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Introduction 

T h e  focus  of  t h i s  article is the  i n t e rp l ay  b e t w e e n  t w o  d i s t i nc t  a r eas  o f  d y n a m i c a l  
s y s t e m s .  The  f irst  is the  s t u d y  of  i t e r a t i on  o f  p o l y n o m i a l s  in o n e  c o m p l e x  va r i ab le ;  
the  s e c o n d  is t h e  s t udy  o f  a u t o m o r p h i s m s  of  the  o n e - s i d e d  shift. 

T h e  m o s t  c o n s p i c u o u s  fea ture  of  a c o m p l e x  p o l y n o m i a l  is its f i l l ed- in  Jul ia  
set; t h i s  is the  set of  p o i n t s  w h o s e  o rb i t s  s tay  b o u n d e d  u n d e r  i t e ra t ion .  T h e  
f i l led-in Julia se t  of  a q u a d r a t i c  p o l y n o m i a l  is one  of  t w o  types :  it is e i ther  
c o n n e c t e d  in w h i c h  case  the  u n i q u e  cr i t ical  p o i n t  be l ongs  to the  f i l led-in Ju l ia  
set, o r  it is a C a n t o r  se t  a n d  the  cr i t ical  po i n t  e s capes  to  ~ .  In  h i g h e r  deg rees  
the  s i t u a t i o n  is m o r e  compl i ca t ed .  

W e  c o n s i d e r  the  space  X d of  m o n i c ,  cen te red  p o l y n o m i a l s  of  deg ree  d; t hese  
are  p o l y n o m i a l s  o f  the  f o r m  z ~ + ad -  2 Zd- Z + . . .  _1_ ao" Every  p o l y n o m i a l  o f  degree  
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d is affine conjugate to one that is monic and centered (by a conjugacy that 
need not be unique). The conneetedness locus is the subset of Xa consisting 
of polynomials whose filled-in Julia set contains all the critical points. The other 
extreme is the subset, Sd, called the shift locus. This set contains the shift-like 
polynomials; these are polynomials whose filled-in Julia set contains no critical 
points. In this case the filled-in Julia set is a Cantor set. If d > 2  there are 
many polynomials that are in neither the shift locus nor in the connectedness 
locus. In fact, there are polynomials whose Julia set is a Cantor set but which 
are not shift-like [Br], [B2]. 

This paper is motivated by what, at first, seems to be a question in combina- 
torial dynamical systems - the structure of the group automorphisms of the 
one-sided d-shift. Recall that the sequence space, Zd, is the space of semi-infinite 
sequences with entries from an alphabet of d symbols and that the shift map 
acts on sequences by dropping the first entry of each sequence. The automorphism 
group Autd consists of homeomorphisms of Zd that commute with the shift. 
The groups Aut d were originally studied by Hedlund [HI in the 1960's; he 
proved the important result that Aut2 consists only of the identity and the 
symbol interchange. More recently, Boyle, Franks, and Kitchens [BFK] showed, 
by contrast, that when d > 2, Aut d is infinitely generated with a rich algebraic 
structure. Furthermore, Ashley [Ash] exhibited an efficient set of generators 
called minimal marker automorphisms. 

Our goal in this paper is to show that there is a surprising relationship 
between the topology of the shift locus and Aut d. In particular, we present 
a geometric method for realizing automorphisms of the d-shift via loops in 
the shift locus. 

The bridge between shift-like polynomials and automorphisms of the shift 
relies on the following fact: if P is a shift-like polynomial of degree d, its dynam- 
ics, when restricted to its Julia set, are conjugate to the one-sided shift on d 
symbols. Moreover, since the polynomial restricted to the Julia set is hyperbolic, 
the Julia set varies continuously as we change the polynomial within the shift 
locus. Thus, a closed loop in the shift locus induces an automorphism of the 
shift in the natural way: we simply follow points in the corresponding Julia 
sets as we traverse the loop and the induced map on the Cantor set is an 
automorphism of the d-shift. We call this automorphism the monodromy in- 
duced by the loop. For  example, if we look at the monodromy induced by 
following a loop which winds once around the Mandelbrot set, then we find 
that the induced automorphism is the unique non-trivial element of Aut2. In 
general, we have a representation: 

0~: ;zl (Sd)-} Auta. 

Our main result is: 

Theorem The map Od is a surjection. 

Our methods involve two similar constructions, both of which relate the struc- 
ture of the dynamical plane to that of the parameter space. The first construction 
involves "spinning the lowest critical value" around its level curve (in the dynam- 
ical plane) of the rate of escape potential. This generates loops in the shift 
locus which essentially produce the minimal marker automorphisms. The second 
construction deforms the polynomial through different levels of the potential. 
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This process produces a tree whose vertices correspond to polynomials to which 
we apply the spinning construction. 

There has been other related work on the realization of automorphisms 
of the shift. For  example, Wagoner  [W] has a geometric method for realizing 
automorphisms of the two-sided shifted via monodromies  of Axiom A basic 
sets for diffeomorphisms of high dimensional spheres. Also, there are related 
results for rational maps in [GK] .  

The paper is organized as follows. In w I we discuss the quadratic case and 
use it to introduce our methods. In w we smnmarize basic results, both from 
complex analytic dynamics and from symbolic dynamics. The spinning construc- 
tion is discussed in detail in w In w we construct the tree which yields the 
enumeration of the minimal generating set of Aut3, and we extend this result 
to the degree d case in w In the final section, we briefly describe the relationship 
between our work and the elegent description of cubic parameter space con- 
tained in the two papers of Branner and Hubbard [BH1, BH2I. 

Acknowledgements. We would like to acknowledge the hospitality of the Mathematics Institute 
at the Warwick University, the Max-Planck Institut fiir Mathematik in Bonn, the Institute 
for Advanced Study in Princeton, and the T.J. Watson Research Laboratories of IBM for 
partial support while this paper was being written. In addition, we would also like to acknowl- 
edge many helpful conversations with J. Ashley, M. Boyle, A. Douady, J. Franks, L. Goldberg, 
B. Kitchens, J. Milnor, M. Shishikura, D. Sullivan, and especially B. Branner and J. Hubbard. 

1 Quadratic maps 

1.1 The shift 

Let 27 d denote the space of sequences whose entries are the integers 0, 1 . . . .  , d -  1. 
The space Sd is called the (one-sided) sequence space on d symbols. The set 
I; d is a Cantor set with respect to the product topology. In fact, for s = (s o Sl s2...), 
t=( to  ta t2 ...)ENd, we define the distance 

d(s, t)= ~ 6(s~.t,) 
2' 

i = O  

where ~ is the Kronecker  delta function. This gives a metric on Za, and this 
metric induces the product topology (see [D],  [Fr] ,  or  [-W]). 

In this metric, two sequences are close provided their first few entries agree. 
That is, if s i=t l  for i=0 ,  ..., n, then it follows that 

1 
d (s, t) < 2~. 

The (one-sided) shift map on X d (the d-shift) is given by 

o(so s~ s~ ...) =(s~ s~ s~ ...), 
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-1 7 

Fig. 1. Construction of I 0 and I t 

i.e., a simply drops the first entry of each sequence in Za. It is well known 
that a is continuous and d-to-1 [D, S]. The shift map is important in a variety 
of settings, including dynamical systems, probability, coding theory, and infor- 
mation theory. 

1.2 The quadratic case 

Surprisingly, automorphisms of the 2-shift arise naturally in the study of dynam- 
ics of quadratic polynomials. Any quadratic polynomial is affine conjugate to 
a polynomial of the form P~(z)=z2+c. The filled-in Julia set of Pc, denoted 
Kc, consists of the set of points whose orbits are bounded, and the Julia set, 
Jc, is the frontier of Kc. The Julia set Jc may also be characterized as the closure 
of the set of repelling periodic points of Pc or as the set of points at which 
the family of iterates of Pc fails to be a normal family. These definitions were 
shown to be equivalent, both by Fatou [F]  and Julia [J] (see [B] for details). 

The polynomial Pc has a unique finite critical point 0 with critical value 
c. The orbit  of 0 plays a crucial role in determining the topological nature 
of J~, as illustrated by the following theorem. Although the result is well-known, 
we include a sketch of the proof of Part B. See [DH2],  [B], or [D] for more 
details. 

