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Abstract: The symmetric Volunteer's dilemma game (VOD) models a situation in which each 
of N actors faces the decision of either producing a step-level collective good (action "C") or 
freeriding CD') .  One player's cooperative action suffices for producing the collective good. 
Unilateral cooperation yields a payoff U for D-players and U - K  for the cooperative 
player(s). However, if all actors decide for "freeriding", each player's payoff is zero 
(U>K>0) .  In this article, an essential modification is discussed. In an asymmetric VOD, the 
interest in the collective good and/or, the production costs (i.e. U or K) may vary between 
actors. The generalized asymmetric VOD is similar to market entry games. Alternative hypo- 
theses about the behaviour of subjects are derived from a game-theoretical analysis. They are 
investigated in an experimental setting. The application of the mixed Nash-equilibrium con- 
cept yields a rather counter-intuitive prediction which apparently contradicts the empirical 
data. The predictions of the Harsanyi-Selten-theory and Schelling's "focal point theory" are in 
better accordance with the data. However, they do not account for the "diffusion-of-responsi- 
bility-effect" also observable in the context of an asymmetric VOD game. 

I Introduction 

In a N-person non-cooperat ive matrix game called "volunteer 's  di lemma" (Diek- 
mann 1985), each actor  has the choice between a favorite alternative D with payof f  
U and a less favorite alternative C with payof f  U - K  ( U > K > 0 ) .  However,  while 
C-players,  irrespective of  other actors '  choices, obtain the maximin payof f  U - K ,  
D-players receive payof f  U only if  there is at least one other player  choosing C. 
Otherwise D-players '  payof f  is zero. 

The game described a collective good problem with a step product ion function. 
Cooperat ive actors pay K units of  util i ty for the product ion of  the collective good,  
while cooperators  as well as defectors gain U. However,  if  all actors decide on free- 
riding, the worst payof f  is obtained.  

There are several applicat ions of  a volunteer 's  d i lemma in economics, sociolo- 
gy, polit ical science, and biology.  Examples are the market  entry decision of  two 

i I am indebted to Wulf Albers, Norman Braun, Werner Gtith, Norbert L. Kerr, Reinhard 
Selten, and the participants of the "V th International Social Dilemma Conference" in Biele- 
reid for critical and helpful comments. I am grateful to Axel Franzen who organized the 
experiment at the University of Mannheim. This work was supported by a grant of the 
"Deutsche Forschungsgemeinschaft" (DFG). 
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firms (Sherman and Willett 1967), voting behavior (Brennan and Lomasky 1984), 
the sanctioning dilemma of N actors facing a norm violation, the investment deci- 
sion of two or more privileged actors in a "privileged group" (Olson 1965), bystan- 
der intervention in emergencies as analyzed by Darley and Latan6 (1968) in social 
psychology, and "vigilance games" in biology. 

Obviously, there are N asymmetric equilibria in pure strategies, which are 
usually not attainable without coordination. In addition, a symmetric mixed Nash- 

equilibrium exists with the probability of defection q * =  N-1~/K/U~ (Diekmann 
1985). Since only one mixed Nash-equilibrium with symmetric payoff-vector exists, 
theories of equilibrium selection, which require that solutions are invariable con- 
cerning the renumbering of players, will clearly select the mixed strategy equilibrium 
(e.g. Harsanyi and Selten 1988). This solution implies that the probability of freerid- 
ing will increase with group-size N, which corresponds very well to the "diffusion of 
responsibility"-effect observed by Darley and Latan6 in situations of helping behav- 
iour. Experimenal evidence confirms the negative correlation of group-size and free- 
riding in experiments on helping behaviour (Darley and Latan6 1968) as well as exper- 
imental gaming (Diekmann 1986) although the mixed equilibrium solution systema- 
tically underestimates the percentage of cooperation. 

Volunteer's dilemma assumes a symmetric decision situation for all players. An 
interesting question arises if this assumption is discarded. What are the conse- 
quences for the game theoretic solution if there is, for instance, a "strong" player 
with the ability to produce the collective good at a lower cost than his or her co- 
players? In this article, an asymmetric volunteer's dilemma game will be explored 
allowing for an unequal distribution of costs Ki and interests Ug among 
i = 1, 2 . . . . .  N actors. It will be shown that the mixed Nash-equilibrium yields highly 
counterintuitive results unlikely to be observed in actual behaviour. 

