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Introduction 

Let ~r denote the local ring Z[v]~, where v is an indeterminate and ~ is the 
maximal ideal in Z[v] generated by v - 1 and a fixed odd prime p. The residue field 
~r = Fv is denoted by k. 

To each Cartan matrix (a~j)7,i= 1 Drinfeld [Dr] and Jimbo [Ji] have associated 
a so-called quantum group U', which is a Hopf algebra over Q(v) defined by certain 
generators and relations. Following Lusztig [L 5, L 6] we consider an ~r 
U of U' which is a Hopf algebra over d ,  and also the "specializations" 
Ur = U | F for various d-algebras F. 

Firstly we introduce the coordinate algebra ~r [ U] as a suitable dual of U. Our 
first main result says that d [ U] is a free ~r (Theorem 1.33). This relies on 
the connection, established in [loc. cit.], betweeen Uk and the hyperalgebra of the 
semi-simple algebraic group G k corresponding to (aij). Here k is made into an 
~r by sending v to 1. The point is--and this will be used repeatedly 
throughout the paper--that this connection allows us to carry over information 
from the representation theory of Gk to that of Uk. 

Next we use the coordinate algebra to set up a general theory of induction. 
A crucial result here is that induction from the trivial subalgebra as well as from U 0 
(see Section 0 for notations) is exact, see Theorem 1.31 and Proposition 2.11. Also, 
we emphasize the study of induction from "generalized parabolic subalgebras". We 
check that our induction functors have the standard properties, e.g. Frobenius 
reciprocity, transitivity and the tensor identity (Section 2). Moreover, we study 
their behaviour under base change, thereby getting explicit connections to the 
analogous functors in the representation theory of Gk and GQ, see Section 3. 

The above results together with a detailed examination of the rank 1 ease 
(Section 4) then enable us to obtain some deeper results about induction from 
a "Borel subalgebra". These include analogues of Serre's theorem, Grothendieek's 
theorem, Kempf's vanishing theorem for dominant characters and Demazure's 
character formula. Moreover, we show that the concepts and results about good, 
respectively excellent filtrations carry over to the quantum ease, see Section 5. 
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Consider now a specialization of d into a field F. We develop a Borel- 
Weil-Bott theory for Ur, see Section 6. If the image ( ofo is not a root of 1 then the 
theory is completely analogous to the classical theory for G~ (regardless of the 
characteristic of F)  whereas if char(F) = 0 and ( is a root of 1 then we have 
a situation resembling the modular representation theory for Gk. 

This latter situation is explored further in Section 8 where we prove a linkage 
principle and a translation principle for Ur. An important ingredient in the 
arguments there is Serre duality (Theorem 7.3) which in turn requires a special case 
of Bott's theorem. 

Everything has now been set up in a way which invites us to define a "Jantzen 
type" titration and prove a sum formula. In fact, we obtain several such filtrations 
and corresponding sum formulas (see Section 10). Working over k this gives 
filtrations of the classical Weyl modules and it is an interesting question to 
compare these with the ordinary Jantzen filtration. We conjecture that if the 
highest weight in question is in the lowest p2-alcove then the filtrations coincide. As 
we point out a positive answer to this conjecture would settle Lusztig's conjecture 
relating the irreducible characters in the quantum and modular case ([L 3]). At 
least in rank 2 and also for type A 3 the conjecture is true. In fact, in these cases the 
sum formula together with the translation principle and the Steinberg-Lusztig 
tensor product theorem give all the irreducible characters, see Section 11. 

So far most of our results concern the so-called integrable modules of type 1 (see 
Section 1). In Section 9 we prove that finite dimensional Ur modules are integrable. 
If v is not specialized to a root of unity, we just reproduce the argument given by 
Rosso ([R 1]), whereas in the root of unity case we have to work somewhat harder 
and use both results of Lusztig ([L 3]) and some properties of the Steinberg 
module. In the course of the proof, we obtain the somewhat surprising result that 
the category of finite dimensional Ur-modules has enough projectives (injectives). 

Also, in an appendix by the second author it is proved that for type An the 
quantum coordinate algebra, defined in Section 1, coincides with the one studied 
by Parshall and Wang (I-PW 1-2]). The appendix is independent of the results in 
Sections 2-11. 

Some of the results in this paper are contained in the first author's preprint 
[A 5]. However, the proof of the exactness of induction from U ~ given in [A 5, 
1.12] is not  correct and also some of the steps in section 4 are incomplete. In this 
paper we have overcome these difficulties by relying on the relation between Uk and 
the hyperalgebra for G. 

Finally, we acknowledge our debt to G. Lusztig, whose preprints [L 1-6]  have 
both aroused our interest in quantum algebras and provided the start for our work. 

Acknowledgements. This paper was written while the second and third authors were visiting the 
University of Arhus, under the support of the Danish Natural Science Research Council. They 
wish to thank these institutions. Le second auteur tient aussi ~i remercier le Minist6re fran~ais de la 
Coop6ration, pour lui avoir permis d'effectuer son service national comme coop6rant fi runiver- 
sit6 d'Arhus. 
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O. Notation 

T h r o u g h o u t  the pape r  we use the fol lowing no ta t ion ,  mos t ly  fol lowing Luszt ig  
[L  1 -6 ] .  
(azj)~".r= 1 is a C a r t a n  mat r ix  
dl  . . . . .  dn ~ {1, 2, 3} such that  (diaij) is symmetr ic  
~r = 7Z[v]~ where  v is an  inde te rmina te  and  ~ is the ideal  in 7/[v] 

genera ted  by v - 1 and  an odd  pr ime p. We  a s sume  p > 3 if (a~r) has  
a c o m p o n e n t  o f  type G2 

~r = Q(v) the f ract ion field of  ~r 
k = Fp the residue field of  ~r 
F an ~r  

l) dm - -  V - d m  

[m]d V d -- v - d  e d where  m, d e n  

[m]~ = f l  v d r - - v - d r - -  ~] [ j ] d e d  w h e r e t o ,  d e N  
j = l  vd / ) -d  j = l  

= e ~  where  meTZ, t, d e n  
d j = i  vdJ -- v-dr 

(We omi t  the subscr ip t  d if d = 1) 

V l -  1 
tkt -- V --  1 e d  where  l e N  

U t is the q u a n t u m  algebra  over  d '  associa ted  to  (a~,j), i.e. the ~r  
with genera tors ,  E~, Fi ,  Ki ,  K 7  1, i = 1 . . . . .  n a n d  relat ions 

K i K j  = K r K i ,  K i K ~  i = 1 = K [ - 1 K i  

K i E j  = vd'a'J E j K i ,  K i F  j = v-d'a'J F j K i  

t5 K i  - K:i- 1 
~ , e j  - F i e ,  = ,j Y -  

( _ _ l ) S / 1 - a i r /  E ~ E r E ~ = O  if i 4 = j  
r+s=  1--atj t- S /d i  



4 H.H. Andersen et al. 

E!'~ 

( - - 1 ) ~ [ 1 -  a~J 1 F'~F~F~=O 
r + ~ =  l - - ~ i , ,  S d d l  

ET' 
- [m]~, for m > 0 

i f / . j  

FI ')  

U 

U + 

U o 

F? 
- f o r m > 0  

Ira]L, 

1-I Kivd~c-s+ a) -- K ~  lv-ds(c-s+ D 

s=11I vs'~i --  v- 'd '  

=[.,: 0] 
the quantum algebra over ~r introduced in I-L 5, L 6], i.e. the d -  
subalgebra of U' generated by E~ N), FI m, Ki, K~- 1, i = 1 . . . .  , n, N > 0 
(resp. U-)  the ~r of U generated by E~ N) (resp. F~N)), 
i = 1  . . . . .  n , N > O  
the d-subalgebra of U generated by 

U ~ = U - U  o 
U ~ = U o u  + 

U,  resp. U ( I ) the subalgebra of U generated by {El r), F I ~), K ~ ~ ] i ~ I, r, s > 0} resp. 
by U ~ and { E ! ~  > 0} where I = {1 . . . . .  n}. When I = {i} we 
simply write Ui resp. U(i) instead of Us resp. U ( I )  

Ur  = U | F for any M-algebra F. Same definition of UT, U r ,  U ~ U~ 
and U~r . By [L 5], U~, identifies with U'  

U' is a Hopf algebra with comultiplication d, antipode S and counit e defined by 

A ( E i ) = E i |  + K i |  A ( F I ) = F i |  l +  l |  A ( K i ) = K I |  

S(E~) = - K i - '  E,, S (F , )  = - F~K~, S(K~) = K i - '  

e(Et) = 0 = e(Fi), e(Ki)  = 1 

and U is a sub-Hopf-algebra of U' (see [L5]) 

~l  . . . . .  0q a set of simple roots associated to (au), i.e. (cei, ~y ) = aij 
R (resp. R +) the corresponding root system (resp. positive roots). We set N = [R + I 
X the set of weights, i.e. X = Z " .  If  2 = ( 2 1 , . . . , 2 , ) ~ X ,  we write 

v 2 i = ( 2 , ~ i  ) , i ~ l  . . . . .  n 
X + the set of dominant weights, i.e. X + = { 2 ~ X [ ( 2 , ~ ) > 0 ,  

i =  1 . . . . .  n} 
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W 

W~ 

the Weyl group corresponding to R. There are two actions of W on X. 
The first one is the natural one, given by s,(2) = 2 - (2, ~ )~, for any 

~ R, 2 ~ X. The second is the dot action given by w" 2 = w(2 + p) - p, 
for any we  W, 2 e X .  Here p = �89 7" For  i =  1 . . . . .  n we set 
S i ~ Sa~ 
the affine Weyl group corresponding to W and a positive integer 1. 
It is generated by the reflections S , , r : X ~ X , ~ e R + , r e T ~ ,  where 
s~,," 2 = s~" 2 + rl~t, 2 ~ X 

1. The quantum coordinate algebra 

The aim of this section is to define the quantum coordinate algebra as a suitable 
dual of the quantum algebra. 

We start with some generalities on characters. Since U 0 is a commutative Hopf  
algebra, the set of characters of U o is a group, where multiplication and inverse are 
defined as follows. If X, X' are characters, then ~X' = (Z | X')~ ~ A and X -1 = ~oS. 

Let X be the weight lattice, 2; the group {+ 1}", and X the direct product 
2; x X. Then: 

Lemma 1.1. (/) For each (a, 2)~ 3~, there exists a unique algebra homomorphism ~ ,  ~ : 
U ~ ~ ~ such that: 

Z,,~(K~) = a~v n'z' and Z,,~ ~ = (ai)' t a, 

(E ]) K~;c = (ai)t ;~i f o r a l l c ~ T Z .  Moreover, Z~, ~ satisfies: Xo, ~ t t a, 

(ii) I f (a ,  2), (z, I~)~ X ,  then Z~,~Z~,, = Z~,~+u. Therefore, the map: (a, 2) ~ X,,~ is 
a group homomorphism. 

Proof. (i) U ~ is a subalgebra of U~ and the latter is a Laurent polynomial ring 
over d ' ,  in the variables K{  1. Therefore, there exists an algebra homomorphism 
X,,x: U ~  ~ d ' ,  such that: X,,a(Ki) = cr~v d'~'. Since: 

[ K ~  c l = FI Kivd'(r x) - K ~Xv-a'(c-s+ v a's - v-a's 

we obtain that: 

""'"+" E ] X~,~ = (ai)' vd,s _ v_d, s = (ai)' 2, + C 
s= 1 t dt 

which belongs to d .  Hence, by restriction, Zo, a induces an algebra homomorphism: 
U ~ ~ ~1 with the required properties. Uniqueness follows from the fact that the 
monomials: 

( I  K " [ K t ] , w h e r e t i ~ I q ,  6 ,~{  0 ,1}  f~ an s t 'bas is  ~  U~ See [ L 6 ]  
s= 1 tl 
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(ii) We have: d(Ki) = Ki | Ki and: 

t K~ 

1 
Therefore: 

Now, by rL 5, 2.3 (gl0)], the R.H.S. is equal to Z~.~ ~ , which is: 

Hence Lemma 1.1 is proved. [] 

We will sometimes denote Z~, a simply by: 2~. 

Remark. Lemma 1.1 is implicit in Lusztig's work. 

1.2. If M is a U~ and Z a character of U ~ the x-weight space of M is: 
M x = { x s M l u x  = X(u)x for all ue  U~ If M, N are U~ then M | N is 
a U~ and M x | N x, ~_ (M | N)x+x,. 

1.3. Remark. The emphasis on the characters 2, comes from the following fact: If 
~r ~ F is a specialization of d into a field F, then any finite dimensional Ur- 
module is the (direct) sum of its weight-spaces M ~ .  This will be proved in 
Section 9. 

1.4. Let M be a U-module. Then EIr)M~,~ ~ M~,z+ .... and F~)M~.~ ~_ M,,~-s~.  
Therefore, if we define: 

d~,(M) = �9 M,,a then we have the: 
2EX 

Lemma. Each (9o(M) is a U-submodule of  M. 

1.5. Now, we define: F, (M)  = {x~(~,(M)lEl ' )x  = Fl'~x = O, 1 < i < n, r>>0}. 
Then, we also have the: 

Lemma. Each F~(M) is a U-submodule of  d)~(M). 

Proof. Let x e F,(M).  We want to prove that: E~S)x, F ~ x  e O,(M) for all j, s. For  
this, we have to check that these elements are killed by all E! ") and FI ") when r>>0. 
But this follows from the commutation relations given in [L 6, Section 5, and 
6.5]. [] 

1.6. For  each g ~ 2~, we introduce the category cg~ of those U-modules M such that 
M = F,,(M). These are called integrable U-modules of type ~. When a = 1, we 
denote the corresponding category simply by cg, and we omit the subscript 1 in the 
notation elsewhere as well. 

We claim that the categories cr are all isomorphic to 'g. In fact, for each g ~ 
the character Z~.o of U ~ extends to a character of U, which we denote by e~. 
Observe that ex is nothing but e, the co-unit of U. Let ~r denote the U-module ~r 
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on which U acts by the character e,. Clearly, tensoring by ~r gives an isomorphism 
of categories: c~, _ ~. 

Therefore, we can concentrate without loss of generality on the category ~. 

1.7. Let d ~ F be a specialization o f d  into a field F. As we shall see in Section 9 
the characters X,, z | 1, (or, 2)s X, of U ~ are pairwise distinct. If M is a U~ 
the weight spaces M,.  z are defined in the obvious way and their sum is a direct sum. 
I f M  is a Ur-module then F(M) is defined as in 1.5, and the category ~ r  consists of 
those M such that M = F(M). For M e ~ r  such that all weight spaces are finite 
dimensional, we set as usual: 

ch(M) = ~ dimr(Mz)e ~ . 
2 e X  

Also if M e cK is such that each M~ is a finite free d -modu le ,  we set: 

ch(M) = ~ rank~(Ma)e ~ . 
, ~ X  

1.8. We now define an induction functor H :{d-modu les}  ~ c~. Firstly, let J be 
the set of two-sided ideals I of U which satisfy the following conditions: 
(1) U/I is a finite d - m o d u l e  
(2) I c~ U ~ contains a finite intersection of ideals Ker(xa), 2 e X .  