Theorem 1.1 Let P~(z) = z 2 + c. 

A. / f  {P~n(0)} is bounded, then K c and Jc are connected. 
B. I f  P~n(O)~ oo as n ~ 0% then J~ exhausts Kc and is a Cantor set which is 
homeomorphic to Z2. In this case, P~lJ~ is topologically conjugate to the 2-shift. 

Remark. Throughout this paper, for the sake of readability, if 7 is a simple 
closed curve, we will call the interior of the region bounded by ? the interior 
of~. 
A sketch o f  proof o f  Part B. It is possible to find a simple closed curve 7 
that passes through c whose inverse image is a figure eight contained in the 
interior of 7- Since the critical value lies on 7, Pc- i (y) is a wedge of two simple 
closed curves meeting at 0. Let Io and 11 denote the interiors of these two 
curves. See Fig. 1. 
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Fig. 2. The loop e in C - M  
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Since all points in the exterior of I o u 1 1  escape under  iteration, it follows 
that J ~ c l o u  l ~ . 

We now use the itinerary of any point relative to Io and 11 to define the 
conjugacy to Z2. More precisely, if z~J~, then P j ( z ) e l o w l  1 for all j, so we 
define 

~(z)=(So Sl s2...) 

where s j = 0  iff Pj(z)~Io,  s i=  1 iff Pj(z )~I  1. Standard arguments [B, D] show 
that d: J ~ Z 2  is a homeomorphism. By the definition of d, aod=(oP~.  Thus, 
P~IJ~ is conjugate to the shift, q.e.d. 

The following classical result is fundamental  to our approach. See [B], [D], 
or [DH2].  

Proposition 1.2 Suppose P~"(O)~ oo as n ~ oo. Then there exists N > 0  such that, 
for  all zeJ~ and n >  N, J(P~")'(z)[ > 1. 

We remark that a set such as Jr on which ](P~")'] > 1 is called a hyperbolic 
set. Compact hyperbolic sets are important  in dynamics because they are struc- 
turally stable ([S], [Fr]) ,  which means that they are preserved (up to conjugacy) 
by perturbations. In particular, in our case, J~ varies continuously with c. 

The set of c-values for which K c is connected is known as the Mandelbrot  
set. We denote this set by M. It is known that M is a closed, connected set 
contained in the disk {c[ ]c[ <2}. See [DH1, Ma]. 

Consider a closed loop in the c-plane ~: [0, 1] ~ C - M  which winds once 
around M. See Fig. 2. 

For  each t, J,l~) is a Cantor set which is conjugate to Z2 by Theorem 1.1, 
and due to the hyperbolicity mentioned in Proposition 1.2, we get a continuously 
varying one-parameter family of conjugacies 
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Since ~(O)=e(1), the map 

I/sl : J(g(o)) -+ J(g(o)) 

is an automorphism of J(P,(o)) which commutes with P~(o). We call []Jl the mono- 
dromy associated to ~. 

We may use the coding map # introduced above to pass from the monodromy 
qJ~ of J(P~(o)) to an automorphism of Z 2. We have 

a(g(o)) + ' >  a(g(o)) 

~2 0 ) ~2 

where 0 = { o ~,1 ~ E- 1 Hence 0 is a homeomorphism. 
The map 0 commutes with the shift. In particular, note that we have P~(0 ~ ~t 

= ~'t ~ P~(0) for all t. Therefore, 

=~'og(o)OgSl of-~ 
= ~o g(o)O~,-I o(ol/sl o ( - '  

~ 0-o O. 

We have now constructed a shift-commuting homeomorphism of z~ 2. Such a 
map is called an automorphism of the shift. 

Automorphisms of the d-shift form a group which we denote by Autd. Since 
Aut  z consists of just  two elements, the identity and the automorphism that 
interchanges each symbol, it is natural  to ask which of these two automorphisms 
is the map 0. 

Theorem 1.3 Suppose 0 is the automorphism of the 2-shift induced by the mono- 
dromy associated to a closed curve which winds once around M in C - M .  Then 
0 interchanges 0 's and i 's in Z 2 . 

Proof The automorphism 0 is invariant under homotopies in C -  M, so it suffices 
to consider a particular loop in C - M .  Let c t ( t )=p(cos t+i  sin t) where p > 2 .  
Suppose ]zl >p .  Then 

18,)(z)l = Iz 2 + =(t)l > Iz 2 1 - p  

>__lzlZ-lzl 

I z l (p -1 )  

>lzl. 

Hence IP,%(z)l--~ oo if Izl__>p. Therefore we may use the circle [zt=p as the 
curve in the proof of Theorem 1.1 whose preimage defines I0 and 11. That 
is, for each te [0, 1], let Io(t) and 11 (t) denote the two components of the interior 
of the wedge given by 

g(,)' (Izl =p). 
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We may choose the indices 0 and 1 so that lo(t ) and 11(0 vary continuously 
with t. Indeed, Io(t) and 11(0 are given by the two branches of w ~  as 
w ranges over [w[ <p. Hence, as ,(t) traverses the circle of radius p, we obtain 
the maps ~k~: J~to)~ J, it) using the labelling map. Note that the two components 
lo(0 and 11(0 are interchanged when we return to P~(0), that is, lo(1)=I1(0 ) 
and I0(0)=11(1 ). It follows that 0 interchanges 0 and 1 in the first entry of 
any sequence, so 0 is the non-trivial automorphism of the 2-shift. q.e.d. 

Remark. One can see directly that 0 interchanges O's and l's at the jth entry 
of any sequence by noting that 

P, i1~o~1 = 01 oP~}ol 

and then invoking the above argument. 

1.3 Spinning the critical value for quadratics 

In this section we will give another method to produce the non-trivial 
automorphism of the 2-shift in complex dynamics. This technique will be the 
basic operation by which we realize nontrivial automorphisms of the d-shift 
later. The main tool is the Measurable Riemann Mapping Theorem (MRMT) 
due to Morrey [Mo] and Ahlfors and Bets [AB]. The idea of using techniques 
from quasiconformal mappings in dynamics is due to Sullivan [Su]. 

Throughout this section, we will fix c=e(O)r where c~(t) is the loop men- 
tioned in w Let D,={zl [z[<r}. Following Douady and Hubbard [DH1], 
we define the potential, or rate of escape function by 

h(z)= lim log+ [P~n(z)[ 
. - ~  2" 

The map h is a continuous function on C (see [DH1] or [BH1] for details). 
From the definition, we see that 

h(P~(z))=2h(z). 
Define 

F~= {zEC[h(z)> h(O)}. 

It is proved in [DH1] that there is a unique analytic homeomorphism 

~c: F~ ~ C - D R  

which gives a conjugacy between Pc on Y~ and z ~ z  2 on C--DR where R 
= exp(h(0)). If r>R, it is known that ~bc maps the level curve 

h(z)=log(r) 
to the circle I zl = r. 

For fixed t, the preimage under <Pc of the ray p ~ p exp(2 ~it), p > R, is called 
the external ray of argument t for Pc. We denote this external ray by 0,. The 
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ld-h(z) = 2 h(O) 

Fig. 3. Polar coordinates on F~ 

external rays and level sets of the potential h define a system of polar coordinates 
on F~. See Fig. 3. 

The critical value c is in F~ and the value 4'c(c) plays a special role in complex 
dynamics. In  particular, it determines the quadratic polynomial up to affine 
conjugacy. We call the value log[4'c(c)l the escape rate of the critical value 
and Arg 4'c(c) its external angle. 

We now construct a map that we shall later show to be quasiconformally 
conjugate to Pc. This construction will become the basic procedure by which 
we deform polynomials in the "spinning construct ion" below. Choose Pl,  P2 
such that 

h(c)<pl "<P2 < 2h(c) 

and consider the annu la r  region 

A = {zt p, <h(z)<pz}. 

Define a D e h n  twist ~ on A as follows. Let r i = e ~ for i = 1, 2. Let 

A ' =  {zl rl  =< Izl_-< re}. 

Note that q5r maps A onto A'. Define the usual Dehn twist T on the annulus 
A' by 

T(r e2"i')= re2~1( + ~ ) .  

Then set 
(z) = 4 '21  o To 4'c(z). 

