequality 
al l2 < IAI 2 < H 2 (which is valid since the M t are convex hypersurfaces), we 
obtain 

< f s l ~ _ ~ ( - g H 2 + 2 H )  + f l - w o d l n C 2  
' 2 . , . ,2  .,..,.,, 

+ f s - - ~ [ ~ ~  + / I  ~ , J ~  odl 

+ ( V Q , ~ 7 f ) .  

Finally, using H = f  ~-d,s-~ the evolution equation follows. 
On the boundary, we have 

V H + H  V d - ~ V s  . 

By Proposition 2.1 and Lemmata  3.5, 3.6, we arrive at 

(XYf, I z) = 777•(~ SA(v,v) H _ H \s-~(*'(~ + ~_~_sr,~t,.*(o) ~e t ,  r , # ) )  . 

Corollary 2.2 gives 

A(F T, lz) = (F T, lz) A(Iz, #) - SA(FT _ (Fr, lz)# , ~,) ; 

here, A(#,  # )  > 0, as the Mt are convex. Furthermore, ~ bounds a convex 
domain, and thus the boundary condition (#,  v)  = 0 yields 4 (F r,/~) = (F, # )  > 
0 .  Hence 

A(F T, I ~) >_ - C s  liE T - (F T, t~)t~ll -> - c z  IIFIt ,  

and putting this into the above expression for (Vf ,  #) leads to the stated boundary 
condition. [] 

Before stating the Theorem, we observe that, with respect to the choice of 
our coordinates, the hypersurfaces Mt "shrink" as t increases; more precisely, 
we have 

(3.4) sup{l lF(x , t ) l l ' (x , t )  ~M"• =sup{llF(x,O)l[ : x  E M n } .  

d This follows from equation 1.2 by calculating ~ I I F  [[2(x, t ) =  - 2 H  s < 0. 
We now show that the mean curvature H is bounded from above as long 

as the support function s is strictly positive; geometrically this latter condition 
means that the convex body bounded by Mt and • contains a small ball. 

Theo rem 3.8 (An upper bound on the growth of H) Let . ~  C ~n+X be a ball 
or a half space, ~, := 0 ,~ ,  Cs := [[SA[[~ and Mo C .~  a convex imbedded 
hypersurface. Let F : M n • [0, T] ~ Rn+l be a solution of equation 1.2 with 
F(M n, O)= Mo. Finally, choose 5 ~r E (0, supM, IIF(.,O)ll - m i n { C s  60, 1} ) and  
T~ E (0, T] such that s(., t) >_ 2 o- Vt E [0, T~]. Then 

4 Recall that the origin of our coordinate system is in .~! 
5 d~o is as defined at the beginning of this subsection. 



Convergence of solutions 431 

H(x, t) < max{ supH(. ,0) ,  Co ~ } V(x, t) E M n x [0, TO-], 
M n 

where Co is a positive constant depending only on the curvature bound CE and 
the initial imbedding lifo. 

Proof Define k0 := supra, IIV(.,0)ll, 6 := c--~ < 60, c := ~ and 

C ( z - 6 ) 3 + 1 / 2 ,  i fz  < 6 ,  
~b(z) := 1/2 ,  otherwise. 

Then @ E C2(F-+) and ~p E [1/4, 1/2] . We now consider the function f of 
Lemma 3.7: 

(i) Using equation 3.4 and cr < ko, the boundary behaviour is 

(~'f,/.t) < f Cs- i fy2-C--p+Cs < f ( C s ~ - - ~ )  < 0 ;  

hence a maximum o f f  cannot occur on the boundary. 
(ii) For any point (x, t) C [0, TO-] with distn+l(F(x, t), ~7) > 6, we have ~b = 1/2 

and thus, using s > 2or on [0, TO-I, the evolution equation f o r f  yields 
-- 0 -2 

( ~  A)f < 4 f  2 ( - ~ - f + l )  + ( V Q , V f ) .  