We shall define below a functor H, called induction from d to U, such that, for 
an d - m o d u l e  M, H(M) will coincide with 

(,) { f e H o m ~ ( U ,  M ) l f ( l )  = 0 for some l e J }  . 

and we shall define the quantum coordinate algebra d [  U] to be H(d) .  
Our aim is to prove that induction from d to U is an exact functor, and that 

d [ U ]  is a free d -module .  The definition used in (*) above has the aesthetic 
advantage of being intrinsic, and making no use of a particular U-module structure 
on Hom~(U,  M). But in order to investigate the properties of H, we have to work 
with a more explicit definition, which will be shown to be equivalent to the first one. 

1.9. The d - m o d u l e  o~f(M)= Hom~(U,  M) carries two structures of (left) U- 
modules, ~ and ~, defined as follows: 

if ue U, Oeo~f(M), x s  U then (?(u)O)(x) = O(S(u)x) and (6(u)O)(x) = O(xu) . 

Clearly, the subset considered in 1.8(,) is both a ? and 6-submodute of ~r Now, 
assume that O ~ ( M )  satisfy 0(I)= 0 for some I e J ,  see 1.8. Then the 6(U)- 
submodule N generated by 0 is a finite ~r and is the direct sum of weight 
spaces Na, where 2 ~ X. From this, it follows that: t~(El'))O = ~(F~'))O = 0 for all i, 
and r>>0. Hence, we obtain: OeF,(o~~ (Here, F is the functor defined in 1.5, 
and the subscript fi means that o~(M) is considered as a 6(U)-module). 

Remark. Of course, we also obtain O~F~(g(M)).  

1.10. Now, we take as a definition: 

Definition. H(M) = F~(~(M)) .  
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(In fact, we shall see later (Corollary 1.30) that this definition coincides with the 
one proposed in 1.8 (*)). 

Lemma 1.11. Let MeC~, 2 ~ X ,  04: x ~ M a .  Set r t=Max{r lE!r )x  4:0} and 
st = Max{s[F~S)x 4= 0}. Then, for each i, we have: st - rt = 2t. 

Proof We will use the following commutat ion relations (see [L 6, 6.5 (a2)]): 

(1) E!r'F!~'=_~ _ ,  ~ F ~ S - ~  
O~t<r,s L t l 

(2) F (s)~r [ -- - ] - t - ,  = ~ El,_ o K i - t ;2 t  r s FI,_t) 
O~_t~r,s t 

(rl) Set y = Et x. Then y has weight 2 + rtcct, and E~S)y = 0 for s > 0. Let s be large 
enough so that F~S~y = 0. Then, by (1), we have: 

= Ei Ft Y -  s Y = Y 
S d~ 

From this we deduce that  2~ + 2rt > 0. Now, let z = El "~'+2r') y. We claim that 
z 4: 0. In fact, by (1) we have: ElZ'+2r')z = y 4: O. On the other hand, by (2) we have: 

~t [ g ' - l ' 2 t - - ~ i - - 3 r i l g ~ 2 ' + 2 r i - t ) x "  
0 4 : z =  El r~-~ ' ' 

t 

Hence 2t + 2rt - t < s, for some t < rt, and therefore 2t + rt < st. 
Now, consider y '  ~'~ = F t x. Then y'  has weight 2 -  stcq, and F l t ) =  0 for all 

t > 0 .  As before we obtain that  2 t - 2 s t  ~ 0 ,  and z ' =  El2S'-~ ')y ' .  O, and 
st - 2~ < r~. Therefore, we conclude that st - rt = 2~. [] 

1.12. Remark. Keep the notations of the lemma, and let U ~ be the subalgebra of 
U generated by U ~ E! '), F!  '), r, s > 0. F rom the commutat ion formulas 1.11 (1)-(2), 
we deduce that the ~r of the elements {F~)E~r)xl 0 < r < rt, 0 < s < 2~ + 2r} 
is a Ut-submodule of M. This is the U~-submodule generated by x, and it is a finite 
~r This will be used in the proof  of the next: 

Lemma 1.13. Let M ~ c~. I f  2 is a weight of  M, then so is w2, for any w ~ W. 

Proof We can reduce to the ease where w = st, a simple reflection. Let 0 4: xEM~.  
By the preceding remark, the Ut-submodule N generated by x is a finite ~r 
Let N = N | k. Then N is a finite dimensional U~-module. Moreover , / ( t  = K~ | 1 
acts as the identity on N, hence F7 is a U~,/(I(~ - 1)-module. By [L 5, 6.7], the latter 

algebra identifies with the hyperalgebra [~Tk(SL2). Moreover,  since each [ Kt ] 

corresponds trader this isomorphism to the usual element ( H i )  of LT~ (hyperal - 

gebra of the torus), we obtain that  the decomposition: N = ~)~N,  induces the 
decomposit ion N = ~ 7 ~  of /V into SL2-w_eight spaces. Now, N ~ .  0, hence 
Na # 0 by Nakayama.  Then, by SL2-theory, N,,~ 4: 0, and therefore N,,a # 0. [] 
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1.14. In order to investigate the properties of the "universal .~-finite highest 
weight modules", we need to develop the machinery of Joseph's induction functors. 
Define a category c~ as follows. 

IfM is a U~-module, set F(M)  = {xe r ,  a~xMzlEl')x = 0 for all i and r>>0}. We 
say that M ~ c~ if M = F(M). We denote by c~ ,  resp. c~ I the category of d-finite 
objects in c~, resp. c~. Following Joseph [Jo] (see also [Do, section 12.3]), we 
define a functor D:C~) -o c~ I as follows: 

Proposition. Let N eC~.  Set M = U |  and let ~9 v be the set o f  U-submodules 
K of  M such that M / K  is afinite sg-module. Then ~ has a unique minimal element 
Ko. We define: D(N) = M/Ko.  

Proof. Since N eCg~, then the weights of N form a finite set t2 ___ X. There is 
a U--isomorphism M "-- U-  | N, and therefore all weights of M belong to 
t2' = I2 + NR- ,  and all weight spaces are finite d-modules. Observe that O' only 
contains finitely many dominant weights, and therefore the set/2" = W ( X  § n f2') 
is also finite. 

Now, let K �9 6 e. By the previous lemma, the set of weights of M / K  is W-stable, 
and is therefore contained in t2". It follows that K contains the d-submodule 
M' = @~,s~,, M~. Conversely, let Ko be the U-submodule of M generated by M'. 
Then the set of weights of M/Ko is contained in f2", and is therefore finite. Since all 
weight spaces in M are finite d-modules, we conclude that M/Ko is a finite 
d-module. It follows that K0 is the unique minimal element of ~ .  [] 

1.15. Remark. For 2~X, we denote by d z  the U~-module d on which U ~ acts by 
the character Xz. We simply write D(2) for D(dz) .  Observe that if ).d~ X § then the 
dominant conjugate of 2 does not belong to 2 + NR- .  Hence, with the notations of 
the above proof, we have 2~ f2". Therefore we conclude: if 2d~X § then D(2) = 0. 

1.16. We leave it to the reader to check that D is a right exact covariant functor. 

1.17. For each N ~ ) ,  there is a natural U~-homomorphism a:N ~ D(N). Then, 
we have the: 

Proposition. (Frobenius reciprocity.) Let N ~ ~ ,  E ~ c~ f .  For any tp ~ Homt~(N, E) 
there exists a unique ~p e H omu(D(N), E) such that (o o a = ~o. Moreover, Im (t~) is 
the U-submodule of  E generated by Im(~0). 

Proof. Clear. [] 

1.18. Let E be a U-module, and let ? be an anti-endomorphism of U. Then 
Homd(E, d )  is made into a U-module as follows: 

i f f e  Hom~,(E, d) ,  u E U, x z E, then (u.f) (x) = f(?(u)x).  

If? = S, the antipode of U, then the resulting U-module is denoted by E*. But, 
since S is bijective (see I'L 6, 1.1 (el)]), we can also take ? = S -~, and then the 
resulting U-module is denoted by E'. 

Now, assume that as an ~r E is free of finite rank. Then we have 
U-isomorphisms: ( E * ) t ' ~ E ~ - ( E ' )  *, and also zC-isomorphisms: E |  *~- 
End~,(E) = E t | E. These, composed with the injection: ~r ~ End~,(E), a ~-o a idr, 

give injections: d ~ E | E* and d ~ E' | E. Then, regarding d as a U-module 
via the co-unit e, we have the: 
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Proposition. (/) The maps z and z' are U-homomorphisms. 
c c '  

(ii) The contraction maps: E* | E ~ ~ and E | E ~ ~ ~ are U-homomor- 
phisms. 

(ii) For any U-modules M, N we have isomorphisms: 

Homv(M,  N | E) -~ H o m v ( M  | E t, N) 

and Horny(E* | M, N) -~ Horny (M, E | N). 

Proof. (iii) follows from (i) and (ii), which are easily checked. [] 

1.19. Proposition. (Tensor identities.) Let N ~ ~ ,  E ~ ~ f. Assume that E is a finite 
free d-module. Then, there are U-isomorphisms: D(E | N) ~- E | D(N) and 
D(N | E) ~- D(N) | E. 

Proof Denote by f and g the natural  U~-homomorphisms N ~ D ( N )  and 
E | N --* D(E | N). By 1.17, there exist U-homomorphisms 
~o:D(E | N) ~ E | D(N) and ~b':D(N) ~ E'  @ D(E | N) such that tp og = 1 @ f  
and i f ' o f =  (1 | 1 7 4  1). By 1.18, r  corresponds to some if: 
E | 1 7 4  such that ~ b o ( l @ f ) = g .  Then we have: ~ ,o~0og=g ,  
hence by 1.17 ~b o cp is the identity on D(E | N). Now, by 1.18 and 1.17 we have 
isomorphisms: 

Homv(E | D(N), E @ D(N)) ~- Homv(D(N), E t | E @ D( N)) 

Homv,(N,  E t @ E | D(N)) 

-~ Homu~(E | N, E | D(N)) . 

Therefore, the equality: q3 o tp o (1 |  = q~ o g = 1 |  that ~o o ~b is the ident- 
ity on E | D(N). Hence, ~o and ~b are reciprocal isomorphisms. 

The second isomorphism is proved similarly, using E* instead of E'. [] 

1.20. For  each 2 e X ,  let M ( 2 ) =  U | 1 6 2  be the Verma module with highest 
weight 2. Observe that M(2) = U/I(2), where 1(2) is the left ideal of U generated by 
Ker(x~) when we regard here Xa as a character of U ~. 

A U-module M is said to be a module of highest weight 2 if it is generated by an 
element x of weight 2 such that E~")x = 0 for all i and r > 0. Clearly, any such M is 
a quotient of M(2). Moreover,  if M is a finite ~r then it is a quotient of 
D (2), and necessarily 2 e X + (see 1.15). Therefore, for 2 e X +, D (2) is the universal 
~r U-module of highest weight 2. 

We have the following description of D(2). Let J - (3.) be the left ideal of U - 
generated by all FI ~'), where s~ > 3.~ (recall 3.eX +), take x~eM(2)  of weight 2 and 
let N(2) be the U- - submodu le  J-(3`)x~ of M(3.). Then: 

Proposition. (i) N(2) is a U-submodule of M(3`). Equivalently, J(2) = J-(3.)  + 1(2) 
is a left ideal of U. 

(ii) M(3.)/N(3.) is the largest ~r quotient module of M(2). In other words: 

D(2) = M(3`)/N(2) = U/J(3`). 

Remark. It follows from (ii) that  D(3`) is the universal ~d-finite highest weight 
module with highest weight ,L 
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Proof (i) Let s > 2~ and r > 0. By the commutation formula 1.11(1), and since 
x~ has weight 2, we have: 

E~,)~ts) Fls_r) [ 2 , +  r - s ]  xz(this b e i n g 0 i f r > s ) .  

Assume: 0 __< s - r < 2i. Then 0 _-< 2~ - s + r < r and therefore 

[ 2 i + r - s ]  = 0 " r  d. 

It follows that the U--submodule of M().) generated by all {FlS')xzlsi > 2i} is 
actually a U-submodule. 

(ii) If K is a U-submodule of M(2) such that M(2)/K is d-fini te then, by 
Lemma 1.11, Fl~xz ~ K whenever s > 2~, and therefore K contains N(2). Converse- 
ly, let Q = M(2)/N(2). By Lemma 1.5, F(Q) is a U-submodule of Q, and since it 
contains the generator xa we conclude that F(Q) = Q. Hence, by Lemma 1.13, the 
set of weights of Q is W-stable. Then, as in the proof of 1.14, we conclude that Q has 
only finitely many weight spaces, and is therefore J-finite.  [] 

1.21. The following criterion of freeness will be useful. 

Lemma. Let A be a local domain, k the residue field and K the fraction field. Let 
M be afinite A-module such that dimK(M | K) = dimk(M | k). Then M is a free 
A-module. 

Proof Let x ~ , . . . ,  xmeM such that their images form a basis of M |  By 
Nakayama's lemma, the x~'s generate M and therefore the x~ | l 's generate 
M | K. But dimK(M | K) = dimk(M | k), hence the xi | l 's are linearly inde- 
pendent. It follows that {x~ . . . .  , x,,} is a free A-basis of M. [] 

Proposition 1.22. Let 2 ~ X +. Then D(2) is a free ~J-module, and its character is 
given by Weyrs formula. 

Proof We compare the dimension of D(2) | d '  = 0(2)~, and 0(2) | k = 0(2)k. 
Firstly, D(2)~r is a finite dimensional quotient of M()0~r After ([L 2]), M(2)g, has 
a unique such quotient, and its character is given by Weyrs formula. 

On the other hand, D(2)k is a finite dimensional Uk-module. Moreover, since 
v is specialized to 1, then each K~ acts as the identity on D()Ok. By [-L 6 8.15], the 
algebra Uk/(K~ -- 1) identifies with the hyperalgebra Uk of Gk, hence we obtain that 
D(2)k is a finite dimensional t.Tk-module, generated by a highest weight vector of 
weight xx. As observed in ( [Ja  1, Satz 1]), this implies that D(2)k is a quotient of the 
Weyl module E(2)k. (This uses Kempf's vanishing theorem!). Therefore, we obtain: 

dimk(D(2) | k) < dim~r | ~ ' ) .  

Then lemma 1.21 gives that 0(2) is a finite free ~-module.  It follows that 
chD(2) = chD(2)~, = chD(2)k is given by Weyl's character formula. [] 

The previous results are needed in order to prove that the quantum coordinate 
algebra is a free ~r Let us make a disgression in order to derive some 
byproducts of our analysis. 