The map z is not holomorphic;  however, ~ is a quasiconformal homeomorphism 
of A. 
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Since the annular  region A lies between the level sets of the potential contain- 
ing c and P~(c), it follows that the inverse image P~-I(A) is an annular  region 
lying between the level sets of the potential containing 0 and c. Now define 

F(z)={~(p~) z if zr a(A) 
"c ) if ZEPc- I(A) 

Clearly, F is a degree two branched cover which differs from Pc only on 
P~-I(A). Although F is not a polynomial, the M R M T  guarantees that it is 
quasiconformally conjugate to a polynomial - in fact, to Pc. 

Proposition 1.4 The map F is quasiconformally conjugate to Pc. 

Proof. We define a new conformal structure # on C which is preserved by 
F as follows. Let/~,  denote the standard conformal structure on C. If h(z)> h(O), 
we set #(z)=#,(z) .  We then use F to pull back q~ to C-J~ .  This defines # 
for all zeC-J, , , .  By construction, F preserves #. Since /~ is the pullback of a 
complex structure with bounded distortion by a map which is analytic except 
on P~-1 (A), it follows that # has bounded distortion on ( 2 - J ( P  3. 

We extend # to all of C by setting # = # ,  on J~. We may thus apply the 
M R M T  to obtain a quasiconformal homeomorphism f of C which converts 
or "straightens" # to the standard structure p ,  almost everywhere; i.e., f *  # ,  = #  
a.e. Consequently, the quasiconformal map 

Q=foFo f  -1 

preserves p ,  a.e. and so is analytic on C. 
We claim that Q is a quadratic polynomial which is affine conjugate to 

Pc. To see this, we may normalize f so that f ( o o ) =  oo and f ( 0 ) = 0 .  Since f 
is analytic on a neighborhood of 0% we may also normalize so that f ' ( ~ ) =  1. 
Thus, Q is a degree two map which fixes co and which has branch points 
at 0 and oo. Since Q preserves p , ,  Q is analytic. It follows that Q is a polynomial 
of degree two. Now F = Pc on F~, and f maps the critical orbit of F to that 
of Q. Hence the external angles and escape rates of the critical values of Pc 
and Q agree. Therefore, Pc and Q are equal, q.e.d. 

Remark. One may, in fact, write down the conjugacy f explicitly. We will actually 
do this when we apply this construction in the higher degree case. We used 
the M R M T  above since it is essential in the following construction. 

We now use the same idea to construct a one-parameter family of maps 
F,, 0 < t < 1; we "spin the critical value around a level curve of the potential". 
We show that each member of this family is quasiconformally conjugate to 
a polynomial of the form zZ+c(t) where c(t) is continuous and winds once 
around the Mandelbrot  set for 0 < t < 1. Hence this family induces the nontrivial 
automorphism of 2; 2 as in the previous section. 

Define a one-parameter family of annuli  A, for 0_<t< 1 where A0={z[ Pl 
<h(z)<p2 } as above. For  0 < t <  1, set th(t)=(1 --�89 PI and r /0( t )=(1- �89 P2. 
Let At denote the annular  region 

At= {z[ th(t)~h(z)<-qo(t)}. 
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Fig. 4. The annuli A t 

That is, A t is the annular  region whose inner and outer boundary  curves are 
the h-level curves t/a(t ) and t/o(t ) respectively. Note that A o = A  and that Aa 
is an annular  region contained between the level sets h(0)= �89 and h(c). See 
Fig. 4. 

For  each t we define a Dehn twist vt along the level curves of the potential 
in At exactly as we defined ~ on A. Then we set 

F/ , [ Pc (z) if z ~ Pc- a (A~) 
tz~ = ].~t o P~(z ) if zEP~-a(Az) 

Note that F o = F .  Note also that there is an interval of t-values for which c 
=P~(0)eAt. As t increases, it follows that the critical value F,(0)=~,oP~(0) is 
spun once around the level curve h(z)= h(c). When t =  1, the critical value returns 
to its original location, i.e., F~ (0)--c. 

Proposition 1.5 The map Fa is also quasiconformally conjugate to Pc. 

Proof  The proof is the same as before: first define a new Fl-invariant  complex 
structure as in the previous proposition. Use the M R M T  with the same normal-  
izations to straighten this structure via a quasiconformal homeomorphism f l .  
Then f~oFaof1-1 is a polynomial of degree two. Note that f~ is analytic on 
{zl h(z) > h (0)} and preserves the critical orbit. Hence f l  ~ Fa ~ 1 is quasiconfor- 
really conjugate to Pc as before, q.e.d. 

Proposition 1.6 There is a continuous function c(t), 0 < t < 1, such that: 

(1) Ft is quasiconformally conjugate to z 2 + c(t) for each t; 
(2) h(c(t)) is constant; and 
(3) the external argument of  c(t) increases monotonically from 0 to 1 as t increases 
from 0 to 1. 

Proof  The crucial observation here is that the external rays for Pc are identical 
to those of Ft in the exterior of P~-a(At). However, the location of the critical 
value ztoP~(0) relative to these rays changes. Indeed, vtoP~(0) passes through 
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each ray exactly once as t increases. Thus we may invoke the preceding argu- 
ments to show that Ft is quasiconformally conjugate to z2+ c(t) where c(t) sat- 
isfies 2 and 3. q.e.d. 

Consequently, the polynomials which are conjugate to F~ lie on a loop that 
winds once around M. As in the previous section, the monodromy map around 
this loop induces the non-trivial automorphism of Z 2. 

2 The general setting 

2.1 Julia sets of higher degree polynomials 

Let P be a polynomial of degree d. The Julia set, Je, is defined exactly as 
in the quadratic case: Je is the frontier of the set of points WS(oo) whose orbits 
tend to oo. If the orbits of all critical points tend to o% then the Julia set 
of P is totally disconnected and PlJp is topologically conjugate to the d-shift. 
The proof of this is analogous to the proof of Theorem 1.i; see [B1] for details. 

The dichotomy described in Theorem 1.1 for quadratic polynomials no lon- 
ger holds when d> 3. Nevertheless, there is an intimate relationship between 
the connectivity properties of the Julia set (and filled-in Julia set) and the dynam- 
ics of the finite critical points. For example, if all of these orbits are bounded, 
then WS(oo) is simply-connected, and therefore, the Julia set is connected. If 
at least one critical point iterates to infinity, then the Julia set is disconnected, 
but it may or may not be totally disconnected. 

For example, consider the situation when d=3.  A generic cubic has two 
distinct critical points. There are three cases: 

(1) Both critical orbits are bounded. Then Jp is connected. 
(2) Both critical points are contained in WS(oo). Then Je is a Cantor set, and 
the dynamics of the polynomial on Je is hyperbolic and conjugate to the 3-shift. 
(3) One critical point iterates to infinity and the other has a bounded orbit. 
When this happens, the Julia set is disconnected, and it may even be totally 
disconnected. In addition, there are cubics satisfying these conditions to which 
one can apply the Douady-Hubbard theory of polynomial-like mappings to 
show that the Julia set has a countable number of components which are essen- 
tially like Julia sets of quadratic polynomials as well as a Cantor set of one-point 
components [B2]. On the other hand, there are also cubics with one critical 
point in the Julia set, and every component of the Julia set is a point. However, 
in these cases, it is interesting to note that, even though the Julia set is totally 
disconnected, the dynamics is not conjugate to the 3-shift because every sequence 
has three inverse images under the shift map while the critical value in the 
Julia set has only two inverse images. 

In Chapter 4 we focus on the open subset of parameter space in the second 
case above. 

2.2 Automorphisms of the shift 

In this section we recall some of what is known regarding automorphisms of 
the d-shift a, particularly when d__> 3. Recall that 0: Zd ~ Xd is an automorphism 
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of the (one-sided) d-shift if 0 is a homeomorphism and Ooa=aoO. Hedlund 
[H] proved that the only non-trivial automorphism of the 2-shift is the map 
that interchanges the symbols 0 and 1 independent of their position in the 
sequence. Similarly, for the d-shift, any permutation of the symbols also yields 
an automorphism, but there are many automorphisms that do not arise in 
this manner. In a recent paper, Boyle, Franks, and Kitchens [BFK] studied 
the group of automorphisms of the d-shift, denoted by Autd, d > 2. This group 
is infinitely generated and has a rich structure. It is generated by automorphisms 
that come from permutations of the symbols and by automorphisms of order 
two which are defined via markers or marker sets [HI, [BFK].  More precisely, 
a marker is a string of symbols of the form SoSl...Sk together with a pair 
of symbols c~, ft. The map generated by this marker simply exchanges ~ and 
fl whenever c~ or fl is followed by the string So sx... Sk- For example, the singleton 
0 may serve as a marker; the automorphism exchanges 1 and 2 when followed 
by 0. Thus 

0(102100120...) = (202200110...). 