Hence f cannot develop a new maximum at (x, t) w i th f  _> ~.n 
(iii) Now let distn+~(F(x,t),~,) <<_ 6 . Here we have 2or < s < IlVll < ko and 

1/4 < ~p < 1/2, and thereby 

(ff-Tt - A)f _< 40-2f 3 n  '~ + (8 + 96 C 6 ~ ko)f 2 

By Young's inequality, 

(8 + 96 C 62 ko)f < 

+ 1 2 C 6 ( n 6 C z + 1 6 C 6 3 + 4 ) f  

+ (VQ, V f ) .  

2~2--f 2 + 8 ~-~ (1 + 12 C 62k0) 2 , 

and using 6 = ~ , ' ~  cr < ko and C 63 = 1/4, we arrive at 

(~t -- A)f <_ f ( _ ~ f 2  + 2 n  C 213~j '~ + (XVQ,Vf) 

with a constant (73 > 0 depending only on Mo and Cz. Thus, the occurence 
C " of new maxima with f _> 3 ~ can be ruled out. 

(iv) From (i)-(iii) we conclude that H cannot develop a new maximum with 

nc~ 4k C n H >  ~---~- o =: o 7 

within the time interval [0, TO-]. D 

Remark 3.9 The above proof and thus the Theorem hold for arbitrary convex 
domains .q~, if we can guarantee that convexity is preserved for the hypersurfaces 
M,. 

Remark 3.10 Since for convex hypersurfaces IA] z <_ H 2, by controlling the mean 
curvature we automatically control the entire second fundamental form of the Mr. 
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4 Convexity and pinching 

Here we study the properties of the second fundamental form of a given solution 
to the mean curvature flow equation 1.2: We show that (under suitable conditions 
on I2) convexity and a pinching estimate are preserved. More precisely, we 
require 12 to be an umbilic hypersurface in 1t n+l, as in this case by the results 
of section 2 we can completely control the behaviour of the various tensors on 
the boundary. We begin by summarizing some evolution equations from [1t3]: 

(4.1) o NgO = - 2 H  h o , 

o ht) + (4.2) ~ h  0 = z~h~ - 2H hik gkt fA]Z hi1, 

(4.3) N~ A 2 = AIA] z - 2 [VAI 2 + 2 [at 4 

We will make extensive use of the following maximum principle for sym- 
metric tensors/14// on M n proved in [15], section 3: 

Theorem 4.1 (Weak maximum principle for symmetric tensors) Let Mi1 be a con- 
tinuous symmetric tensor on M n x [0, T] which is of the class C 2,1 for t > O. 
Let Nil := p(Mij,gi1) be a polynomial in ?vii) such that Nil v i v] >_ O for all zero 
eigenvectors of MOO ("zero eigenvector condition"). Let 

0 _ u  k L(Mo ) := ~Mi1 - AMij VkMij - N i l  

be a parabolic operator with bounded vector fields u k, w k on M ~ • [0, T] and 
OM ~ • [0, T] respectively and g(u, #) > O, 9(w, #) > 0 on the boundary. Suppose 
the foUowing conditions are fulfilled (~ > 0 being an arbitrary, small constant): 

(i) M~j(.,O) >_ O, 

(ii) L(Mij) >_ 0 

(iii) (Vw Mi1)vivY(x, t) > 0 

on M n x (0, T], 

V(x,t) E OM n x(0, T], V minimal eigen- 
vectors v of Mii with eigenvalue E [-6, 0]. 

Then Mi1> O on M n x [ 0 , T ] .  
Furthermore, if at a point (x, t) E OM n x [0, T] the tensor Mi1 decomposes, 

i.e. Mlu(X,t )  = M~,l(X,t) = 0 
condition ( iii ) is replaced by 

(iii') (VwMij)vivJ(x, t) 

(iii)" (Vw Mgu)(x, t) 

V 1 < I < (n - 1), the same conclusion holds if 

>_ 0 V minimal eigenvectors v E TxOM n 
of Mi1 with eigenvalue C [-6,  0] , 

> 0 ifMt~ ~ min. and - 6 < M~u(x , t) < O. 