1.23. Recall that Lusztig has defined an action of the braid group on U ([L 6, 
Section 3]). Let 2~X +. For any w~ W, Let J~(2) = T~(J(2)). This is a left ideal 
of U. 
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Proposition. (i) For any w e  IV, D(2) is generated as a Tw(U-)-module by its 
w)~-weight space. 

(ii) For any we  IV, there is a U-isomorphism ~pw:D(2) "~ U/Jw(2). 

Proof (i) By induction on l(w), we reduce to the case where w = si, a simple 
reflection. We prove that D(2) is generated as a Ti(U-)-module  by the element 
Xs~2 = Flgl)xa. 

By [DL], the monomials F~'[ ~ �9 �9 �9 -aN~<'~ form an d -bas i s  of U-,  where 
{ fll . . . . .  fiN} is the ordering of R + corresponding to an arbitrary reduced expres- 
sion of the longest element w0. We arrange that/~N = ~i. Let U <~ be the subalgebra 
of U - generated by all F~ r), where/~ :1: ai. Then D(2) is generated as a U")-module 
by the elements {Fl~)xa[0 < s < 2i}. 

Clearly, Ti maps U <~ onto itself, and Ti(FlSl)=EI ~ for all s. Since 
E(S)~(~O~ _ t T i ~ - s ) ~  i ~i  ~ - - i  ~ ,  we obtain that D(2) is generated as a Ti(U )-module by 

(ii) By (i) we know that D(2) is generated by its w2-weight space, a free rank one 
~r which is annihilated by Tw( U + ). (This follows e.g. from Weyl's charac- 
ter formula). Since U/J~(2) has the obvious universal property, we obtain a surjec- 

tive U-homomorphism U/Jw(2)~,D(2). But the automorphism T~ of U induces an 
d- i somorphism from D(2) = U/J(2) onto U/Jw(2). Therefore, the latter is free, of 
the same rank as D(2). Then, by Nakayama, ~p is injective, and is therefore 
a U-isomorphism. [] 

Corollary 1.24. Let 2 = (21 . . . . .  2,)eR',P and let J+ (resp. J - )  be the left ideal of 
U + (resp. U - )  generated by {E~r'J}ri > 2,} (resp. {Fl~')lsi > 2i}. Then U+/J + and 
U - /J  - are finite free ~r 

Proof By 1.20 and 1.23 we have isomorphisms: U - / J -  "~ D(2) and U+/J + ~- 
D(-w02) .  [] 

1.25. Remark. Following [Jo], we have defined the functor D as induction from 
U ~ to U. This agrees with the tradition of privileging the dominant  weights and 
considering the Weyl modules as generated over U - by their highest weight vector. 
But the tradition for algebraic groups (where induction replaces co-induction) is 
still to work with dominant  weights, but induce from the negative Borel subgroup. 
Thus, we also introduce the functor D', which is defined in the same way as D (see 
1.14) with U ~ replaced by U ~. Of course, all properties of D have their analogue for 
D'. Observe that D'(/~) ~ 0 if and only i f#e  X - .  In fact, for 2 e X  + we have by 1.24: 

O ' ( - ~ )  ~- O(--Wo,~). 

Proposition 1.26. For all 2, # ~ X  +, the U-modules D(2) | D(#) and D(I~) | D(2) 
are isomorphic. 

Proof Let I be the left ideal of U + generated by {El")lr~ > ( - W o # ,  ~ )}. By 1.24, 
we have a U +-isomorphism U +/I ~- D(#). Let J be the left ideal of U ~ generated by 
I and Ker(x,), where v = 2 + w 0 # .  Then we have a U+-isomorphism: 
U +/I ~ U~/J. Now, as U~-modules both d ~  | D(#) and D(#) | ~r are generated 
by an element of weight v, which is killed by J. Therefore, we have surjective 
U ~-homomorphisms: 

q~:U~/J ,,~/~ | D ( # ) a n d  ~:U~/J ,}D(/z) | ~r . 
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But all three are free d - m o d u l e s  of the same rank, and therefore both ~0 and ~b are 
isomorphisms. Hence we obtain a U~-isomorphism: ~r | D(#)  -~ D(p) | d x .  
Since D(#)  is free as ~r we can apply the tensor identities 1.19 and get: 

D ( 2 ) |  ~ D(d~ Q D(#)) ~- D(O(ff)| ~ )  ~- O(#) | D()O. [] 

Remark. Proposition 1.26 answers a question raised in r P w  2, 3.4.3-1. ( w e  shall see 
that D'(--~.)* - H~ see Proposition 3.3). 

1.27. We now compute the annihilator in U of the element 
x = x_~ | x ~ E D ' ( - - 2 ) |  D(/0.  Set v = # -  2 and let J (2 ,# )  be the left ideal of 
U generated by Ker(zv), J + ( - 2 )  = Annu+(x_~), J - ( # )  = Annv-(x,) .  Then, we 
have the: 

Proposition. (i) The U-module D ' ( - 2 ) |  D(#)  is generated by the element x. 
(ii) Annu(x) = J(2, p). 
(iii) U/J( 2, I~) is a finite free d-module. 

Proof. Of course, (iii) follows from (i) and (ii). We prove (i). The U § of 
M = D ' ( - 2 ) |  generated by x is equal to D ' ( - 2 ) |  By 1.19 we have 
M~-D(D'(--)O| and therefore M is generated as a U- -modu le  by 
D ' ( - 2 )  @ x~. Hence, M is generated as a U-module by x. 

Now, we prove (ii). From the definition of comultiplication, we obtain that 
J _~ Ann(x), and moreover: 

(A(u §  u + | 1).x = 0 = ( A ( u - ) -  1 |  for any u •  • . 

From this it follows that: 

Anno + (x) = Annu + (x_ z) = J + (-,~), and Annu- (x) = Annu- (x~) = J -  (/~) . 

Set P = U/J(2, #). There is a surjective U-homomorphism P ~ - M. We prove 
firstly that P is a finite d -module .  By_ Lemma 1.5, F(P) is a U-submodule of P. 
Since it contains the generator y = 1, we conclude that F(P) = P. Hence, by 
Lemma 1.13, the set of weights of P is W-stable. Now, let N be the U~-submodule of 
P generated by y. Since: 

J - ( p )  --- Annt1-(y) --- Annu- (x) ___ J - ( # )  

we obtain tha t :N  ~- ~ r174  D(#). 
Now, since P is generated as a U § by N, it follows that all weights of 

P are bigger than - 2  + w0#, and all weight spaces are finite ~r Finally, 
since any weight of P is conjugate to some antidominant weight bigger than 
- 4  + Wo#, and since there are finitely many of these, we conclude that P is a finite 

~r 
Hence, by 1.17, the inclusion N _ P induces a surjective U-homomorphism 

D'(N) )~P. Also, D'(N)~-M,  by 1.19. Hence, we have two surjective U- 

homomorphisms: 

M )) P )~M . 
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Since M is a finite free d -modu le ,  it follows by Nakayama that n o go is injective. 
Hence both go and n are isomorphisms. This proves that J(2, #) = Ann(x). [] 

Corollary 1.28. Let M ECg. Assume that M is a finite U-module. Then M is also 
a finite d-module. 

Proof We may assume that M is generated by an element x of weight v E X. For  
each i E { 1 , . . . ,  n} let ri and si be the largest integers such that E~"lx 4:0 and 
F~S')x 4: O. Define 2, # E X  + by: 2i = r~ and #i = s~ for all i. Then # - 2 = v by 
Lemma 1.11, and J (2 ,#)  annihilates x. Hence M = Ux is a quotient of U/J(2, #) 
and is therefore d- f in i te  by Proposition 1.27 (iii). [] 

1.29. We can now derive the main properties of the induction functor H. Let M be 
an d -modu le .  Then the d - m o d u l e  ~ ( M )  = Hornet(U, M) carries two structures 
of U-module 7 and 6 (see 1.9). Recall that H ( M ) =  F6(oF(M)) (see 1.10). As 
a 6(U O)_module, H ( M )  is the direct sum of weight spaces H(M) , ,  v ~ X, and as we 
shall see in the proposition below these are 7(U)-submodules of H(M).  

For  each v e X ,  let l(v) be the left ideal of U generated by the ideal Ker(x,) of 
U ~ and let U(v)= U/I(v). Then Hom~(U(v), M) is made into a U-module as 
follows: (u. O)(x) = O(S(u)x). Let O(v) = {(2, # ) E X  + • X § l# - 2 = v}. 

For  (2 ,#)cO(v)  recall that J ( 2 , # )  has been defined in 1.27. Note that 
I(v) ~_ J(2, #). Set D(2,/1) = U/J(2, #). Then Hom~c(D(2, #), M) is a U-submodule 
of Homd(U(v), M). Let H,(M) be the union of these submodules, for all 
(2, #)EO(v). Then, we have the: 

Proposition. For each v E X,  there are isomorphisms of  7(U)'modules: 
Hom~(U,  M),  -~ Hom~(U(v),  M) and H(m)v ~- H,(M).  

Proof The first isomorphism is clear, and identifies H(M),  with a 7(U)-submodule 
of Hom~c(U(v), M). Let goEH(M),.  For  each i, let ri and si be the largest integers 
such that 6(El")) �9 go 4:0 and 6(FlS')) �9 rp 4: 0. Define 2, # e X + by: 2~ = r~ and #~ = s~. 
Then # - 2 = v by Lemma 1.11, and we obtain that go is zero on the left ideal 
J(2, #). Hence, go belongs to Hom,t(D(2, #), M). [] 

1.30. Keep the notations of 1.29 

Corollary. Let go E ~ (  M). 
(i) The following are equivalent: 

(a) There exists a two-sided ideal l e d  (see 1.8) such that cp(l) = O. 
(b) (peFa(.,~F(M)) 
(c) go E F~(.~Ct(M)) 

(ii) I f  these conditions are satisfied and i f  moreover go has weioht v for the action of 
6(U~ then there exist 2, # E X  + with # - 2 = v such that goEHom~(D(2, #), M). 

1.31. We can now derive the: 

Theorem. (i) H is an exact functor. 
(ii) H commutes with direct sum (possibly infinite). 
(iiO For any ~t-module M, the natural map O M : H ( d ) |  M ~ H ( M )  is an 

~l-isomorphism. 

Proof  (i) Since H is left exact, we only have to prove that, if M ,, Q is a surjec- 

tire ~r then H ( M ) ~  H(Q) is onto. So, let go eH(Q). We can 
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assume that ~o has weight v. Then ~o ~ Hom~(D(2, #), Q) for some 2, kt. Since D(2, #) 
is a free d -module ,  then ~o can be lifted to M. This proves that n is surjective. 

(ii) Let M = G M i  be a direct sum of d-modules .  Then ~)H(Mi) 
H(M) ~ IIH(Mi). Let r Again, we can assume that q~ belongs to some 
Hom~(D(2, p), M). Since D(2, #) is a finite d -module ,  then Im(~o) is contained in 
a finite direct sum of the M~s. Hence ~o e ~3 H(MO. 

As for (iii), it follows from (ii) that H ( d  ~I~) ~- H ( d )  CI~ ~- H ( d )  | d ~ for any 
free d - m o d u l e  d tx). Now, consider an exact sequence 0--* K ~ F ~ M--* 0 of 
d-modules ,  where F is free. By naturality of 0, we get a commutative diagram: 

H ( d )  | K ~ n ( d )  | F ~ n ( d )  | M ~ 0 

~o~ ~o, ~o~ 
o-~  H(K)  ~ ~ (V)  ~ I~(M) --~0 

The bottom row is exact by (i), and Or is an isomorphism since F is free. Hence, 
0M is surjective. The same argument applies to K instead of M, and therefore Or is 
also surjective. From this it follows that 0~ is bijective. Hence the Theorem is 
proved. 

We shall see below that H ( d )  is a free d-module .  Note that we have already 
obtained that H ( d )  is flat. Indeed, since 0~ is also bijective, then the top row is also 
exact, and therefore H ( d )  is a flat d -module .  [] 

Remark. OM is both a ?(U) and 6(U) isomorphism. 

1.32. For future use, we record here the following lemma. 

Lemma. (Kaplansky). Over a local rin~l, any projective module is free. 

Proof See [Mu, Theorem 2.5 p. 9]. 

Theorem 1.33. H ( d )  is a free d-module. 

Proof Since H ( d )  = O ~ x H ( d ) ~ ,  it is enough to prove that each H ( d ) ,  is free. 
So, let v E X be fixed. Let (2o,/~o) be the element of t2(v) defined by the conditions: 

2o,, = Max{0, v,} and #o., = Max{0, - v , }  . 

For  m > 0, set 2,, = 20 + rap, Itm = IZo + rap, and J(m) = d(2m,/~,,). 
If (2, kt) E f2(/~), then d(2,/~) contains some J(m) and therefore (U/J()~, #))* is 

contained in (U/J(m))*. Hence we obtain 

H(d)v  = U (U/J(m))*. 
m > O  

Let m > 0. Since U/J(m) and U/d(m + 1) are free, there is an d- isomorphism: 
U/J(m + 1) " U/J(m) ~ J(m)/J(m + 1). Hence J(m)/J(m + 1) is a projective d -  
module, and is therefore free, by lemma 1.32. From this we deduce that 

H(d)~ ~- ~ (J(m)/J(m + 1))* is a free d -module .  [] 
m=>0 

We call H the induction functor from d to U, and set H ( d )  = d [ U ] ,  the 
quantum coordinate algebra. 
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1.34. The Hopfalgebra structure of d [  U]. When H is a Hopf algebra over a field 
K, it is well-known (and easy to prove) that the restricted dual of H (also called 
space of representative functions) is again a Hopf algebra. The argument also 
applies to our Hopf algebra U over the (base) ring ~r except that we may have 
difficulties in checking the isomorphism: (M | N)* -~ M* | N*, when M, N are 
z~c-finite U-modules, and M* denotes Hornet(M, .~). But this difficulty is overcome 
by Corollary 1.30 (ii) (taking M = .~) by which we deduce that we only have to 
consider U-modules which are finite free ~r 

Hence, we obtain that ~r is a Hopf algebra, tt  consists of the coefficient 
spaces of all M-finite (free) U-modules. 

1.35. Tensor identity. Let M be any ~r Then Theorem 1.31 gives an 
~r H ( M ) "  H ( ~ ) |  M. The action of U is defined as follows. If 
0 �9 Hom~c(U, M), u, x e U then: (u. 0) (x) = O(xu). Equivalently, if 
q~ | m �9 ~r [ U ] | M, then u '  (~p | m) (x) = r (xu)m. In other words, 
u'(q)|  = (u.cp)| Now, if M is already a U-module, then ~ r  |  is 
a U |  U-module, and it becomes a U-module via the comultiplication 
A:U-4 U | U. In fact, we prove that these two structures of U-module are 
equivalent, when M is an integrable U-module. 

