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Summary. Let F be a finitely generated group and a.(F)= the number  of its 
subgroups of index n. We prove that, assuming F is residually nilpotent (e.g., 
F linear), then a,(F) grows polynomially if and only if F is solvable of finite rank. 
This answers a question of Segal. The proof uses a new characterization of p-adic 
analytic groups, the theory of algebraic groups and the Prime Number  Theorem. 
The method can be applied also to groups of polynomial word growth. 

Introduction 

Given a group F, let a,(F) be the number  of subgroups of index n in F. If F is 
finitely generated, which we shall always assume, then a.(F) < ~ for every n. In 
recent years there has been a fair amount  of interest in the properties of the number  
theoretic function n --* a.(F). Most notably, the work of Grunewald et al. [GSS], 

o o  - s  who associated a Dirichlet series (r(S)= ~ .=1  a.(F)n with F and studied its 
properties when F is nilpotent. 

A basic problem, raised explicitly by Segal I-Sg], is to determine for what groups 
F, the sequence a,(F) has polynomial growth. This is equivalent to (r(S) having 
a non-trivial domain of convergence. Or equivalently, ~(F) < ~ when ~(F) is 
defined as: 

log a, (F) 
~(F) = lira sup - -  

. log n 

If this is the case we say that F is a group of polynomial subgroup growth (a 
PSG-group, for short). 

The problem to determine the PSG-groups makes sense, of course, only under 
the assumption that F is residually finite, i.e., the intersection of its finite index 
(normal) subgroups is trivial. In  this paper we answer this problem under a some- 
what stronger assumption: 

Theorem A Let F be a residually nilpotent finitely generated group. Then F has 
polynomial subgroup growth if and only if F is solvable of finite rank. 
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In a forthcoming paper [LMS] we solve the general problem by showing that the 
words "residually nilpotent" in Theorem A can be replaced by "residually finite". 
This proof is based on the results of the present paper and of [-MS]. 

The unexplained notions in the theorem are explained in the text. Theorem A 
was proved by Segal [-Sg] under the additional assumption that F is solvable. We 
actually prove the difficult part of Theorem A by reducing it to Segal's case, the 
other part is included in Segal's. This is done in several stages: We give a new 
characterization of p-adic compact Lie groups: 

Theorem B A pro-p group G is a p-adic Lie group if and only if it has polynomial 
subgroup growth. 

Theorem B enables us, along the lines of [Lul]  to prove that a residually-p 
PSG-group is linear over C, i.e., a subgroup of GL,(C) for some n. 

We then prove: 

Theorem C A finitely generated linear group of polynomial subgroup growth is 
virtually solvable (of finite rank). 

Of course, Theorem C follows easily from Theorem A, since every linear group (in 
every characteristic) is virtually residually-p for some prime p (and hence virtually 
residually nilpotent). We isolated it for its importance and since the case of a linear 
group over a field of characteristic zero plays a central role: We prove this case first 
and then Theorem A is deduced from it (and Segal's Theorem) using Theorem B. It 
then follows that Theorem C holds for fields of any characteristic. 

The proof of Theorem C uses first some basic results about algebraic groups to 
make a reduction to subgroups of GL,(Q). Then, strong approximation results (of 
Nori IN] or Mathews et al. [MVW]) are applied with a counting argument to 
deduce the theorem. In this counting argument the prime number theorem (in 
a weak form) is used in an essential way. 

Our main result (Theorem A) recalls the celebrated result of Gromov [Gr] on 
groups of polynomial growth in the sense of counting words. It is interesting to 
observe that while Gromov uses a variant of Hilbert's 5th problem (the characteriz- 
ation of real Lie groups) we are using the p-adic analogue. In both instances this is 
used to reduce the problem to the case of linear groups. Moreover, our method can 
be used to reprove Gromov's result for the special case of residually nilpotent 
groups. 

Theorem D Let F be a finitely generated residually nilpotent group generated by 
a finite set B. Let b,(F) be the number of elements o f f  which can be written as words 
of length at most n on the generators in B. Assume b,(F) grows polynomially. Then 
F is virtually nilpotent. 

In w 1 we prove Theorems B and D. From Theorem B we deduce that a residually 
nilpotent group of polynomial subgroup growth is linear. This corollary, together 
with Theorem C, which is proved in w imply Theorem A (with the help of Segal's 
Theorem 0.3). 