Assumption 4.2 Throughout this section, let 12 be the boundary of a ball B n§ 1/~ 
B n+l thereby 12 being or a hyperplane in N n+l. In the former case, let Mo C 1/a' 

COnVSX. 

Thus we have 
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ZA(v ,w) ( t , )= ,~Zg(v ,w) (~)  Vt, ~ .~ , Vv,  w ~ T~,S , 

or, equivalently, for the components with respect to a pararnetrisation, 

h~)z =~zg~q,) vp ~ . v  , v~,3. 

Thereby e >_ 0 due to the convexity of ~ .  

Theorem 4.3 Let ~7 be umbitic, p ~ ~1 fq M~, and choose local coordinates 
around p as discussed in Remark 2.5. Then the following relations hold: 

(i) h :  = O, 
(ii ') V~,hH = ,~(-hz~ +h~,~,6.),  
(ii") V u h ~  = o ~ ( 2 H - n h t ~ u ) ,  
(iii) VuH = o~H. 

Proof (i) follows immediately from h~ = c~ 5,t = 0 and Theorem 2.4,(i). More- 
over, by Ricci's Lemma, ExT~ ~9pO - 0; hence ~ V1 h.s = ~ z ~  ~g~s = O. The- 
orem 2,4,(ii)thus yields xTt huj = c~ (-ht j  +hvu 6IJ), and (ii)' is a consequence 
of the Codazzi equations Vt hus = V~hts. (iii) follows from h~,~ = c~Suv = cz, 
and combining (ii) ~ and Theorem 2.4, (iff) yields (ii). 

Thus if ~[7 is tm~bilic, the nora',at derivative of the second fundamental form 
of Mt can be expressed essentially in terms of the curvature operator itself. 
Furthermore, in this case the second fundamental form A decomposes on ~7. 

4.1 Convex#y 

Theorem 4.4 Let ~7 be convex and umbilic. Then convexity is preserved for any 
solution of  the mean curvature flow equation 1.2. 

Proof We want to apply Theorem 4.1. To this end, we define M~ := hq, N~i := 
- 2 H  hik #~a htj +IAI ~ h g ,  u k = 0 and observe that the required evolution equation 
and the zero eigenvector condition are fulfilled. Furthermore, he(. , 0) >_ 0 by 
assumption, and thus in order to apply Theorem 4A we only have to check the 
boundary condition. Le tp  := F(xo, to) C ~ and choose local coordinates around 
p as in Remark 2.5. As A decomposes on ~ (cf. Theorem 4.3,(i)), we can use 
the second part of Theorem 4.t: 

4 

(iii') If v := v a 01 is a minimal eigenvector of hij with hijviv i = hHv% J = 
-611vii 2 _< o, we compute from Theorem 4.3,(ii)' V~hoviz/  = a(6  + 
h.~) [Ivll 2. As v is minimal, h,~ _> -t5 and thus V~ hij v i v i > 0, 

(iii") Now let h ~  < 0 be minimal. Then Theorem 4.3,(ii") yields XT~, h ~  >_ 
2 a H.  By assumption, H (., 0) >_ 0, and by Theorem 3.1, this is preserved; 
thus V u h m, _> O. 

Hence the result follows from Theorem 4.t. vl 
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Proposition 4.5 Let ,U be convex and umbiIic and C <_ 2 minM, H(.,  0). Then 
the estimate 

h 0 > C 9ij 

is preserved for  any solution of  equation 1.2. 

