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Summary. We show the Arnold conjecture concerning symplectic fixed points in the case 
that the symplectic manifold is weakly-monotone and all the fixed points are non-degener- 
ate. In particular, the conjecture is true in dimension 2, 4, 6, if all the fixed points are 
non-degenerate. 

1 Introduction 

A diffeomorphism ~b on a symplectic manifold (M, ~o) is called an exact 
symplectomorphism, if ~b is the time 1 map of a time-dependent Hamiltonian 
vector field. A fixed point p is said to be non-degenerate, if 1 is not an 
eigenvalue of the differential d~b: TeM ~ TpM. From now on, we assume that 
M is compact. Arnold conjectured that the number of fixed points of an exact 
symplectomorphism is estimated below by the sum of the Betti numbers of M, 
if all the fixed points are non-degenerate. It is well-known that there is 
a one-to-one correspondence between fixed points of q~ and 1-periodic solu- 
tions of a certain Hamiltonian system ([C-Z]).  The periodic Hamiltonian 
equation is the Euler-Lagrange equation of the action functional on (a certain 
covering space of) the loop space of M (see Sect. 2). Floer developed an 
analogue of Morse theory for the action functional, which is now called Floer 
homology theory. 

A symplectic structure o~ determines an almost complex structure unique up 
to hornotopy and we denote by cl = ca(M) the first Chern class of TM. 
A syrnplectic manifold (M, 09) if called monotone, if there exists 2 > 0 such that 
~,(A) = 2~o(A) for any 2-homology class represented by a continuous mapping 

from the 2-sphere. Floer [ F ]  proved the Arnold conjecture for monotone 
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symplectic manifolds. Hofer and Salamon [H-S] refined the argument and 
proved the Arnold conjecture in the following cases: 

(i) (m, ~o) is monotone. 
(ii) c l  = 0. 

(iii) The minimal Chern number is at least 1/2. dim M. 
Here the minimal Chern number is the least non-negative integer among 
cl(A) for A ~ I m { g 2 ( M ) ~  H2(M; Z)}. A symplectic manifold (M, to)is 
called weakly monotone (or semi-positive [MD-2]), if ~o(A)< 0 for any 
A ezt2(M ) with 3 -  n <_ cl(A)< 0. Actually Hofer and Salamon defined 
Floer homology groups for periodic Hamiltonian systems on weakly mono- 
tone symplectic manifolds. However it is necessary for computation of Floer 
homology groups that all the connecting orbits of relative index less than 
2 should be handled simultaneously. The weak-compactness argument re- 
quires an upper bound of the energy functional and they avoid this difficulty 
by assuming one of the conditions above. 

In this note, we introduce a filtration on the Floer complex and define the 
modified Floer homology group by a certain limit of relative Floer homology 
groups such that we have an upper bound of the energy functional for each 
stage, which yields the following 

T h e o r e m  1.1 Let (M, ~o) be a weakly monotone symplectic manifold, and c~ an 
exact symplectomorphism. I f  all the fixed points of dp are non-degenerate, the 
number offixed points of qb is bounded below by ~ bp(M; Z/2), where bp(M; Z/2) 
denotes the p-th Betti number of M with Z/2-coefficient. 

If d imM < 6, (M, ~o) is automatically weakly monotone and the Arnold 
conjecture holds. We shall show this result by estimating the number of 
contractible periodic solutions of a periodic Hamiltonian system whose time 
1 map is q~. 

2 P r e l i m i n a r i e s  

We recall known facts on Floer homology of periodic Hamiltonian systems. 
Details are found in [F] ,  [H-S], [S-Z]. As for the weak-compactness argu- 
ment for ,/-holomorphic curves, details are found in [M-S], [P-W],  [Y-I. 
We shall deal with a certain inhomogeneous Cauchy-Riemann equa- 
tion which is not exactly the Cauchy-Riemann equation. However, it is 
converted to the Cauchy-Riemann equation for the graph of the mappil~g 
with respect to a certain almost complex structure on the product manifold ,~f 
the domain manifold and the target manifold (see [G]). Hence we can apply 
the weak-compactness result to our situation. (Note that we cannot apply tt~c 
transversality argument for J-holomorphic curves to our situation (see 
Sect. 4)). 
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Let (M, co) be a closed symplectic manifold and H: S 1 x M ~ R a smooth 
function, called a periodic Hamiltonian function. Denote by ~'(H) the set of 
all contractible loops satisfying 

~(0 + x,~(t,  x(t))  = 0 ,  (2.1) 
where XH is the Hamiltonian vector field of H. If (tn, 7rz(M))= 0, the 
equation (2.1) is the Euler-Lagrange equation of the action functional 
an: L~(H) ~ R on the space of contractible loops in M defined as follows: 

1 
an(x) = - I u*~o + 5 H(t, x( t))dt  , (2.2) 

D 2 0 

where u is the bounding disk of x, i.e. u]ao2 = X. If (~o, lr2(M)) 4 = 0, the first 
term of the right-hand-side of (2.2) is not single-valued. However it is well- 
defined over the covering space 2 ( M )  of s corresponding to the 
homomorphism q~,: =2(M) ~ R: ~b~,(A) = ~a a~. After [H-S], we introduce 
the space LT'(M) as follows: 

ffa(M) = {(x, u)l x e s u: D 2 --+ M such that x = ulto2}/ 

I 
x = y  

(x, u) ~ (y, v) ~ Io2 u*,o = I~2 v * o  

(Io  u ,c ,  = 

The covering transformation group of ~ ( M )  --+ ~ ( M )  is 

rtz(M) 
F =  

ker qS~, c~ ker q~,," 

Geometrically, ~2(M) acts on ~ ( M )  by connected sum of 2-spheres with the 
bounding disk. Denote by A,o the completion of the group ring of F over 
a field Z/2  with respect to the weight homomorphism ~b~,: x2(M ) "-~ R, i.e. the 
set of all formal s u m s  ~',A 2A~ ~A, 2A E Z/2, satisfying that 

{A ~ FI 2A ~ O, 4),,,(A) < c} is finite for all c e R .  

