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Abstract. The resummation of the c~ln2(z) non-singlet contributions is performed for initial state QED 
corrections. As examples, the effect of the resummation on neutral-current deep-inelastic scattering and 
the e+e - --~ # + # -  scattering cross section near the Z°-peak is investigated. 

1 Introduction 

The non-singlet splitting functions of QCD are known to 
behave as o~ts +I in 2/(z) [1] for small values of z, the mo- 
mentum fraction determining the corresponding radiator 
function. A similar behaviour is observed also in QED 1 [3, 
4]. These terms may potentially yield large contributions 
to the radiative corrections. In an approach based on the 
systematic evaluation of the Feynman diagrams at a fixed 
order in the coupling constant, the contributions of O[c~/+1 

in 21 (z)] emerge from a wide class of terms, see for example 
[3, 5]. Therefore the all-order resummation of these terms 
cannot be carried out by direct diagram calculations but 
is performed by solving so-called infrared evolution equa- 
tions [i]. It is interesting to note that double logarith- 
mic terms emerge also in other physical situations. As an 
example we mention the Sudakov form factor, which is 
mostly studied for the region z ~ i. For a fixed coupling 
it behaves ~ ~In~(Q2/m2), see [6]. Contributions to this 

quantity o( in 2 z may become important as z --~ 0. 
In the present paper we calculate the contribution of 

the small-z resummed terms to the initial state radiative 
corrections for deep-inelastic ep scattering (DIS). We com- 
pare these corrections with those resummed by the non- 
singlet Altarel l i -Parisi  equat ion in QED,  o( c~ l in z (Q2/m2).  
We also evaluate the contr ibut ion of these terms to the 
initial state corrections to e+e - -* # + # -  at  the Z°-peak.  

2 Basic relations 

The evolution of the non-singlet electron structure func- 
tion D(z, Q2) is governed by 

OD(z, Q2) 
- P [z, c~(Q2)] ® D(z, Q2), (1) 

0 in Q2 

1 A first application to QED was discussed in [2], considering 
forward e+e - ~ # + # -  annihilation in the high energy limit 

where ® denotes the Mellin convolution 

/0 /0 A(~) ® B(z )  - a z ldz2A(z l )B(z2)~(z  - ~1~).  (2) 

Equat ion  (1) is a flavor non-singlet evolution equation, 
which results from the renormalizat ion group equat ion [7] 
ruling the mass factorizat ion [8]. As well-known this equa- 
t ion can be equivalently derived using the opera tor  prod- 
uct  expansion [9], which is valid for z e ]0, 1], if P(z, c~) 
and D(z, Q2) are interpreted as distr ibutions [10]. This we 
will do in the following. 

• The  split t ing funct ion P [z, c~(Q2)] can be represented 
by the series 

O ~  

P [z, ~(Q2)] = Z a~(Q2)P~(~), (3) 
k = l  

with a(Q 2) = c~(Q2)/(47c). In  leading order, the evolution 
of the QED coupling constant  a(Q 2) is described by 

Oa(Q 2) 4 2 2 
- 5 a  ( Q ) ,  (4) 

yielding 

~(Q~) = a(.~) 
4 ~ / Q ~ , .  (5) 

1 - -~a(me)in t )  
Here we have considered only the electron threshold in the 
evolution. For the solution of (1), we use the first-order 
split t ing funct ion s 

+ 

2 This solution of the evolution equation is well-known from 
QCD [11]. For the non-singlet case the O(a  ln(QS/m2)) result 
for the initial state QED corrections to e+e - annihilation was 
obtained in [12] already. Later applications were given, e.g., in 
[13] 
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For the  higher order  contr ibut ions  in a(Q2), we account  for 
the  leading t e rms  a t  small  z, denoted  by  Pz-+0, which are  

e c a  z+~ in 21 (z). The  la t te r  t e rms  are ob ta ined  in r e s u m m e d  
form in Mellin space by 

jr0 
1 

M [ P ~ o ] ( N ,  ~) -= & S - l p ~ _ ~ o ( ~ ,  ~) 

-- ~-F~-_~0(N , a ) =  err -  ~ f o  (N,  a). (7) 

f o  (N, a) is the  solut ion to the  equa t ion  [1] 

fo(N, a) = 167c2 ~N + 8 ~  f+(N' a) 