It is easy to check that 0 is an automorphism of the 3-shift. 
A marker set consists of a finite number of strings of symbols together 

with a pair of symbols to be exchanged. As an example, the pair of symbols 
1 and 2 may serve as a marker set for an automorphism of the 3-shift with 
1 and 2 exchanged if they are followed by one of these markers, so that the 
rule is exchange 1 and 2 whenever followed by a non-zero entry. It is convenient 
to denote this set of markers by 0 (read as "not 0"). This map gives 

0(1012101000...) = (1021101000...) 

Not all strings of symbols are acceptable markers. For example, the marker 
1 preceded by interchange of 1 and 2 is not an automorphism because the 
map 0 is not one-to-one: 

0(I 11...) = (222...) = 0(222 ...). 

Automorphisms which arise via markers or marker sets are called marker 
automorphisms. 

These results are summarized in the following Theorem from [BFK].  

Theorem 2.1 Auto is generated by the union of 

(a) automorphisms which arise from permutations of the symbols; and 
(b) a countable set of automorphisms given by markers or marker sets. 

In [BFK],  the authors describe a procedure for determining a set of markers 
or marker sets which generate Aute. Ashley [Ash] has refined their results 
by giving a minimal generating set of marker automorphisms. In the next two 
sections, we provide a geometric method for realizing this minimal set of genera- 
tors. 

3 The spinning construction 

Let Xd be the set of all monic, centered polynomials of degree d. Let Sd denote 
the subset of Xd consisting of polynomials all of whose critical points escape 
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to infinity. If PeXa,  there is a neighborhood U of infinity and an analytic 
homeomorphism q~: U ~ C -  D, such that ~b o p(z) = (qS(z)) d. The conjugation q5 
is uniquely determined if we assume that ~b'(oo)= 1. As for quadratics, define 
the potential function 

he(z)= lim log+ IP"(z)l 

For  zeU, let hp(z)=loglO(z)l. Let c, ,  ..., ca- ,  be the finite critical points of 
P and v~, v2 . . . . .  Vd-, be the corresponding critical values. Then Sd can be char- 
acterized by 

Sd = { P e XeI he (ci) = 1 he (vi) > 0 for all i = 1 . . . . .  d -  1 }. 

We will always assume that Cl is the critical point with the slowest escape 
rate, i.e., he(cx)<hp(c~) for j = 2  . . . . .  d - 1 .  

Let P,, P2eSd and define 

U/= {z I hi(z)>=hi(cO} 

v~ = {z[ h,(z) < h~(c~)} 

where h~, cl are the corresponding potentials and lowest critical points for P~. 
Here, for the sake of readability, we have suppressed the dependence of ca 
on i. 

Suppose we have a quasiconformal conjugacy 

f :U ,  ~U2 

between P, and P2. The next two lemmas show that f may be extended to 
a quasiconformal conjugacy between Pa and P2 on all of (2. 

Lemma 3.1 Let Pi, for i= 1, 2, be two polynomials in Sa. I f  f:  Ua--* U2 is a 
topological conjugacy, then f can be extended to a conjugacy defined on C,-Jt,,. 
Moreover, if f: Ua-* U2 is (K-quasi)conformal, then its extension will also be 
(K-quasi)con formal. 

Proof The boundaries of the U~ are level curves of the h~, and the components 
of V~ are disjoint, simply-connected domains in C which we denote D',, 
D/2 . . . .  , D~. There is a one-to-one correspondence between the boundary  curves 
of U1 and U2 given by the map f, and therefore, there is a one-to-one correspon- 
dence between these domains. After relabelling, we can assume that f takes 

1 2 the boundary  of Dj to the boundary  of Dj .  The conjugacy f is defined inductively 
over the sets pI-I(U1). The inductive step is very similar to the l =  1 case, and 
we present only that case. Suppose that z~P{I(UOc~D). Then, by applying 
f to Pl(Z), we obtain a point w in U2. There are d inverse images of w under 
the map P2 and extending f amounts  to determining which of these inverses 
to pick for f(z). However, we can determine the correct inverse image by noting 
that exactly one inverse of w is contained in the disk Uj 2. It is this inverse 
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that is the desired f(z). If f is (K-quasi)conformal, it is clear that, since the 
Pi are conformal, the extension is also (K-quasi)conformal. q.e.d. 

In fact, the conjugacy f above is quasiconformal on all of C. The following 
elegant proof of this fact was shown to us by Douady. 

Lemma 3.2 Suppose P1 and P2 are two polynomials in Sd. Let f: (2--Jv~ --* (g-Jr2 
be a quasiconformal conjugacy. Then f extends to a quasiconformal conjugacy 
on all of C. In particular, if f is conformal on C-Jr1,  then P1 and P2 are affine- 
conjugate. 

Proof Clearly f extends continuously to Jp,, so all we need show is that this 
extension is quasiconformal. To do this, we will construct a sequence f ,  of 
K-quasiconformal homeomorphisms of C which converge uniformly to f It 
then follows that this extension is K-quasiconformal everywhere [A]. 

Recall that V~ consists of k disjoint, simply connected regions, D], ..., D~. 
Let us choose any smooth homeomorphism 

flj: DJ ~ C  

so that fl~=f on the boundary of DJ for each j. We also assume that the fl~ 
are chosen so that 

[fl~(z) z~D] 

is a homeomorphism. Since the firs are smooth and f is quasiconformal, it 
follows that f~ is K-quasiconformal for some K. 

We define f ,  inductively. Set 

f . =  e s  ' of._ i o el 

where the appropriate branch of the inverse for P2 is chosen as in the proof 
of the previous lemma so that f ,  is continuous. Note that f ,  is K-quasiconformal 
and that  fn=f  on the exterior of kd" disjoint, simply connected regions in 1/1. 
Since Je, is hyperbolic, the maximum diameter of any of the images of these 
regions tends to zero. Therefore, it follows that the f, converge uniformly to 
f and so f is also K-quasiconformal on ~ q.e.d. 

Now we move to the spinning construction. Let P~S a and let h be the 
associated potential. Suppose that h(cl)<h(cj) for j = 2 ,  ..., d - 1 .  Thus there 
exists e > 0  such that ca is the only critical point in the region {z[ h(z)<h(cl)+e}. 
We also assume that dnh(ca)4=h(c~) for all j >  1 and n. These two assumptions 
serve to isolate the level sets of the potential corresponding to the orbit of 
ct from all of the other critical levels. Since these level sets are dynamical invar- 
iants, this in turn allows us to guarantee the existence of quasiconformal conjuga- 
cies during the spinning construction. 

Let 7 denote the component of h-l(h(vO) which contains va. There are 
precisely d - 1  components of P- l (y) .  We denote them by cq, . . . ,  ~a-a and 
assume that cq is the component containing cl .  Hence ~a is a figure eight, 
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M 

Fig. 5. The components of P-  t (Nx), M, N 1 

while the remaining ~ are simple closed curves. We may choose e > 0  small 
enough so that the region 

N =  {z I h(vO--e<=h(z)<= h(vl)+e} 

is disjoint from all of the other critical level curves 

{zlh(z)=J--~h(Vk)t, r e = l , 2  . . . .  

Let N1 denote the component of N containing v l (and hence 7). It follows 
that N~ is an annular  region. Let M denote the component  of P - 1  (N~) that 
contains c~. See Fig. 5. 

In analogy with the construction in w 1.3, we will modify P on M. For  each 
te[0 ,  1], let A, be the annular  region 

At= {ze Nl [ h(Vl)-- et < h(z) < h(vO + ~(1- t)}. 

Note that A~ is an annular  region bounded by 7 on the outside while Ao is 
bounded by 7 on the inside. 