We need some notations. Let J / /denote  the ~r M | ~r U]. We shall 
use the fact that J / - ~  H(M) can be identified with an ~r of 
Homd(U,M) .  There are two actions of U on J / ,  defined as follows. Let 
m | ~0 �9 J//, u �9 U. Write A (u) = ~ i  u~ | u'i. 

One action is defined by: u'(m | r m | (u~o). The resulting U-module is 
called i t '1.  

The other action is defined by: u-(m | q~)= ~,ulm | u'~q). The resulting U- 
module is called rig2. 

We shall define an ~r of .AI, which will be a U-isomorphism 
from J//, onto ~/r Let m | ~0 �9 ~r We define a(m | ~0)~ Hom.~(U, M) as follows. 
If u e U, A(u) = ~i ui | u; then: 

z (m @ ~o)(u) = Y. u~o(u~)m . 
i 

We claim that ~(m | ~0) �9 ~t'. To see this observe that since M is integrable then the 
map ~,,: U -4 M , x  ~-* x .m  belongs to sg. Then, ~(m|  r is nothing but r 
which again belongs to J//. 

We leave it to the reader to check that a is a U-homomorphism from s/r into 
Jr In  order to prove that ~ is an isomorphism, we construct an inverse. Using the 
same notations as above, if m |  r149162 we define fl(m@ ~0)eHom~(U, M) as 
follows: 

fl(m | r = ~ S(ui)cp(u;)m, where S is the antipode of U .  
i 

Since the antipode S' of ~ [ U ] is defined by S' (r  = ~k o S (~O E ~r [ U ] ), we see that 
fl(m | (p) is equal to S'(~bm)~0, which again belongs to J / .  Hence, fl takes Jg into 
itself. Now, it is a formal manipulation to check that ~ and fl are reciprocal 
bijections. Hence, ~:~/1 ~ ~r is a U-isomorphism. 

Therefore, if we denote Jr by M |  whereas ~r is denoted by 
~t', | ~ r  (here, t stands for: trivial action) and also by H(M) then the result 
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reads as (i) of the proposition below. For the sake of completeness, we observe that 
the d - m o d u l e  d [  U] | M also carries two different structures of U-module, and 
since the antipode S of U is bijective, these two structures can also be intertwined. 
This gives (it) in the proposition below. 

Proposition. Let M be a U-module. Then we have U-isomorphisms: 
(i) H(M)  ~ M |  
(it) H(M)  ~- d [ U ]  | M 

2. Induction 

In this section we study induction functors for quantum algebras. The functor 
H considered in Section 1 corresponds to induction from the trivial subalgebra 
d to the whole algebra U. Most of the results here are deduced via standard 
arguments from the key properties of H developed in Section 1. 

2.1. For  two subalgebras U 2 _ U 1 of U, we will define an induction functor from 
U 2 to U 1. Firstly, we only want to consider subalgebras of the following type. Let I, 
J be subsets of { 1 , . . . ,  n}. We denote by U(I, J) the subalgebra of U generated by 
U ~ and {El r), F~S),lieI, j ~ J ,  r, s > 0}, and we simply write Uz for U(I,I) .  

Note that Ut is isomorphic (as an algebra) to the tensor product of the 
subalgebra of U ~ generated by {K + 1, [ r j ]  ]jdg I, t > 0} with the quantum algebra 
associated to the Caftan submatrix (al,~)i,j~1, so that all the results from Section 1 
apply to Uj. 

Secondly, in order to have good properties of induction, we need induction 
from d to the given subalgebra U(I, J) to be exact. We do not  know whether this is 
true for arbitrary I, J, but we prove it when I _ J or J ~_ I. 

2.2. Let 1, J as above. If V is a U(I, J)-module, we set: 

F " J ( V )  = { x e  ~x  V~]E!')x = O = F")x'  f~ all i~ l 'J~J 'r>>O } 

Let cgJ, s be the category of those U(I, J)-modules V such that V = F~'s(V). The 
modules in cg~,s are called integrable U(I, J)-modules (of type 1, see 1.6). Observe 
that cg~,s is an abelian category, see the Note added in proof 

When I = J = {1 . . . . .  n}, we have cgt, s = cg (see 1.6). 
When I = JZ~ and J = {1 . . . . .  n}, we have U(I, J) = U ~ and we write cg~ for 

the corresponding category. 
When 1 = J = ~ ,  then U(I, J) = U ~ and the corresponding category is de- 

noted by cs 

2.3. If d ~ Y is a specialization of d into a field F, the categories ego, cg~., etc. are 
defined similarly (see 1.7). 

2.4. We define a functor H~'S:{d-modules}  ~ cg~,s as follows. For an d - m o d u l e  
M, we set (see 1.9-1.10): 

Hx'J(M) = Fg'J(Hom~,(U(I, J), M)). 

Also, we set: H t ' ~ ( d )  = ,~r J)].  
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2.5. Assume that I, J _~ (1 . . . . .  n} satisfy: I _ J or J __q I. We denote by U~(I), 
respectively U~(J) the subalgebra generated by U ~ and {E!')[i ~ I, r > 0}, respect- 
ively U ~ and {F)~)Ij~J, s > 0}, and call them: parabolic subalgebras. Essentially, 
these subalgebras encompass all the subalgebras that we want to consider. Indeed, 
i f / _  J (resp. J ~ / )  then U(I, J ) i s  the parabolic subalgebra U~j(I)(resp. U~(J))of 
U~ (resp. U~), and might therefore be called a generalized parabolic subalgebra. 

So, we see that there is no loss of generality in assuming that J = { 1 , . . . ,  n}. 
We shall do this in the rest of this section, and omit the letter J everywhere in the 
notation. Hence, U(I, J) becomes U~(I), and cr H~,~ are simply denoted cr H ~, 
etc. 

2.6. Let 2 e X  +. As in 1.14 we define D~(-2)  as the largest ~r quotient 
Urmodule of U~|162 Note that there is a Urisomorphism: 
U x | v ~, d _ ~  "~ U~ ( I) |  ~r From this we deduce that the Urmodule structure 
on D~(2) extends to a U~(I)-module structure. 

Now, let also # ~ X  § and as in 1.27 denote by J(2,#) the left ideal of U~(I) 
generated by Ker(z~_~ ) and t-,~!"), F~J)li~I,  1 < j  =< n, ri > 2i, s~ >/~}. Then, as in 
1.27, we have the: 

Proposition. (/) The U~(I)-module D)( - -2 ) |  D(/~) is generated by x = x - z  @ xu. 
(ii) The annihilator of  x is equal to J(2,/~). 
(iii) U~(I)/J(2, I~) is a finite free ~-module.  

Remark. For this proposition, it is crucial for U~(I) to be a parabolic algebra, in 
order to be able to apply the tensor identity 1.19, see the proof of 1.27. 

2.7. Then, by 2.5-2.6 we obtain, as in 1.31-1.33-1.35, the: 

Proposition. (0 HX is an exact functor. It takes free d-modules to ~r modules in 
c~z. 

(ii) ~r is a direct sum of  weight spaces, and each of these is a free 
~r 

( iii) The restriction map: ~r [ U] --* ~r [ U ~ (I)] is surjective. 
(iv) For any ~r M the natural map: ~r |  is an 

~-module  isomorphism. 
(v) Tensor identities. I f  M is already a U ~(1)-module (considered as an ~r 

by restriction), then we have U~(l)-isomorphisms: 

H ' ( M )  ~- M |  ~r and H' (M)  ~- ~r U~(I)] | M 

where the terms on the R.H.S. are regarded as U~(l)-modules for the "diagonal" 
action. 

Proof. We have seen all of this already, except for the fact that ~r [ U ] ~ ~r [ U~ (I) ] 
is surjective. So, let ~o ~ ~r [ U~(I)]. We can assume that q~ has weight v. Then there 
exist 2 , / ~ X  + with/~ - 2 = v such that ~0 ~(D~(-2) | D(/~))*. Now, the sum N of 
all weight spaces D( -2 ) , ,  for ~ /E-2  + NR; ~, is clearly a U~(I)-submodule of 
D ' ( -  2), generated by the ( - 2)-weight space. Moreover, it is well known that N and 
D~(-2)  have the same character, see e.g. [Ja 3, II 5.21]. Therefore D~(-2) identifies 
with a direct summand (as ~r of D ' ( -2 ) .  It follows that tp is the restriction 
of some ~b~(D' ( -2) |  ___ ~r [] 
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2.8. Now, we define induction from subalgebras. Let I '  ___ I ~ {l . . . . .  n}. We set 
U 1 = U~(I), and take U 2 to be either U~(I ') or U ~ and call cg~ and (g2 the 
corresponding categories. 

Induction from ~2 to cg~ is defined as follows. Let M ~ cgz. Then Homu~(U ~, M) 
is a 6(U-1)-submodule of Hom~(U 1, M)) (see 1.9) and we set: 

H~ 2, M)  = F~(Homv~(U 1, M)) . 

Clearly, this is a left exact covariant functor. There is a natural U2-homomor - 
phism oVv:H~ 2, M)  ~ M, defined by: ~v(~o) = ~0(1). 

Note that H~ 2, M) is the same as { f ~ H t ( M ) ] f i s  a U2-homomorphism}. 
We shall elaborate on this in the next subsection. 

2.9. Homomorphisms and invariantsfor Hopfalgebras. In order to push further the 
analogy with algebraic groups, we recall some facts about Hopf algebras. In this 
subsection, we denote by ~r a commutative ring, and by U a Hopf algebra over ~r 
with comultiplication 3, co-unit e and antipode S. 

If M is a U-module, we set: M U = { x ~ M J u . x  = e(u)x for all u~U} .  This is 
called the space of U-invariants in M. 

Let M, N be U-modules. Then Hom~(M, N) is made into a U-module as 
follows: let 0eHom~(M,  N), x ~ M, ue  U. Write A(u) = ~ iu i  | u'~. Then: 

(uO) (x) = ~, uiO(S(u;)x) . 
i 

If N = d ,  with trivial action, i . e . u .y  = e(u)y for all u~ U, y ~ d ,  we obtain: 
(uO)(x) = O(S(u)x). This is the usual action on M*. Now, for general N, the natural 
d -homomorph i sm N | M* ~ Hom~(M, N) is a U-homomorphism. 

Proposition. Let M, N be U-modules. Set Y= Hom~(M, N). Then: 

Horny(M, N) ~ yu ~ {0 ~ Y ]O(S(u)x) = S(u)O(x)for all u~ U, x E M } . 

Therefore, if  S is surjeetive then Homv(M, N) = Hom~(M, N) U. 

Proof. Let  O E H o m ~ ( M , N ) , x ~ M ,  u~U.  Write A(u )=~ iu~ |  Then 
~i  uiO(S(ui)x) = ~iuiS(ui)O(x) = ~(u)O(x). Hence 0 ~ Hom~(M, N) v. 

The proof of the reverse inclusion is a little harder. We make Homg(M, N) into 
a U | U-module as follows: 

( (u | v)O)(x) = uO(S(v)x) for all u, v~ U, 0~Hom~(M,  N ), x ~ M . 

Let OeHom~c(M,N) v. Then we have: ( z |174  for any 
z, t e U, with A(t) = ~ ti | t~. 

Now, let u e U ,  A ( u ) = ~ i u i |  ~. Since u=~iuie(u~),  we have S(u)= 
~fl(u,)e(u;). Therefore: 

(S(u) | 1)0 = ~, (S(u,) | ~(u[))O = (m | id)(S | id | id) (id | A)A(u)O 
i 

= (m | id)(S | id | id)(A | id)A(u)O 

= ((m(S | id)A) | id)~(u)O 

= (e | id)A(u)O = (1 | u)O 

The proposition follows. [] 
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2.10. Let M ~ (~2 In analogy with induction for algebraic groups, we obtain from 
2.8-2.9 that: 

n ~  i /u  2, M) = (M | A[  U1]) v~ 

2.11. The formula in 2.10 is of particular interest when U z = U ~ In that case we 
obtain: 

H~ ~ M) = (M | A[U1]) u~ = O) (M~| A [ U 1 ] _ I )  
2EX  

From this we deduce the: 

Proposition. Induction from c~o to c~a is an exact functor. It takes d-free modules in 
c~o to ~r modules in c~1. 

Proof Let 0 --* N ~ M --* P ~ 0 be an exact sequence of modules in oK~ Then, for 
each ). ~ X, the sequence 0 ~ N~ ~ M~ ~ P i  ~ 0 is exact, and remains so after 
tensoring by d [ U 1 ] - ~  which is a free ~r by 2.7 (ii). This proves that 
H~ ~ - )  is exact. 

Now, assume that M e ~o is a free ~-module .  Then each weight space M~, 
being a direct summand, is projective and therefore free, since ~ is a local ring (see 
1.32). It follows that H~ ~ M) is a free ~r [] 

2.12. We shall prove that induction satisfies Frobenius reciprocity, i.e. is right 
adjoint to restriction. Let the notation be as in 2.8. 

Proposition. (Frobenius reciprocity.) Let M E ~  2 and V e ~  1. Then, the map ~: 
f ~ ~v o f  is an isomorphism of d-modules: 

Homw( V, n ~  1/U2, M)) ~; Homv~( V, M) 

Proof To each h ~ Homv2( V, M) one can associate ~(h) 
Homw(V,H~ M)) defined as follows. For x e  V, ~(h)(x) is the map 
sending u~U 1 to h(ux)eM. It is easy to check that �9 and ~ are reciprocal 
isomorphisms. [] 

Corollary 2.13. (i) The induction functor: c~2 ~ cCa takes injective objects to injective 
objects. 

(ii) The cateoory c~l has enough injective objects. 

Proof. Assertion (i) is a standard consequence of Proposition 2.12. As for assertion 
(ii), we consider first the category ~o. Let M ~ ~o. For  each 2 e X, let Q~ be the 
injective hull of the ~r Mi.  We let U ~ act on Qa by the character Xl. Then, 
M = ~ M~ is a U~ ofQ = ~) Q~, and the latter is an injective object in 
~o. 