1 1 
+-i~ ~ [fo (X,a)] ~ , (s) 

T a b l e  1. Coefficients of the expansion of the small-z resum- 
na t ion  P~-,o(z, a) = Ek~=o eka k+l ln2k(z) 

k ck 

0 2.0000E + 0 

1 -6 .0000E + 0 

2 -3 .3333E + 0 

3 -0 .4222E + 0 

4 1.5873E - 3 

5 2.8571E - 3 

6 1.4000E - 4 

7 - 3 . 8 4 6 8 E -  7 

8 -2 .0649E - 7 

9 -6 .1484E - 9 

and f+(N, a) obeys  

1 1 [ f + ( N , ~ ) ] 2  f+(N,a) = 167c2 N + gTg~2 ~ (9) 

Here  the  coefficients in (8, 9), originally given for SU(N) 
in [1], were adjus ted  to the  case of QED,  see [4]. 

For the  r e s u m m e d  anomalous  dimension,  one finally 
obta ins  

F2LQD(N, a) 

Sa E . (10) 

Ad[Pz- .0](N,  a) can be represented  in t e rms  of a Taylor  
series in a by  

O4) 
.Ad[tVz_~O](N,a) = E a k +  1 Pk N2k+l 

k=0 
2a 12a 2 80a 3 

N N 3 N 5 

304a 4 

N 7 

(11) 

. . . .  

T h e  r e s u m m e d  smal l -z  pa r t  of the  spl i t t ing funct ion P(z, a) 
is ob ta ined  t r ans fo rming  (11) back  to z-space,  

P~ (12) Pz-~o(Z, a) = cka k+l ln2~(z), ck - (2/c)! 
k=0 

T h e  numer ica l  values of the  first coefficients ck are l isted 
in Table  1. Ev iden t ly  the  first t e r m  in (11) agrees wi th  the  
l imit  z --+ 0 of the  lowest order  (LO) spl i t t ing funct ion (6). 
In [4], (23, 26), we showed tha t  the  NLO cont r ibu t ion  to 
(11) agrees b o t h  wi th  the limit of the  spl i t t ing funct ion 
derived in [5] in the  MS scheme a and with  the  result  of [3] 
in the  on-mass-shel l  scheme. 

We use 
D(z, Oo ~ = - d 3  = ~(1 - ~) (13) 

3 The QED result is obtained setting the color factors in [5] 
t o  C F  = TF = 1 and Co = O, see [4] 

as the initial condition for the solution of (i). For the 
spl i t t ing funct ions P~ (z) in (3), 

f0 ~ &Pk(z) = 0 (14) 

holds due to fermion number conservation. For the re- 
s u m m e d  kernel Pz--~o(z,a), (12), the  integral  condit ion 
(14) is not  obeyed  a priori but  has to be restored.  In the  
subsequent  t r e a t m e n t  we will sub t rac t  the  t e r m  pk_15(1- 
z) in O(al~). 

As out l ined in [4,14] for the r e s u m m a t i o n  of the  small- 
x t e rms  for different processes in QCD,  less s ingular  t e rms  
can be as i m p o r t a n t  as the leading singular  terms.  In QED,  
the  O[c~ 2 l n (z ) ln (Q2 /m~) ]  t e rms  are known for e+e - an- 
nihi lat ion [3]. F rom the different contr ibut ions,  all t e rms  
but  the  well-known t e r m  due to the vacuum polar iza t ion  
funct ion cancel. In  O(c~ 2) the  respect ive  correct ion is 

(i 
In this order, the coefficient of the term being one order 
less singular in 1IN is much smaller than that of the lead- 
ing term. 

3 Non-singlet QED radiative corrections 
to deeply inelastic ep scattering 

The Born cross section for neutral-current deep-inelastic 
ep sca t te r ing  is given by 

dx dy 
27rc~2S [ ] 

- Q4 Y+s2(x ,  0 2) + Y _ J 3 ( x ,  Q2) , (15) 

with Yt: = 1 ± (1 i y )  2, x and  y are the  Bjorken variables,  
S is the  cm energy squared,  Q2 = xyS and 
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2 +2A%a~)x2(Q2)Hu(x,Q~) (16) + 4 ( ~  + a¢ 