As in w 1.3, there is a conformal map  

and we may choose q~t so that these maps depend continuously on t. Let 

be a Dehn twist, i.e., 

Tt: A't + A't 
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Let rt = ~b~ l o T~ o ~b~. Now define 
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Ft(z) = { P(z) zCM~P-I(At)  
"c~oP(z) z~MnP-l(AO. 

Proposition 3.3 For all te l0 ,  1], there is a polynomial Qt such that Qt is quasicon- 
formally conjugate to F~. 

Proof As above, we define a new conformal structure #t which is preserved 
by q,. Let # .  be the standard conformal structure. We set #~ = # .  in the region 

{zl h(z)>h(vO-e}. 

Let #, be the pullback of /~.  by Ft. This defines #t everywhere except on Je. 
By definition, F~ preserves #1- 

We define /~t on Je by setting #~=/~.. Since #~ is given by pulling back 
a bounded measurable structure by a polynomial, it follows that/a t is a bounded 
measurable complex structure as well. 

Now apply the MRMT.  This gives a quasiconformal homeomorphism f~ 
which straightens #~. We may normalize so that f t(oo)= oo. Then we have 
foqtof~ -1 =Q~ is an analytic map of degree d which has a super attracting 
fixed point at oo. Therefore, Q~ is a polynomial. If we further normalize so 
that f ' ( o o ) =  1 and f ( 0 ) = 0 ,  then it follows that Qt is monic  and centered. 

Proposition 3.4 In the above construction, both Qo = Q1 = P. 

Proof We will prove this by writing down an explicit conjugacy g~ between 
F~ and P for i=0 ,  1. These conjugacies will be quasiconformal. Moreover, they 
will vanish at 0 and be equal to the identity on a neighborhood of oo. Hence 
they are the conjugacies that we obtained by the M R M T  in the above argument. 

We begin with F o. Define F~= {zJ h(z)>r}. Define go to be the identity map 
on Fh(c,)+~. Clearly, we have gooFo =P~ on this region. 

Let B c M  be the component  of P-X(Ao) which contains cl .  The interior 
of B is an open annulus.  There are two smooth maps (~: B~B,  i=1 ,  2, that 
satisfy Po(i=zooP. Each of the (i fixes one of the boundary  curves of A0 and 
rotates the other by a half twist. We choose Zo to be the (i which fixes the 
outer boundary  of Ao. Set go=z~ on B. Also define go to be the identity on 
Fh(cl)-B. It follows that pogo=gooF0 . We now extend go to lower h-levels 
in the natural  way. If z satisfies 

~ h(c~) <= h(z) < h(cO 
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we set go(z)=p-aogooFo(z) where we choose the appropriate branch of the 
inverse of P -  1 to make go continuous. 

It is important to note that P -  1 o Fo is not the identity on the two components 
of the interior of the figure eight component of ~1. Indeed, go interchanges 
these two components while preserving the interiors of all other components. 

Now continue as in the proof of Lemma 3.1. This defines a quasiconformal 
homeomorphism of C - J p  which extends quasiconformally to Je as in Lemma 
3.2. Hence P is quasiconformally conjugate to Fo via a conjugacy that is the 
identity on a neighborhood of oc. Furthermore, go fixes the critical points of 
P. Hence P = Q0. 

We now turn to QI. We remark that Q1 is affine conjugate to P by Lemma 
3.3 since f~ is conformal on Fh(c, ). We prefer, for later purposes, to construct 
f l  directly. To do this, define g~ to be the identity on Fh~c,). Let B be the compo- 
nent of P-~(AO which contains Cl. Note that, unlike the previous case, the 
interior of B consists of two disjoint annuli each mapped isomorphically onto 
B by P. We can choose a map z'~ on each of these components so that Poz'~ 
=z~oP since P is an isomorphism on each component. Hence we set g~ =z'l 
on B. Define gl to be the identity on Fh(c,)_~-B and then continue as before. 
It follows again that g~ is a quasiconformal homeomorphism conjugating P 
and QI- Note that, unlike the previous case, g~ preserves all components of 
C -  Fh(~) ~. 

Corollary 3.5 As t decreases from 1 to 0, the components of the interior of 
ho., 1 (h(cO) containing cl are interchanged. 

4 The cubic case 

In this chapter we show how to generate all automorphisms of the 3-shift via 
monodromy in the parameter space for cubics. 

4.1 Five examples 

Before beginning the general construction for cubics, we discuss several illustra- 
tive examples. All are contained in the one-parameter family 

P~(z)=z3- 3a2z + 5 

where asR. (Note that we are using the form adopted by Branner and Hubbard 
in their study of cubic polynomials [BH1].) The critical points of P, are __a 
and the value of the constant term is of little significance other than its being 
large enough to display all of the desired cases. The five examples that we 
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a = 0  a a = a  I 

V 1 

v z = P~vl~ 

V 1 

r 
a = a  2 r 

, I 

a = a  4 e 

Fig. 6. Graphs of the P= 

1 ) 

discuss are defined by the graphs in Fig. 6. In particular, the a-values are deter- 
mined by these graphs. Let ha(z ) denote the corresponding potential function. 

We show how to generate specific automorphisms of the 3-shift by applying 
the spinning construction to each of these examples. 
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Fig. 7. Level curves for a=0 

v I 
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~ v~ 

Fig. 8. Level curves for a=a I 

Case I. a=0.  Certain critical level sets for the potential for Po(z)=z3+5 are 
shown in Fig. 7. We denote the 3 components of ho(z)<ho(O) by 0, 1 and 
2 respectively. Recall that, in the quadratic case, we labelled the analogous 
components I0 and I~ (see the proof of Theorem 1.1). Note that there is an 
arbitrary choice involved in this selection. If we use the spinning construc- 
tion of the previous section to spin the critical value around the level set 
7=ho  1(ho(5)), then we induce a one-third turn on the lobes of ~=ho 1 (ho(0)), 
and this yields an automorphism that cyclically permutes the symbols. 

Case 2. a=a~ .  According to Fig. 6. 

h.(c l) < h.(c 2) < h.(vl). 

The critical levels of the potential are shown in Fig. 8. The region {zl h.(z) 
< h.(cl)} may still be used to describe the symbolic dynamics. Indeed, the level 
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Fig. 9. Lcvel curves for a=az 

t v 

curve of h(z) containing c I inherits a labelling from Case 1 (see w 4.3). In analogy 
with w 1.2, this labelling indicates the existence of a conjugacy of the Julia set 
J to Z 3 where each element of J contained in the disk labelled 0 (or 1 or 
2 respectively) is labelled with a sequence starting with the symbol 0 (or 1 
or 2 respectively). Note that the lobes numbered 1 and 2 are contained in 
one component  of {z] ha(z)<h~(c2)}, which we call 0 (recall that this is our 
notat ion for "not  0"), while lobe 0 is contained within the other component.  

If we now spin the critical value vl around the curve 7=hs the 
resulting automorphism simply interchanges every 1 and 2; 0 is left fixed. 

Case 3. a= a2. This is the special case where v2 =P~(v0 and 

ha(cx) < h~ (c2) = ha (D1) "~ ha (v2). 

The level curves are shown in Fig. 9. 
We will not spiia the critical value v~ at this level. However, note how the 

level sets of ha(z) pinch. The preimages of c2 on h21(ha(cO) now separate the 
port ion of the Julia set previously marked with s ( s=0,  1, 2) into two pieces, 
one marked sO, the other marked sO. 

Case 4. a = aa. Now suppose we change the parameter a so that 

ha(vl) < ha(c 2) < h,(P~(vl)) < h,(v2). 

Then the critical level curves of h,(z) break apart  as shown in Fig. 10. 
If we now spin the critical value v~ around its level curve, then only the 

components of the Julia set marked 10 and 20 are interchanged; the components 
10 and 20 are left fixed. 
Thus, spinning induces the automorphism given by the marker set 0: interchange 
1 and 2 whenever followed by 1 or 2. 

At this point we note that we have reached the polynomial P~4 by simply 
"pushing" the critical value Va down the real axis. Note that h,(Vl) decreases 
during this process. This will be the essential ingredient in the next section 
when we show how to perform this "pushing deformation" in general. 
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C 2 

v 2 

Fig. 10. Level curves for a = a  3 
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6 

C 2 

Fig. 11, Level curves for a = a 4  

Case 5. a = a 4. The levels for this a-value satisfy 

h.(vl) < h.(c2) < h~(P.(vl )) < h. (v2) 

as before, but note that the critical value vl is in the other component  of h(z) 
=h(vl),  The level sets for h. inherit a different marking in this case. See Fig. 
11. 