Proof  Let M O := hij - C 9ij. A straightforward calculation using equations 4.1, 
4.2 yields 

( o  _ A)Miy >_ - 2 H  Mik 9 kt M O" + (IAI 2 - 2 CH)MIj  , 

thus a "suitable" evolution equation (with respect to Theoren 4.1) and the zero 
eigenvector condition are fulfilled. By assumption, M/j(., 0) ___ 0; thus again the 
only thing to check is the boundary condition of Theorem 4.1. Using Theorem 
4.3 and Ricci's Lemma, we compute 

V# MIj = c~ ( - M t j  + M u u ) ,  

VuMgu  = a ( 2 H - n M u u - n C  ) .  

Now, if v = v 1 01 is a minimal eigenvector with MIj v t v J = - 6  [[v[I 2 < 0, we 
have M~u > - 6  and thus VuMIj V I V J = O~(6 + M~,,)llvll z >_ 0. If, on the other 
hand, Mu,  < 0 is minimal, we compute ~TuMuu > 2c~(H -minM,  H(.,0)).  As 
~7 is convex, we have H __. minM, H( . ,0)  by Theorem 3.2; thus ~7~ M~,u > 0. 

Hence we can apply Theorem 4.1 and obtain the result. [] 

4.2 Pinching 

Now we want to establish various pinching estimates. Huisken [10] in the bound- 
aryless case proved that for any 0 < e _< 1/n < t~ < 1 the estimate 

e H gij <_ hij <_ ~ H 9q 

is preserved. Note that this estimate is optimal as e and ~ cannot exceed the 
above stated range for any convex hypersurface. Now, in our case, such an 
optimal estimate cannot hold: Let M0 be a subset of S~ and ~ = S~/a such that 

the Neumann boundary condition is fulfilled. Then hij = ! H  gij, i.e. e = I /n ;  but 
n 

an elementary geometric consideration shows that under the mean curvature flow 
Mt will not be a sphere for t > 0; thus the optimal pinching is not preserved. 

Theorem 4.6 Let ~7 be convex and umbilic, and let ~ > 2 Then equation 1.2 
preserves the pinching condition 

hij <_ n H gq . 
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Proof Let Mij := n H gij - hij. By a straightforward calculation, 

( ~  - A)Mij = 2H  mik 9 kt MO + (fa] 2 - 2 nH2)mij  , 

i.e. the evolution equation and the zero eigenvector condition are fulfilled. By 
assumption MO(.,O ) >_ 0, and thus it remains to check the boundary condition. 
Here, Theorem 4.3 yields 

V~ MIj = o~(r~H 6H - Mtj + Muu ~zJ ) , 

V u M . u  = o~ (-nM•• + ((n+l)e; - 2 )H)  . 

Thus, if v = v 1 01 is a minimal eigenvector with MHvlv J = - ~  [lv[[ 2 < 0, we 
have V~M1jvlv ] = o~(nH + 6 +M.. ) l lv l l  2 > 0, as H > 0 is preserved. On the 
other hand, if Mu.  < 0 is minimal, we obtain V. M•. > c~ ((n + 1)e; - 2) H > 0, 
as p~> 2 

_ ~-~-f. Thus Theorem 4.1 yields the result. [] 

Now we would like to proceed as in [10] and establish a pinching estimate 
from below using the function M 0 = hij - e H  9ij; unfortunately, the normal 
derivative of this function at the boundary is XTuMljvlv J >_ - a e H  Hvll 2, if v 
is a minimal tangential eigenvector; this is not sufficient to guarantee for the 
requirements of Theorem 4.1. It turns out that the negative term occurs from the 
boundary behaviour of H - thus we must replace H by a function with a "better" 
boundary behaviour. 

Lemma 4.7 Let J~, be convex and umbilic. Furthermore, let Mo be strictly convex. 
Then 

(~t -A) IAt  < lal 3 , 

and on the boundary (with respect to the "usual" coordinates) 

Vt, [A[ = a IAt - l  (3H hm, - Iat z - n h2~,). 