Consider now the category c~a. Let MeCg ~. As a U~ M belongs to c~0 
and is therefore a U~ of some injective object Q e c~o. By Frobenius 
reciprocity, we obtain an injective Ul-homomorphism: M ~ H~ ~ M); and 
the latter is an injective object in c~1, by assertion (i). Hence, (ii) is proved. [] 

2.14. Since the category c~2 has enough injectives, we can define the right derived 
functors of induction. We denote them by: Hi(UI/U 2, -). 
2.15. Suppose we have three subsets I" c_ I' ~_ I ~_ { 1 , . . . ,  n}. Take U a to be one 
of the following subalgebras: ~r U ~ U(I"), and let c~a be the corresponding 
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category. Then we have the: 

Corollary. (Transitivity of induction.) Let MEc~ 3. 
(i) There is a natural isomorphism of Ul-modules: 

H~ 3, M) ~- H~ 2, H~ 3, M)) 

(ii) There is a spectral sequence: 

H'(UI/U 2, HJ(UE/U 3, M)) ~ H'+ ~(UI/U 3, M) 

Proof. Again (i) is a standard consequence of Proposition 2.12, The spectral 
sequence is the usual one associated to the composite of two functors, the first of 
which takes injective objects to objects which are acyclic for the second functor. 
This property is satisfied here, thanks to Corollary 2.13 (i). [] 

2.16. We shall now prove that induction satisfies the "tensor identity". The key to 
this result is Proposition 1.35 which might be called the tensor identity for 
induction from the trivial subalgebra. Let the notations be as in 2.8. 

Proposition. (Tensor identity.) Let Ve ~i .  
(i) For all Meek  ~ there is a natural Ul-isomorphism: V |176176  ~ - 
H~ ~ V |  M) 
(ii) Assume that V is flat as an d-module. Then, for all M ~ c4z there is a natural 
Ul-isomorphism: V |  H~ z, M) ~- H~ 2, V |  M). 

Proof. We will prove both assertions simultaneously. So in the following U z 
denotes either U ~ or U 2. First, we consider the case where M = H r ( M  ') for some 
d - m o d u l e  M'. In this case we get via Propositions 2.15 (i) and 2.7 (v): 

V|  H~ 2, M) = V |  H~ 2, HI'(M')) "~ V |  H*(M ') ~- H*(V | M') "~ 

~- H~ 2, H r ( V  | M')) "~ H~ 2, V |  Hr(M'))  "~ H~ 2, V |  M ) .  

This proves the proposition for such M. For a general M we note that M is 
a U2-submodule and a direct ~r of H r ( M ) = M |  Set 
R = Hr(M)/M. From the short exact sequence: 0 ~ M --* Hr(M) --) R --) 0 we 
obtain the commutative diagram: 

0 --~ V |  H~ 2, M) --* V |  H~ 2, Hr(M)) -) V |  H~ 2, R) 

0 ~ H~ z, V |  M) -o H~ 2, V |  Hr(M)) --) H~ 2, V |  R) 

Here the bottom row is clearly exact and we claim that so is the top row. In case 
(i) this is because H~ ~ M), being the zero-weight space of HI(M)= 
H~ z, Hr(M)), is a direct summand. In case (ii), this follows from the flatness 
assumption on V. Now, we have seen that the middle vertical map is an isomor- 
phism, and the proposition follows. [] 

Remark. Just as for the tensor identity in the case of algebraic groups, assertion (ii) 
is false without the flatness assumption on VOn spite of [Ja 3, Proposition 1.3.6]). 

2.17. Let M e ~  1. Then M is a U~-submodule and U~ of 
Qo = H~176 M). The same is true for Qo/M and Q1 = n ~  ~ Qo/M), etc. 
It follows that we obtain a resolution in ~r 

O -o M -~ Q o -o Q l ~ . . . 
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which is d - sp l i t  (and even U~ and such that each Qi equals H~ ~ QI) for 
some Q~e~o. We shall call this the standard resolution of M. 

Lemma 2.18. I f  M is a free ,~r then the standard resolution of M consists ~?f 
free d-modules. 

Proof Since M is free, then Qo is free, by Proposition 2.11. Then, Qo/M is a direct 
summand of the free d - m o d u l e  Qo, and is therefore projective, hence free, since 
~r is a local ring (see 1.32). Repeating this argument, we obtain that each Qi is a free 
,~r [] 

Proposition 2.19. Keep the notations of 2.8 and let M ~ ~2. Then: 

(i) The standard resolution of M (in cs consists of modules which are acyclic for 
H~ 2, -). 

(ii) I f  VeC~ 1 is a fiat ,~r then there is for each i> 0 a natural U l- 
isomorphism: V |  Hi(UI/U z, M) ~- HI(Ux/U 2, V |  M). 

Proof Let Q~ = H~ z, Q~) be the ith term in the standard resolution of M. By 
Corollary 2.15 (ii) and Proposition 2.11 we get: 

Hi(U1~ U2, Qi) ~- HJ(U1/U ~ Q~) = 0 fo r j  > 0 

This proves (i). Moreover, V |  Qi ~- H~ ~ V |  Q~) for all i and hence 
V |  Q. identifies with the standard resolution of V|  M. This together with the 
flatness of V gives (ii). [] 

3. Base change 

In this section we study the relations between U-modules and Ur-modules, where 
Ur = U | F for some d -a lgebra  F. 

If V is a U-module we write Vr for the Ur-module V | F. Also, U ~ = U ~ @ F, 
U~ = U ~ | F, etc. 

Although our results remain true for more general inductions, we shall state 
most of our results only in the case of induction from U ~ to U. We write Hi(V) 
instead of H~(U/U ~, V), resp. H~-(V), instead of Hi(Ur/U~r, V), when V is a U ~- 
module, resp. U~-module. 

Lemma 3.1. For any M ~  ~ there is a natural isomorphism of Ur-modules: 
H~ ~ M)r ~- H~ ~ Mr). 

Proof This is the special case V = / "  (with trivial action) in Proposition 2.16 (i). [] 

3.2. Induction from U ~ to U has the special property that it takes ,~'-finite modules 
to d- f in i te  modules. Let us denote by c~} (resp. cgy) the subcategory of objects in ~ 
(resp. ~ )  which are finite d-modules .  Then we have the: 

Proposition. Let M ~ ~ .  Then H ~ (M) ~ cgf. 

Proof Let q~H~ By Corollary 1.30 we know that q~(J) = 0 for some right 
ideal J such that U/J is a finite d -module .  We prove that all ~o e H~ are zero on 
some fixed such ideal J. Consider the larger d - m o d u l e  ~ ( M )  = Hom~(U, M). 
This is a ? ( U ) x  6(U)-module (see 1.9), and H~ is contained in 
F~(J~(M)) = F~(~,~e(M)) (see 1.10-1.30). 
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Since M e ~ ,  then the set t2 of weights of M is finite and there exists So >>0 such 
that F!~)M = 0, hence 7(F!~))M = 0, for all i, and s > So. Assume now that 
tp ~ H~ has weight v for the action of 7(U~ - This means that: 

~(,.(u)qo(x) = (7(u)tp)(x) = tp(S(u)x) for all ue  U ~ x e  U . 

Then, any tp(x) + 0 is an element of M of weight - v. Hence the weights of the 
7(U~ H~ are contained in the (finite) set -~2. Together with Lemma 
1.11 and the fact that 7(F!SJ)H~ = 0 for all i, and s > So, this implies that there 
exists ro such that y(E!~ = 0 for all i, and r > ro. 

We conclude that all ~o~H~ are zero on the right ideal J generated by 
Nv~oKer(x-v)  and {E! r~,F!s~lr >= ro, s > So}. It follows that H~ ~_ 
Hom~r M). Since U/J is a finite ~4-module and since ~r is noetherian, we 
conclude that H~ is a finite ,4-module. [] 

Remark. The proposition remains valid for induction from U( ~ ,  J)  to U(I, J), for 
any I _~ J; and in particular for induction from U ~ to any U~(I). 

3.3. Let ) ~ X  +, let J be the right ideal of U generated by Ker(g~) and {F! ~), 
E~"~ls > 0, ri > 2i}. Then the proof of Proposition 3.2 shows that H~ ~_ (U/J)*. 
The reverse inclusion is easily checked, and therefore we get: H~ = ( U/J )*. Now, 
U/J is a right U-module. We leave it to the reader to check that there exists an 
anti-automorphism 7' of U~r defined by the conditions: 

7 " ( E l )  = - -  E i  7"(Fi) = -- Fi 7"(Ki) = N i  1 (1 < i < n) 

and that 7" restricts to an anti-automorphism of U. This allows us to make U/J 
into a left U-module. Then it identifies with D ' ( - 2 ) .  Therefore, we obtain the: 

Proposition. Let 2 ~ X  +. Then H~ ~- D ' ( - 2 ) *  -~ D(-wo2)*.  

Corollary. (i) H~ is a free ,~r and its character is given by Weyrs formula. 
(ii) l f  M is a U ~ (resp. U ~) submodule of H~ then Mwo~ # 0 (resp. Ma + 0). 
(iii) H~ | k ~ H~ 

Proof. (i) follows from the proposition above together with Proposition 1.22; and 
(ii) obtains since D(-wo2) ~- D'(--2)  is generated as a U ~ (resp. U ~) module by its 
-Wo2 (resp. - 2 )  weight space. As for (iii), the U~-homomorphism H~ | k ~ kx 

induces by Frobenius reciprocity a U~-homomorphism q~:H~ | k -  H~ 
which is injective on the 2-weight space. Since H ~ 1 7 4  k is isomorphic to the 
k-dual of D ' ( - 2 )  | k and since the latter is generated by its ( - 2 )  weight space, we 
conclude that ~b is injective. Since the two modules have the same character we 
obtain that 4~ is an isomorphism. [] 

3.4. Let F be an ,~r Since ,~r is a regular local ring (of dimension 2), then it 
has finite global homological dimension (equal to 2) and therefore there exists 
a finite resolution: 

0 _.~ p2 ~ p 1  ~ p O  ~ F ~ O  

where the pi are free ,~r (and P~ = 0 for i > 2). We regard this resolution as 
an exact sequence of trivial U-modules. 

Let now M r  ~ and consider the standard resolution of M (see 2.17): 

O-~ M ~ Q o  ~Q1  . . . .  
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Assuming that M is free as ~r each Qj is also free, by Lemma 2.18. Hence, 
for each j, we have a free resolution Qj | P" of Qj | F. Moreover, for each i the 
resolution Q. | pi of M | P~ is H~ Since the complex P" is finite, then the 
double complex Q. | P" gives rise to a spectral sequence: 

E~ - j  = TorJ~(Hi(M), F) ~ n~-J(Mr)  

3.5. Instead of the spectral sequence in 3.4 we can formulate the relations between 
the functors in question as a six-term exact sequence. 

Keep the notations in 3.4. Set M i =  H~ and let d i : M i ~ M  i§ be the 
differential in the complex M'. Setting B i = Im(d i) and R t = Coker(d i) we obtain 
the exact sequences below, where i > 0. (Note that (3) is the special case i = 0 of(2)). 

(1) O --~ B i  -.~ M i + l -~  R i  --~ O 

(2) 0 ~ Hi(M) ~ R i- i _~ B i _. 0 

(3) 0 --,, H~ ~ M ~ ~ B ~ --* 0 

Note that M i is a free d -module .  In fact, Qi = H~ ~ Q;) for some ~r 
u ~ Q'i so that M i = H~ ~ Q'i) is free by Proposition 2.11. Therefore (1) 
and (3) respectively give: 

(4) Tor~(B i, F) -~ Torte+ 1 (R i, F) and Tor~(H~ F) ~ Tort+ , (B ~ F) 

i>O, j>=l .  

Since gldim(~qr we get T o r ~ ( B / , F ) = 0  for all j > 2 ,  i > 0 ,  hence 
To jr~. (H~ F) = 0 for a l l j  > 1. Since we can take F = ~r for any ideal I of d ,  
we conclude that H~ is a flat M-module. If moreover M is a finite ~qC-module, 
then so is H~ by Proposition 3.2, and therefore in that case we conclude that 
H~ is a free d - m o d u l e  (since d is a local ring). 

Taking the isomorphisms (4) into account, the long exact sequences coming 
from (1) and (2) respectively give: 

(5) . . . . .  Mi+l  | O ~ Tor~I (Ri, F) -.. B' | F ~ F ~ Ri | F ~ O 

0 --* Tor~l (Hi(M), F) ~ Tor~  (R' - 1, F ) ~ Totff  (H' + 1 (M), F ) 

lti 
(6) - ,  H'(M) | r ~ R' | r - ,  B' | r -~ o 

Note that Q. | F is the standard resolution of M r  so that H~(Mr)  is the ith 
cohomology of the complex H~ | F). By Lemma 3.1 we have: 

0 L, 0 Qi | F = H~176 Q;) | r ~- n (Ur/Ur, Q~ | F) 

Therefore, we find: 

H~ | F) ~- H~  ~ Q~ | F) ~- H~ ~ Q~) | F ~- M i | F 
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It follows that Hit(Mr) is the kernel of: R~- ~ M~ -+ 1. Thus combining (4) and (5) 
we obtain a commutative diagram: 

0 

Tof ( (R  ~, F)  

H'(M)r , R~ , Bit ~ 0 

0 --* U~(Mr) , R~r ' Mir +' 

By the Snake Lemma, we obtain Coker(r/~) ~- To1-~1 (R i, F). Together with (4), 
this gives a six-term exact sequence relating Hi(M)r and H~(Mr). Summarizing, we 
have obtained the: 

Theorem. Assume that M ~ c~ is a free ~-module. Then: 

(i) H~ is a flat d-module. I f  moreover M is finite free then so is H~ 
(ii) For each i > 0 there is an exact sequence: 

0 ~ Toff[(H'(M), F) ~ Tor~ (R'-1,  F)  ~ Tor~(H'+  1 (M), F )  
(7) 

---, n i(M)r ~ H~(Mr) --* Tor ( (R  i, F)  ~ 0 

Remark. Assume that Hi(M)  = 0 for all j > i. Then (7) with i replaced by i + 1 
gives Tor~l (R I, F)  = 0, hence we obtain Hi(M)r  ~- H~(Mr). Of course, this also 
follows from the spectral sequence in 3.4. 

3.6. Two special cases are worth recording. Suppose that  the ~r F is flat 
over ~r Then 3.5 (ii) simply reads: Hi(M)r ~- H~(Mr) for all i _-> 0. 

The other case is when the ~r F has projective dimension one. Then 
Tor~(Bi, F ) =  0 for all i__> 0, j => 1, hence the exact sequence 3.5(2) gives 
Tor~(Hi+l(M),  F ) ~  T o ~ ( R  ~, F )  for all i->_ 0. Therefore the six-term sequence 
3.5(6) simplifies to the short exact sequence: 

(8) 0 ~ Hi(M)r --* H~(Mr) ~ Tor~ (H ~+ I(M), F)  ~ 0 

3.7. Now, assume that  q~:~r ~ F is a specialization of ~r into a field F such that 
~0(v) = 1. Let M ~cg~. We identify the cohomology groups H~r(Mr) with the sheaf 
cohomology on the flag variety Gr/Br. 

Proposition. H~(Mr) ~- H~(Gr/Br, Mr) for  all i > O. 