Acknowledoements. The authors are grateful to J. Bernstein, D. Segal and T. Tamagawa for 
several useful conversations and especially to A. Borel for detailed comments which greatly 
improved the exposition of this paper. 
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0 Notations,  conventions and some preliminaries 

Unless otherwise said, F is always a finitely generated (f.g.) group. Let ~ be a family 
of finite groups. Then F is residually cg if 

n { H ~  FIF/H ~ ce~} = {e}. 

So F is residually-finite (resp. nilpotent, solvable, p) if it is residually ~ and ~ is the 
family of all finite groups (resp. nitpotent, solvable, p-groups). 

A group is said to be virtually-X if it has a finite index subgroup with property 
X. We recall that if F is a field of characteristic p then every finitely generated linear 
group F over F (i.e., a f.g. subgroup of GL,(F))  is virtually residually p. If 
char(F) = 0 then F is virtually residually p for almost every prime p (cf. [We, Di]). 

n We denote a,(F)= I { H <  FI[F:H] = n}l and S , (F )=~ i= la i (F  ). We say 
that F has polynomial subgroup growth (PSG) if a,(F) (or equivalently S,(F)) 
grows polynomially, i.e., there exists a e R such that a,(F) < n ~ for every n. This is 

log an(F) 
equivalent to lim s u p -  < ~ .  

. log n 
For  a (topological) group H, d(H) denotes the number  of (topological) gener- 

ators while rank(H) = sup {d(H)IH a finitely generated (closed) subgroup of H }. If 
rank(H) < 0% H is said to be of finite rank. HV(resp: [H, H] )  denotes the (closed) 
subgroup generated by the p-th powers (resp: commutators). For a pro-p group H, 
d(H) = d(H/[H, H]HP). 

The following lemmas seem to be known. Still for the sake of reference we bring 
them here: 

Lemma 0.1 Let H be a finite index subgroup ofF. Then F has polynomial subgroup 
growth if and only if H does. 

Proof One direction (~ )  is trivial. Assume, therefore, that H has polynomial 
subgroup growth. We may assume that H is normal. Let [ F : K ]  < n. Then 
[H: H c~ K]  < n. Thus, the number  of possibilities for H c~ K is bounded by some 
polynomial, sayf(n),  while the number of possibilities for HK is bounded by the 
number of subgroups of F/H, C say. Let r = rank (F/H) and let HK be generated by 
H and by the elements al . . . . .  at. Then K is generated by H • K and elements 
bl = alh~ where hieH and hi is determined only mod H c~ K. Therefore, given HK 
and H c~ K, the number of possibilities for K is at most n r and so the number  of 
subgroups of F of index at most n is bounded by Cn'f(n). [] 

Remark. The polynomials associated to F and H may have different degrees. 
A simple example is provided by the infinite dihedral group and its infinite cyclic 
subgroup of index 2. It may be interesting to check this phenomenon somewhat 
closer. 

Lemma 0.2 Let n: F -~ A be an epimorphism with Kern finite. Then F is a PSG-group 
if and only if A is. 
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Proof For  a group G, we denote P(G) the intersection of all finite index subgroups 
of G. So G/P(G) is residually finite and G is a PSG-group iff G/P(G) is. We can 
therefore in the lemma replace F (resp. A) by F/P(F) (resp. A/P(A )) and assume 
therefore that F and A are residually finite. The kernel of ~ is still finite. 

Now, as F is residually finite it has a finite index subgroup H such that 
H n Ker(n) = {1}. Thus H is also isomorphic to a finite index subgroup of A. By 
Lemma 0.1, F is PSG iff H is iff d is. [] 

Segal studied PSG-groups and proved the following theorem, which was the 
main motivation for the present work: 

Theorem 0.3 (Segal I-Sg]). A finitely generated, residually nilpotent, solvable group 
is PSG if and only if it is of finite rank. 

A lot is known about solvable groups of finite rank (cf. [Rol ,  2]) so such a charac- 
terization is satisfactory. 

Finally we mention the following easy lemma: 

Lemma 0.4 I f  G is a residually solvable, virtually solvable group, then G is solvable. 