We introduce a grading on A~, by assigning 2q(A)  to 6A. Fix an almost 
complex structure J calibrated by co and consider the space 
. # ( I x - ,  u - ] ,  I-x +, u+]) of the-trajectories of the "(minus) gradient flow" of 
ou from [x- ,  u - ]  to [x +, u+], i.e. solutions of the following: 

c~u c~u 
~ u  = ~s + J (u ) -~  + VH(t ,  u) = 0 (2.3) 

lira u(s, t) = x-( t ) ,  l i m  u(s, t) = x+(t) (2.4) 

(x +, u-  ~ u) ~ (x +, u+).  (2.5) 
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This equation is invariant under translations in s-variable and R acts on 
J l ( [ x - ,  u- I ,  [x +, u+]) freely unless [x- ,  u - ]  = Ix +, u+]. The tinearized op- 
erator of ~ at u is 

~U 
F,~ = R~ + J(u) Vtr + VJ(u ) -~  + Vr VH(t, u). (2.6) 

Denote by ~ (H)  the inverse image of ~ (H)  by the projection ~ ( M )  
s then there is the Conley-Zender index/~: ~(H)  ~ Z (see: [H-S], IS-Z]), 
which satisfies 

indexF, = # ( Ix - ,  u - ] )  - #(Ix +, u+]) for Ix +-, u +- ] ~ ~ ( H ) .  

The Sard-Smale theorem [Sin] yields that J / / ( [x- ,  u- I ,  Ix +, u+]) is a mani- 
fold of dimension/~([x-,  u - ] )  - /~ ( [x  +, u+]) for a generic pair (J, H). The 
energy of a solution u of (2.3), (2.4), (2.5) is defined as follows: 

E(u) = ~ _ ~ o \10s  t + Xu(t, u) dt ds.  (2.7) 

For u e ~r 9), we have 

e(u) = an(Y) - au(~).  

A 2n-dimensional symplectic manifold (M, 09) is called weakly monotone 
(or semi-positive) if it satisfies ~o(A)<0 for any A~n2(M) with 
3 -  n < e l ( A ) <  0 [MD-2], [H-S]. This condition yields non-existence of 
J-holomorphic spheres of negative Chern number for a generic almost com- 
plex structure J. Denote by Ck the Z/2-vector space consisting of 
~]~(~) =k ~(X)'~, where the coefficients ~(~) satisfy the following finiteness 
condition. 

{~1 ~(~) 4: 0, and au(~) > c} is a finite set for all c e R .  

The boundary operator is defined as follows: 

~ = y ,  n~(~, )). ~, 

where n2(2, )7) is the modulo 2-reduction of the cardinality of ~//(2, 37)/R. The 
complex (C,,  8) is called the Floer chain complex associated to (H, J). Hofer 
and Salamon showed 0 2 =  0 for weakly monotone symplectic manifolds 
[H-S, Theorem 5.1]. C,  = ~k  Ck is a graded module over a graded algebra 
A~, and O is Ao,-linear. Hence the homology group HF,(H,  J) of (C,,  8) ~s 
a graded Ao~-module. Moreover they proved the following 

Theorem 2.8 ([H-S, Theorem 5.2]) For 9eneric pairs (H ", J~) and (H p, J~), 
there exists a natural Ao~-module homomorphism 

HF~:  H F , ( H  ~, J~) ~ HF, (H p, JP) 
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which preserves the 9radin9 by the Conley-Zehnder index, l f  (H ~, j r )  is any 
other such pair then 

HF~P o H F  a" = H F  ~, H F  ~" = id . 

In particular, H F  p" is a A,~-module isomorphism. 

For the proof of this theorem, they considered s-dependent analogue of the 
equation (2.3). For generic pairs (H ~, J ' )  and (H a, Ja), we choose a path 
{(H,, J~)ls e R} which satisfies 

(H~,J~)=(H " , J ' ) f o r s <  - R ,  (H~,d~)=(H a , d t ~ ) f o r s >  + R  (2.9) 

for some positive real number R. Let 3 = ( z , u - ) e : ~ ( H  ") and 
= ( w , u + ) e ~ ( H a ) .  ,//r ~; {H~}) denotes the space of solutions of the 

following 

~?u ~u 
O~ + J~(u)-~ + VH~(t, u) = 0 (2.10) 

lim u(s, t) = z(t), lira u(s, t) = w(t) 
s ~  - ct~ S ~  + ~X3 

(2.11) 

(w, u-  ~ u) ~ (w, u +) . (2.12) 

We define the energy of u: R x S 1 --+ M as follows: 

E{nA(U) = 5 _~ o ~s + + Xn,(t ,  u) dt ds (2.13) 

If u is a solution of (2.10), the energy of u is finite if and only if u satisfies the 
asymptotic condition (2.11) for some ~ = [z, u - ]  and k = [w, u+]. We also 
have the following estimate of the energy. 

+ ~ ~ ds IEIHA(u) -- {an,(~) -- an,('k)}[ < S max Hs(t, x) (2.14) 
- o o  x e M ,  t e S a  Os 

Note that the condition (2.9) assures that the last term in the right hand side of 
(2.14) is finite. The same argument for (2.3) yields that ~(~ ,  ~; {H~}) is 
a manifold of dimension gm(~) - #HP(~) for a generic path {Hs}. Since we 
have a uniform bound of the energy, the weak compactness holds. In particu- 
lar, ~/(ff, ~; {H~}) is a finite set if #m(~) =/~H~(W)- We define a A~,-module 
homomorphism qSa': C , (H ", J ' )  --, C , ( H  a, j a )  by 

r = y '  m~(e, ~). ~, 
~m(~) = F~H,(~) 

':~ here m2 (~, ~)  is the modulo 2-reduction of the cardinality of J[(~, k; {H~ }). 
!nvestigating the end of l-dimensional components of ~/r ~; {H~}), we get 
~e fact that ~b a" is a A~,-linear chain homomorphism. Once we fix a homotopy 
"ctween two given generic paths in the space of paths satisfying (2.9) for some 
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fixed R, we have a uniform bound of the energy, hence the weak-compactness, 
of solutions of (2.10). Then we get a chain homotopy between two chain 
homomorphisms which are obtained from two generic paths satisfying (2.9). 
Hence the induced homomorphism H F  a" between homology groups does not 
depend on the choice of generic paths satisfying (2.9). 