II Game Theoretical Analysis 

Consider the binary decision N-Person matrix game with actor i's (i = 1, 2 . . . . .  N) 
decision alternatives Ci and Di respectively. With Ui> Ki> 0 the payoff structure is 
as follows: 

(i) Strategy Ci yields Ut-Ki ,  

I 
'U, is obtained if there is at least 

(ii) while, for De one other actor choosing C, 

,0 otherwise. 

Obviously, the game has N efficient and strict equilibria with exactly one "volun- 
teer" and N - 1  "freeriders". Moreover, an additional equilibrium point in mixed 
strategies may exist. 
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If Di is chosen with probability q;. actor i's expected utility Ei is 

Ei=q~Ui(1- Hiqj) + (1-q~)(U~-Ki). (1) 

Partially differentiating with respect to q~ yields 

OEi 
- -Ui H qj+Ki. (2) 

Oqi j ~ i 

The following system of N equations results if the derivatives are set equal to 
zero: 

~ [ q j = - -  i = 1 , 2 , . .  N (3) 
j ~ i  Ui  "~ 

The solution of (3) is 

= ~1 - -  ( 4 )  
q* ~ = IUj  

This is a (weak) mixed Nash-equilibrium if 0 < q* < 1 for i = 1, 2 . . . . .  N. For the spe- 
cial case N =  2 it follows from (4) that a mixed equilibrium does always exist. Also, 
for U~= U and K~=K there is always a solution under the restriction 0 < q * < l ,  
which is the mixed equilibrium of the symmetric game: q* = ~ (Diekmann 
t985). 

Substitution of qj in (1) by q* yields the payoff-vector of the mixed equilibrium 
strategy. Payoffs are U~-K,, which is identical to the payoff of the pure maximin- 
strategy z. 

This can be seen more easily by substitution of the product term in equation (1) 
by formula (3). It also becomes apparent that the expected value in the equilibirum 
E* does not depend on q;, i,e. the mixed Nash-equilibrium is weak. 

1 - q *  is the probability that actor i will decide on cooperation under the mixed 
equilibrium strategy. From (3) and (4), we obtain the probability that the collective 
good will be produced: 

P = [ -  i = ~ q * = l -  , = : ~  (5) 

P(N) is not necessarily a decreasing function of N. In a symmetric game, however, 
the likelihood of collective good production decreases with group-size. 

Now, consider solution (4). The Nash-equilibrium strategy implies that actor i's 
defection probability will increase with decreasing production costs Ki or increasing 
interest in the collective good Ui. This is a very paradoxical result which hardly will 
be in line with observed behaviour of individual decision makers 3. An explanation in 

2 Hence, the mixed equilibrium strategy is "unprofitable". For 2 x 2-games this is always true 
(Holler 1990). However, it does not necessarily hold true in N-person games. 
See, also, Wittman (1985) for a critique of the counter-intuitive implications of mixed equil- 
ibrium strategies ~n 2 x 2 games. 
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formal terms is that the mixed equilibrium strategy yields the maximin payoff,  
which is higher for "strong" players with either greater interest U,- or lower costs hr.. 
In order to achieve at least the maximin payoff,  a "stronger" actor 's  defection prob- 
ability has to be greater than the defection probability of  co-players with a lower 
maximin payoff.  

Referring to empirical behavior, however, the paradox does not vanish. Imag- 
ine, for example, a price cartel with one firm violating the price level agreed upon by 
the member firms of  the cartel. If  identification and individual sanctioning of  that 
firm is possible, a sanctioning dilemma arises. Assume that all firms have the same 
interest in the collective good Ui (conservation of  the cartel price), that sanctioning is 
costly (Ki), and that one firm k has the lowest sanctioning costs Kk (Figure 1). Then 
the mixed equilibrium solution implies that firm k has the lowest probability of  sanc- 
tioning the norm-violator despite its highest sanctioning power in the group. As an- 
other example, consider three bystanders observing a victim in danger of  being 
drowned in a lake. If  only one of  the observers is able to swim (Kk<K~), it is not the 
swimmer but the non-swimmers who are expected to jump in the water and save the 
victim 4. 

