Theoretical and Applied Genetics 38, 226—231 (1968)

Linkage Disequilibrium in Finite Populations

W. G. HILL and ALAN ROBERTSON*

Institute of Animal Genetics, Edinburgh, 9.

Summary. A theoretical investigation has been made of the influence of population size (V) and recombination
fraction {¢) on linkage disequilibrium {D) between a pair of loci. Two situations were studied: {i} where both loci had
no effect on fitness and (ii) where they showed heterozygote superiority, but no epistacy.

If the populations are initially in linkage equilibrium, then the mean value of D remains zero with inbreeding,
but the mean of D? increases to a maximum value and decreases until fixation is reached at both loci. The tighter
the linkage and the greater the selection, then the later is the maximum in the mean of D2 reached, and the larger
its value. The correlation of gene frequencies, #, in the population of gametes within segregating lines was also studied.
It was found that, for a range of selection intensities and initial gene frequencies, the mean value of #2 was determined
almost entirely by N ¢ and time, measured proportional to V.

The implication of these results on observations of linkage disequilibrium in natural populations is discussed.

Most of the mathematical theory of linkage has been
developed for populations which are sufficiently large
that a deterministic model can be used. In these large
populations, which are not undergoing selection, the
theory of the rate of approach to linkage equilibrium
is well worked out, and it is known that populations
in equilibrium remain in that state (GEIRINGER, 1944;
BeNNETT, 1954). More recent work has been devoted
to the effect of selection on linkage disequilibrivm in
very large populations. LEwONTIN and KoJima
(1960) showed that epistacy was necessary for linkage
disequilibrium to be maintained in a selected popu-
lation in which gene frequencies are at equilibrium.
However in a population in which there are direc-
tional changes of gene frequency resulting from arti-
ficial selection, some linkage disequilibrium may be
observed if there is no epistacy of gene action on the
selected character (NEI, 1963 ; FELSENSTEIN, 1905},
but not if the selective values at each loci combine
in a multiplicative manner (FELSENSTEIN, 1965).

For finite unselected random mating populations,
expressions for changes in linkage disequilibrium
have been given by Kimura (1963) and by HiLL
and ROBERTsSON (1966). WRIGHT (1933) had previ-
ously derived formulae for the proportion of recombi-
nants at final fixation. In this paper we shall mainly
consider the fate of a pair of linked loci, which we

may observe in a number of replicate lines drawn

from a large population initially in linkage equili-
brium. If the loci have no effect on fitness, then over
the average of all replicates these loci will remain in
equilibrium, but as a result of genetic sampling the
disequilibrium will not be zero in each line. In other
words, the variance of the linkage disequilibrium, D,
will not be zero, though the mean will be. We shall
evaluate this variance, and show that it can be of an
order of magnitude similar to that of the variance of
gene frequencies after some generations of inbreeding.
We shall study the case of neutral genes in greatest
detail, and then extend the results to include hetero-
zygote advantage at each locus, but with no epistacy.
The results may therefore have some bearing on the
estimation and interpretation of linkage disequili-
brinm in natural populations.

* Member of the A.R.C. Unit of Animal Genetics.

Disequilibrium Between Neutral Loci

We consider two loci with alternative alleles 4,, 4,
and B;, B, which have no effect on fitness, and we
let p and ¢ be the frequencies of A, and B, respecti-
vely. Linkage disequilibrium is commonly measured
by the determinant D, given by

D = fl4; By) f{ld, By) — flA1 By) (4, By)

where f denotes the appropriate gametic frequency.

Using E to denote expectation, the recurrence
equation for the mean of D after { generations of
random mating with no selection is

ED) =1 =t =12N)EDs—y), (1)

where N is the effective population size and ¢ the
cross-over distance (HirL and ROBERTSON, 1966}.
If cand 1/2 N are sufficiently small that their product
can be ignored

E(D) = (1 — ¢ — 1/2N) E(Ds_y)
= Dye—@Netr)t2N - approximately  (2)

if the population size is constant. In general, if N is
large and ¢ is of order 1/N or less, changes in the dis-
tribution of gametic frequencies can be approximated
in a continuous model using a diffusion equation.
Under these assumptions it can be shown that the
pattern of change in gametic frequencies is a function
of only the initial conditions pg, g, and D, and of
the product N ¢, if time is expressed on a scale propor-
tional to N (Hirr and ROBERTSON, 1966). Equation
(2) is clearly of this form.