Let (H~ x), j~l)) and (H~ z), jJ2)) be paths satisfying 

(H~,  j~l)) = (H ,, j , )  for s < - R, (H~ 1~, J ~ )  = (H a, ja)  for s > + R 

(H~2), j~2,) = (Ha, ja)  for s < - R, (H~ 2', j~z~) = (H~, j r )  for s > + R 

for some R. To show HF ~ = H F  ~a o H F  a', we have to consider the following 
family of paths. 

(LIO) |--~+R+z for s <  - 2  

H~,z = ~ H  p for - 2 < s < 2 
! t_g (2) ~,,,~-R-~ for s > 2  

For the above family of paths, it is easy to see that the last term of (2.14) is 
uniformly bounded with respect to 2 > 0. The gluing argument relates 
J//({H~I)}) and Jg({H~2)}) with ~'({H~.~}) for a sufficiently large 2, which 
yields H F  ~p o HF a" = H F  ~. 

Hofer and Salamon computed the Floer homology for a generic pair (H, J) 
under certain conditions. 

Theorem 2.15 ([H-S, Theorem 6.1]) Assume either that (M, ~o) is monotone or 
cl(/t2(M)) = 0 or the minimal Chern number is N > n. Then for a generic pair 
(H ~, J~), there exists a natural isomorphism 

H F , : H F , ( H  ~, J , )  -o H ,  +,(M; Z/2) | A,o . 

l f  (H p, ja )  is any other such pair, then H F  a o H F  p" = H F  ~. 

3 Filtered Floer complex 

In this section, we assume that the symplectic form co has integral periods, i.e. 
Its] e lm{H2(M; Z ) ~  H2(M;R)}. For a fixed Hamiltonian H, we can 
choose an increasing sequence of real numbers { r / j  ~ Z} satisfying 
(i) r j ~  + ~ a s j ~  + o0, 

(ii) {rj} does not contain critical values of an. 
Write C, . j  = { Y" r s ~ C,  I ~(x) = 0 if an(Yc) > rj}, which is a subcom- 

plex of the Floer complex C, .  We define the "relative homology" of the pa:r 
(C, . j ,  C, . i)  (i <j) ,  i.e. the homology group of C,.~.j~ = C,d/C, ,~:  

HF,.~I.j~ = H , ( C , . j C , . I ,  0 ) .  
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The "relative" Floer homology was introduced in [F-HI. We have the follow- 
ing commutative diagram: 

1 1 1 
HF. . (k - l , l - x )  ~ HF..~k,l-~) ~ HF. , tk+l , t_ l )  

i 1 o  ..... l 
HF*,(k-|,t) ' HF*.~k.~) ~ HF,.~k+ x,t) , 

' HF..~k_I,I+I) , HF.,tk,t+l ) ' HF.,(k+Lt+l)  , 

1 t 1 

(3.1) 

We define the modified Floer homology group as follows: 

H F , : =  lira lim HF,.~k,l). 
l ~ + ~ c  k ~ 

It is easy to see 

Lemma 3.2 For a generic pair (H, J), H-F,(H, J) does not depend on the choice 
of {r;}. 

As a module, A,o is the completion of the group ring Z / 2 [ F ]  with respect 
to the following filtration: 

](i,j) := f E 2A" ~A ~ Z/ZEF 312A = 0 for qSo(A ) > - i or ~Q,(A) < - j t  Z/2 [r 
LAeF J 

A~,= lim lim Z/2[F]( i , ; ) .  
j ~ + ~  / ~ - ~  

For a generic Hamiltonian function H, ~ (H)  is a finite set. Since [09] is an 
integral class, we can choose the set {r;} = {j + ~ IJ e Z} for some e > 0. 

The F-action on (C,(H, J)~-8) satisfies the following 

Z / 2 [ F  ]I i j  ) x HF, , (k ,o(H , J)  "-* HF,,tmaxti+t.j+k),j+t)(H, J) , 

which induces A,o-action on HF,(H,  J). Thus we get 

kemrna 3.3 H'F,(H, J)  has a natural A,o-module structure. 

The following theorem is an analogue of Theorem (2.8). 
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Theorem 3.4 For generic pairs (H ~, J ' )  and (H a, Ja), there exists a Ao,-module 
isomorphism 

HFa~: H'F,(H', J~) ~ H'F,(H ~, Ja) 

preserving the Conley-Zehnder index, l f  (H ~, j r )  is any other such pair then 

HF rao HF a" = HF ~, HF "~ = id . 

Proof Let {(H (~), J(')) I tr E [0, 1] } be a path connecting (H a, J~) and (H a, JP). 
Subdivide [0, 1] into [Sk, SR+ l] such that there exists {rJ k)} and e > 0 satisfy- 
ing 

- ( k )  ( i ) ~ j  -~ + o0 a s j - ~  + ~ .  
f r (k)) (ii) e-neighborhood o {.j l contains no critical values of all, for s = Sk, Sk + 1. 