The opposite predicted by Schelling's (1960) concept of  a "prominent solution" 
is probably much more realistic. As mentioned above, there are N pareto-efficient 
equilibria. The asymmetric game, however, contains a clue pointing to the single 

Probability of 
defection q* 

1.0 

0.5 

'strong' actor (Kk= 4) 

+ 'weak' actors (K i = 5) 
m ~ l 

0 i i ~ i I I 
2 3 4 5 group size N 

'strong' player: Kk= 4; 
'weak' players: Ki= 5; 

Uk= U i = 10 

Fig. 1. Mixed equilibrium strategy for asymmetric volunteer's dilemma with one "strong" 
player and N -  1 "weak" players 

4 See Weesie (1993) for an analysis of this example and the problem of "rational timing" in a 
"volunteer's timing dilemma". 
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"eligible" equil ibrium. It is the strongest player who is expected to take action, 
thereby yielding a pareto-efficient  equilibrium. 

In the special case of  an asymmetric volunteer 's  d i lemma with one "strong" and 
N -  1 "weak" players investigated in the experiment described below, the conclusion 
following f rom "prominence theory" can be drawn from the Harsanyi-Selten theory 
of  equil ibrium selection. Consider  first the subclass of  games with constant inter- 
est (Ui= U =  constant;  i = 1 , 2  . . . . .  N) and strictly increasing costs, i.e. 
K1 < K 2 <  . . .  <KN; O < K i <  U,; i= 1, 2 . . . . .  iV. This subset of  asymmetric volunteer 's  
di lemma games belongs to the class of  "regular market  entry games" discussed in 
Selten and Gtith (1982) 5. By appl icat ion of  the Harsanyi-Selten theory,  Selten and 
Giith derive the theorem that  "the solution of  the game is that  equilibrium point  
where the firms with the lowest entry costs enter the market" ,  whereby "market  er[- 
try" corresponds to the "cooperat ive" choice (C) in the asymmetric volunteer 's  di- 
lemma game. It follows f rom the theorem that  the strict equilibrium point  is selected 
as the solution of  the game where the player  with the lowest costs (the "strong" 
player) acts cooperatively,  while the "weaker" co-players defect. However,  due to 
the assumption of  the strict order  of  costs, the theorem does not cover the situation 
of  one strong and N - 1  co-players with equal degree of  weakness and N >  2. For  
the strong p layer /weak  co-players asymmetric volunteer 's  di lemma (i.e. 
K1 < K z = K 3  . . . . .  KN; N > 2 ) ,  the theorem has to be generalized. It can be shown 
that  the Harsanyi-Selten theory selects the equilibrium point  where player 1 employs 
the cooperat ive strategy ("market  entry") and players, 2, 3 . . . .  , N "defect "6. This is 

5 Another requirement is: Ki + K~ r Kk + Kt for i, j ,  k, t= t, . . . ,  N pairwise different. An asym- 
metric volunteer's dilemma subject to these restrictions satisfies assumptions (1) to (6) in 
Selten and Giith (1982). It is, moreover, a "regular market entry game" because dominated 
strategies are excluded by the defining properties of a volunteer's dilemma game. Note that 
"market entry" corresponds here to "cooperation". In other market entry games, which un- 
der certain conditions are structurally equivalent with volunteer's dilemma, "market entry" 
is the "defective" choice. For example, this is the case in the game of Sherman and Willet 
(1967), which is a symmetric volunteer's dilemma for N =  2. 

6 I owe a sketch of the proof for this assertion to Reinhard Selten (personal communica- 
tion): 
"The primitive formations are those generated by the strict equilibrium points. These equil- 
ibrium points form the first candidate set. The restricted games for the risk dominance com- 
parisons between any two elements of this set are 2 x 2-games. If player 1 is stronger than 
the players 2 . . . . .  N,  then the equilibrium point where player 1 cooperates risk dominates all 
other candidates and therefore emerges as the solution (there are no payoff dominance rela- 
tionships among the candidates). Assume that player 1 is weaker than players 2 . . . . .  N. 
Then the equilibrium point where player 1 cooperates is risk dominated by all other candi- 
dates. For reasons of symmetry these other candidates do no risk dominate each other. 
Therefore the equilibrium point where player 1 cooperates is eliminated. The second candi- 
date set is formed by the other strict equilibrium points. A substitution step becomes neces- 
sary (see Harsanyi and Selten 1988, p. 228). The application of the tracing procedure to the 
centroid of the second candidate set must yield a symmetric equilibrium point. This can be 
either the strict equilibrium point where player 1 cooperates or the mixed equilibrium point. 
Obviously, in the first case the assertion holds. In the second case, the third candidate set 
consists of the mixed equilibrium point and the strict equilibrium point where player 1 coop- 
erates. It can be seen without difficulty that this strict equilibrium point risk dominates the 
mixed equilibrium point. Obviously the mixed equilibrium point does not payoff dominate 
this strict equilibrium point. It follows that, in this case too, the strict equilibrium point 
where player 1 cooperates is the solution of the game." 
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the single strict and efficient equilibrium point in pure strategies with symmetric 
payoffs for players in a symmetric position. 