Proof. By [L 6, 8.153 the hyperalgebra of Gr identifies with the quotient of Ur by 
the ideal generated by Ki - 1, i = 1 . . . .  , n. Hence any Gr-module is a Ur-module, 
and conversely any locally finite Ur-module on which the Ki's act as the identity is 
a Gr-module (in characteristic zero this is well known, and for positive character- 
istic see e.g. [CPS 2, 9.23). Similarly, the category of U~--modules in c~  identifies 
with the category of Br-modules. In positive characteristic, this is proved in [loc. 
cit., 9.4]. On the other hand, in characteristic zero it is well known that  
H~ ~ F) identifies with the coordinate algebra of the unipotent radical of B. 
It follows that  the injective modules in the two categories coincide, hence the result 
follows as in [loc. cit.]. From this we deduce: H~ ,,, H~ M), e.g. because 
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both satisfy Frobenius reciprocity (see 2.12). Moreover, the standard resolution is 
acyclic for both functors, so that the derived functors also coincide. [] 

3.8. All that we used about the base change d ~ r is that the d - m o d u l e  F has 
finite projective dimension, equal to two. Therefore the same argument applies to 
another base change r ~ F ' ,  if the projective dimension of F '  as a F-module is at 
most 2. We will use this in the following cases. 

3.9. Take F = r | ~r and F '  = Q where II~ is made into a F-algebra by taking v to 
1. Then, we have: 

Corollary. Let M e ~r be F-free. Then for each i > 0 we have a short exact sequence: 

0 ~ H~(M) |  ff~ ~ HI(G~/B~, MQ) ~ Torr(H~ + I(M), ~)  ~ 0 

Proof. This follows from 3.6(8) together with Proposition 3.7. [] 

3.10. Let go be a prime ideal in d distinct from (0) and ~r/. I fF  is either the residue 
field of ,~r or d /ga  or the quotient field of the latter, then we have for any d-free  
M ~ c~ an exact sequence: 

(9) 0 ~ n i (m)r  ~ H~(Mr) -~ ToF[(Hi+I(M), F) ~ 0 

As an example, let l = pe for some e _-> 1 and let ~bz be the corresponding 
cyclotomic polynomial. Then the fraction field of d/(q~t) is ~ [ ~ ]  where # is 
a primitive/th root of 1. 

3.11. Let finally F = k, the residue field of~r Then F is an z~C-module of projective 
dimension 2, and we can apply Theorem 3.5. 

Suppose that MeC~ ~ is .~r and has the property that H~(Gk/Bk, Mk) = 0 
whenever i >  io. Then it follows from 3.5 and 3.7 that: Hi~174 ~-- 
Hi~ Mk). If M is a finite d - m o d u l e  then so are all Hi(M), as we shall see in 
the next section. Hence the above isomorphism gives via Nakayama that: if 
Hi(Gk/Bk, Mk) = 0 for i --> io, then Hi(M) = 0 for i > i0. 

4. Rank one 

In this section, we assume n = 1 and write F, K • E for the generators of U'. We 
compute the structure of Hi(2) for 2 e X, i > 0. 

4.1. For m e Z  let 2,,: U~ ~r be the character defined by: 

2 = ( K , = v ' , 2 , ( [ K ; t c ] ) = [ m + t  Cl, c ~ Z , t ~ N  

Proposition. L e t  m e Z .  

(i) H~ 4= 0 if and only if m > O. 
(ii) l f  m >= 0 then H~ is a free d-module of dimension (m + 1), with a basis: 

{Co . . . . .  e~,} such that: ei is of weioht 2m-2, and: 

E(J)e, F i l  FU)e ' [m-i] = e i - ~ ,  = e~+j,  0 < i,j <-_ m .  
LJ_I J = 
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Proof (i) If H~ ~ 0 there existsf~H~ such that f(1) = 1. Then, using 1.11 
(1), we have: 

t__>0 t j 

I f m < O t h e n [ ~ ] ~ = O f o r a l l j > O a n d s i n c e f t J ) f = O f o r j > > O w e m u s t  

therefore have m > 0. 
(ii) Conversely, if m > 0, we prove that H~ has dimension (m + 1). Define 

ei: U ~ ~r by: 

ei(F~')uE~)) = 60rfis2m(U), U~ U ~ r, s > 0 

Then, using 1.11 (1) again we get: 

(F ' r~e i ) (E '~ ' )=e i (E 'S 'F ' r ' )=~ei (F"- t ' [Ki ;2 t t r - - s ]E 'S- t ) )  

In particular, ifi  > m then F (j) * 0 for al l j  > 0 and, ifi  __< m then we read offthe 
stated action o fF  (J~ on ei (note that F~J~ei = 0 forj  > m - / ) .  Similarly, we compute: 

(E(J'ei)(E(M))=ei(E~J'E(M')=IJ;MIeI(ElJ§ 

It follows: E(J~ ei = [ i ] j e i - j . [~ 

Proposition 4.2. Assume m > -- 1. Then H~(2m) = O for i > O. 

Proof Set l(m)= H~ ~ 2m) and observe that the weights of l(m) are 
{ Xm § 2ili > 0 }, each occurring with multiplicity one. Moreover, for each r > 0 there 
is an inclusion: H~174 In fact, the U~ 
H~ | 2,+~ ~ 2~ (see 4.1. (ii)) gives by Frobenius reciprocity a U~-homomor - 
phism n~ | 2~+m --* I(m). 

We set Q, = (H~ | 2,+,)/2m and claim that the induced sequence: 

(E) 0 ~ n ~  ~ n~ | n~ +, )  ---, He(Or) ~ 0 

is exact. (We have used the tensor identity for the middle term). 
In fact, by Theorem 3.5 (i) all terms are finite free ~r Hence it is 

enough to prove that the sequence (E | k) is exact. By Proposition 4.1 we have: 
d im(H~ = m + 1 for all m > - 1, and so we are done if we check the 
inequality: 

dim(n~ < (r + 1)(r + m + 1 ) -  (m + 1) = r(r + m + 2). 
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But the weights of Qr are: {2m+2d 1 < i < r} and therefore: 

dim(n~ < ~ rank~,(n~ = ~ (m + 2i + l) = r(r + m + 2) 
i = 1  i = l  

Since I(m) = U,_>oH~ | 2r+m (by weight considerations) we conclude that 
the map H~176 is surjective. It follows that Hi(Am) = 0. 

Moreover, Hi(2m)-~ H~-l(I(m)/2m) for i > 1, and since all weights 2~I (m)  
satisfy: t > m > - 1, we conclude by induction on i that Hi(2~,) = 0 for all i > 1, 
m > - l .  r~ 

Proposition 4.3. The derived functors H i are zero for i > 1. 

Proof. It is enough to prove that Hi(2m) = 0 for all i > 1, m~7Z. We already know 
this when m > - 1, so we assume m < - 1. It follows from Proposition 4.1 that the 
kernel of r176 ~ 2-m can be identified with H~ 1) | 2_ 1. Hence, 
tensoring by 2,, we get the exact sequence: 

0 ---} H~ _ ~) | 2 m- 1 "--} H~ | 2m ~ 2o --} 0 

Then, the tensor identity together with Proposition 4.2 applied to 2o give: 
H~ | Hi(2m_l) = H ~ 1 7 4  Hi(2~)for i > 1. Thus, the proposition fol- 
lows by induction on I ml. [] 

Remark. The proofs of Propositions 4.2-4.3 are copied from Donkin 's  analogous 
results for SL2 ([Do, Section 12.2]). 

Proposition 4.4. Let m >-_ O. Then Hl(2_ra-2) is a free ~r of dimension 
(m + 1), with a basis {fo . . . . .  f~} such that f~ is of weight - m + 2i, and: 

Proof. From the description of H~ we obtain, for all m > O, the exact sequence: 

0 ---} 2_m_ 2 ---} H~ | 2_m_ 1 -o 2_m ---} 0 

When m = 0 this gives H 1 ( 2 _ 2 ) -  H ~  ~qr and in this case we take 
fo = e0, the generator of H~ Now suppose m > 0 and assume the proposition 
for smaller values ofm. Denote by {f~ . . . . .  f ' -  1 ), resp. {fg  . . . . .  f ' - 2  ) the basis 
for H 1(2 _~_ 1 ), resp. H x(2_ m) given by this induction hypothesis. From the above 
exact sequence we obtain via Propositions 4.1 and 4.3 and the tensor identity 2.16 
the exact sequence: 

4, 
0 ~ Hi  ( 2 - , -  2) ~ H~  | n l ( 2 - m - l )  -'* Hl(2 -m - l) "-} 0 

Consider the map ~. Since it is a U~ there exists elements 
al, b i e ~  such that: 

4p(eo|  and dp(e l |  O < i < m - 1 .  

(Here {eo, el} is the basis of H~ described in Proposition 4.1.) Since 
E.  ~b(e0 |  = ~b(E. (eo |  we get: 

ai[i + lifO'+1 = ~(Keo |  = vii + 1]ai+lf~'+l, hence al = v-iao . 
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Likewise the relation F.  ~b(el |  = ~b(F. (el |  gives bi+l = b, for all i. 
Each of the two previous relations gives then ao = - v-  Xbt. Since q~ is surjec- 

tive we see that up to a unit in d we have: 

~(e0Nf})  = - v - i - t f 7  and c,b(ex| =f~21 for all i. 

It follows that H t(X_m_ 2) = Ker(~b) has a basis consisting of the elements: 

f~ = eo |  + v - i e l  |  where 0 < i < m, (withf2x = f "  = 0) 

It is now straightforward to check that the action w.r.t, this basis is given by the 
formulas stated in the propositions. [] 

Corollary 4.5. Let  m >= - 1. Then the map Tm:Hl( ,~_m_2)-*  H~ which takes 

e a c h f i t o [ m l e m _ , i s a  U-homomorphism. Moreover, any U-homomorphism 

Hl(2_, ._z)  --* H~ is proportional to Tin. 

Proof. This follows from Propositions 4.1 and 4.4. [] 

4.6. Let ~ ~ F be a specialization o f d  into a field F. Let ~ e F denote the image of 
v. For m > 0 we denote by Lr(2m) the simple Ur-module with highest weight ~-m. 
The following corollary was proved by Lusztig in the case F = r ( [L 3, Proposi- 
tion 9.2]). 

Corollary. (i) Suppose that either ~ is not a root o f  unity or ~ = 1 and char(F) = 0. 
Then for  all m > 0 there is a Ur-isomorphism: 

H ~ ( 2 - m - z )  ~- H~ 

(ii) Suppose that ~ is a primitive I th root o f  unity, and char(F) = 0. Let  m > - 1. 
(1) The map r . 1 Tm. H r( )~-m-2 ) --* Hr~ is an isomorphism if  and only if  m < I or 

m = al - l for  some a >= O. 
(2) I f  m = mx l + mo with m t >  O, 0 <-_ mo < l -  1, then: 

Im(T r) = Lr(Am) and Coker(T r) ~ Lr(2,.ll_,,o_2) 

(iii) Suppose that ( = 1 and char(F) = p. Then the statements in (ii) remain true 
with l replaced by p as long as m < p2. 

Proo f  Assertion (i) follows from Corollary 4.5 (the conditions in (i) ensure that for 

I m ] does not specialize to 0 in F). any i < m, i 

Assertions (ii) and (iii) also follow from Corollary 4.5: write i =  i l l  + io, 
0 -< io < I. Then, by [L 3, Proposition 3.2.(a)] we have: 

[ m  l i  ~ = [mO]io ~ ( m l )  where ( r e x )  is an ~ bin~ c~ D i t  ix 

4.7. Let the notations and assumptions be as in Corollary 4.6. For uniform 
notation we take l = p. We set: ;((m) = ch(H~ - ch(H ~r(Am)), m e Z .  Then an 
easy computation (compare [A 2]) gives: 
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Corollary. Let m = m~p + too, ma > O, 0 <mo < p - 1. I f  char(F) = p we assume 
that m < p2. Then: 

m l  

(i) ch(Lr(2m))= ~ z ( m -  2jp) 
j=o 

(ii) There are exact sequences of U~-modules: 

O---~Km--*H~174 ---r 2m --~ 0 

0 ~  2 - , , - 2 ~  K~ ~ Vm--*O 

O ~ Cm ~ V,, ~ I~ -- O 

O --r l m ---~ n ~ ( 2m - ~ ) | 2 -1 --~ C m "-~ O 

where CI  has weights: 2-. , -2+zjp,  1 < j  < mx. 

5. Vanishing theorems 

In this section we study further the functors H i, i > 1. Using both the detailed study 
from section 4 of the behaviour of these functors for n = 1 and the relation 
obtained in section 3 to the much studied H~ we prove that H ~ takes a finite object 
in cg~ into a finite object in cg, that H i = 0 for i > IR + [, that Kempf 's  vanishing 
theorem holds, that there is a Demazure character formula and that in fact a lot of 
the results in the modular  theory carry over to the quantum case. 

5.1. Recall that for ie{1 . . . . .  n} the (minimal) parabolic subalgebra U~(0 was 
defined in 2.5. The induction functor H~ ~, - )  and its derived functors will 
be denoted Hr(si, -) ,  and sometimes simply H~. 

Let w e W and let s = sl, �9 �9 �9 sir be a reduced expression for w. Then we set 
H~ - )  = H~ . . .  H ~ and view it as a functor from cg~ to itself. The j ' t h  derived 
functor is denoted Hi(s, - )  and we let H~(s, - )  be the analogously defined functors 
on cg~. (We shall see later that these functors only depend on w and not on the 
reduced expression). 

Theorem. Let 2 ~ X + and w E IV. Then: 
(i) The natural map H~ d ~) | k ~ H~ k~) is an isomorphism. 
(ii) The natural map H~ ~ H~ 2) is surjective. 
(iiO H~(H~ 2)) = O for r > O. 

Proof. We proceed by induction on l(w). If w = 1 the statements are trivial. So we 
let w > 1 and assume the theorem for all w' ~ W of length smaller than l(w). 

(i) Set s' = si2 �9 �9 sir. This is a reduced expression for w' = si, w. By induction 
hypothesis H~(H~ ', 2)) = 0 for r > 0. Then the Remark following Theorem 3.5 
together with the induction hypothesis gives the isomorphisms: 

H~ 2) | k = H~ n~  ', 2)) | k ~- H~ H~ ', 2) | k) 

~- H~ H~ ', 2)) = H~ 2) 

(ii) The evaluation map H~ --, 2 induces a U~(i,)-homomorphism H~ --, 
H~  (2). This in turn gives a U~(i,_ 0-homomorphism H~ --, H~  H~ and the 
natural map H~ --* H~ 2) is obtained by repeating this procedure r times. Let 
Q denote the cokernel of this map. From Proposit ion 3.2 we deduce that H~ 2) is 
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a finite d -module .  Hence so is Q and by Nakayama we are done if we prove that 
Q | k = 0. But we have the commutative diagram 

n ~ 1 7 4  ~ n~ 2 ) |  ~ Q |  ~ O  

H~ ~ H~ 2) 

By (i) the second vertical map is an isomorphism, and so is the first one, by 
Corollary 3.3. Also, the bottom horizontal map is a surjection by [A 4, Theorem 
3.2], [RR, Theorem 2]. It follows that Q | k = 0. 