(iii) max H(~)(t, < e/2 . 
Sk x ~ M ,  t f f s l  

This is possible, since [c~] is an integral class and Lemma (3.5) below assures 
that H ~ can be chosen such that ~ ( H  (~) is finite for ~ e [0, 1]. Then we can 
choose a generic path {(H~, J,)l s e R} satisfying (2.9) with (H ~, J~) = (H~, J,~) 
and (H a, J#) = (H ..... J . . . .  ) and 

(iii') ~ max ~ HAt, x) ds < ~ 
-0o x ~ M ' t ~ S l  os 

We shall consider the equation (2.10) with limits ~ = [z, u- ] ,  ~ = [w, u + ] which 
satisfy am(f), aH,(~) ~ [r~ k), rJk)]. Let {ut} be a sequence of solutions. Since we 
have a uniform upper bound for the energy functional (2.14), {u~} contains 
a subsequence which converges to a solution of (2.10) with ~' ~ ~ ( H  ") and 

~' ~" ~ ( H  =)or ~ '  e ~(Ha),  and possibly solutions of (2.3) with H = H ' ,  z ,  
~' k " e ~ ( H a ) .  The conditions (ii) and (iii') imply that am(Y), H = H  p, w ,  

am(U), aH,(~'), aH,(~") ~ [r~ k), rJk)]. Hence the proof of Theorem (2.8) yields 
that ~b ~ induces a chain homomorphism C., , , j ) (H' ,  J=) ~ C. . ,o ) (H ~, Je). 
In a similar way, we can show that q5 a" does not depend on the choice of 
{Hs, Js} and that 4) p" induces an isomorphism between "relative" Floer 
homology groups. It is also easy to see that homomorphisms q~(~,~), ~(,,~) in 
the diagram (3.1) are compatible with the isomorphism obtained above. More- 
over, the actions of Ao, are preserved under the induced isomorphism between 
modified Floer homology groups HI"F.(H ~, JO and HF. (H ~, J~). [ ]  

Lemma 3.5 For a generic Hamiltonian functions H ~ and H a, there is a path 
{H(s)} connecting them such that ~(H(s)) is finite for all s. 

Proof Let W be the Banach space of periodic Hamiltonian functions (sec 
[H-S]) and {H,} a generic path in ~r connecting H" and H a. The implici~ 
function theorem and the Sard-Smale theorem [Sm] yield that Y'({Hs}) = 
{(x, s) ~ ~ ( m )  • [0, 1] Ix e ~(H,)} is a 1-dimensional manifold with bound- 
ary ~(Ho) • {0} u ~ ( H 1 )  • {1}. 
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More precisely, let ~ denote the Banach space bundle over W ~'2-comple- 
tion of ~ga(M), which we shall also denote by ~ ( M ) ,  with fiber 
~ = L Z F ( x  * TM).  We define a Fredholm mapping F :  L~'(M) x R -~ d ~ by 

F(x, s) = 2 + XH~(t, x( t )) .  

Then the linearization DF of F is 

DF(~, a) = V~(& + V~XH~(t, x(t)) + a X ~ n j t ,  x(t)) 

for (~, a) ~ T(~.~)(ZZ(M) • R). For  a generic path {H~ }, DF is surjective, this fact 
and the index computation imply that s is a 1-dimensional manifold. 

Let p: ~ --* [0, 1] be the projection to the second factor. To prove Lemma 
(3.5), it suffices to show that dp: T.~" -~ T([0, l ] )  is transversal to the zero 
section of T([0,  1]) outside of the zero section of T ' f ,  i.e. the differential 
of the projection P4 to the fourth factor p4(x, s, ~, or) = ~ is surjective if 

4= 0. Namely we have to get the transversality on 1-jets. We define 
~ : ~ ( M ) x R x ~  ~ o  ~ b y  

~ ( x ,  s, H) = 2 + XIL + 1~(t, x(t)) . 

Restricting the linearization of f f  to T(2/ '(M) x R ) x J f ,  we get 
.~': T(2P(M) x R) x J f  ~ To v as follows: 

~ ' ( x ,  s, ~, 0-, H) = (o~)(x ,  s, ~, a, H), ~2) (x ,  s, ~, a, H ) ) ,  

where 

~ ( l ) ( x ,  s, ~, ~, B )  = ~ + X.~ + . ( t ,  x(t)),  

~2~(x, s, ~, ,~, H) = V~ + V~X.~ + . ( t ,  x(t)) + ~ X ~ .  (t, x(t)) 

for (~, a) e T(~,~)(~(M) x R), H e J r .  The linearization D ~ '  o f ~ '  is given by 

Do~'(a, b, c, "r, h) = (D~[,)(a, b, c, z, h), Do~(2)(a, b, c, z, h)) 

where 

oJh~(a, b, c, r, h) = V~a + V~X.  + H(t, x(t)) + bXom(t,~ x(t)) + Xh(t, x( t )) ,  
Ot 

and 

D~(2~(a, b, c, z, h) = V0~c + V~Xn~. . ( t ,  x(t)) + ZX~sH(t, x(t)) 

+ V~Xn(t, x(t)) + bVr x(t)) 

+ baXo~_~u (t, x(t)) + V, VeXt~,+ H(t, x(t)) 
c~s 

+ ,~ vox~H~ ~(t' x(t)). 

P4: T(~LP(M) x R) • ~ ~ R denotes the projection to the fourth factor. 

/~4(x, s, ~, o, I4) = 
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For  H ~ ~r sufficiently close to 0, the operator 

(a, b) ~ V,~a,~t + V, XH, + H(t, x(t)) + bX~H(t ,  x(t)) 

is surjective. Because of the term VgXh(t, x(t)) and the unique continuation 
theorem, (c, h) ~ Voc + ~XH~ + u(t, x(t)) + V~Xh(t, X(t)) is surjective, if ~ .  0. 

Hence, ~ '  x/~4 is 'ttransversal to the zero section at points (x, s, ~, 0, H)e  
T ( ~ ( M )  x R) x , ~  satisfying ~ 4= 0. By the Sard-Smale theorem, {(x, s, ~, 0) 
T(SP(M) x R)[x e ~~ + H), ~ e T(~,.~).Y(({H~ + H}), ~ =1 = 0} is a 1-dimensional 
manifold for a generic H. In particular, ~ = {(x, s) ~ 2 ' (M)  x R lx ~ ~(H., + H), 
P4,(Q = 0 for all ~ e T(~.~)YX'({H, + H})} is a 0-dimensional submanifold of 
~(H~ + H). By the assumption on H" and H a, <g does not intersect the boundary 
of 5f({H~ + H}) for H sufficiently close to 0. Moreover, there is a path 
7: [0,1] ---' ~ such that 7 ( s )=0  near s = 0 ,  7 ( s )=H near s = l ,  
,T({y + H'~ = {(x, s) lx ~ .~(7(s) + H~~ is a manifold, and the projection 
to the second factor W(7 + ~176 ~ [0, 1] is a submersion. Then we define 
H(s) = H ~ + 7(e- 1. s) for 0 < s < e, H(s) = H(1-2e)-l(s-e) + H for e < s -< 1 - e, 
and H(s) = H ~ + 7(e-l(1 - s)) for 1 - e _< s < 1. This satisfies the property of 
Lemma (3.5). [ ]  

4 Computation of the modified Floer homology group 

In I-F], [H-S], they compare the Floer complex of a generic pair (H, J)  with 
the Morse complex of a C2-small Morse function. An almost complex struc- 
ture J calibrated by to determines a Riemannian metric on M. For  a Morse 
function f :  M ~ R whose gradient flow is of Morse-Smale type, we denote by 
C , ( f )  the Morse complex associated to f [Sa]. 