In the strong-player-weak-co-players asymmetric situation, the mixed Nash- 
equilibrium predicts a higher probability of defection for the strong player who re- 
ceives a payoff bonus compared to his weak co-players. The opposite conclusion 
follows from Schelling's "prominent" solution and the Harsanyi-Selten theory. Whi- 
le the former theory values "strength", the latter theories imply the "strength of 
weakness". By these theories, defective choices of weak players result in higher pay- 
offs than the strong player's gain if players meet the mutual expectation of tacit 
coordination. Strong players are, so to speak, exploited by their weak co-players. 
However, if strong actors do not comply with their role as "rational hero", all free- 
riding actors might loose. The interesting question arises: How do real subjects be- 
have in an asymmetric volunteer's dilemma? In the following, the opposing predic- 
tions are confronted in an "experimentum crucis". 

III Experimental Test 

An experimental test was arranged in order to find out which of the opposing pre- 
dictions from, on the one hand, mixed Nash-equilibrium and, on the other hand, 
Schelling's theory of tacit coordination as well as the Harsanyi-Selten theory would 
better match the actual behaviour of decision makers. The experimental factor of 
main interest is the "weak player/strong co-players" versus "strong player/weak co- 
players" condition. In addition, the degree of weakness and strength and the group- 
size (N= 2 versus N =  5) were varied (see Table 1). 

328 students of various disciplines at the University of Mannheim, West Germa- 
ny, participated in the experiment. Subjects were randomly distributed over ten ex- 
perimental groups. They were asked to fill out a questionnaire containing the volun- 
teer's dilemma and three versions of the prisoner's dilemma 7. Volunteer's dilemma 
was presented first in this sequence of games. Thus, sequence effects probably did 
not influence the subjects' decision behaviour in volunteer's dilemma. The game was 
presented in matrix form, with subjects' payoff and co-players' payoffs displayed in 
separate matrices (Table 1). In addition, the game was described verbally and sub- 
jects were asked to give their own choice, the expected choice of co-players, and 
resulting payoffs. Subjects bad plenty of time to think over the decision problems 
carefully and were motivated by relatively high monetary gains. It was announced 

7 Participants were recruited in the university cafeteria during lunch time. Students who 
agreed to participate were asked to come to a separate room in the cafeteria building where 
the experiment was arranged. In order to avoid sequence effects, we did not choose a design 
where the different versions of the dilemma game were presented to the same subjects. Rath- 
er, we decided for the more "expensive" design of a random assignment to the various ex- 
perimental conditions. Hence, each participant was confronted with one decision problem 
of volunteer's dilemma type. Subjects did not know their co-players and were, in fact, not 
matched to co-players. 
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that achieved points would be converted to money according to an exchange rate of 
0.10 DM per point. The monetary payoff for a defective choice matched by co- 
player(s)' cooperative choice, consequently, amounts to DM 10.--, approximately 
US$ 6 (in fact, participants received an amount of 5.--  to 15.-- DM, depending on 
the experimental conditions to which they were randomly assigned). 

Results are based on those subjects who correctly answered the question of ex- 
pected payoffs, given the supposed choice of co-player(s). Hence, only the subset of 
301 subjects who passed this "test of understanding" of the game structure was in- 
cluded in the analysis s. 

For the 2 • 2-games, all three experimental tests cleary contradict the mixed 
Nash-equilibrium hypothesis. While this hypothesis predicts that increasing strength 
of the co-player will decrease the probability of player's defection, experimental 
data show a significant trend in the opposite direction (Figure 2a). Moreover, 
player's strength is inversely related to defection proportions (Figure 2b). Again, the 
differences are highly significant and contradict the mixed Nash-equilibrium impli- 
cations. Finally, there is an extreme and highly significant difference in defection 
rates in the third test-situation (Figure 2c), which directly contradicts the mixed 
Nash-equilibrium hypothesis. 

Of course, we do not know whether actors really have employed mixed strate- 
gies. Besides various possible interpretations of the meaning of mixed strategies on 
the individual level (e.g. Harsanyi and Selten, 1980, 14 pp.), the experimental test 
allows for potential falsification on the group level. Whether or not subjects employ 
mixed strategies on the individual level, aggregate results on the group level clearly 
falsify the mixed Nash-equilibrium hypothesis. The implication of this hypothesis is 
that proportions of defection should vary in accordance with formula (4), which 
apparently is not true. 