Spinning the critical value here interchanges the components  marked 10 
and 20, that is, it induces the automorphism with marker 0. 
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4.2 A tree in the cubic shift-locus 

In this section, we construct a tree T in the parameter space for cubics. It 
is a directed graph with a unique initial vertex. It is connected and has countably 
many vertices. 

The vertices of T correspond to minimal marker automorphisms (see Sect. 
2.2). That is, given a minimal marker  automorphism 0, there exists a unique 
vertex P0 of T such that an application of the spinning construction to P0 realizes 
0. In fact, T will be constructed so that its directed edges correspond to decreas- 
ing values of h(q). In other words, if fl(t): [a, b] ~ T is a path whose direction 
agrees with that of T, then 

dh(cl) < O. 
dt 

We define the tree T inductively. 

The Initial Vertex (k = 1): 
To start the induction, we use a polynomial whose critical points {cl, c2} 

and  corresponding critical values {vl, v2} satisfy the inequalities 

h(c2) < h(Vl) < h (Vz). 

One such polynomial  is Pal, as defined in Fig. 6. The level curves of h(z) for 
this polynomial are displayed in Fig. 7. 

The Inductive S t e p - T h e  Pushing Deformation: 
Each vertex of T at the k-th level corresponds to a polynomial P whose 

critical points and critical values satisfy the equation 

h(c2) < 3 k h(cl) < h (v2). 

Suppose r is a positive real number  which satisfies 

h(v2) 
h(vl)<r < ~ .  

Then the level set h -  1 (r) consists of a collection of disjoint simple, closed curves 
~1 . . . . .  7m and, therefore, the level set h-l(r/3) consists of the curves 
cq . . . . .  ~3,,-1- The polynomial P maps all but  one of the ~ injectively onto 
some 7j, and  one cq (denoted al) is mapped onto some 7i (denoted 70 in a 
two-to-one fashion. Let the Riemann surface S be the component of h-l([r/3, 
r ] )  which contains vx. Then 71 is one of the boundary  curves of S. For  example, 
if we choose r so that 

h(vl)<r<h(v2) 

for the polynomial P~, described above, then we obtain the Riemann surface 
depicted in Fig. 12. 

The induct ion step is based on the following construction (which will be 
referred to as the pushing deformation below). Given a quasiconformal homeo- 
morphism f :  S ~ S  that restricts to the identity map on 0S, we will use the 
M R M T  to construct another polynomial Py. First, we construct an endomorph-  
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Fig. 12. The Rlemann surface S for P,~ 

ism F of (2. Let S' be the component  of P-~(S) which contains the critical 
point cl. Then define 

F(z)={fP;~)z ) zEs'.Z~C-- S' 

Note  that F(z) is conformal outside of S'. Next we define (in the usual manner) 
an F-invariant quasiconformal structure on (~ starting with the standard struc- 
ture on h - l ( [ r / 3 ,  oc]). We pull this structure back to C-.le  using F. Finally, 
we extend the structure to all of C by setting it equal to the standard structure 
on Je. This structure has bounded distortion, since F is conformal except on 
S' and the pullback from S to S' introduces only a finite amount  of distortion. 
By applying the M R M T  to this new F-invariant  structure, we obtain a quasicon- 
formal homeomorphism f:  C -* C such that f -  1 o F~,f is the desired polynomial 

It is important  to note that the above construction is analytic in its parame- 
ters (see lAB]) .  For  example, if we apply it to a one-parameter family ft which 
varies analytically in t, then the resulting polynomials Ps~ also vary analytically 
in t. In essence, the pushing construction allows us to deform the polynomial 
using a quasiconformal deformation of the Riemann surface S. 

To establish the inductive step, we apply the parameterized version of the 
pushing construction to the given vertex P of T using special choices of families 
f .  Given P, let S be the Riemann surface defined above. Corresponding to 
any smooth path/~(t) in S that starts at vl,  we can find a one-parameter family 
of quasiconformal homeomorphisms j;:  S ~ S such that f~(vl) =/3(t). The topolo- 
gy of S determines the number of such paths [3(t) we use and, therefore, the 
number of edges of T which leave P. 

One component  of the level set of level h(@/'3 k lies inside S and separates 
71 from the c~-curves on ~S (see Fig. 13). For  each c~-curve in 0S, we construct 
an edge of T leaving P. In fact, let e, be one of the ~-curves in (~S. Choose 
a point v~, in the component  of 

{zl h(z) < h (v2)/3 k} c~ (S - ei) 
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~, , : " VI 

Fig. 13. The twice pinched curve in S is that portion of the level set h 
i n s  

~(h(v21./3 ~} contained 
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Fig, 14, The inductive step apphed to the surface S shown m Fig. 13 

bounded by e~. Connect  el to G, by a simple curve fl(t) and apply the pushing 
deformation with J~(v,)=fl(t). We obtain one edge of T leaving P. The inductive 
step is complete after we apply the same argument to each ~-curve in (?S (using 
disjoint paths fl(t)). 

When S is a disk minus three holes as in Fig. 14, we obtain three edges 
leaving P and three new vertices at the {k+ 1)-st level of T(see Fig. 15). 

In order to establish the condit ion 

a_ h_ (5: ~) < o 
dt - 
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Fig. 15. The branches resulting from Fig. 14 
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mentioned at the beginning of this section, we need only take care to choose 
our  paths//( t)  such that 

dhp([~(t)) <0. 
dt  - 

Finally, it is important  to note that the inductive step is definitely not canoni- 
cal, and therefore, the resulting tree depends strongly on the choices of the 
paths /?(t) used in the construction. This lack of uniqueness is not  significant 
for us, but it causes an ambiguity in the labels introduced in the next section. 

4.3 Labelling the level curves of h(z) 

N o w  that we have defined the tree in parameter space, we can be more precise 
about  the labelling of level curves of h(z) briefly mentioned in w 4.1. The labels 
are inherited from a conjugacy of the Julia set to the 3 shift. We first describe 
this for the initial vertex of T, and then we show how the labelling varies as 
we move down the tree. 

The Initial Vertex ( P =  P,, from Fig. 6): 
We start by labelling only specific level curves of h(z). Then we extend the 

labelling scheme to include all level curves whose level is at most h(c2). Let 
r be a real number such that 

h(cz)<r <h(vO. 

Then h- l (r )  is a simple, closed curve 7, and h-1(r/31 consists of three simple, 
closed curves, c%, e l ,  and ~2. Let Di denote the finite disk bounded by ~i. 
As in the proof  of Theorem 1.1, we define a conjugacy q~: J ~ 2;3 by 

[4,(z)] j=  i 

if PJ(z)eDi. We refer to this process as labelling the curves c%, cq, and ~2 
with the labels 0, I, and 2 respectively. In fact, we label the 3 k simple, closed 
curves in h 1(r/3 k) by the "k-b locks"  (io, il, ..., ik-~) such that all points z ~ J  
contained inside the curve with label (i0 . . . .  , ik-1) satisfy the equation 

See Fig. 16. 

[-~(z)]~=i~ for j = 0 ,  1 . . . . .  k - 1 .  
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Fig. 16. Preliminary labelling for P~, 

Suppose we assign our  initial set of symbols so that blocks beginning with 
either 1 or 2 are in the same component  of h - l ( [ 0 ,  h(c2)]) (as in Fig. 16). 
Then, if we add the additional symbol 0 to our alphabet to represent the union 
of 1 and 2, we can extend this labelling scheme to all components  of all levels 
h-l(r) when O<r<h(cl) is a regular value of h(z). Let ct~h-l(r) be a simple, 
closed curve. It is labelled by a block of length k where k is determined by 

h(c2) < 3k_ 1 r < h(c2) 
3 

and where the symbols come from {0, 1, 2, 0}. Let D~ be the disk in C bounded 
by ~. The symbols ij in the block are chosen so that 

I-~b (z)]j = ij for j : 0 . . . . .  k -  1 (*) 

for all z in the disk D, where it is understood that  1 = 6 and 2 = 0. Moreover, 
we only employ the symbol  0 when there is both a zeD,, with [ ~ ( z ) ] j =  t and 
another  zeD~ with [q~(z)]j=2. 