Proof First note that IA[ 2 > 0 is preserved (Theorem 4.5). Thus IAI is a smooth 
function, and we compute 

(~t - A)IAI = Ia~ (HVI AItt2 - t V A I  2) + [At 3" 

The evolution equation then follows from the Cauchy-Schwarz inequality IIVIAII] z 
_< ]VAIL 

Furthermore, using Theorem 4.3, a simple calculation yields 

V# IAI 2 = 2 a ( 3 H  h m, - I A I  2 - n h2~) 

on ,U, and the result follows from V~ ]A] = 1 

Theorem 4.8 Let ~7 be convex and umbilic, and let Mo be strictly convex. Then 
for e < min{ . ~ ,  �88 }, equation 1.2 preserves the pinching estimate - v ~  

hu ~ e lA lgu .  
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Proof We define Mij := hi.] - e tAI gij and compute, using the above Lemma 

( o  _ A)Mij >_ - 2 H  Mik gkl Mzj + (IZl 2 - 2 e I t  IAt)Mij , 

and at a boundary point 

xT, Mll = o~ ( -MH +Muu ( 1 -  3 e l l  IAt-I)6H 

+ e ( _ 3 e H  +lAl+nlA[-lh~u)2 6H) , 

V v M ~  = a ( - ( n +  3 e H  [A t - I )M~  + ( 2 -  3e2)H 

- e (n - 1 )IAI  + n e 131-1 h ~ )  . 

As convexity is preserved, we have �88 2 < IAI 2 < H2; furthermore, by 
assumption, e <-T--~I and thus A := 1 - 3 e l l  IAt -1 E [0~ 1]. 

Now, if v = v / 01 is a minimal eigenvector with M/j v t v J = - 6  ltvli 2 _< 0, 

v u g o v i v  i > oe (8 + g , ~  A) [lvll  2 , 

and Mu~ >_ - 6  (by minimality of - 6 )  and 0 < A < 1 yield VuMiiviv j >_ O. 
If Mu~ = - 6  < 0 is minimal, we have 

V~ M.~, _> a IA[ (2 - 3 e 2 - e (n - 1)) >_ 0 ,  

by the assumption on e. 
Again the result follows from Theorem 4.1. [] 

Corollary 4.9 Let 23 be convex and umbilic, Mo strictly convex and e < 
min{ T ~ ,  �88 }" Then the estimate hi1 (-, O) > e (H gq)(., O) implies 

M n . hij >_ - ~ H  gij on x [0, T] 

Proof This follows directly from Theorem 4.8 and the estimate �88 2 < [Af 2 < 
H 2 for convex hypersurfaces. [] 

5 C o n v e r g e n c e  

We finally turn to the study of the singularity which develops as t --~ Tc. The 
main results have been stated in Theorem 1.3 and Proposition 1.4; thus it es- 
sentially remains to give the proofs. As before, we let 23 be the boundary of a 
ball or a half space in Nn+l; however, in this section we will not use the fact 
that 23 is umbilic. Thus this latter property is needed only to preserve convexity 
and pinching of the solutions Mr, cf. section 4. We begin with summarizing the 
assumptions we will need throughout this section: 

A s s u m p t i o n  5.1 Let 23 be convex and umbilic and Mo a strictly convex, imbedded 
hypersurface. Furthermore, let F : [0, Tc) ~ ~n+l be a solution to equation 
1.2 on a maximal time interval and F(M n, O) = Mo. 
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5.1 Convergence to a point 

Here we generalize an idea of Tso [16] to the boundary case. Note that, by 
Proposition 4.5 and [15], Theorem 4.5, the Mt will be imbedded and strictly 
convex with a uniform lower bound on the second fundamental form, i.e. there 
exists e > 0 such that 

(5.1) hij >_ eg O V(x, t) E M n x [0, Tc).  

Now for all t the hypersurfaces Mt and ,U bound a convex domain ~ C R n+~, 
and from equation 3.4 we immediately conclude 

~ 2  C ~ t ~  if t2 >__ tl . 