• ~%(~, Q 2) 
-2  sign(Q~){lQ~l(a~ + Av~))c(Q2)xG3(x,Q 2) (17) 

+[2v~a~ + ~(~[ + a~)]~2(Q2)~H~(x, @)}, 

with Q~ = - 1  for electron and Q~ = 1 for positron scat- 
tering. ~ = ( s i g n ( Q e )  denotes the lepton polarization, 
% : 1 -  4sin 2 Ow, a~ = 1, Ow the weak mixing angle, and 

G~ M~ Q~ 
~(&) : v~  8 ~  Q2 + M ~  (18) 

GF is the Fermi constant and Mz the mass of the Z °- 
boson. The neutral-current structure functions in (16, 17) 
are described in the par ton model by 

Ny 

F2(x, Q 2) = x E e ~ [ q i ( x ,  Q2 ) + ~i(x, Q2)], (19) 
i=1 
N/ 

G~(~, & )  = • ~ le~l~[q~(~, & )  + ~(~, &)], (20) 
i=1 
Nf 

x E ( v ~  + a~)[q~(x, Q2) 
i=1 

+~(~, &)], (21) 
N~ 

xG3(z, Q2) = x ~_, le~la~fqi(x, Q2) _ -q~(x, Q2)], (22) 
i=1 
N/ 

X 
xH~(x, @) : ~ ~ [ q ~ ( x ,  @) - ~(~, @)], (23) 

i=1 

with vi = 1 - 4]ei[ sin 20w, ai = 1, Nf  the number of fla- 
vors, and qi, qi denote the quark and antiquark densities, 
respectively. 

The QED radiative corrections due to initial s tate elec- 
tron radiation can be expressed by 

d2 i~- d2o.BcC f l  
~'Nc _ + a~D(~, O)) (24) 

dx dy dx dy L 
{ 2 .  } X O ( Z - - Z O ) J - ( x , y , z ) ~  I d20-Bc 

ax ay I~=~,y=9,~=~ dx dy ' 

with D(z, Q2) the solution of (1) for z < 1, and 

y(~ ,y , z )  = 
O~/Ox O$/Oz 
o~/ov o$/oy (25) 

D(z, Q2) receives contributions from the iteration of the 
non-singlet kernel R~(z) = Pl(Z)]~<l, which are obtained 
by 

~ ,  1 k 2 DAp(Z, Q2) = ~ U ~  ( Q )  (~--1 ~I(Z) ,  (26) 
k=l 

where 

3 in 1 - ~a01n (27) c(Q 2) = - ~  ~ • 

In the subsequent numerical calculation, we evaluate the 
initial state radiative corrections for the case of leptonic 
variables [15,16]. Here the shifted quantities 2, ?), ~ and the 
threshold z0 are 

_ xyz z + y - 1 
z + y - l '  Y--  z ' 

1 - y  
= zS, zo - 1 - x y  (28) 

The contributions to (26) are taken into account up to 
k = 3 completely 4. For the higher-order terms we add the 
solution of (1) in the soft limit 

Dsoft, AP [Z, Q2) [(4 ) 

= 2~(1 - z) 2¢-1 exp[¢(~ - 27E)] 2¢ 
F(1 + 2C) 1 - z 
C 2 

- [3 + 4in(1 - ~)] 1 ---~ 

- [  41n2(1 - z) + 61n(1 - z) + 94 232] 
¢3 

(29) 

1 - z  

for z < 1. The regularization is inherent in (24). 
The contribution of the small-z resummed terms to D(z, Q2) 
is 

D~---+o(z, Q2) = ~--~ck dq~a~+l(q2) ln2k@). (30) 
k=l ~ q2 

In Fig. 1a-c, we show the contributions to the initial 
s tate QED corrections to d2(7~rc/dxdy in the kinematic 
range of HERA start ing with the terms in O ( a  2) to al- 
low for a bet ter  comparison. The first order corrections 
are well-known, see [18,15]. We compare the small-z re- 
summed terms to those obtained by iterating the kernel 
x~ 1 (Z). The small-z resummed terms are negative and con- 
tr ibute only for large values of y. There they diminish the 
positive leading order corrections O[a t In z (Q2/m~)] signif- 
icantly. These corrections are therefore relevant and need 
to be considered in the case of high y measurements,  such 
as the determination of the structure function FL(X, Q2) 
in the small-x range. For larger values of x, the small-z re- 
summed corrections contribute only for the highest values 
of y. 