On the other hand, the experimental data are much more in accordance with 
Schelling's "prominence theory" and the Harsanyi-Selten theory. Although the be- 
haviour of subjects does not coincide with the prediction of the strict deterministic 
version of the Harsanyi-Selten theory of equilibrium selection, the data at least ap- 
proximate the theoretical expectations. The more extreme the payoff-differences be- 
tween weak and strong actors, the better the theory is approximated. 

In the symmetric conditions A and H (Table 1), the prediction of the I-Iarsanyi- 
Selten theory is identical to the mixed Nash-equilibrium. In both conditions, howev- 
er, the empirical defection proportions are overestimated by the theory. These find- 
ings are perfectly in accordance with three earlier experiments of the symmetric vo- 
lunteer's dilemma (e.g. Diekmann 1986). 

For group-size 5, subjects' behaviour shows a much less clear pattern. In the 
case of co-player's increasing strength, the sign of the significant difference is in the 

8 27 subjects or 8.2% did not pass the test for the volunteer's dilemma. Not surprisingly, there 
are more errors in the asymmetric game compared to the symmetric versions. In the latter 
conditions (A and H in Table 1), no inconsistencies were detected at all. With this exception, 
no systematic variations of "failure rates" over experimental conditions were found. The 
distribution of excluded cases is as follows: A 0, B 0, C 4, D 3, E 3, F 5, G 5, H 0, I 5, J 2. 
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direction of the mixed equilibrium hypothesis, although the degree of defective be- 
haviour in condition I is much less than predicted by formula (4) (Figure 2d). On the 
other hand, no significant effect of player's increasing strength could be detected 
(Figure 2e). It may be the case that the extraordinarily low level of defection in 
group I is an "outlier-effect ''9. In three earlier experiments with (symmetric) volun- 
teer's dilemma, such a low level of defection was never observed. Whether this 
might be the case can only be answered by a replication of the experiment. 

Group-size-effects as expected by the mixed Nash-equilibrium hypothesis could 
be observed in two out of three test situations (Figure 2g). This "diffusion of respon- 
sibility" mechanism is well supported by a great variety of experiments (e.g. Darley 
and Latan6 1968, Diekmann 1986). Again, the difference is reversed for conditions 
B and I because of the extraordinary low proportion of defectors in the latter 
group. 

IV Conclusions 

Volunteer's dilemma is a game with some interesting properties paradigmatic for a 
variety of social situations. In the symmetric game, theories of equilibrium selection 
yield the solution of the mixed Nash-equilibrium which is, however, weak and non- 
efficient. The solution implies a decline of cooperation with increasing group-size. 
This mechanism is well known in social psychology as the effect of "diffusion of 
responsibility", which is confirmed by a large bulk of experimental data. 

In the generalized, asymmetric version of the game the strict equilibria are also 
candidates for equilibrium selection. The mixed equilibrium solution, on the other 
hand, yields the counter-intuitive result that the "strongest" actor capable of produc- 
ing the collective good on lowest costs has the highest probability of freeriding. In 
the special case of one "strong" and N -  1 "weak" actors investigated in this article 
with experimental data, the Harsanyi-Selten theory as well as Schelling's "promi- 
nence theory;' predict the opposite result (i.e., the strongest player will choose the 
cooperative strategy). The experimental results are ambiguous for group-size N =  5. 
In the experimental conditions with 2 • 2-games the data clearly support the latter 
theories if these are interpreted in a probabilistic sense. In other words, the findings 
show that the higher the payoff-difference between strong and weak players, the 
more likely the strong player and the less likely actors in the role of weak players will 
opt for cooperation. Note however, that the Harsanyi-Selten theory underestimates 
the level of cooperation in the symmetric game and does not imply the "diffusion- 
of-responsibility" effect in the asymmetric game. The reason is that the selection of a 
strict equilibrium point in the asymmetric game is independent of group-size. In con- 

9 However, no "outlier effect" was observed in condition I for the decision behaviour in three 
prisoner's dilemma situations. Also, it is unlikely that presentation effects may have caused 
the ambiguous results for group-size N= 5. Under both conditions (N=2 and N= 5) the 
game was described verbally and presented in matrix form as depicted in Table 1. 
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trast to rationality theory, this psychological effect seems to be present in asymmet- 
ric dilemmas as well. 
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