Proof G has a normal solvable subgroup H of index m and derived length l, for 
some integers m and 1. Every solvable quotient of G is therefore solvable of derived 
length at most m + I. Since G is residually solvable, we can deduce that G is 
solvable of derived length at most m + I. [] 

1 PSG-pro-p groups are p-adic analytic 

Let p be a prime and G a pro-p group. G is said to be analytic (or a p-adic Lie group) 
if it has a structure of a p-adic analytic manifold compatible with the group 
operations (see I-Sel, Lz, LM1]). Every compact p-adic Lie group is virtually pro-p, 
but  not every pro-p group is analytic. The problem of determining which pro-p 
groups are analytic ("the Hilbert 5th problem for p-adic Lie groups") was solved for 
the first time by Lazard [Lz]. In [LM1] we gave a different characterization. Here 
we shall use it to give an additional one. 

Before stating the result, we observe that if G is a finitely generated (in the 
topological sense) pro-p group then a,(G)= # {HIH an open subgroup of G of 
index n} is finite for every n. (In fact a,(G) = 0 i fn is not a power ofp.) So the not ion 
of pro-p (or pro-finite) PSG-group is defined in the obvious way. 

Theorem 1.1 Let G be a finitely generated pro-p group. The following conditions are 
equivalent: 

(i) G is analytic. 
(ii) G is a group of polynomial subgroup growth. 

(iii) There exists an integer m such that d(H) < m for every open subgroup H of G. 
(d(H) denotes the number of topological generators of H). 

(iv) There exists an integer m' such that d(H) < re'for every normal open subgroup 
HofG. 

Proof The equivalence of (i), (iii) and (iv) is proved in [LM1]. To prove the 
theorem it suffices to prove (iii)~ ( i i )~ (iv). 
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(iii) ~ (ii). Every open subgroup of G is subnormal of p-power index. Thus 
every subgroup K of index pt+ 1 lies in some subgroup H of index pZ. By assumption 
d(H) < m and hence the Frattini subgroup q~(H) = HP[H, H] is of index at most 
p"  in H. Every subgroup of index p of H contains q~(H), hence H has at most 

p " -  1 
M - subgroups of index p. This shows that ap~§ < Map,(G) and by 

p - 1  = 
. . . .  logap,(G) l o g m  < 

induction ap,(G) < M t. l n u s  nmsup~ ~ < m < oe and G is a PSG- 
= = logp = 

group. 
To prove ( i i )~  (iv) we need the following lemma: 

Lemma 1.2 Let G be a pro-p group and k a positive integer. I f  there exists an open 
normal subgroup K of  G with d( K ) > k, then such K exists with [ G : K ]  < pk(log~k + 1). 
Moreover, K can be chosen so that G/K has a normal sequence {1} = Tr < 
T,_ 1 < "'" < To = G/K where r < log2 k + 1 and Ti/Ti+ 1 is an elementary abelian 
p-group of rank at most k. 

Proof. Let K be a normal subgroup of G maximal with respect to the property 
d(K) > k and 4~(K) its Frattini subgroup. Then [K:q~(K)] > pk, and we can 
choose a subgroup ~,(K) _= L _c K such that [K:  L]  = pk and L is normal in G. Let 
C = CG(K/L). Then C contains K. We claim that C = K. If not, then there exists 
a group M, K c M _~ C with [ M : K ]  = p and M-< G (since G/K is a finite 
p-group). Now K/L ~ Z (M/L)  (Z denotes center), and hence M/L is a central by 
cyclic group, whence abelian. This yields d(M/L) > d(K/L) > k which contradicts 
the maximality of K. 

We conclude that C = K and that G/K can be embedded as a subgroup of 
Aut(K/L)  ~- GLk(F,). In fact G/K can be identified with a subgroup of S, the 
p-Sylow subgroup of GLk(Fp). In S, there is a sequence 

{1} = S , <  St-1 < "" < S o = S  

such that S~<~S, S~/S~+I is elementary abelian and r < l o g 2 ( k ) + l  (cf. 
[Hu, 1II.16]). The embedding of T = G/K in S induces a sequence 

(1} = T,=< T~_a <_ ... < T o = T  

by taking Ti = S i n  T. Then Ti< T and TI/Ti+~ is elementary abelian. By our 
maximality condition on K, we deduce that I T~/Ti+ll < pk and thus 

ITI = [ G : K ]  _<_ pk(log2k+l). 