We set 

and observe that ~ is convex as this holds for each Jb~t. Now suppose that 
er > 0 and p E ~ r  such that the ball n+~ l~n+l B2a (p) C is contained in ,~( .  Then, 
choosing coordinates in ]R n+l with origin inp ,  we obtain s _> 20- on M n • [0, Tc) 
for the support function of our solution F .  According to Theorem 3.8 this implies 
an upper bound on H and thus, by convextiy, on IA[. Hence, by theorem 1.2, 
we can extend F to a solution on [0, Tc + 6) which contradicts the maximaltiy 
of Tc. 

We therefore conclude that ~ cannot contain any ball Br n+l. But this implies 
that , ~  has zero volume, V(J-o :~ ) = 0, as ~ is a bounded, convex domain. Now 
we can prove: 

Theorem 5.2 (Convergence to a point) Under the assumptions 5.1 the hypersur- 
faces Mt converge to a point on ~2 as t ~ Tc. 

Proof (cf. [16], Theorem 4.2) Suppose ~ is not a point, i.e. diam(,Yg') > 0. Let 
p,q  be such that d := distn+l(p,q) = diam(2)g'). 

We have p ,  q E ~ t t  Vt, and as V ( ~ )  = 0 there is a (two dimensional) 
plane E throughp,q such that the area of the convex subset Ct := ,5~:t NE C R 2 
of E fulfils 

(*) A(Ct) '--.~ O, 

As , ~ 2  C ~tt~ whenever t2 >_ tl, we have 

(**) q~ c Ct, V t2 > t l .  
! l !  

The convex curve 7t := OCt can be decomposed into 7t = 7t U 7t such that 
I t t  I t  

"Yt C Mr, % C ~ (hereby % = 0 being allowed) and (from (**)): 
t t  t t  

(***) % c % V t2 _> tl �9 

This means that as t increases, no "new" boundary points of ~7 can occur on 7t- 
As 7t is convex, we conclude from ( , )  that there must exist points on 7t with 
smaller and smaller curvature as t increases. From (***) it follows that these 
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t 

points must belong to % C Mt which is a contradiction to the uniform convexity 
equation 5. I. Thus ~ must be a point, and the result follows. [] 

Proof o f  Proposition 1.4. In the case n = 1 strict convexity of  the Mt is equivalent 
to H _> Co > 0, and by Theorem 3.2 this condition is preserved for arbitrary 
convex hypersurfaces .Z~. [] 

5.2 Convergence to a hemisphere 

Now we want to study the shape of  the singularity; hereby, we follow an idea due 
to Hamilton [9] and rescale the entire flow. A similar rescaling for curves was 
carried out by Altschuler in [1]. In addition to Assumption 5.1, we will require 
n > 2 in the sequel. Note that by Theorem 4.8 and Corollary 4.9, a pinching 
condition 

hq >_ e H gii 

will hold for t C [0, Tc). 

Definition 5.3 Let (xk, tk) be a sequence in M n • [0, Tc)  such that tk ,7  Tc. I f  

H(xk , t k )=rnax{H(x , t k )  : x  E M " }  Vk , 

(xk, t~) is called a blowup-sequence. 

In the sequel we will rescale the mean curvature flow equation 1.2 along a 
given blowup-sequence. To this end, let 

kk := H (xk , tk ) = max H (., tk ) , 
M" 

Cek := - A  2t/r 

Wk := A 2 ( T c - t k ) ,  

"r := A 2 ( t - - t k ) ,  

t~k( . ,r)  := Ak ( A k ' F ( . , t ) + b k )  , ak E S O , m R ,  bk E R "+l , 

lVl(. ~ := P ~ ( M " , r ) .  