(iii) Let 20 e X denote the trivial character. Then by the tensor identity 2.16 and 
Proposition 4.2 we have: 

H[,(H~ ~- H[,(2o) | H~ = 0 for r > 0 

Since also H,'. 1 = 0 for r > 2 (Proposition 4.3) we see that (iii) follows from (ii). [] 

5.2. In order to study further the functors Hr(s, - )  from 5.1 we need the following 
general lemma on composite functors 

Lemma. Let F1 : 91 --+ 9 2 and F 2 : 9 2 -"} ~ 3 be left exact additive covariant functors 
between abelian categories. Suppose 91 and ~ 2 have enough injectives. 

(i) I f  M e g l  is acyclic for F1 and F I ( M ) e 9 2  is acyclic for F 2 then M is acyclic 
for F2 ~ Fi .  

(ii) Suppose M ~ 91 has a resolution 

O-+ M--+ I o--+ I1 ~ .  . . 

where Ij satisfies the assumptions in (i) for all j. Then Ri(F2o F1) (M)  is the fh  
cohomology of the complex F2 ~ Fi  (I). 

Proof. (i) Imbed M into an injective object I ~ g l  and denote by Q the quotient 
I /M.  By assumption we get exact sequences: 

O-+ F1M ~ F i l - }  F 1 Q - }  RI F1M = 0 

1 -} FEF1M "~ FEFII "-* F2F1Q --} R1F2(Fi  M)  = 0 

It follows that RI(F2oF1) (M)  = 0. Since RJ(F2 oF1)(M) - Ri- I (F2oF1)(Q)  for 
j > 1 and since Q also satisfies the assumptions in the lemma we get by induction 
that RJ(F2 oF1)(M) = 0 fo r j  > 1. 

(ii) is an obvious consequence of (i). [] 

Lemma 5.3. (Compare [CPS 2, Proposition 5.5]). Let # e  X.  Then H~ U~/U ~ It) is 
the directed union for m > 0 of  submodules isomorphic to H~ | (rap + #). 

Proof. Set H~ ~ It) = I and l/(m) = H~ | (mp + It) for m __> 0. By 
Frobenius reciprocity the U~ I/(m) -+ It induces a U~-homomor - 
phism q~: V(m) -} I which is injective on the//-weight space. By Corollary 3.3 (ii) it 
follows that @ is injective. Therefore V(m) identifies with a U~-submodule of I. The 
same proof shows that F(m) | k identifies with a U}-submodule o f / |  k. Now, let 
v be an arbitrary weight of L Since ch(V(m) | k) is known by Corollary 3.3 (i), we 
obtain by Kostant's multiplicity formula (see [CPS 2, Lemma 5.3]) that: 

dimk(I~ | k) = dimk( l/(m)~ | k) for m large enough.  
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By Nakayama Lemma we conclude that Iv = V(m)v for any such m. It follows that 
I = Um>o V(m). [] 

Theorem 5.4. Let w s  W and s a reduced expression o f  w. Then: 

(i) (Demazure vanishing). H'(s, 2) = O for any 2 ~ X  +, r > 0. 
(ii) Hr(s, H~176 V)) = O for any V ~  ~ r > O. 
(iii) l f  siw < w and if  s' is a reduced expression of siw, then for any M ~ cg~ there is 

a spectral sequence: 

H'i(Ht(s', M) ) ~ H'+t(s, M)  . 

Proof We use induction on l(w). We can assume l(w) > 0 and assertions (i) and (ii) 
proved for strictly smaller lengths. Let M ~ f f  ~. We have seen in 2.17-2.19 that 
M has a resolution 0 ~ M ~ Q. where, for each j > 0, Qj = H~ ~ Q~) for 
some Q~Cgo. By assertion (ii) applied to s' we get Ht(s ', Qj) = 0 for a l l j  > 0, t > 0. 
Therefore, in order to apply Lemma 5.2 it is enough to prove that, for any Q' ~ c6~ 
Q = H~ ', H~ ~ Q')) is acyclic for H ~ 

Since Q ' e  ego, we can reduce to the case where U ~ acts on Q' by the character 
Zu for some # ~ X. Moreover, taking a finite resolution of Q' by free ~ - m o d u l e s  on 
which U ~ acts by Xu (recall g l d i m ( ~ )  < ~) ,  we see that we can reduce to the case 
Q' = ~ u .  Then, by Lemma 5.3 and the tensor identity 2.16, H~ ', Q) is the directed 
union of the submodules H~ | H~ ', m p +  #), m ~ O. Note that mp + # s X + 
when m>>0. Since cohomology commutes with directed unions, we obtain via the 
tensor identity 2.16 and Theorem 5.1 (iii) that H~(H~ ', Q)) = 0 for r > 0. 

Hence the conditions of Lemma 5.2 are satisfied and therefore we obtain 
a spectral sequence: 

H~(H'(s', M))  ~ H'+t(s, M )  . 

Then, using assertion (ii) for s' and the argument above, we obtain, for any V e ~  ~ 
and r > 0: 

H'(s, H~ ~ V) ) ~- n~(n~  ', H~ ~ V))) = O . 

Hence assertion (ii) is satisfied for s. Finally, let 2 ~ X +. By assertion (i) applied to s', 
we have Ht(s ', Z) = 0 for t > 0 and therefore for all r -> 0 the spectral sequence gives 
H'(s, 2) ~- H'i(H~ ', 2)). By Theorem 5.1 (iii) the latter vanishes for r > 0. [] 

Corollary 5.5. Let w e W, and s a reduced expression. 
(i) I f  V e  cg~ is a finite sg-module then so are all H'(s, V), r >= O. 
(ii) H~(s, - )  = O for r > l(w). 

Proof For  any i t  {1 . . . . .  n}, Propositions 4.1, 4.3 and 4.4 ensure that, H~ takes 
~r modules in ff~ to ~r modules, for r = 0, 1, and vanishes for r > 1. 
Therefore the Corollary follows from Theorem 5.4 (iii). [] 

5.6. Let So be a reduced expression of the longest element Wo. For  VeCg ~ we denote 
by ~v  the natural map H ~  ~ H~ V). 

Proposition. (0 l f  Ae X +, then ~a is an isomorphism. 
(ii) l f  # ~  X and V = H~ ~ it) then ~ v  is an isomorphism. 
(iiO For any 2 ~ X ,  i ~ 0 there is an isomorphism Hi(2) "~ Hi(so, 2). 

Proof O) Say So = siN. �9 �9 si,. By Frobenius reciprocity, the U~-homomorphism 
H~ ~ 2 induces a U%homomorphism H ~  H~ which in turn induces 
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a U~-homomorphism H ~  H~176 Repeating this argument N times, we 
obtain a U~-homomorphism n ~  H~ 2). The same argument applies to 
H~ and H~ 2), and we obtain a commutative diagram: 

n ~  | k --, n~ 2) | k 

no(~) -~ nO(so, ~) 

The first vertical map is an isomorphism by Corollary 3.3 (iii), and so is the second 
one by Theorem 5.1 (i). Moreover, by [CPS 1, Theorem 3.1], the bottom map is 
also an isomorphism. This gives (i). 

(ii) Since both functors commute with directed unions, then (ii) follows from (i) 
via Lemma 5.3 and the tensor identity 2.16. 

(iii) Recall that in the standard resolution of 2:0 ~ 2 ~ Q., each Q~ is equal to 
n ~  ~ Q~) for some Q~eC# ~ which is a free M-modules (see Lemma 2.18). 
Hence Qj is a direct sum of modules of the form considered in (ii), hence (ii) gives an 
isomorphism between the complexes H~ and H~ Q.) and (iii) follows. [] 

Corollary 5.7. (Kempf's vanishing.) Let 2 e -- p + X +. 
(i) Hi(A) = O for i > O. 
(ii) Let M be a finite d-module on which U ~ acts by the character ~ .  Then 

Hi (M)  = O for i > O. 

Proof If 2 e X + then (i) is an immediate consequence of Theorem 5.4(i) and 
Proposition 5.6 (iii). Now, if A~X + then there exists a simple root cq such that 
<2, ~ > = - 1. Then, by 4.1 and 4.2 we have Ht(si, 2) = 0 for all t > 0. Also, by 
corollary 2.15 we have a spectral sequence 

H'(U/U~(i), Ht(s,, 2)) ~ / - /"  +t(2) 

and therefore we conclude that Hm(2) = 0 for all m > 0. 
(ii) If M is free then (ii) follows immediately from (i). Now in any case M has 

a finite resolution by free d-modules ,  P" ~ M. Making the PJ into U~-modules via 
X~ we get a resolution of M in cg~. By (i) HI(P j) = 0 for i > 0 and this implies the 
same vanishing for M. [] 

Theorem 5.8. (i) For all VeCg ~, ~v:H~ v ) ~  n~ v ) i s  an isomorphism. 
(ii) (Serre's theorem) H j takes finite d-modules  in c6~ to finite d-modules in c~. 
(iii) (Grothendieck's theorem) H s = O for j > N. 

Proof Note that (ii) and (iii) follow from (i) by Corollary 5.5 and Proposition 5.6 
(iii). Also we have already proved (i) for V = 2 e X +, see Proposition 5.6 (i). An easy 
induction on the rank shows that then Cv is an isomorphism for all Ve cg~ such that 
V is a finite free ~ ' -module and all weights of V are dominant  (to carry out the 
induction step we employ Corollary 5.7 (i) and Theorem 5.4 (i)). This in turn implies 
the result for any finite ~r V on which U ~ acts by the character X~, 2 e X + 
(take a finite free resolution). Now for a general V~ ff~ which is a finite d - m o d u l e  
we pick m > 0 such that for all weights of V | mp are dominant.  Then the exact 
sequence in cg~ 

O ~  V ~ H ~ 1 7 4 1 7 4  V ) ~ Q  ~ O  
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gives via the tensor identity the commutative diagram 

O ~  H ~  ~ n ~ 1 7 4 1 7 6 1 7 4  ~ n~ 

0 "--) H~ V) ~ n~ | n~ m p |  V) ~ n~ Q) 

By the above q~mp S V is an isomorphism. Hence ~v is injective. As Q is also finite we 
must as well have that ~q is injective. But then the diagram shows that ~v is 
surjective. [] 

5.9. We can now derive the: 

Proposition. (Braid relations.) Let w e  W, and s, s' two reduced expressions of  w. 
Then, there exists a natural isomorphism of  functors: H~ - )  ~- n ~  ', - ) .  

Proof. We only have to check that the functors n~  - ) ,  i = 1 , . . . ,  n satisfy the 
braid relations, i.e. that if s and s '  are the two possible reduced expressions of the 
longest element of a rank two subgroup, then n~ - )  ~_ H~ ', -) .  But this 
follows from Theorem 5.8 (i). [] 

Let s be a reduced expression of w e W. It follows from Proposition 5.9 that 
H~ - )  can be denoted by H~ -) ,  or simply n ~ We shall do this in the sequel. 
The induction functors H~ -) ,  w e W compose according to the 

P r o p o s i t i o n  5.10. Let we  W, si a simple reflection. Then: 

o o ~H~~ ifs,  w > w  
n i  nw  = [ n ~  if  slw < w 

Proof. The first case just follows from the definitions. In the second case we can 
take a reduced expression of w starting (from the left) with s~, and therefore for any 
MeCg ~, H~ M)  belongs to cg~(i). Hence, by the tensor identity 2.16 together with 
Proposition 4.1 (ii) we obtain: 

H~176 M)) ~- n~ | H~ M) = H~ M)  . 

This proves that •o•o ~ o --~ --w - Hw in that case. [] 

5.11. For a e R  + we let A ~  ~ Z [ X ]  denote the Demazure operator, see 
[De 1]. If ~ ~ F is a homomorphism into a field F then it follows from the results 
in Section 4 that for all 2 e X, i e { 1 . . . . .  n} we have: 

a ~ = chHr~ Z) -- chnb(s, ,  2).  

It is then standard to derive the following formula from Theorem 5.4 

Proposition. Let Velar,  we  W, s = si~ �9 �9 �9 si~ is a reduced expression of w. Then: 

E ( - 1 ) J c h n ~ (  ~, V) = A ~ . . .  A~ V) 
J 

Corollary 5.12. (Demazure's character formula.) Keep the notations of 5.11, and let 
2 e X +. Then: 

ch n~  2) = A~ . . . A~ z) 

Proof. This follows from Proposition 5.11 and Theorem 5.4 (i). [] 
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Remark. Taking w = Wo we get via Theorem 5.8 (i) a character formula for 
H~ 2 E X +. As is well known this is equivalent to the Weyl character formula 
(see [De 1, 5.63). 

5.13. Let M ~ %  We say that M has a good filtration if there exists a filtration in 

0 = Fo c F1 c . . . 

with w Fi = M and Fi /Fi - I  ~- H~ for some ) . s ex  + 
Note that if M has a good filtration then M is a free ~r 

Lemma. (Compare [Do, 11.5.3]). Let M ~ be a finite free d-module. I f  M | k 
has a good filtration (in C~k) then M has a good fltration. 

Proof. We use induction on the rank of M. Choose 2 ~ X § such that 2 is maximal 
among the weights of M. The U~-homomorphism M --, 2 arising from this situation 
gives by Frobenius reciprocity a U-homomorphism M ~ H~ Let M '  be the 
kernel and Q the cokernel of this map. Tensoring by k we see from [W, Lemma 3.1] 
that M | k ~ H~ | k --- H~ is surjective. Hence Q | k = 0, i.e. Q = 0. We 
thus have an exact sequence 

O ~  M ' ~  M ~ H ~  

which remains exact upon tensoring by k. Moreover, M '  satisfies the hypothesis of 
the lemma (use [loc. cit.] again) and we are done by induction. [] 

Corollary 5.14. Let 2, t ~  X +. Then H ~ 1 7 4  H ~  has a good filtration. 

Proof. This follows from Lemma 5.13 and [Do],  [Ma].  [] 

5.15. As a preparation for the next result we need the: 

Proposition. Suppose M, NEC~ are finite free ~r Then Ext~(M,N)  is 
a finite ~r for all i and vanishes for i>>0. 

Proof. By Kempf's  vanishing theorem 5.7 and the tensor identity 2.16 we get 

Ext , (M,  N)  ~- Ext , (M,  H~ ~- Ext~(M,  N) 

This shows that the proposition follows if we prove that for any 2 ~ X ,  
Hi(U b, 2) = E x t ~ ( d ,  2) is ~'-finite for all i and vanishes for i>>0. 