Under the assumption that (M, ~o) is monotone or cl(M)(rcz(M)) = 0, or 
the minimal Chern number N > n, they proved that HF,( f ,  J) is isomorphic 
to H , + , ( C , ( f ) ) |  A~, ~-H,+, (M;  Z / 2 ) |  A,o are graded A,,-modules. Here 
H , ( M ;  Z/2) |  A,o is the tensor product of graded modules. This result and 
Theorem (2.8) yield Theorem (2.15). 

In this section, we compute the modified Floer homology group of (H, J) 
on a weakly monotone symplectic manifold (M, e)) without the assumption 
concerning the minimal Chern number. 

First  of all, we show the following 

Lemma 4.1 For a fixed C > O, there exists a positive integer jo(C) such that Jor 
Yc, ~ 6 ~ ( f )  satisfying as(Y ) - ai(~) < C, #i(Y) - PI(Y) <= 1, all solutions of 
the following equation with e = 1/j are independent of t-variable for j > jo((') 
and a generic almost complex structure J. 

Ou Ou 
O-s + J(u)-~ + e . (Vf)(u)  = 0 (4 2) 

lim u(s, t) = Y(t), lim u(s, t) = y(t) (4.3) 
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Proof. First of all, we assume that t f [  < 1 , f is  sufficiently C2-small such that 
all the 1-periodic solutions of the equation 

2(t) + X~y(x( t ) )  = 0 

are constant solutions at critical points o f f  and g~.i(2)=/~y()~) for 0 < 
< 1. If the statement is false, we can choose a sequence of integers jt diverging 

to + oe and a sequence of solutions ut of (4.2), (4.3) with e = 1/jt.  
Firstly, we consider the case that c~(u,) < 0. (Note that c~(u~) does not 

depend on I as long as uz is a connecting orbit from 2 to )7.) Since the energy of 
uz is uniformly bounded by C + 2, after choosing a subsequence if necessary, 
u~ converges, up to J-holomorphic bubbles, to a solution u~ of(4.2) with e = 0, 
i.e. a J-holomorphic mapping and u~ extends to a J-holomorphic mapping 
from the Riemann sphere to M. The limit u~ may be a constant mapping. (If 
c + 0, only constant solutions of (4.2) are constant mappings to critical points 
off. On the other hand, every constant mapping is a solution of (4.2)(4.3) 
with e = 0.) For  real numbers o~, ~ denotes the reparametrization 
(s, t) "-* (s + at, t) of the infinite cylinder R x $1. The above argument yields 
that, after choosing a subsequence if necessary, u, o0~ also converges to 
a J-holomorphic sphere up to J-holomorphic bubbles. Let {Sj} be the set of 
all possible J-holomorphic spheres appearing as a limit of u~ o ~ or bubbles. 

Claim 1 {Sj} is not an empty  set. 

Proof  o f  Claim 1 Let 6 be the injectivity radius of M and v: R x $1 _.., M 
a smooth mapping satisfying the following asymptotic condition. 

slim_| v(s, t) = x, sl im.  v(s, t) = y . 

Denote by v the extension ofv to S 2 -o M. lfv satisfies [v,(s, t)(~)l < 6 for all 
(s, t) ~ R x S 1, v is homologous to zero. The condition that c~(ut) < 0 implies 
that ut is not homologous to zero, hence there exists (st, tt) such that 
{ut,(s~, h)@t) [ > 6. We reparametrize ul by u[(s, t) = ul(s + sl, t + tl), then u[ is 
still a solution of (4.2) with e = 1lit, and satisfies 

u[,(0, 0) ( ~ t )  > 6  (4.4) 

Since we have a uniform energy bound, the weak-compactness argument tells 
us that ut' converges to a J-holomorphic sphere possibly with J-holomorphic 
bubbles, which are also J-holomorphic spheres. The condition (4.4) assures 
that at least one of the J-holomorphic spheres above is not a constant 
mapping. 

For any d-holomorphic sphere S in {S j} ,  we can find a subsequence {lp} of 
{/} and {ape R} such that S is the limit of utp ~ Ot~ or a bubble attached to it. 
Choose subsequences successively and denote the subsequence by the same 
~ymbol {/}. 



530 K. Ono 

Suppose that each J-holomorphic spheres Sj appears as the limit or 
a bubble of (possible reparametrized) solutions ul of (4.2). 

Claim 2 {Sj} is a finite set. 

Proof  o f  Claim 2. Let {T,} be J-holomorphic spheres obtained as limits of 
(reparametrized) solutions ut of (4.2) with ~ = 1/jl except finitely many points 
in R x S 1 and {Ti.h[ 1 < h < d(i)} J-holomorphic bubbles attached to Ti. 
Clearly, we have {St} = {T~, Ti, h}. For  any e > 0, we can take 1 large enough 
such that there exist mutually disjoint intervals [R~, L,] (i = 1, . . . , k )  and 
ul([Ri, Li] x S 1 ) is close to Ti and possibly some bubbles Ti., enough to satisfy 

~ i  2dtds  d(i) 1 ' Oul 2 ~U l 1 X f  > E(Ti) + ~_, E(Ti, h) - ,g. 
2R,  0 OS "q- C~t +j-~" h=l  

Hence 

E(ut) > E(TI) + ~, E(Ti, h) - ke , 
i=1 h= l  

if {Ti} contains at least k J-holomorphic spheres. On the other hand, we have 
E(ut) ~ C + 2 and E(S) = Ss e) > 1 for any J-holomorphic sphere S, because 
[co] is an integral class. Since e is arbitrary, the cardinality of {S j} = {T~, Ti,~} 
is bounded by C + 2. 