At this point ,  it is useful to note that we are really labelling the disk D~ 
as well as the curve e. This makes it easier to see how to label the critical 
levels of h(z). 

Let s be a critical level of h(z). When a component of h-l(s) has l pinch 
points, we associate l +  1 distinct labels to that component.  If l = 0 ,  then we 
follow the procedure for regular levels. However, if l>0,  then this component  
bounds l+1  disks 01, D 2  . . . . .  Dt+l in C. We label OD i (disregard the pinch 
points) with the label assigned to the component  of h - l ( s _ e )  contained in 
Di (where e is sufficiently small). The points in JnDi satisfy Eq. (*). Again, 
we emphasize that it is useful to think of the label as a label assigned to the 
disk Di as well as to the level curve of h(z). 

The results are illustrated in Fig. 17. 
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Fig. 17. The complete labelling scheme for P~ 
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Labelling all polynomials P~ T: 
The above labelling scheme can be modified so that we obtain labels for 

each vertex of T, and  these labels specify which automorphism we obtain when 
apply the spinning construction to the given vertex. Eq. (*) is the key property 
that we need, and therefore, we must start with a conjugacy to S 3. In  the 
construction of the labels for P~,, we defined a conjugacy ~b using the level 
curves of h(z). We are going to use this conjugacy to define all of the other 
conjugacies we employ. It is important  to note that, as we move through the 
tree, the polynomials are always expanding on their Julia sets. As a result, 
points in Julia set are not born,  nor do they die or coalesce. Given a path 
Q~ of polynomials in T such that  Q0 = P~I, we extend the conjugacy q~: JQo ~ Za 
to a one-parameter family of conjugacies ~b,: JQ, ~ Z3 using this hyperbolicity. 
Once we have fixed the conjugacy ~bt, the labelling scheme outlined above 
extends to Qt so that Eq. (*) holds. This fact becomes more evident when we 
indicate below how the labels change as we move along a curve Q,. It is also 
useful to note that, once a labelling has been determined for the levels between 
h(ct) and h(c2), it is easy to see how to label the lower levels. 

First, we describe the transition in the labelling as we move down from 
the first to the second level of T. There are two branches of T which leave 
P~, corresponding to the fact that  the Riemann surface S for P~, is a disk minus 
two holes (see Fig. 12), and we indicate how the labels change as we traverse 
either branch. 

Case I. Let Q,, where 0 < t <  1, be the path in T which goes from P~, to P~3 
as indicated in w 4.1. The labelling varies as is indicated in Figs. 8-10, Fig. 
18 is an enlargement of the 0 half of the level set through c2 for Q1. This 
example is somewhat misleading because it does not  indicate the ambiguity 
that may arise due to the fact that, in the construction of the tree T, we did 
not specify a canonical  way to choose the curves fl(t), and  therefore, the branches 
of T are not chosen canonically. In this case, however, we are just following 
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Fig. 18. A more detailed look at some of the levels for P~ 

the parameter a in w 4.1 down the real axis. Therefore, any ambiguity in the 
labels is hidden by this choice. 

Case 2. Let Q~ be the other edge in Twhich starts at P,, and ends at a polynomial 
whose level sets are like those of P~4 in w 4.1. In this case, we cannot  avoid 
the ambiguity mentioned in Case 1 above. The labelling of the pairs 10, 20 
and 10, 20 depends on the route that Q, follows as it moves through parameter 
space. Nevertheless, the figure eight through cl is always labelled with the pair 
10, 20. It is this pair of labels which indicates which automorphism we obtain 
when we apply the spinning construction to P,~. 

Now we can describe how the labelling changes in general as we move 
from a vertex Qk at the k-th level to a vertex Qk+~ at the k + l - s t  level. For  
Qk, we have 

h(c2)<3kh(cl)<h(v2). 

As we move from Qk(Z) to Qk+ l(z), the labelling determined by Qk(Z) on 

h~) 2 {(hQk(cl) , oo] } 

is inherited by Qk+l(z). Therefore, we need only describe how the labelling 
changes for the levels between hQk(cl) and hQ~+l (cl). 

In fact, even in this range, most curves inherit the same labels. More precisely, 
let c~ be the component  of the level curve hol(ho.k(Cl)+e.) which contains cl .  
The labelling only changes for curves within e, and indeed, these changes happen 
when h(vO moves through the value h(v2)/3 k. Parameterize the given edge of 
T as Qt where k < t < k +  1 and suppose that t o is the parameter value where 
h(v~)= h(v2)/3 k. Then, we need to describe the labelling for three different cases: 

Case 1 (t < to). The labelling is the same as for Qk. See Fig. 19. 

Case 2 (t=to). In this case, the critical value Va lies on a critical level curve 
of h(z), and the component  7 containing vl is a pinched curve with m pinch 
points. Therefore, 7 is labelled with m + l  k-blocks B1, Bz, ..., B,,+I. Let B~ 
represent the block which corresponds to that part of 7 which contains va. 
The component  7' of Q~ ~(7) containing cl has 2m + 1 pinch points. The compo- 
nent  is labelled with the k +  1-blocks 1Ba, .. . ,  1Bin+l, 2B~, ..., 2B,,+1, and the 
two lobes joined at ct have the labels 1 B1 and 2B~. See Fig. 20. 
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Fig. 19. A typical Qk 
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vl 

Fig. 20. The labelling for Q,o 

Case 3 (t>to). The curve 7' in Case 2 is replaced by a critical level which 
has 2m pinch points and the labels 0B1, 1B2, ..., 1B,,+1, 2B 2 . . . .  ,2B, ,+ 1 . The 
critical point cl lies inside the lobe labelled 0B~ on a figure eight level curve. 
That  level is labelled with the two labels 1B1 and 2Ba. See Fig. 21. 

Now given any path Qt from the initial vertex Qo=P,~ of T to a vertex 
Qk at the k-th level of T, we can use the above observations to describe a 
labelling of the level curves of ho.k(z) which satisfies Eq. (*). In the next section, 
we prove our main result using this labelling. 
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v I 

v 2 

Fig.  21. The labelling for  Qk§ 1 

This method of proof above also yields: 

Proposition Let Mj denote the number of vertices of the tree T. Then M1 =2 
and Mj+I = 3 M  i -  1. 

4.4 Statement of the main theorem and a table of marker automorphisms 

In our construction of trees in the previous section, we showed that, to each 
vertex of the tree T, there is a loop in the parameter space X 3. This loop 
was given as follows: start at the polynomial Po(z)= z3+ 5; move to the vertex 
by the pushing deformation; apply the spinning construction; and then return 
to Po. If we choose the initial vertex P0 of the tree as basepoint~ we obtain 
a sequence of based loops, 6r, in the parameter space. These loops determine 
a subset of the fundamental group n~(X3, P0). We include in 6r the special 
loop 6o that begins at Po and follows the path determined by the spinning 
the critical value. (Recall case I, w 4.1) 

In [Ash], Ashley defines an algorithm to determine an infinite list of words 
in the alphabet {0, 0, 1, 2} using state splitting. He calls the automorphisms 
defined by interchanging the symbols 1 and 2 whenever they are followed by 
one of these words minimal marker automorphisms. If a word in the list contains 
the symbol 0, the corresponding marker set consists of all those markers obtained 
by replacing 0 with l 's and 2's. He proves that these minimal marker automorph- 
isms together with the automorphism that cyclically permutes the symbols gener- 
ate Aut3. He then proves that our algorithm for defining the tree generates 
the same list. 

By our remarks above, any element of nl (X3, P0) induces an element of 
Aut 3 and hence defines a monodromy map 03:  nl (X3, Po)~ Aut3. The mono- 
dromy map depends on the choice of base point and the labelling homeomorph- 
ism I of the Julia set. 
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Length 1: 

Length 2: 

Length 3: 

Length 4: 

0 0 

oo oo 10 20 

000 000 000 010 020 100 
100 200 206 110 120 210 
220 000 

0000 0000 0000 0020 0010 0100 
0200 0000 0100 0110 0120 0200 
0210 0220 1000 1000 1010 1020 
10130 2000 2000 2010 2020 2000 
1100 110() 1200 1200 2100 2100 
2200 2200 1110 1210 2110 2210 
1120 2120 1220 2220 0000 

Putting these results together with Ashley's, we obtain: 

Main Theorem for eubies The map 03 is a surjection. Moreover, the set fit maps 
onto a full set of generators ofAut3. 