Thereby let Ak and bk be such that #k(xk,O) = 0 and f'k(Xk,O) = en+l for any k. 
A straightforward calculation then yields that e a c h / ~  is itself a mean curvature 
flow, and / lk(xk,0) = 1 Vk . As usual, a singularity will be referred to as of  
type I if maxM, IAt2(.,t) _<. K (Tc - t) -~ as t ~ Tc with a given constant 
K > 0; otherwise it wilt be called a type-lI-singularity. Now, given a blowup- 
sequence, a t  ~ - c ~  as t ~ Tc. Moreover, by taking a subsequence, we can 
obtain wk 7 W < c~ in the case of  a type-l-singularity, and wk 7 ~ ,  otherwise. 
Finally, as Ak ~ cxz, we can assume Ak > 1 Vk. Now the crucial step is to 
control the curvature of  the rescaled hypersurfaces: 
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Proposition 5.4 (Curvature estimates for  the rescaled hypersurfaces) 

Type I: V6 > 0 3ko = ko(6) and C = C(~) such that 
IZlk <_C on M n •  Vk > k o .  

Type H: V cb > 0, Ve > 0 ~ko = ko(~,e) such that 
fflk <_ l + e  on Mn •  Vk_>k0. 

Hence on compact domains of  spacetime, the curvature of  the rescated flows is 
bounded uniformly in k. 

Proof 

l :  As w~ --* w, we can choose ko such that [ a ~ , w  - 6 ]  C [ak,Wk -- ~] Vk >_ ko. 
Now suppose the statement does not hold. Then there is a sequence (Yk,'rk) E 
M" x [ako,w - 6 ]  such that/4k(yk, ~rk) --~ C~. As fork >_ ko, wk >_ w -  ~ we 
can choose a subsequence with 

/7/~(yb'r~)_>Cf,, y~ E M n ,  "r~ < w~: - ~ , C~ S c~3 

and thereby, defining ?'t, := A~-a ~'~ + tk : 

( , )  H(y b ~)  > A~ C~ y~ E M n 0 < t~ < Tc - ATk2 6 

But the singularity being of type I implies 

H(y~,tT,) _< % 2f-~A} ; 

hence ~ ~ oo yields a contradiction to (*). 
II: This has been proved by Hamilton [9] as follows: Given the sequence (xk, tk), 

choose ($k, t'k) such that 

(*) (tk - tt) H2(xk' tk) = M,max• [o,ttl(tk - t ) H 2 ( . , t )  . 

Defining ~k := ,~(tk -- tk), we obtain Jq~(s = 1 Vk and ~t --* +oe 
as k --~ oe. Furthermore, (*) yields/)z(.,~.) < w ~  V'r ~ [a~,w~) and - -  OJk - - ' r  

thereby the result. [] 

Now the curvature bounds immediately imply local gradient bounds which are 
uniform in k: LetP(o ~) := P ~ (xo, 7"o), (xo, 70) ~ M ~ x [c~, w~ ] and w~ := ~,~ (Xo, 70). 
Furthermore, let 

~k(X, 7") '-- ( ~ k  , ~k(X ,  7") >--1 . 

Theorems 6.7 and 6.13 of [15] then yield local gradient bounds for the rescaled 
flows/~k on domains ~ x ['r0, 7"0 + Ak], where rk and A~ depend only on the 
maximum of the curvatures taxi, t~a~t of the rescaled hypersuffaces M~-, ~ .  
But as the h~- are convex, the above Proposition yields a bound on ]A~I which 
is uniform in k. Moreover, as we assumed At >_ 1, the curvatures of the ~7~ will 
be uniformly bounded in k as well. Hence we obtain a local gradient estimate 
which is uniform in k. Now we can state the first Theorem concerning a limit 
flow" 
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Theorem 5.5 A subsequence of  the rescaled flows l~ k converges to a limit flow 
/ ~  : M n x (c~,~.,) ~ IR n+l (w = c~ allowed) such that 

(i) P is a mean curvature flow; 
(ii) If  the M ~  possess a boundary, then OM ~  c ~,~,  ~ is a hyperplane 

and (f ,~,  ~ )  = O; 
(iii) The h)Tersurfaces ~ are pinched as the original hypersurfaces, i.e. 

e H 90 <- hi] <- e; H 9ij implies e H ~  O~ <- hi~ <- • ffI~ 9i~. 