Remark. Hofer and Salamon showed the estimate E(S) > h for some positive 
constant h without assuming [co] is an integral class. 

Claim 3 cl(ul) = Y.j cl(Sj). 

Proof  o f  Claim 3. Let U be a regular neighborhood of U { T i w ( u  Ti.t)}. For 
a fixed e > 0, there exists I and sequence of real numbers - oo = Lo < R1 < 
L1 < R 2 < L 2 <  ... < R k < L k < R k + l =  + oo, such that 

and 

Imut([Ri ,  Li] x S  1) c U , 

~u l ( s , t )  < e i f s < [ L i ,  R i + l ] f o r s o m e i = 0  . . . . .  k .  (4.5) 

We choose e < 6, then UtlR,, UtIL, bound disks D/-, Di + in f-balls, which are 
unique up to homotopy. It is easy to see that Ci = D[- w ul([Ri, Li] x S 1 ) w D/ 
is homologous to Tiw(wT~.t). The condition (4.5) assures that 
D~-_ 1 wul ( [L i -1 ,  Ri] x S 1)w D7 is homologous to zero. Therefore we get 

c , (u , )  = y~ c , (C , )  = ~, ( c , ( r i )  + Y, c,(W,, ,))  . 
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Since ca (ut) < 0, one of the J -ho lomorph ic  spheres Sj has negative Chern 
number. However  the weak monotonic i ty  excludes this possibil i ty for a gen- 
eric a lmost  complex structure J. This is a contradict ion.  

F r o m  now on, we assume that  the Chern number  o fu  = uz is non-negative.  

Case 1 rank du = 0 on an open subset U o f  R x S ~. 

The unique cont inuat ion  theorem [A],  I-J, Lemma 2.6.1] yields that  u is 
a constant  mapping.  However  we assumed that  u is t -dependent,  and this is 
a contradict ion.  

Case 2 rank du = 1 on an open subset U o f  R x S ~. 

In this case, the image of U by the mapping  u is an immersed curve 
7: (a, b) ~ M. Since ~ and J~ are linearly independent ,  we have 

OU ~U r t 
T~ (s, t) = Ts (s ,  t ) 

and 

OU OU r ~(s ,  t) = ~ ( s ,  t') 

for (s, t), (s', t ' )  ~ U satisfying u(s, t) = u(s', t'). This fact implies that  u(s, t) = 
7(2s +/~t)  after a reparamet r iza t ion  of~ and 2 and/~ are some constants  in R. 
In fact, we can show that  the foliat ion given by the level sets of u is invariant  
under t ransla t ions  in the s-direct ion and the t-direction, which implies that  the 
level sets are segments of paral lel  straight lines. Since ~ : (a, b) ~ M satisfies 
the equat ion 

2 - J p  

we can extend it to 7: R --* M as the integral  curve of the equat ion above 
which coincide with the original ~ on (a,b). We define a mapping  
u:,: R x R ~ M by u,~(s, t) : =  7(2s + #t). Then u~ is a solut ion of (4.2). Apply 
the unique cont inuat ion theorem to u~ and the composi t ion  of the project ion 
p : R x R  ~ R x S a w i t h u ,  w e ' g e t u y = u o p o n R x R .  

If/~ = 0, 7 is a gradient  t ra jectory o f f  and  u degenerates  to 7 on the whole 
domain R x S ~. Since u is a t -dependent  solution, we get/~ 4: 0. 

If 2 = 0, ~(t) = 7(/~t) is a 1-periodic solut ion for ~(t) = X~i(x(t)) .  However,  
there are no  non-tr ivial  1-periodic solutions by our assumption,  hence 2 4: 0. 

We can assume that  2 = 1 and u(s, t) = y(s + pt) with # 4: 0. Since u is 
l-periodic in t-variable,  7 ( s )=  7(s + I~). On the other  hand, (~(s), V f ) =  
-- e{1/(1 +/~2)} It ~Tfll 2 < 0, hencef (y ( s ) )  4=f(y(s + #)), which is a contra-  

qiction. 
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A solution u is 
v : R x S ~ - - * M  such 
u a simple solution. 

called multiple, if there exist an integer k > 2 and 
that u(s, t ) =  v(ks, kt). If u is not  multiple, we call 

Case 3 u is simple. 

If u is somewhere injective, we can apply the same argument  in [MD-1]  to 
prove that Jt/(s ~) is a manifold of dimension ps(s - pf(~) a round u for 
a generic almost complex structure J. On  the other hand,  there is a 2-para- 
meter family of solutions u,,,(s, t) = u(s + a, r + p) in Jt/(.~, )~). Hence 
/~I(y) - / 9 ( ) ) =  d imJg(2~ ,~)>  2, which contradicts our  assumption that 

19(2z) - ~ ( ~ )  < 1. 
If u is not  somewhere injective, there are open subsets U1 and U2 in R x S 1 

such that u(U1) = u(U2). We may assume that rank du = 2 on U1 and U2. 
If u satisfies the following condition: 

and 

~ ( s ~ ,  t~) = 
Ou 
~s (s2, t2) 

~u Ou 
~-~ (s,,  t , )  = -~(s2,  t2) 

for all (sl, t l )  E U1 and  (s2, t2) ~ U2 satisfying U(Sl, t l)  = u(s2, t2), then the 
unique cont inuat ion  theorem yields that  u(s, t) = u(s + a, t + z) for some 
a, z ~ R. If a 4= 0, the unique cont inua t ion  theorem implies that the energy 
E(u) is infinite, which contradicts our hypothesis. Therefore a = 0, and u is 
a multiple solution or degenerates to a gradient trajectories of f according to 
cases that z is a rat ional  number  or not. However we assumed that u is 
a simple solution. Hence these cases never happen. 