This proves Lemma 1.2. 
Back to Theorem 1.1 (ii) ~ (iv): by assumption we know that there exists c~ e R 

such that the number of subgroups of index at most p~ is at most p~'. We want to 
prove that for sufficiently large k, there is no normal open subgroup K with 
d(K) > k. Assume for convenience that k is even, k = 2s and let K and L be as in 
Lemma 1.2 (and its proof). Since K/ L  is an elementary abelian group of order pk, it 
has at least pk~/4 subgroups of index pk/2. Hence G has at least pk2/4 subgroups of 

index at most pklog2 k+~-. Our assumption implies now that ~- < ~ k log k + 

which implies that k is bounded and the theorem is proved. [] 
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Corollary 1.3 For every ct ~ N, there is f (e)~ N such that if G is a pro-p-group for 
which a,(G) < n" for every n, then G is a p-adic Lie group of dimension < f(~). 

Proof The proof of(1.2) shows that there existsf(c 0 such that d(H) <f(c~) for every 
open normal subgroup of G. By I-LM 1], this implies that G is of dimension at most 
f(~). [] 

Remark 1.4 The function ~ ~--~f(~) is independent of p! 

Corollary 1.5 Let F be a residually nilpotent finitely generated PSG-group. Then F is 
linear over C. 

Proof Assume first that F is residually-p for some prime p. Let G be the pro-p 
completion of F, i.e., G = lim FIN when N runs over the normal subgroups of F of 

p-power index. Since F is residually p the canonical map F ~ G is injective. Now, 
for every subgroup H of G of index n, H c~ F is a subgroup of F of index at most 
n and H c~ F = H. This yields that if F is PSG-group then G is a PSG-pro-p group. 
So, G is PSG-group and by Theorem 1.1 it is therefore a p-adic Lie group. 
Proposition 4 of [Lu l ]  says that a compact p-adic Lie group can be embedded in 
GL,(Qp) for some n. Hence our G is embedded in GL,(Qp), and thus so is F. Since 
Qp as an abstract field can be embedded in C, we conclude that F is linear over C. 

To prove (1.5) for residually nilpotent groups we need some lemmas: 

Lemma 1.6 Let D be a finitely generated nilpotent group. Then,for every prime p, the 
pro-p completion D~ of D is a p-adic Lie group of dimension exactly h(D) - -  the 
Hirsch rank of D. 

Proof The elements of finite order in D form a finite normal subgroup, so 
we can assume D is torsion free. Every finite index subgroup of D is generated 
by at most h(D) elements and hence the same holds for D~;, which implies 
dim Db <= h(D) [LM1]. The converse is proved by induction on h(F), by proving 
that if N = Ker(D ~ Z) then the pro-p topology of D induces the pro-p topology 
of N. [] 

Lemma 1.7 Let F be a finitely generated residually nilpotent group. Assume that for 
every prime p, F~ analytic. Then F is linear. 

Proof. Let G be the pro-nilpotent completion of F, i.e., G = lim F/N when N runs 

over the finite index normal subgroups of F with F/N nilpotent. Let 7,(F) (resp. 
7,(G)) be the n-th term of the lower central series of F (resp. G), F(n) = F/7.(F) and 
G(n) = G/7.(G). Then G(n) is the pro-nilpotent completion of F(n), and 7,(F) is 
dense in ),,(G). 

G, being a pro-nilpotent group, is the product of its p-Sylow subgroups 
G = I]p Gp. In fact Gp is the pro-p completion of F. Similarly G(n) = lip G(n)p 
where G(n)p is the pro-p completion of F(n). We claim that the Hirsch rank of F(n) 
is bounded. Indeed fix some p. Then h(F(n)) = dim(F(n);) __< dim F~ (the equality is 
by (1.6)). 

Fix n for which h(F(n)) is maximal. Then 7,(F)/7.+I(F) is a finite group. Its 
order is therefore divisible only by primes from a finite set S. But 7,(F)/7. +I(F) is 
dense in 7,(G)/7,+~(G) which proves that for p ~ S, Gp is nilpotent of class _<_ n. 
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Let H1 = l-Ipcs Gp, H 2 = Hpes  Gp and Fi be the image of F in Hi (i = 1, 2), 
Then F is embedded in F I x  Fz and each Fi is a quotient of F. Now, Ha is nilpotent 
and so is F~. On the other hand, for every p e S (in fact, for every p), Gp is a linear 
group (since it is analytic and by [Lul, Prop. 4] is linear) so Hz is linear over C, and 
so is Fz. Thus both F1 and Fz are linear, hence so are F~ x F2 and F. This concludes 
the proof of (1.7). 