Changes in the average value of D? can be obtained
using a moment generating matrix (ROBERTSON, 1952).
Let ¥ be a column vector of moments with dimension
three, and elements

n=E[PpU—2p) gt —4q],
Yvo=E[D{—2p (1 —29)],
ys = E[D?] .

If there is no crossing over, changes in these mo-
ments in successive generations can be obtained by
taking expectations over the multinomial distribution
of gametic frequencies with index #, where n = 2 N,
and rearranging the results in terms of y,, ¥,, and y;.
Denoting by ¥ = (vi) the vector of moments at
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some generation #, it can be shown that

= [1 _1_ 2 +i 1 i 2 +
Y1) —< - %) Yy T ( - %) Ya)
2 1
+ﬁ(1 —g)yau)
1
Ya+1) = (1 *g)

n
1 1 1\2
+(1 _—4;) [ﬁ+(1 “;) }y3(t)~

When crossing over occurs, the average values of
gene frequencies are unchanged, terms in D are multi-
plied by a factor (1 — ¢) (c. {., equation (1)), and terms
in D? by a factor (1 — ¢)2. Thus with crossing over
followed by sampling, we obtain the following tran-
sition relationship:

e
n n
1 2\2
yon=1| 0 (1—;,;) AN ()
O
23 7 7
=My,

where M is termed the moment generating matrix
and is independent of £, hence y) = M?y(q.

We shall discuss in detail the case of initial linkage
equilibrium, where yo, = (py (1 — o) ¢ (1 — ) 00).
Then E(D?){[py (1 — po) o (1 — ¢y)] is independent
of the initial frequencies at the two loci, and under
the continuous model assumptions will be a function
only of N ¢ and time expressed proportional to N.
Since E(D) = 0 if Dy = 0, E(D?) measures the vari-
ance of D.

With complete linkage (¢ = 0) and large IV an ex-
plicit solution for E(D?) can be obtained. This invol-
ves diagonalization of the moment generating matrix,
and the derivation and general solution are given in
the appendix. With initial equilibrium, the solution
is

1
E(D%) = 3520 (1 — o) g (1 — q) [6 (1 — F)
' — 501 —F)P—(1—F)f,
where F is the inbreeding coefficient.
Some results for E(D?)/[p, (1 — $o) ¢o (1 — ¢,)] for
initial equilibrium are plotted in Figure 1, with time
measured as F = 1 — ¢~*2¥_ The graphs were com-
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puted by repeated iteration of the matrix, M, on to
the vector yy using a population size of N = 16.
When ¢ = 0, E(D? reaches a maximum of 0.165
Do (1 — Do) o (1 — ¢o) When F = 0.4, or £ = N gene-
rations approximately. With recombination, the
maximum value of E(D?) is lower and is attained
earlier. For example, for N ¢ = 1[4, E(D? reaches
0.14 Do (1 — pg) 4o (1 — qp) when F =031 or ¢ =
0.75 N generations.

We have made use of the generalisation derived
from the continuous model that ¢ only enters into
the results in the form of N ¢ and that the time scale
in generations is proportional to N. This was checked
in the calculations and in Table 1 we present some of
the results referring to the maximum values of D2
reached. The table gives the observed maximum and
the time in generations when it occurred.

Except for the smallest values of N and N¢ = 4
there appears to be sufficiently good agreement be-
tween the results obtained with different values of
N for us to use this generalisation.
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Fig. 1. The mean value of D2/[py (1 — $q) g5] (1 — ¢p) oOver
segregating and non segregating lines for several values of N ¢
and no selection

Table 1. The maximum value of E(D?) and the time in generations to veach it for diffevent com-
binations of N and N ¢

%

Ne¢
8 16 32 64 — 00

Do/ [Po (1 — Do) 6 (1 — qo)] 1708 1678 1663 1656 1649 0

b4 8 16 32 64 1.0016 N

D2l [P0 (1 — Po) 96 (1 — 4o)] 1054 .0969 .0931 0913 — 1

¢ 4 8 17 34 —

Dl o (1 — Po) 90 (1 — 4o)] .0636 0503 .0451  .0428 — 4

1 2 4 8 17 -
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The product of the variances in gene frequencies at
the two loci, (1 — p) g (1 — ¢), is also affected by
the degree of linkage. Starting with equilibrium, we
have for ¢ = 0 from the appendix that

EpU—pg(l—gl=1:p0 — ) gl — )
X [6(1 —F) 410 (1 — F)* — (1 — F)¥].