Table 1 lists the minimal markers and marker sets of length j for j =  1, 
2, 3, 4. These correspond to the vertices of T at depth j. 

5 The higher degree case 

We saw in Chapter 3 that the spinning construction works for polynomials 
of all degrees. Our remarks at the end of Chapter 4 also generalize so that 
there is a well defined monodromy map Od: n l(Xa, Po)~ Auta. As above, this 
map depends on a choice of basepoint and labelling homeomorphism. Below, 
using arguments analogous to those for the cubic case, we define a tree T a, 
and use it to construct based loops in nl(Xn, Po). These loops, together with 
a special one obtained by spinning the critical value of Po(z)=za+5 form a 
set 6Td. We will prove: 

Theorem 5.1 The monodromy map Od is a surjection. Moreover, the set 6r~ maps 
onto a full set of generators of  Auta. 

As we saw for quadratics and cubics, the polynomial Po(z)=za+5 plays 
a special role in our theory: the arguments of Chapter 3 and the examples 
in Chapter 4 generalize to show that spinning the unique critical value v = 5 
about the level curve 7=h-l(h(5))  induces a 1/d rotation on the d lobes of 
the level curve ct = h-l(h(O)). This in turn realizes the automorphism that cycli- 
cally permutes the symbols. 

Recall that the minimal marker automorphisms of Aut3 consist of a infinite 
list of words in the alphabet {0, 0, 1, 2} where the automorphism is defined 
by interchanging the symbols 1 and 2 whenever they are followed by one of 
these words. If the word contains the symbol 0 the corresponding marker set 
consists of all those markers obtained by replacing 0 with l's and 2's. Each 
word in this list corresponds to a vertex of the tree T 3. 

In degree d, we begin with the alphabet {0, 0, 1, 2, 3, 4 . . . . .  d -1} ,  where 
following Ashley's notation, 0 stands for 1 or 2 and does not stand for not 
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Fig. 22. Level curves of Po 

0. We define a tree T d for polynomials of degree d whose vertices correspond 
to words in this alphabet. Ashley's state splitting algorithm for d> 3  differs 
only in the initialization and again gives an infinite list of words that determine 
the minimal generating set of marker automorphisms. In any degree, our algo- 
rithm for defining the tree will yield the same list as Ashley's algorithm. 

We choose as initial point of the tree a polynomial P0 whose level curves 
have the following properties. See Fig. 22 

(1) All critical points cj,j=2 . . . . .  d -  1 are equal. 
(2) The critical points are labelled so that their escape rates are in increasing 

order; that is, ci has a slower escape rate than c2. 
(3) The critical levels satisfy the inequalitites: 

h/,o (c2) < heo(Vl) < heo (v2) 

We now use essentially the same inductive procedure we developed in w 
to complete the tree so that the relative h-levels of v~ vary with respect to 
those of v2. 

That is, at the first step, we use the pushing deformation on Po, to push 
the critical value down into any one of the d - 1  lobes of the curve ct = h-~(h(O)). 
Spinning the critical value about its resulting level curve determines the first 
level of the tree. The vertices are labelled {0, 0, 3, 4, ..., d -1} .  See Fig. 22. 

The argument at the k-th level is almost a verbatim copy of the inductive 
step in w 4.2; the only changes are to replace every occurrence of the number 
3 with the number d and to replace the alphabet for the labelling scheme so 
that it is {0, 0, 1, 2 . . . . .  d--  1 }. 

The proof that Ashley's minimal marker automorphisms are in one-to-one 
correspondence with the vertices of the tree is exactly as in the cubic case. 
It  follows that, by spinning the lowest critical value of the polynomials of degree 
d, d_-> 3, we obtain all the minimal marker automorphisms. Since we also obtain 
the automorphism that cyclically permutes the symbols we conclude that the 
rnonodromy map On is a surjection. This completes the proof of Theorem 5.1. 
We remark that the above construction does not yield all of the generators 
of 7h, since we have assumed that / )1  = / ) Z  ' ' "  = Ud- 1" 
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6 Topology of the Branner-Hubbard locus 

In [BH1, BH2] Branner and Hubbard describe in detail the parameter space 
of cubic polynomials. We summarize some of their results below and relate 
them to our work. 

We defined our parameter space X3 as the space of monic, centered polyno- 
mials, that is, polynomials of the form z3+~z+fl. Branner and Hubbard use 
a slightly different space of polynomials. They consider polynomials of the form 

P~,b(z)=z3--3aZz+b; (a,b)eC 2 

where a and b are complex parameters. Note that P~,b has critical points at 
+ a. Let P3 denote the space of all such polynomials. 

Define the potential function he(z) as before to measure the rate at which 
points escape to oo. Also let ~b(z) be the uniformizing function that conjugates 
the polynomial P(z) to z 3 in a neighborhood of or. 

The connectedness locus in parameter space is the set of polynomials neither 
of whose critical points escapes to infinity; that is, the set 

{P~.blh(a)=h(-a)=O}. 

Branner and Hubbard [BH1] prove that the connectedness locus is compact 
and cell-like. 

We come next to the complement of the connectedness locus. Let c2 be 
the critical point that escapes faster and set 

.~ = {P,.b I h(c2) = log r} 

for r >  1. It is proved in [BH1] that 5e~ is homeomorphic to a sphere of dimension 
3. The sphere ~ may be decomposed into two subsets ~ •  depending on wheth- 
er c2 = _+a. The interiors of ,9"~r + are solid tori unknotted in ~ .  They are linked 
in ~ with linking number 3. These tori may be further decomposed into slices 
Y~• (t) where 

qb (P (c2)) = r3 exp (2 ~ i t). 

Each slice consists of a trefoil clover leaf. The common boundary point of 
the three closed disks composing the clover leaf is a polynomial of the form 
P(z) = z3+ b. Each disk is determined by the choice of a cube root of exp(2~it). 
The argument t defines the external ray for the polynomial. 

Since the shift locus $3 is contained in the complement of the connectedness 
locus, its topology is determined from the Van Kampen theorem by the decom- 
position above and a discussion of the topology of Y,-+ (t) c~ $3 for fixed r and 
t I-BH2]. 

Fix r and t and let L be the portion of Yr • (t)r~S3 which is contained in 
one of the three leaves in a slice. Thus the complement of L consists of polyno- 
mials for which the orbit of cl is bounded. It is known that the components 
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Fig. 23. Points and Mandelbrot sets in L 

Fig. 24. Critical level curves in L 

of the complement of L fall into two infinite subsets: points and homeomorphic 
copies of the Mandelbrot set. See Fig. 23. 

L may be decomposed into open subsets by removing the critical level curves. 
These curves consist of polynomials for which 3eh(cl)=h(c2) for some keZ. 
See Fig. 24. See also Fig. 10.1 in [-BH2]. Let L denote L with critical level 
curves removed. Branner and Hubbard have shown that L, is a countable union 
of annuli. Moreover, any two polynomials inside a given component of L, are 
quasiconformally conjugate. 

We now relate our results to this picture. Recall that we produced 
automorphisms via two operations in parameter space, the spinning construction 
and the pushing deformation. In any loop generated in parameter space by 
spinning, all of the polynomials are quasiconformally conjugate. It follows that 
this loop lies entirely inside one of the components of L. When the resulting 
automorphism is non-trivial, the loop in this component is not contractible 
in the annulus. This means that we may label each annulus in L by the unique 
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Fig. 25. Automorphisms and the Branner-ttubbard locus 
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minimal marker au tomorphism given by spinning around this loop. On the 
other  hand, the pushing deformation allows us to pass through critical level 
curves and descend through the various components  of L. The tree generated 
by these deformations thus tell us how the annuli fit together in the Branner- 
Hubbard  locus, and our main theorem for cubics says that all such components  
may be identified in this manner.  In Fig. 25 we have displayed the various 
minimal marker automorphisms corresponding to annuli in L. 
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