Corollary (1.5) is now also proved since the beginning of the proof shows that 
the pro-p completion of F is analytic. [] 

The rest of this section will be devoted to prove Theorem D, whose proof will 
use some of the arguments used above. 

Theorem 1.8 Let F be a finitely generated residually nilpotent qroup generated by 
a finite set B. Let b.(F) be the number of elements o f f  which can be written as words 
of  length at most n on the 9enerators in B. Assume there exist C such that 
b~(F) <= C" n c. Then F is virtually nitpotent. 

Proof. Fix some prime p and let G- -F~  be the pro-p completion of F. The 
canonical map i: F ~ G may not be injective, but anyway i(F) = F1 is a dense 
subgroup of G. Let B = {bl . . . .  , bn } be the set of generators of F (and hence for Fa 
and G by abuse of the language). Consider a p-elementary abelian factor group F/A 
of F of order <pk, say, and let H=i (A) .  We can then choose a basis for 
F/A ~- G/H consisting of some of the cosets bill. Each element of G/H can be 
written as a product of powers with exponents at most p/2 of these basis elements 
(and their inverses) and it lies in the coset of H determined by the corresponding 
product of the a~s themselves. This shows that each coset has a representative of 
length __< kp/2. But the subgroup A is generated by elements of the form xay - 1, 
where x and y are two such coset representatives and a is one of the given 
generators (see [H, 7.2.2]). Thus A has a finite set of generators of length at most kp. 
Now, let A/Ax ~- H/Ha (where Ha = i(Aa)) be a p-elementary abelian factor group 
of H, again of order < p*. Then repeating the above argument shows that A ~ (and 
Ha) can be generated by elements of length at most (kp) z etc. 

Now assume there exists a normal open subgroup K with d(K) > k, let K be as 
in Lemma 1.2 and L a subgroup of K such K/L  is elementary abelian p-group of 
order pk. By the above argument each coset of K/ L  has a representative of length at 
most (kp) l~ 1. Thus 

pk ~ C" (kp) cO~ k + 1) 

As p is fixed this shows that k is bounded. From Theorem 1.1 it follows now that 
G is analytic. 

Now, Lemma 1.7 implies that F is linear. Linear groups have either exponential 
or polynomial growth and in the second case they are virtually nilpotent [Ti]. This 
finishes the proof of Theor. 1.8. 

Remark. It was observed by I. Ilani that our proof in fact yields the same con- 
clusion under the weaker assumption that b, (F) = O(2 2"/1~ But, Grigorchuk [Gr] 
proved it under the even weaker assumption that b,(F) = O(2"f~). Grigorchuk also 
applied the theory of p-adic analytic groups. (In [Gr] the assumption is that F is 
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residually p, but our Lemma 1.7 shows that also there the assumption of residual 
nilpotence suffices). 

2 Linear groups of polynomial subgroups growth 

The main goal of this section is to prove Theorem C for linear groups over C. We 
begin with reduction to groups over Q. 

Lemma 2.1 I f  there exists a fg .  PSG-group FI in GL,(C) which is not virtually 
solvable then such a group, say F2, also exists in GLm(Q) for some m. (F2 can even be 
taken to be a quotient of F1 .) 

Proposition 2.2 Let F be a f g .  subgroup of GL,(C) which is not virtually solvable. 
Then F has a specialization qo: F ~ GL, (0 )  such that (p(F) is not virtually solvable 
(Q denotes the algebraic closure of Q.) 

Proposition 2.2 implies Lemma 2.1. Indeed, in this case F2 = ~0(F1) would 
be a f.g., non-virtually solvable, PSG-group embedded in GL,(Q). But, as q~(F1) 
is f.g., it is inside GL,(k) for some number field k, [ k : Q ] = l .  Hence 
F2 = r < GL,(k) < GL,.,(Q). 

To prove Proposition 2.2, we need the following nice result (due to Platonov). It 
is proved by combining the Lie-Kolchin Theorem with Jordan's Theorem on finite 
linear groups ([We, 10.11]). 

Proposition 2.3 Given a positive integer n, there exist two integers j(n) and l(n) such 
that every virtually solvable subgroup G of GL,(C) has a normal subgroup H of  index 
at most j(n) which is solvable of  derived length at most l(n). 

