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1. I n t r o d u c t i o n  

A few years ago, Sessin (1981) and Sessin and Ferraz-Mello (1984) showed that  an Hamilto- 
nian approximating the motion of two planets with periods commensurate in the ratio 2:1 
is integrable. This is a significant achievement as the problem presents itself as a double 
resonance problem with two independent critical arguments. Later on, Wisdom (1986) and 
Henrard et al (1986) showed how Sessin's trick could best be explained by a simple rotation 
in phase space which converts the two a priori independent critical arguments into a single 
one. This rotation has been used successfully since then as a first step in the analysis of the 
2:1 Jovian resonance (Tsuchida 1985, Henrard et al 1986, Henrard, Lemaitre 1986, 1987) 
or the 2:1 satellites resonances (Ferraz Mello, 1985a) and we have called it the reducing 
transformation. 

At about the same time Sessin constructed his integrable approximation for the 2"1 
commensurability, Pauwels (1983) showed that  an approximation of the interaction of two 
satellites, involving the so-called "secular terms", can be solved by introducing angle-action 
coordinates by means of a simple explicit canonical transformation. The fact that  such a 
system can be solved at all does not come as a surprise �9 it is linear (see Hamiltonian 3) in 
the Poincar6's variables (4). But Pauwels treatment of it depicts vividly its geometry. 

Although it is not readily apparent, because Pauwels first use a reduction of his problem 
to a one degree of freedom intermediary problem, Pauwels' transformation is exactly the 
same rotation as the one used implicitly by Sessin. Furthermore, S. Ferraz-Mello pointed 
out to us that  this rotation had already been proposed by Poincar6 (1899- Volume I I -  p. 
43) in the frame of the planetary theory. 

We thought that  this conjunction was worth a note in Celestial Mechanics. We like to 
think of it as more that  the report of a coincidence. It emphasize the usefulness of simple 
transformations which "disemcumber" (Deprit 1982) a problem and show his underlying 
geometrical structure. 

Note that  in the title, we did not follow Pauwels in calling this problem a "secular 
resonance" problem but rather a "secular coupling" problem. This is because we think that 
Pauwels' work and this note show that  the problem is not really a dynamical resonance 
problem but rather a geometrical problem. After all a rotation of the coordinate system is 
all it takes to uncouple the two degrees of freedom. 

Celestial Mechanics 45: 327-331, 1988. 
�9 1988 Kluwer Academic Publishers. Primed in the Netherlands. 
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2. S e c u l a r  C o u p l i n g  P r o b l e m  

The Hamiltonian of the planetary three-body problem, when truncated at the second order 
in the masses can be written (see for instance Message 1982) 

amora l  Groom2 - -  G m l m 2  - - (1) 
g -  - 2 a l  - 2 a 2  It'1 r'2 I r3 

where m0 is the mass of the large body (the Sun or a planet) and mi,ai ,  r-} the masses, 
J acobian semi-major axes and position vectors of the two smaller bodies (two planets or 
two satellites). 

We are considering here the planar problem and the canonical variables 

hi - longitude of mi 

- p i  - longitude of pericenter of m~ 

Li - mi ~/Gmo~iai 
(2) 

where ].tl - -  m0/(m0 + m,) and ~2 - (m0 + ml)/(m0 + m, + m2). 
In the non-commensurable case, when the ratio of the mean motions of the satellites 

are not well approximated by a rational number k l /k2  with a small value of kl - k2, the 
Hamiltonian function (1) can be averaged over the "fast" arguments A~ . The corresponding 
averaged momenta Li are then constants and the problem is reduced to a two degree of 
freedom problem in the averaged pericentric variables (/51,/32,/51,/52). From thereon we 
shall drop the superscript ( - )  marking the averaging. No confusion should follow from this 
as we shall no longer make reference to the osculating variables but deal only with the 
averaged variables. 

When truncated at the second order in the eccentricities the averaged Hamiltonian reads 
n o w  

g - aP1 + bP2 + c~/4P1 P2 cos(p1 - p2) (3) 

The coefficients a, b, c are respectively of the order of ml,  rn2 and x/m1, m2 in the pure 
planetary three body problem. If we further consider that  the main body m0 possesses a 
significant oblateness (as it is the case most of the time when the main body is a planet) 
the coefficients a and b can be much larger, having their principal contributions of the order 
of the oblateness coefficient. 

It is obvious that  the sum P1 + P2 is a first integral of the Hamiltonian system described 
by (3) which can then be reduced to a one degree of freedom system. 