With independent loci, the variance at each locus is
proportional to 1 — F, and their product is propor-
tional to (1 — F)%. However, with complete linkage,
the product of the variances is
1] 6 .
E[TT'F* 10(1—F) —(1 -—F)}
times that with independence for all starting fre-
quencies. This ratio is 1 at I = 0, rises to 1.13 at
F =05, 407 at F =09 and becomes infinitely
large as F approaches one.

Disequilibrium in Populations Segregating
at Both Loci

We have developed the analysis so far in terms of
the average values of D? computed over all replicate
lines. But in many replicates one or other locus will
become fixed after a few generations and in these D
is zero. 1f we observe linkage disequilibrium between
a pair of loci in natural populations, it can only be
among those still segregating at both loci. We there-
fore need to describe the behaviour of the linkage
disequilibrium within such lines. When ¢ = 0, the
average value of D? within lines still segregating at
both loci, denoted D2, can be obtained by dividing
E(D?) from equation (3} by the proportion of lines
still segregating. The latter can be calculated by
series summation from formulae by KiMURA {1955),
regarding the four gamete types as four alleles at
a single locus. In the limiting case with ¢ = 0, as F
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Fig. 2. The mean value of #* among segregating lines, E(r?),
for several values of N ¢ with no selection
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approaches 1 only lines in which two gametes segre-

‘gate will remain. In those still segregating for both

loci, gametes must either be entirely in the repulsion
or entirely in the coupling phase. Therefore if we
assume a final uniform continuous distribution of
gametic frequencies (4, B,, Ay By) or (4, By, 45 B,)
as will be true if NV is large, it can be shown that D?
approaches 1/30 for complete linkage as the inbreed-
ing coefficient approaches one. This final value is
independent of the initial conditions p,, ¢, and D,.

The values of both D? and D% depend during in-
breeding on the initial frequencies, and we have found
that a more useful statistic for lines segregating at
both loci is the square of the correlation, 7, of gene
frequencies in the population of gametes, where
r=D|[p (1 —p)g(1 —¢)]¥2, The expectation of #
or 7% is computed by averaging only over such lines.
When there is initial equilibrium E(r) = 0. Changes
in E{s?) with level of inbreeding were obtained by
Monte Carlo simulation, using the same procedure as
in our earlier work, but excluding selection (Hirr
and ROBERTSON, 1960). A population size of N = 8
was used and 10000 replicates were run for each level
of recombination. Results are shown in Figure 2 for
P = gq = 0.5 and D, = 0. As replicate lines become
fixed in the later generations, the sampling variances
of the estimates of E(?) increase, so results are plotted
for only 48 generations (¥ = 0.95).

When there is complete linkage (N ¢ = 0), E(»?)
eventually reaches unity as all lines approach fixation.
It is interesting that E(r?) and F are approximately
equal to each other when N ¢ = 0. When there is
recombination, E(»?) approaches a limiting value
dependent on N ¢ as F approaches one, the limit
being reached earlier and at a lower level, the less
tight the linkage. It is difficult to estimate the limit
of E{r?) accurately when N ¢ is small because few
lines are still segregating when E(r?) has reached
a stable value.
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Fig. 3. The effect of initial frequency on E(»?) with no seleec-
tion
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The influence of initial frequency on E(r?) when
there is no selection is shown in Figure 3. Three sets
of initial frequencies are compared: (i) po = g4 = 0.5,
(i1) pg = 0.1, g = 0.5 and (iii) py = ¢p = 0.1, each
with Dy = 0. It appears from Figure 3 that E(r?) is
not very sensitive to changes in the initial frequency,
and is mostly determined by N ¢ and time (measured
as a function of N). As the inbreeding coefficient
approaches unity, E(#?) depends only on the steady
state distribution of gamete frequencies within the
segregating lines, and is independent of the initial
conditions.

Disequilibrium Between Loci Having Heterozygote
Superiority

Our discussion has been restricted so far to the
situation where there is no selection maintaining
segregation. But genetic variation will be maintained
for longer periods of time in small populations at
loci in which the heterozygote has superior fitness to
either homozygote, unless the homozygotes differ
widely from each other in fitness (ROBERTSON, 1962;
RosertsoN and Hirr, 1968). If there is no epistacy
between these loci, selection will not cause linkage
disequilibrium directly. But we must expect to find
some disequilibrium in small populations as a result
of genetic sampling. We can therefore predict that
for pairs of loci each having heterozygote advantage,
but not interacting with each other, we will have
E(D) =0, but E(D?) =0, just as for neutral genes.?