Proposition 2.3 implies Proposition 2.2. Indeed, since F is finitely generated it is 
contained in GL,(A) where A is a finitely generated Q-algebra. By Hilbert's 
Nullstellensatz, the homomorphisms from A to 0 separate the points of A. Every 
such homomorphism q0 induces a homomorphism, denoted also qo from GL,(A) to 
GL,(0) ,  called a specialization. The specializations separate the points of GL,(A) 
and ofF ,  i.e., for every 1 + ~,sF there exists such a ~0 with ~o(y) ~ 1. 

Assume now that for all specializations rp, ~o(F) is virtually solvable. Let H be 
the intersection of all subgroups of F of index less than or equal to j(n). Since there 
are only finitely many such subgroups, IF:  H ] < oo. Let K be the l(n)-th term in the 
derived series of H. By Propos. 2.3, q~(K) = {e} for every specialization. Hence 
K = {e} and F is solvable by finite. Propos. 2.2 is thus proven and hence also 
Lemma 2. I. 

To prove Theorem C for groups over C it suffices now to prove it for subgroups 
of GL,(Q). Namely: 

Theorem 2.4 Let F be a finitely generated PSG subgroup of GL,(Q). Then F is 
virtually solvable. 

To prove this theorem, we bring first a few results needed later on in the proof. The 
first one is a special case of [BT2, 3.17]. Since our case is so simple we include 
a proof. 
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Lemma 2.5 Let G be a semi-simple algebraic group defined over Q, and ~: G -~ G its 
universal covering (cf [BT1, 2.24 (ii)]). Then 

G(Q) 

n(G(Q)) 

is an abelian torsion group whose exponent divides the order of the center of G(Q). 

Example. A typical example is G = PGL2, G = SL2 and 

G(Q) Q* ~ Z 

~(8(Q)) - (Q,)2 - i(~1 ~ '  

Proof. The map ~: (~(t)) ~ G(0) is surjective with a finite central kernel Z of order 
m, say. Let L = ~- I(G(Q)) and M = (~(Q). The Galois group Gal = Gal(0/Q) acts 
on L and M is precisely the set of the fixed points. Moreover, for every xs  L and 
asGal ,  x-lcr(x)eZ. This implies that for every aeGa l  and every x, y eL ,  
a[x, y] = [x, y] (where Ix, y] = x -  ly- lxy). Hence [x, y] e M which means that 
M is a normal subgroup of L containing [L, L]. Furthermore, for x E L, a(x) = xz 
for some z=z(cr, x) in Z. Whence a(x m) =(xz) m= XmZm= X ~ since zeZ .  This 
shows that xme M, whence L/M is an abelian torsion group. The group 

G(Q) 

~(8(Q)) 
is a quotient of L/M, and the lemma is proven. 

The next result, which is crucial to our proof, needs some preparation. Let F be 
a finitely generated subgroup of GL,(Q). Then there exists a finite set of primes 
S such that all the entries of the elements of F are in the ring R = Zs of S-integers 
(i.e., the denominators are divisible only by primes from S). Let G be the Zariski 
closure of F. On A = G(R) we have the congruence topology defined by declaring 
A(m) = Ker(G(R)~ G(R/mR)), for all non-zero integers m, to be a basis of open 
neighborhoods of the identity of A. This makes d atopological group. It is not 
complete. Its completion is the closure of d in G(R) where R is the pro-finite 
completion of R. In fact R = l-Ipcs z,,  where Zp is the ring of p-adic integers. 
Classical strong approximation results assure that under suitable conditions A is 
indeed dense in G(R). In the last few years, some generalizations of it were proved 
by several authors. Most suitable for our needs is the following: 

Theorem 2.6 In the notations above, assume G is semi-simple, connected and simply 
connected. Then the closure ofF is open in G(R). 

Proof. See Nori [N, Theor. 5.4] or Matthews-Vaserstein-Weisfeiler [MVW, 
Theor. 8.1], see also Weisfeiler [W]. [] 

Corollary 2.7 In the notations and assumptions above, the closure ofF in d = G(R ) is 
a subgroup Fo of finite index in d. 

Proof. Clearly, the closure Fo of F in G(R) is G(R) c~/: where/:  is the closure of 
F in G(R). Since/v is open in G(R) by (2.6) and G(R) is compact,/~ is of finite index 
in G(R) and so Fo is of finite index in G(R). 