4 c~ ln2(z )  QED corrections to the  Z ° peak 

A second important  application of the small-z resumma- 
tion concerns its possible effect upon the e+e - --~ # + # -  
cross section near the Z°-peak. The implications would 
be quite profound were the resummation-improved cross 
section to have a measurable impact  on the total  cross 

4 Analytic results for the convolutions of R1 (z) are easily 
obtained, see [16] and [17] for explicit expressions 
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Fig.  1. Second and higher order initial state radiative corrections to deep 
inelastic ep scattering at HERA, ~ = 314 GeV. Dashed lines: contribution 
due to the resummed small-z terms; dash-dotted lines: contribution due 
to the solution of the Altarelli-Parisi equation with the leading order 
NS-evolution kernel accounting for the complete O(a2L 2) and O(c~3L 3) 
terms and the soft-photon exponentiation beyond O(as);full  lines: resulting 
correction, a: x = 0.0001, b: x = 0.01, and c: x = 0.5 

section or upon the position of the Z°-peak or width on 
the order of an MeV. 

The QED corrections up to O(~ 2) were calculated in 
[3]. We consider the initial state corrections which are 
calculated accounting for the contributions to O(a 2) and 
soft-photon exponentiated terms using the code ZFITTER 
[19]. The small-z resummed terms (12) are taken into ac- 
count for the contributions higher than second order by 

= 2 d z  [ O ( z  - zo) B(zs) - 8), 
( 3 1 )  

where z0 = sl /s ,  s ~ being the cm energy enter ing the  an- 
nihi la t ion,  and  orb (s) the Born  cross section. The  radia tor  
R~-_m(z, s) is given by 

R: 0(z,s) =  c a +l(/)ln2k(z) (32) 7k=a 
The factor of 2 enters in (31) because of the initial state 
radiation from both the electron and the positron line. 

A series of cuts on s / has been made  and  the  results are 
listed in Table  2. The  parameters  of the calculat ion are 
M z  = 91.1887 GeV, F z  = 2.4974 GeV, and  sin 2 Ow = 
0.2319. The  smalt-z con t r ibu t ion  is six orders of magn i t ude  
down from the cross section conta in ing  the s t anda rd  QED 
corrections. A measurement  of this effect is clearly out  of 
the question.  

We also have compared the m a x i m u m  of the cross sec- 
tion of ZFITTER as a function of the cm energy with and 
without the sma]l-z resummation. We find the difference 
to be smaller than 40 eV, widely independent of the z- 
cut. Here the effects of the small-z contributions beyond 
second order are much smaller than the experimental res- 
olution. 

5 Conclusions 

The resummation of the O[a in2(z)] non-singlet contribu- 
tions was performed for initial state QED corrections. As 
examples, we investigated the effects of the resummation 



J. Bliimlein et al.: On the resummation of the c~ in 2 z terms for QED corrections 259 

Table  2. Dependence of the cross section a(e+e - --~ #+/~-) at the Z°-peak 
on the minimum energy of the final state muons, aR : scattering cross section 
including the initial state QED corrections to O(a 2) and soft-photon exponen- 
tiation; a ~ 0  : small-z resummed contributions beyond O(a2), (31) 

E~i  ~ (GeV) 5 10 20 40 

aR (nb) 1.4723 1.4713 1.4702 1.4674 

az~0 (nb) 1.05341 10 -6 1.13476 10 -6 1.11480 10 -6 1.11465 10 -6 

for two processes: neutral-current deep-inelastic scatter- 
ing and e+e - --+ #+#- scattering near the Z°-peak. The 
influence upon the DIS results is particularly strong in 
the low-x, high-y region. In this region, the small-z cor- 
rections negate a sizeable portion of the O [~2 in 2 (Q2/m~)] 
and higher-order contributions. The effect diminishes as x 
becomes larger but still remains important near y ~ 1. 
The incorporation of these corrections is therefore impor- 
tant in analyses of deep-inelastic data in the high y range. 

The small-z resummation, on the other hand, has no 
visible effect upon the e+e - --~ #+#- cross section near 
the Z ° peak. It contributes to the cross section at a level 
of 10 -6 only. Correspondingly the shift in the peak cross 
section is negligibly small. 
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