We assume that u does not  satisfy the above condition. Since u is not 
somewhere injective, there is a diffeomorphism q~:U1 ~ U2 between open 
subsets of R x S ~ such that u oq2[u ' = U]v,. Since u o~b and u have the same 
image on U~, there are four functions a, b, c, d on  Ua such that 

(a ,b , c ,d )  4=(1, O,O, 1), 

~s Ou Ou 
( (a(s, t)) = a.-~s(S, t) + b .-~(s,  t) 

and 

Ou s t ~u ~u -~( ~( , )) = c . ~ ( s ,  t) + d . - ~ ( s ,  t) . 

From the equat ion (4.2) for u on U1 and U2, we get 

{(a - 1) + cJ}-~s + {b + (d - 1)J} = 0 o n  O 1 . 
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Since (a, b, c, d)4= (1, 0, 0, 1), Ou/Os and Ou/Ot are linearly dependent over 
complex numbers. Hence the gradient vector field Vfis  tangent to a 2-dimen- 
sional immersed surface u(U,)  = u(Uz). By the discussion in Case 1 and 2, 
we can assume that u is an immersion on an open dense subset of R • $1. 
Hence the image of u is swept by gradient trajectories o f f  More precisely, 
the gradient vector field Vf  is tangent to the image of u on an open dense 
subset. 

If the statement of Lemma 4.1 is false, we can choose a sequence of integers 
jl diverging to + Go and a sequence of t-dependent solutions u~ of (4.2), (4.3) 
with e = 1~jr. If cl(ut) > 0 or oJ(ut) 4= 0, ut is not homologous to zero. Hence 
the argument in the proof of Claim 1 and 2 implies that at least one of the 
J-holomorphic spheres appearing in the limit of u~ is nontrivial. Since u~ is 
swept by the gradient trajectories of f, i.e. the gradient vector field Vf  is 
tangent to the image of ut almost everywhere, the C ' - l imi t  of (reparametrized) 
connecting orbits ut should also be swept by the gradient trajectories off. This 
also holds for J-holomorphic bubbles, since they are the C 1_limit of rescaled 
mapping of ut, to which the gradient vector field Vf  is tangent. Since a 
J-holomorphic sphere has only finitely many singular points, i.e. the points 
where the differential of the J-holomorphic mapping is not injective, only 
finitely many gradient trajectories o f f  contain singular points of S. On the 
other hand, if a part of a gradient trajectory ?: R ~ M o f f  lies on S but the 
whole image of 7 is not contained in S, 7 should pass one of the critical points 
of S. Hence, there are gradient trajectories contained in S completely, so 
S should contain at least two critical points o f f  

The Sard-Smale transversality argument [Sm] tells us that for given two 
points p and q, we can choose a generic almost complex structure J such that 
there are no J-holomorphic spheres containing p and q with the Chern 
number less than n + 1. Since S contains at least two of the critical points off, 
we have c,(S)  > n + 1. Then the proof of Claim 3 implies c,(ul) > n + 1, 
because there are no J-holomorphic spheres of negative Chern number for 
a generic almost complex structure J. 

Recall that/Ar - -  /Ae.f ()~) = ]Af(.~) - -  ,/Af(y) = inds(x ) - inds(Y ) + 2c,(u), 
where inds(x ) denote the index of the Hessian of f a t  a critical point x. Then we 
get ps(s - gr(Y) > 2, which contradicts our assumption. 

If cl(ut) = ~o(u~) = 0, the argument in [S-Z, Theorem 7.3(2)] tells us that 
there are no t-dependent solution of (4.2), (4.3) for a sufficiently small ~ = l/j. 

Case 4 u is a multiple solution. 

In this case, u(s, t) = v(ks, kt) and v is a simple solution of the following 

Ov ~v 
~---~ + J(v)-~ + ~ . (V f ) ( v )  = O. 

Note that the argument in [S-Z, Theorem 7.3(2)] does not require that u is 
a simple solution. Hence in the case that c , ( u ) -  ~o(u)= 0, we have no 
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t-dependent solutions for a sufficiently large j. We assume that c~ (u) 4:0 or 
co(u) :I: 0. Since c~(M) and [co] are integral cohomology classes, the multipli- 
city k of u is uniformly bounded as long as u is a connecting orbit from ~ to ~. 
If c~(u) = O, the argument in case 3 implies that there are no simple solutions 
for a sufficiently small e, which implies that such a u does not exist. 

If c~(u) > 0, the index of the linearization at the simple solution v is at most 
- 1. Hence such a v does not exist for a generic almost complex structure J, 

which implies that such a u does not exist either. [ ]  

Remark. If a symplectic manifold (M, co) satisfies the condition that ca(A) = 
2. co(A) for any spherical 2-homology class A with 2 # 0, the condition that 
as(~ ) - a i (~)  < C follows automatically from #i(~)  - #I(Y) = 0, 1. There- 
fore the conclusion of Lemma (4.1) holds for such symplectic manifolds 
without assuming the energy bound. If 2 < 0, the weak monotonicity is 
equivalent to the condition that the minimal Chern number N > n - 3 or 
dim M -- 6. If ca (A) = 0 for any spherical 2-homology class A, the first part of 
the proof yields that  the same conclusion holds. Namely we get the following 

Corollary 4.6 Let (M, co) be a closed symplectic manifold such that ca(A) = 
2. co(A)for any A ~ n2(M) and a real constant 2. Suppose that the minimal 
Chern number N > n - 3 or dim M = 6 / f  2 < 0. Then there exists a positive 
integer jo such that for ~, ~ ~ ~ ( f )  satisfying/~l(~) - #y0 ~) < 1, all solutions of 
(4.2)(4.3) with e = 1/j are independent of t-variable for j >J0 and a generic 
almost complex structure d. 