It would seems at first that  this one degree of freedom system is very similar to one of 
the "resonance" problems which have been investigated by several authors (see for instance 
Henrard-Lemaitre 1983, Lemaitre 1984, Ferraz-Mello 1985b, Henrard-Murigande 1987 etc.). 

Indeed such a problem has been investigated by Greenberg (1975, 1977) in the frame 
of the restricted problem (at the limit ml - 0) to explain the Rhea-Titan interaction. 
Greenberg is very careful in his use of the term "secular resonance" and prefers to use 
the word "libration". More recently, Pauwels (1983), noting that  Rhea is not that  much 
smaller than Titan (a factor of 60 in the masses), reopened the investigation in the frame 
of the full planetary three body problem (as we have stated it above in eq.1). There the 
problem is called a "secular resonance" without restriction but at the same time, it is shown 
that  this "resonance" has some strange peculiarities. All orbits are periodics. No unstable 
equilibrium and associated separatrices are present like in other resonances. 

Actually the careful and well documented analysis of Pauwels (1983) shows that  the 
effects of the "resonance" is purely geometrical. The orbits reduce to circle on a sphere, 
but the traditional phase space diagrams show projections of this sphere on a plane in such 
a way that  the basic simplicity of the motion is lost. 
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Pauwels proceeds to show that  a particular explicit canonical t ransformation transforms 
the one degree of freedom Hamiltonian deduced from (3) by using the integral Pa + P2 into 
a linear function of the new momentum.  The transformed problem is thus trivial. 

Pauwels canonical transformation is actually related to a rotation in phase space which 
has already shown itself so be quite useful in other contexts. 

3. T h e  r e d u c i n g  r o t a t i o n  

Consider the cartesian coordinates 

Y~ = 2x/r~, sinpi 

and the rotation in phase space 

Z1 = Y1 cos a + Y2 sin c~ 
Z2 = -Y1 sin ~ + Y2 cos c~ 

X i  - ~ cos pi (4) 

WI = X1 cos c~ + X2 sin 
(5)  

W2 = - X 1  sin a + X2 cos 

which can easily be shown to be a canonical transformation.  
Coming back to polar coordinates by means of 

Zi - ~ sin ri Wi - 2 v / ~ i  cos  ri  

the Hamiltonian function (3) is transformed into 

K = (s + d cos 2a + csin 2or -[- ( 8 -  d cos 2 o ~ -  csin 2c~)R2 

+(c cos 2a - dsin 2a)~/4RIR2 cos(r1 - r2) 

where 

(6) 

(7) 

a + b  a - b  
- 2 , d -  2 (8)  

If the rotation angle c~ is choosen in such a way tha t  

c cos 2c~ - d sin 2c~ = 0. (9) 

The Hamiltonian function reduces to 

K = (s + ~ d  2 + c2)R~ + ( s -  x/d 2 + c2)R2. (10) 

The momenta  R1 and R2 are constants and the angular variables rl and r2 precess with 
constant angular velocities. The polar coordinates R~, ri are angle-action variables of the 
problem. 

4. C o n c l u s i o n s  

The use of a rotation to uncouple the secular two planet problem can be generalized to un- 
couple the secular n-planet problem and indeed it is what  is done implicitely or explicitely 
by the solution of the "Lagrange secular problem" in planetary theories (see Message 1982 
for instance). The fact that  already in the two planet problem the simplicity of the mo- 
tion is hidden when a projection onto the phase space of each individual planet is used 
(see Pauwels for a good illustration of this fact) should tell us something. In the general 
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planetary problem also such projections are likely to hide the real geometry of the problem. 
Projections unto the phase space of the normal modes as used by Laskar (1988) are likely 
to provide more readable information. 

If we have emphasized the fact that the problem we have investigated is not a real 
"resonance" problem, this does not mean that "secular resonance" problems do not exist. 
When both the difference ( a -  b) and the ratio m l / m 2  are  small, the eccentricity of m l  
can become large. This is what was pointed out by Greenberg (1977). In this case the 
term in P12 neglected in the Hamiltonian (3) becomes important and should be included in 
the analysis. Such is the frame in which are investigated the secular resonance problem of 
asteroids (see for instance Nakai and Kinoshita 1985, Scholl and Froeschl@ 1986, Proeschl@ 
and Scholl 1986, Yoshikawa 1987) or the problem of resonance between normal modes as 
investigated by Laskar (1988). 
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