We can start now the proof of Theor. 2.4: Assume to the contrary that there is 
a non-virtually-solvable PSG-group F in GL~(Q). By replacing F, if needed, by 



530 A. Lubotzky and A. Mann 

a finite index subgroup, we can assume (keeping (0.1) in mind) that G - -  the Zariski 
closure of F - -  is connected. Moreover, it is not a solvable group, hence G modulo 
its solvable radical is a non-trivial semi-simple Q-group. So we may further assume 
that F ~ G(Q) and G is semi-simple and connected. The projection of F to at least 
one of the Q-simple factor of G is infinite and not virtually solvable. We can 
therefore further assume that G is simple. Let 7r: G --. G be the simply connected 
covering of G. By Lemma 2.5, 

G(Q) 

~(6(Q)) 

is abelian and torsion. The image there of the finitely generated group F is, 

therefore, finite. Hence a finite index subgroup of F is contained in 7z(G(Q)). Since 
7r-I(F)/Z ~- F and Z = Ker0z) is finite, n- l (F)  is also PSG-group by Lemma 0.2 
and non-virtually solvable. We can therefore assume, by replacing F by n-1  (F), 
that G, the Zariski closure of F, is (almost) simple, connected and simply connected. 
Moreover  F is in A = G(R) where R is the ring of S-integers for some finite set 
S of primes. As F is infinite, so is G(R) which is a discrete subgroup of 
G(IR) x l iP,s  G(Qp). In particular, the latter one is not compact. 

We are now in a position to apply Theor. 2.6 (or Coroll. 2.7). So, Fo, the closure 
of F in the congruence topology of G(R) is of finite index in G(R). 

For  a group L we recall that S,(L) denotes the number of subgroups of L of 
index at most n. Of  course, L is a PSG-group if and only if the sequence S,(L) has 
polynomial growth. 

Fo r  an S-arithmetic group (such as A = G(R) or any finite index subgroup of it, 
say A') let C,(A') be the number of congruence subgroups of index at most n. (A 
congruence subgroup of A' is one which is open in the induced congruence 
topology of A '.) 

Back to our circumstances: F is congruence dense in Fo which is an S- 
arithmetic group, i.e., a finite index subgroup of A = G(R). 

Lemma 2.8 S.(F) >= C.(Fo). 

Proof For  every congruence subgroup H of Fo, we associate the subgroup 
(p(H) = Fr~H of F. Then [F:q~(H)] < [Fo:H] .  The lemma will follow once we 
prove that q~ is a one to one map. Indeed, let H~ and H2 be congruence subgroups 
of Fo and let N be a normal congruence subgroup of/1o contained in H~ c~ H2. As 
F is dense in F0, the projection ~ of F to the finite "continuous" quotient Fo/N is 
surjective. In particular, for i =  1,2, z(Fc~Hi)= HI/N. This proves that 
Hi = N ' ( F ~ H i ) .  Hence, (p(H1) = q~(H2) implies H1 = H2 and the lemma is 
proven. 

To conclude the proof of Theor. 2.4, it suffices now to prove that C,(Fo) does 
not grow polynomially. Just as in (0.1), it suffices to prove it for G(R). The next 
theorem which is of independent interest will conclude the proof  Theor. 2.4. 

Theorem 2.9 Let G be a non-trivial (almost)-simple, connected, simply connected 
Q-algebraic group. Assume S is a finite set of primes for which G(]R) x 1-Ip~s G(Qp) is 
not compact. Let R be the ring of S-integers, A = G(R) and C,(A) is the number of 
congruence subgroups of A of index at most n. Then C,(A) does not grow poly- 
nomially. 
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We still need another lemma: 

Lemma 2.10 For almost every prime p, the finite 9roup A/A (p) = G(R/pR) is a group 
of even order. 

We will give two proofs. But first notice that indeed A/A(p) ~- G(R/pR), i.e., 
G(R) ~ G(R/pR) is onto. This follows from the classical strong approximation 
theorem for arithmetic groups (cf. [Kn, PI, Pr]). 

First Proof For p not in S, R/pR = Fp and G(Fp) is an algebraic group which is 
quasi-split by a Theorem of Lang and contains therefore an Fp-split non-trivial 
torus (cf. [Bo 1, 16.6]), whose order is p - 1. Hence p - 1 II G(Fp) I and so for p + 2, 
I G(Fp)I is even. (See also [Lu2, Lemma 2].) 