We choose a C2-small Morse funcfionfsatisfying - 1/8 < f ( x )  < 1/8 and 
{ri} = { j  + 1/2 I J ~ Z}. Let {(Hs, Js)10 < s < 1} be a generic path from ( f  J) 
to a generic pair (H1, Ja), which is sufficiently small in C a-sense. More precisely, 
the set of critical values of an, is disjoint from {j  + 1/2 + 6 [ j ~  Z, - 1/16 < 
6 < 1/16} and 

Hs(t, x) < "-~ 

for all x e M and s e [0, 1]. We prove the following 

A 

T h e o r e m  4.7 HF,(H1, J1) ~ H ,  +.(M; Z/2) | A,o. 

Proof Let Y, )7 ~ ~ ( f )  satisfy k + 1/2 < ai(Y ), ai(37 ) < I + 1/2 and/~s(~7) - 
/~i(~7) < 1. By Lemma (4.1), there exists a positive integerjo(k, l) such that all 
solutions of the equation (4.2) with ~ --- 1/j are independent of t-variable if' 
j >j0(k, l). In particular, the equation (4.2) has no non-trivial solutions if 
#s(~) = #s(Y), and  the chain complex C,.(k,o(1/j . f ,J) is isomorphic to 
C , + . ( f )  | Z/2[F](ka).  The argument in the proof  of Theorem (3.4) yiel&' 
a chain homomorphism ~b~k.t): C,.(k.t)(H, J)  ~ C,+.,(k,O(1/j.f,J) 
C,  ~ , ( f )  | Z / 2 [ F  ](k,t~, which induces an isomorphism between homology 
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groups. Moreover the argument in the proof of Lemma (4.1) yields that there 
exists an integer J l(k, I) > jo(k, l) such that all the solutions of the equation 
below 

Ou Ou 
+ Jtu)~: + cp(s)(Vf)(u) = 0 

Os tT~ 

lim u ( s , t ) = x ~ ( f ) ,  l i m u ( s , t ) = y ~ ( f )  
s ~ - o o  s ~ c t 3  

(y, u- ~ u) ~(y,u +) 

are t-independent, if/~(~) =/~(37), where ~ = (x, u-), 37 = (y, u+), and a positive 
function q~(s) on R satisfies 

1 
I~o(s)l < 

=j , (k , I ) '  

and 

1 1 
~ 0 ( s ) = - - f o r s <  - R ,  r p ( s ) = - - f o r s > R ,  

jx j2 

for some R > 0. t-independent solutions of the above equation are reparamet- 
rized paths of the gradient trajectory o f f  Since we assume that the gradient 
flow is of Morse-Smale type, gradient trajectories are constant paths at 
critical points off, if the Morse indices at end points coincide. This observa- 
tion implies that the induced homomorphism ~)(k,l), between homology 
groups does not depend on the choice of j > jl(k, l). Therefore homomor-  
phisms { 4~lk,l).} commute with homomorphisms q~tk,t), 7Jtk3) in the diagram 
(3.1). Thus {~blk,t).} induces a homomorphism 4~: HF.(H,J)  
H.+,(M; Z/2) | A~. Since {qStk,tl. } are isomorphisms, q~ is an isomorphism. 
By the construction, it is easy to see that th is Ao-linear. [] 

Theorem (3.4) and Theorem (4.7) yield 

Theorem 4.8 Let (M, e)) be a weakly monotone symplectic manifold such that 
[~o] e Ira(HE(M; Z) -~ H2(M, R)). Then for a generic pair (H, J), 

ff#,It-/, J) ~ n ,  +.(M; Z/2) | Ao,. 

Theorem (1.1) is equivalent to the following 

Corollary 4.9 Let (M, r be a weakly monotone symplectic manifold and 
H a Hamiltonianfunction such that all periodic solutions of(2.1) are nondegener- 
ate. The number of periodic solutions of(2.1) is bounded below by ~p bp(M ; Z/2), 
where bp(M; Z/2) is the p-th Z/2-Betti number of M. 
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Proof  If [to] is an integral class, the conclusion is a direct consequence of 
Theorem (4.8). The same conclusion holds if [to] is in H2(M; Q). We shall 
show that the general case is reduced to this case. Let {xi} be all periodic 
solutions of (2.1), Ni(e) an e-neighborhood of the orbit  of xl, and qSi a cut off 
function, i.e. q~i = 1 on Ni(~/2) and ~bi = 0 outside of Ni(3e/4). ~h . . . . .  ~lq denote 
closed 2-forms on M representing generators of H i ( M ;  R). Fo r  a sufficiently 
small e, N~(e) has the same homotopy  type as the orbit  of x~, hence 
H2(Ni(e);R)=O. Thus r l j lN,(e)=dgj ,  i for some function 9j, i on Ni(e). 
r/: = qj d(Zi  ~i" 9j.i) is cohomologous  to r/j, with support  in M - ui  Ni(e/2). 
It is easy to see that there exists tr > 0, such that the equat ion (2.1) has exactly 
same number  of solutions for symplectic forms to' = to + y, ak" rl'k if lakl < a. 
Since H2(M;  Q) is dense in H2(M;  R), there exist real numbers  ak such that 
to' e H 2 ( M ;  Q) and lakl < a. Moreover ,  there are no J -ho lomorph ic  spheres 
for a generic J calibrated by to' and tamed by to. This condi t ion is the only 
one we use in the proof  of Theorem (4.8). Therefore we get the desired 
estimate. [ ]  

Since the weak monotonic i ty  is automat ic  in dimension 2, 4 and 6, we get 

Corollary 4.10 Let (M, co) be a closed symplectic manifold of  dimension 2, 4 or 6. 
I f  all periodic solutions of (2.1) are non-degenerate, the number of  periodic 
solutions is at least ~, bp(M; Z/2). 
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Note added in proof 

After finishing this paper, we showed that a natural homomorphism HF,(H,J)~ 
H"~,(H,J) is surjective. We also noticed that abuse of notation (H ", J~), (H a, Ja) may 
cause misunderstanding in the proof of Theorem 3.4. Precisely, the isomorphism 

HF,(Ho,, J~,) --, HF,(Ht~, Ja) is obtained by composition of HF,(H w Js,) ---' HF,(Hs,,,, JsH). 