Let us assume that the relative selective advantages
are as follows:

B,B, BB, B,B,
Ay Ay 41— —5 1—n 1 — 7 — S
A4, 4, 1—35 1 - 8,
A, 4, 1 ——585 1 —1% 1 — ¥ — S

The equilibrium gene frequencies for large popula-
tions are given by p = 7,/(r; + #,) at the 4 locus,
and q = $,/(s; + 55} at the B locus. The change in
gene frequency at the 4 locus in one generation is
given by 8p = —(n - m)p (1 — ) (p —5), with
a similar equation for locus B, where squared terms
in selective values are ignored. On a continuous model
it can be shown that, on a time scale proportional to
N, the inbreeding and selection process is a function of
only p, g, N¢, N (v, + 7)) and N (s; + s,) for a given
set of initial conditions pg, g, and Dy. No explicit solu-
tions for this model could be obtained, so our Monte
Carlo programme was modified to include selection
for heterozygotes. The number of replicates used for
each set of parameters depended on the rate of fixa-
tion observed, and was chosen so that roughly the
same number of replicates were segregating at both
loci after 4 N generations as for the case of no selec-
tion with pg = ¢, = 0.5, and 10000 replicates. All
simulation was done with N = 8, except for one
example with N (v, + 7)) = N (sy + s,) = 4and p =
= ¢ == 0.5 which was also run with V =16 (Figure 4).

Selection is most effective in maintaining hetero-
zygosity when the equilibrium gene frequency is one-
half (ROBERTSON 1962; ROBERTSON and HiLr, 1968).

1 E(D) == 0 with heterozygote superiority at both loci
only if p = 0.5 and/or g = 0.5.
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Fig. 4. The effect of selection for heterozygotes on E(#?) for

Ny +7) =N(s;+s5,)=0 4and 8and py=¢,=p =7

= 0.5. Populations were simulated with both N = 8 and
N = 16 for N (r; 4+ 7,) = §, otherwise N = 8

We shall therefore discuss this situation (p = 7 = 0.5)
in most detail, and for simplicity assume that
N(n+mn)=N(+s).

Such selection has two related consequences which
are relevant here. Firstly, the rate of fixation may
be greatly reduced and secondly, the gene frequency
distribution amongst unfixed lines becomes more con-
centrated around the equilibrium frequencies as selec-
tion becomes more intense. We found that £{D? over
all populations was increased by selection for hetero-
zygotes. This appears to be mainly due to retardation
of fixation as the effect on E(D?) in segregating lines,
though present, is small.

However, on examining E{(r?}, we found that this
reaches a limiting value which is little influenced by
the intensity of selection (Figure 4). Further it
appears that about the same level of E(»?) is reached
when the equilibrium frequency in large populations
is not 0.5 (Figures 5 and 6). The curves of E(r?)
against & or {/N, are then dependent almost only on
N ¢. The limiting value of E(r?) appears to approach
1/4 N ¢ as N ¢ increases. A crude derivation can be
obtained by equating the loss in E(D?) each genera-
tion (2 ¢ E(D?) approximately) with the gain due to
sampling (p (1 — p) ¢ (1 — ¢)/2 N). The second term
in the vector y is then small because gene frequencies
are close to 0.5.

Discussion

Many workers are now investigating polymor-
phisms in natural populations, and opportunities
will no doubt arise for measuring the linkage disequi-
librinm between the segregating loci observed. We
have used the square of the correlation of gene fre-
quencies, 72, as our statistic, which has a known
sampling distribution when the true value is zero.
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Fig. 5. The effect of equilibrium frequency on E(r?) with
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Fig. 6. As Figure 5, but N () +#;) = N (s; + 5,) = 8

If a sample of 7" individuals are taken from the popu-
lation, T #* is then distributed as x% with one degree
of freedom.