Second Proof If A/A (p) is of odd order, then by the Fei t -Thompson Theorem it is 
solvable. Moreover, it is solvable of bounded derived length (cf. [Di, w Since 
(~p~,A(p)  = {e} for every infinite set of primes ~ ,  A is also solvable, which 
contradicts the fact that A is a Zariski dense subgroup of G (by Borel's density 
theorem, and its extensions, cf. [Bo2], [Wa] and [Bo3]). 

Back to the proof of Theor. 2.9: Let S be the original S plus those primes 
for which 2 does not  divide IA/A(p) I. By (2.10), S is still finite. Let N be a large 
positive integer. The number of primes p (not from S) which are less than N 
is approximately l = N / l o g N ,  by the Prime Number  Theorem. More- 
over, ~s~p<_iv logp~N,  by the same theorem (cf. I-HW, w and hence 
M = 1-[sC~p <= N P ~ e N. Let A (M) be the congruence subgroup modM of A. Then 
[A :A(M)] < M e where d = dim G = the dimension of G as an algebraic group (or 
where d = r 2 and G ~ GL,). 

By the Chinese Remainder Theorem, A/A (M) = ~I s ~p z N A/A (p). By (2.10), 
A/A(p) contains an element of order 2, and A/A(M) contains, therefore, an 
elementary abelian 2-group L of rank I. Think of L as an F2-vector space of 
dimension I. It is not difficult to check that the number  of subspaces of L of 

dimension I ~ ]  is at least 2~2/4. So, A has at least 2'2/4 congruence subgroups of 
N , 

index at most M d. Substituting l ~ ~ M ~ e u we see that: 

log CMd(A) > 1210g2  ~ c o n s t a n t "  N 
log(M d) = 4dN log 2 N " 

As lim = 0% the sequence C,(A ) does not have polynomial growth. This 
N ~ o o  

proves Theor. 2.9. Theorem 2.4 is, therefore, now also proven. [] 

To summarize we actually have proved Theorem A. Indeed if F is as in 
Theorem A, then by (1.5) it is linear over C. If F is not virtually solvable then by 
(2.1) it has a non-virtually solvable quotient in GLm(Q) for some m. Such a quotient 
is also PSG in contradiction to (2.4). Hence F is virtually solvable. By (0.4) it is 
solvable and by (0.3) it is also of finite rank. This proves Theorem A. The general 
case of Theorem C now also follows since every finitely generated linear group (in 
any characteristic) is virtually residually nilpotent. 
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3 Some concluding remarks 

I. There are infinitely generated residually finite groups F for which an(F) < oo for 
every n. Such groups, even if they are of polynomial subgroup growth, are not 
necessarily virtually solvable. Examples include all analytic pro-p groups. (Recall 
that for such a group G, every finite index subgroup is open [Lz, Ha], so they are 
PSG-groups in any sense of the notion.) To see a countable example: Let 7r be the 
set of all primes except for one prime p, and let Z~ be the ring of 7z-integers. Then it 
follows from the affirmative solution of the congruence subgroup problem for 
SLn(n > 3) (cf. [BMS]), (or even SL2- with S-integers, when [ S I > 2, see [Se2]) that 
SL,(Z,)  is a PSG-group. Indeed, its pro-finite completion is SLn(Zp) which is p-adic 
analytic and so by (0.1) and (1.1) is a PSG-group. (We are using here the trivial fact 
that a group F is PSG-group iff F, its pro-finite completion, is a PSG-group in the 
topological sense.) 

II. As can be seen from our proof  the question of polynomial growth is closely 
related to the "rank" of F. For  more results in this direction see [LM2] and [MS]. 

III. The new characterization of analytic pro-p groups given in Theor. 1.1 gives 
a new characterization of finitely generated linear groups: 

Let F be a group. A pro-finite topology on F is a topology for which some family 
of normal finite index subgroups serves as a fundamental system of neighborhoods 
of the identity. (The pro-finite topology is the one which we take all the normal 
finite index subgroups.) The topology is a pro-p topology if every open subgroup is 
of p-power index. The topology ~ is polynomial if a,(F, ~ ) grow polynomially 
when a,(F, ~ )  = number of open subgroups of index n. 

Theorem 3.1 Let F be a finitely generated group. Then the following conditions are 
equivalent: 
(i) F can be embedded in GLn(F) for some field F of characteristic O. 

(ii) F has a finite index subgroup A which has a Hausdorff, polynomial pro-p topology 
for some prime p. 

The proof is very similar to [ L u l l  and will therefore be omitted. 
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