Proof In view of the above considerations, the only thing to check is the con- 
vergence of a subsequence. This can be done by standard methods involving the 
Arzel~-Ascoli Theorem: We first let A := B~ +~ (0) x ['r_, ~-+]. Using the above 
k-uniform local gradient estimate, we can cover A by finitely many spacetime- 
cylinders Cr,,a(Pm, ~'m) such that for each (Prn, "rm) and ever), k the intersection of 
the hypersuffaces M~ with Cr,a(Pm, 7"r~) can be written as a graph with bounded 
gradient. Hence the Arzelh-Ascoli Theorem yields the convergence of a sub- 
sequence on A with the desired woperties. Doing this for a whole sequence 
AR~,[r~_,r,q and choosing a diagonal sequence completes the proof. [] 

Remark 5.6 ~ := ~7~ is a hyperplane if the hypersurfaces of the limit flow do 
have a boundary. Thus, in this case we can by reflection at o~r extend the hy- 
persurfaces symmetrically to closed, convex and pinched hypersurfaces without 
boundary which again move under the mean curvature flow. Thus, in any case 
we can in the sequel assume the ~] '~ to be complete, strictly convex, pinched 
hypersurfaces. 

The limit flow can now be described by means of a result due to Hamilton 
([8], Main Theorem): 

Theorem 5.7 Let M be a smooth, strictly convex, complete hypersurface bound- 
ing a region in R ~+I ,n > 2. Let M bee-pinched, i.e. let h 0 > e H  9ij. Then M 
is compact. 

We remark that this is the point where we need n > 2. An immediate conse- 
quence of this Theorem is 

Theorem 5.8 Under Assumption 5.1 the singularity at t = Tc is a type-I- 
singularity. 

Proof By Theorem 5 . 5 , / ~  moves under the mean curvature flow. Thus the 
singularity being of Type H would imply that the solution would be defined for 
7- c (-cx~, ~o). But then all the ~(tr would have to be noncompact, as compact 
hypersurfaces are contained in a ball BR C 1~ n+l and therefore cannot "live" 
eternally. Now the hT/~. are pinched by Theorem 5.5, and thus we run into a 
contradiction to Theorem 5.7. El 

Hence the boundary of the Mk cannot be "shot away" to infinity as k --~ c~. 
But, up to now, it could shrink away such that the ~17/~ would be compact, closed 
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hypersurfaces.  In order  to rule out this possibi l i ty  we  observe  that the image  of  

the Gauss  map  of  the "or ig inal"  hypersurfaces  Mt is contained in a hemisphere .  

H e n c e  this holds for each o f  the rescaled flows, the var ious  hemispheres  depend-  

ing on k. Aga in  by the Arze l~-Ascol i  Theorem,  we  obtain the C ~176  

of  a subsequence  to a l imit  f low Fo~ such that in addi t ion to the above  propert ies 

the images  o f  all ,Qr ~ are contained in a unique hemisphere .  Accord ing  to The-  

o rem 5.5 the boundary o f  these hypersurfaces  wil l  therefore  lie on a hyperplane.  

F r o m  there, the p roo f  of  Theorem 1.3 is an immedia te  consequence  o f  Remark  

5.6 and a Theo rem of  Huisken  [10] which states that closed,  strictly convex  hy- 

persurfaces m o v i n g  by mean  curvature shrink to a s ingle point  wi thin  finite time, 

the (appropriately)  rescaled hypersurfaces  thereby converg ing  to a sphere in the 

C ~ - t o p o l o g y .  
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