However our results show that when a significant
departure from equilibrium is observed in a small
population, we must be cautious about concluding
that this is due to natural selection. Several models
with interaction of selective advantage between the
loci have been investigated in infinite populations.
For example, LEwoNTIN (1964) studied a two locus
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model with heterozygote advantage and epistacy,
which had relative fitnesses as follows:

A4y A A, Ay,

1

[

%o o b

B, 4
,B, .6 1
2B, .5

Yoo

3
-5
4

1S

From his Table 4 we can compute the values of #2
reached at equilibrium. Two stable situations were
possible, in which there was a final excess of either
coupling or repulsion phases; we shall use only the
latter. The results for the model were:

c 0 .01 .02 .04 .08

72 1.000 799 .601 221 .002

With no selection, or selection for heterozygotes
with no epistacy, the mean value of #2 within the
segregating populations would reach the following
approximate values, assuming a population size of
N = 25 was maintained for many generations:

c 0 .01 .02 .04 .08

E(r¥)  1.00 62 41 25 A2

These results correspond to N ¢ values of 0, .25, .5,
1 and 2. Thus two completely different processes
lead to superficially similar results. It can be argued
that N = 25 is much too small to represent a natural
population. However, LEWONTIN’s selective advan-
tages with differences of factors of two at a single
locus may be considered unrealistically large.

The model we have used may also be criticised
because of the assumption of constant population
size. However this does not effect the qualitative
aspects of our results. Any restriction of population
size may cause disequilibrium as a result of genetic
sampling, and the return to equilibrium will be slow
if the loci are tightly linked.

Zusammenfassung

Es wurde eine theoretische Untersuchung iiber den
Einfluf der PopulationsgréB8e (V) und der Rekombi-
nationsfraktion (¢) auf das Koppelungs-Ungleichge-
wicht (D) zwischen einem Paar von Loci angestellt.
Die nachfolgenden zwei Situationen wurden studiert:

1. Beide Loci haben keinen Effekt auf die Fitness.

2. Die Heterozygoten zeigen Uberlegenheit, jedoch
keine Epistasie.

Befinden sich die Populationen in einem urspriing-
lichen Koppelungsgleichgewicht, so bleibt der mitt-
lere Wert von D bei Inzucht gleich null, jedoch steigt
das Mittel von D? bis zu einem Maximalwert und
fallt, bis die Fixierung an beiden Loci erreicht worden
ist. Je enger die Koppelung und je stirker die Selek-
tion ist, desto spiter wird das Maximum im Mittel
von D? erreicht und desto gréBer ist sein Wert.
Ferner wurde die Korrelation von Genfrequenzen,
7, in der Population von Gameten innerhalb spalten-
der Linien untersucht. Es wurde gefunden, daB der
mittlere Wert von #2 fiir einen Bereich von Selek-
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tionsintensitdten und urspriinglichen Genfrequenzen
praktisch vollkommen bestimmt wurde durch Ne
und die Zeit, gemessen proportional zu N. Abschlie-
Bend wird die Bedeutung dieser Ergebnisse fiir Beob-
achtungen von Koppelungs-Ungleichgewichten in
natiirlichen Populationen diskutiert.
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Appendix: Diagonalisation of the Moment
Generating Matrix with Complete Linkage

We use well known theory to find for the matrix M
the scalar latent roots 4;, 1, and A5 and their associated
latent vectors v;, v,, and v, of dimension 3 such that

M'U,i:’Uizi, ’L'f:’1,2,3.

Thus, if we let A be a 3 x3 diagonal matrix of the
latent roots 4; and let V = (v, v,v;) be the 3 x3
matrix of latent vectors, we have

MV =VA
and
M=VAV1
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also
M=VAVI.VAV'I=VA2}V?
and so on.
To obtain the moments y(, we require
= My
which is given by
= VA V1yg (1A)

and needs only scalar multiplication to evaluate A’,

With complete linkage, M is given by setting ¢ = 0
in equation (3) of the text and its latent roots and
vectors are easily obtained. These are

h=1-1, 12=(1 __)(1 ——f;)
T

and
1 —2 1
y=|2=2 2 —4
n—1
1 1 1

Since the inbreeding coefficient, F, equals 1 —
(1 -%)t, it follows that for large »

M=1-—F, A=(1-—-F3, X=01-F)S¢,
approximately,
1 -2 1
and V= [1 2 —4}, approximately.
1 1 1

The inverse of V is then
. 6 3 6
V-1= E —5 0 5
—1 —3 4

If there is initial equilibrium (a restriction not
required by the preceding theory)

Yoy = po (1 — £0) 9o (1 — o) (100)
and substitution into (1A) gives the result

TP (1 —20) % (1 — ) X
F) — (1 — F)?
F)? 4 4 (1 - F)?

(6( F)4+10(1 —
x [6(t —F) —10(1 —
6(1 —F)—5(1 —F)P>— (1 —~F)°

Yo =