In the standard Ub-resolution (2.17) of 2 

0 ~ 2 ~  to ~ I1 - -* . . .  

we have ht(/~ - 2) > j for all weights/~ of Ij.. Here ht is the usual l - l inear  function 
on the root lattice whose value is 1 on simple roots. Hence Homv~(~r I j) ___ (lj)o is 
~r for all j and vanishes for j > h t ( -2 ) .  [] 

5.16. Let M e ~ .  We say that M has an excellent filtration if there exists a filtration 
in ~ 

0 = Fo c F1 ~ Fz ~ �9 . . 

with w Fi = M and Fi/Fi-1 "~ H~ 2~) for certain w~E IV, 2 i e X  +. 
Note that if M has an excellent filtration then M is a free ~r 

Lemma. Let M eC~ ~ be a finite free d-module. I f  M | k has an excellent filtration 
(in c~) then M has an excellent filtration. 
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Proof. We use induction on the rank of M. Let 2 e X § be a weight of M | k of 
maximal norm. By [P I, Proposition 3.1], there exists a surjective U~-homomor- 
phism ~O:Mk ,, H~ 2), for some w E W. By I-loc. cit., Corollaire 2.5], H~ 2) is 
injective in the category of B-modules whose weights have norm at most equal to 
the norm ofm, hence Ext~(Mk, H~ 2)) = 0 for i > 0. Via Proposition 5.15 we get 
using base change arguments (like in Section 3) that 

Homv~(M, H~ 2)) | k "-~ Homu~(Mk, H~ 2)) 

Therefore, there exists ~ ~ Horny(M, H~ 2)) such that ffk = ~0. Now, ~0 is surjec- 
tive, hence so is ~b, by Nakayama. Set K = Ker(~). Since H~ 2) is free, then K is 
a direct summand of M, and is therefore free. Also, K | k identifies with Ker(cp), 
and the latter has an excellent filtration by [loc. cit., Proposition 3.1]. Since K has 
smaller rank than M we conclude by induction hypothesis that K has an excellent 
filtration. [] 

Corollary 5.17. Let 2, It ~ X + and w ~ IV. Then H~ 2) | It has an excellent filtra- 
tion. 

Proof. This follows from Lemma 5.16 and [Ma], see also [P 2]. [] 

6. Borel-Weil-Bott theory 

In this section we study the modules Hi(2) = Hi(U/U ~, 2), 2 ~ X, i > 0 as well as the 
corresponding modules for Ur, F an ~r 

Proposition 6.1. Let 2 ~ X. 

(i) H~ * 0 if and only if 2 ~ X  + 
(ii) I f  2 e X  + then H~ v+ is a free d-submodule of rank 1. In fact, 

n ~  v+ = n~ 
(iii) l f  m e x  + then 2 is the unique maximal weight of H~ 

Proof. Suppose # ~ X  is a weight of H~ and let f~H~ be non-zero. Then 
there exists r~ > 0 such that 

f ( E ! ~ ' ) . . .  E!~ ")) =1= 0 

for some il . . . . .  isE {1 . . . . .  n}, i.e. 

E v ( E I ? ~  . . . e l Y f )  �9 o 

Since E ~ ' ) . . .  E~;'~fhas weight # + ~.~=1 rj~t~ and since Ev is zero on all but the 
2-weight space we conclude that p < 2. This proves (ii) and (iii). 

To prove (i) assume first H~ 4= 0 and p ickfeH~ Using 1.11. (1) we 
get for r > 0: 
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Since [ ~ 1 d, +Of~176176 

On the other hand suppose & > 0 for i -- 1 , . . . ,  n and define f :  U --* d by 

f 

{ (Ive'a'~'[2~]v ifMp=M'~=Oforallflotherwise = ~ 1 ti a~ 

(we use that the elements of the given form are a basis of U, see [L 6]). 
We claim tha t f~  H~ It is clear t ha t f~  Homo,(U,  2) so that  the only thing we 

have to verify is that F!'lf= Ofor r>>0, i = 1 . . . . .  n. Noting t h a t f h a s  weight 2 we 
see that 

= e f ( 1 ) = 0  f o r t > &  

The proposit ion follows. [] 

Remark. Of course (i) could be also deduced from the corresponding classical 
result via Theorem 5.1 and 5.6 (iii). 

6.2. In the rest of this section F will be a field and d ~ F will be a homomorphism 
into F. The image of v is denoted by ~. We write H~- = H~(Ur/U}, -). 

Corollary. Let 2 ~ X  +. Then H~ contains a unique simple Ur-module, Lr(2). It 
has highest weight 2. 

Proof Exactly as in the proof of Theorem 6.1 we see that  H~ has a 1-dimen- 
sional U~r-socle, namely H~ Hence H~ has also a simple Ur-socle and this 
socle contains H~ [] 

Proposition. 6.3. Assume that S ~ Cgr is a simple Ur-module. Then S "~ Lr( 2)for some 
2 ~ X  +. 

Proof It follows from Corollary 1.28 that S is finite dimensional. So, let 2 be 
a maximal weight of S. Then there exists a non-zero U}-homomorphism S -~ 2, and 
by Frobenius reciprocity (2.12), this gives a non-zero Ur-homomorphism 
S ~ H ~  By Proposit ion 6.1 (i) and Corollary 6.2 we obtain 2 ~ X  + and 
S ~ Lr(2). [] 

Theorem 6.4. Suppose ~ is not a root of 1. Then we have for all 2 ~ X with 2 + p ~ X + 
and all w ~ W 

H~' (w '2 ) "~{O ~ otherwiseifi=l(w) 

Proof The theorem is proved in the standard way via Theorem 5.8 (iii) from the 
lemma below. [] 

Remark. The theorem is also true when ( = -I- 1 and char F = 0 (the same proof  
applies). In that case it is equivalent to the classical Borel-Weil-Bott theorem (see 
e.g. [De 2]). 
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Lemma 6.5. Let  ( ~ F be as in 6.4 and suppose # e X ,  i ~ { 1 , . . . ,  n} such that #i > O. 
Then 

j + l  
H r  ( s , , ' # )~-HJr(#) ,  j > O  

Proof. For  convenience we drop F from the notation. 
As in 5.1 we set Hi = HJ(U~(i)/U ~, - ) .  We can apply the rank 1 results from 

section 4 to get 

and 

H { ( s " ' # ) ~ {  H ~  ifj4:ifj=ll 

H~(,u) = 0 f o r j  > 0 

Since H ~ = H~ - ) o  H ~ we conclude from Corollary 2.9 (ii) that 

Hi+ 1 (s,," #) ~ H J(#) [] 

Lemma 6.6. Let  ( be the image o f  v in F. I f~  4= 1 is a primitive 1 th root o f  l, then I = pe 
for  some positive integer e. 

Proof. Denote the homomorphism d -* F by tp. Then ( = ~o(v). Suppose (l = 1 
and ( "  4= 1 for any integer 0 < m < I. Then the polynomial  v ~ - 1 belongs to 
ga = kettp. We can assume that l =  peq where q is prime to p. Then 
v z 1 = (v v ' -  1)R(v) for R(v) q - t  " -- = ~ i=o  v'"~" Since R ( 1 ) =  q, then R ( v ) r  hence 
R ( v ) r  Since ga is a prime ideal, v v" - l~ga  and (9~ = 1 and hence l = pe. [] 

Theorem 6.7. Let  c h a r F  = 0 and suppose ( 4= 1 is an rth root o f  l where 1 = pC for  
some e > O. Then for  all )` e X with )` + p ~ X + and all w ~ W we have 

(i) I f ( ) ,  + p, ctv ) < I for  all c teR+ then 

Hir(W.)`) ___ { H~ 

(ii) 

if  j = l(w) 

otherwise 

H~r(lw')` + ( 1 -  1)p)-~ { H~ + l(p - 1)) otherwiseif J = l(w) 

Proof. The  same proof  as in 6.4 applies appealing this time to Corollary 4.6 (ii). [] 

7. Serre duality and complete reducibility 

Preserve notat ion from section 6 and let F still denote a field. Here we prove that 
the cohomology modules H i ,  i =  0, 1 , . . . ,  N satisfy Serre duality. The Serre 
duality combined with the results from Section 6 easily gives the irreducibility of 
H~ ) , e X  + when ( is not a root  of unity. I t  is also needed for the proof  of the 
linkage principle in the next section. 
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Lemma 7.1. HN(--2p) --~ ~ and H ~ ( - 2 p )  ~- F 

Proof By Theorem 5.8 (iii) and Theorem 3.5 we have HN(--2p) | F -~ HrS(-2p) 
for any ~'-algebra F. Taking F = k and recalling 3.11 and Serre duality over Gk/Bk 
we obtain: HN(--2p) | k ~- H~ 0)* = k. Taking now F = ~ '  and applying 
Theorem 6.4 we get: HN(--2p) | F -~ H~ = F. Then, by 1.21 we conclude that 
HN(--2p) is a rank one free d -module .  The lemma follows. [] 

7.2. Let VI, V2 Ecg ~. By Frobenius reciprocity the evaluations H ~  V1 and 
H~ --+ V2 give a homomorphism H~ | H~ ~ H~ V1 | 112) which is 
functorial in both V1 and V2. If Va (say) is flat as an d - m o d u l e  we get therefore 
corresponding natural homomorphisms L 

H~(V1) | HJ(1/2) --* Hi+J( Va | V2), i,j >= 0 

In particular, if we denote by V* and V* the two U-module structures on 
Hom~(V, ~ )  (see 1.18), we obtain for any flat V e ~  ~ a pairing 

a) H'(V) • H"-i(Vt| - 2 p ) - - , d  

by composing the above homomorphism 

Hi(V)  | H N - I (  V t | - -  2p) --* HU(V| V t | -- 2p) 

with the map H N ( v |  V t |  - - 2 p ) ~ H U ( - - 2 p ) ~  d induced by the natural 
homomorphism V |  V t ~  d .  Likewise for V~Cr we have a pairing 

b) H~(V) • HrN-i( V' | - 2p) ~ F 

Theorem 7.3. Let V ~ ~ be finite dimensional. Then the pairing 7.2 b) is non-singular, 
i.e. it induces for each i >= 0 an isomorphism in C6r 

n~r(V) -~ HrN-~( V* | - 2p)* 

Proof We shall first observe that if 2 ~ X  + then the homomorphism 
H~ ~ HN(--2 -- 2p)* coming from 7.2 a) is an isomorphism. This follows from 
Serre duality in the classical case via the commutative diagram (compare 
[A 3, Proposition 2.10])) 

H~ | k ---, HN(--2 --2p)* | k 

H~ = H g ( - 2 - 2 p ) *  

Hence the theorem holds for i = 0 and V = 2 ~ X +. An easy induction gives then 
that it also holds when the weights of V are all dominant. 

For  a general V we then choose m > 0 such that V | mp has only dominant  
weights. The short exact sequence 

0---* V.--* H~ | mp | V---, Q --', O 

gives rise to the commutative diagram (using the tensor identity) 

0 - . . ,  H~ .--* H~ | H~ | V) -..* H~ 

,1. $ ,L 
0 --, HN( l, n | --2p)* -* H~ | H~[(-(m + 2)p | V~) * --* H~[(Q t | -2p)*  
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By the above the middle vertical map is an isomorphism. Hence the left vertical 
map is injective. The analogous diagram for Q then gives that the right vertical map 
is injective and the diagram then implies the surjectivity of the left vertical map. 

Fix i > 0. We get via Corollary 5.7 (i) the commutative diagram 

H~ | H~--1(mp | V) ~ H~ | H N-/+ I ( -  (m + 2)p | V')* 

H~r-*(Q) ~ HN-t+t (Q ' |  -- 2p)* 

H~r( V) ~ HN-  ~(V' | - 2 p )  

0 0 

from which the theorem follows by induction on i. [] 

Corollary 7.4. Let 2 ~ X  +. Then up to a scalar there is a unique non-zero 
Ur-homomorphism H~(wo" 2) ~ H~ and its image is Lr(2). 

Proof. By Theorem 7.3 there is an isomorphism H ~ ( w o ' 2 ) = H ~  *. It 
follows that H~(wo'2) has a unique maximal submodule M, and 
H~(wo" 2)/M ",~ Lr(2). Since any composition factor of M has highest weight less 
than 2 and since H~ has socle Lr(2) it follows that M is killed by any 
Ur-homomorphism H~[(Wo " 2) ~ Hr~ [] 

Corollary 7,5, Let 2 ~ X  +. l f  H~(Wo" 2) ~ H~ then H~ is irreducible. 

Corollary 7.6. Assume that ~ is a primitive I th root of  unity. Let  2 = ( l -- 1)p + l#,for 
some # e X  +. Then H~ is simple. 

Proof. Note that Wo" 2 = (l - 1)p + lwo" #. Hence, by Theorem 6.7 (ii) the hypo- 
thesis of Corollary 7.5 is satisfied. [] 

Remark. Let H~ - 1)p) be denoted by St. Then St* is also a simple Ur-module 
with highest weight (l - 1)p. Hence St* -~ St by Corollary 6.2. 

Corollary 7.7. (Lusztig [L 6, 7.2-1, Rosso [R 2, Partie C], Xi [X, Theorem 
2.4]). Suppose ~ is not a root o f  1. Then 

(i) For any 2EX +, H~ is irreducible and isomorphic to Hr~ *. 
(ii) Any finite dimensional Ur-module in ~gr is completely reducible. 

Proof. (i) follows from Theorems 6.4 and 7.3 and Corollary 7.5. 
Let us prove (ii). By (i) it is enough to prove that for 2, g e X + any extension 

(1) 0 ~ H~ ~ M --* Hr~ --* 0 

in qfr is split. Assume firstly that/z :/- 2. Then 2 is a maximal weight of M, and it 
follows that there exists a non-zero U~-homomorphism M ~ Hr~ (when # = 2 
we have to use the hypothesis that M e t e r ,  namely that M is the sum of its weight 
spaces). By Frobenius reciprocity 2.12 this gives a Ur-homomorphism M ~ H~ 
which splits the exact sequence. 
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Assume now that It > 2. Dualizing the exact sequence (1) and taking into 
account the isomorphisms in assertion (i), we obtain an exact sequence 

(2) 0 -o n ~  -o M'  ~ n ~  w02) -o 0 

which is split since -Wok ~ -Woit. Taking duals again we obtain a splitting of 
(1). [] 

8. The linkage and translation principles 

In this section F denotes a field and ~ -o F a homomorphism which takes v into 
a (primitive) l 'th root of 1 where via Lemma 6.6 1 has to be some pe for e a positive 
integer. We prove that the linkage and translation principles for semi-simple 
algebraic groups over a field of prime characteristic have direct analogues for Ur. 
The arguments, however, follow the very same paths as in the modular case. We 
give only brief indications of proofs. 

8.1. Let 2, I teX.  We say that p is strongly linked to 2 if there exist 21 . . . . .  2 , e X ,  
f l i , .  �9 �9 , fir- 1 e R +, mi , .  �9 �9 , rn,_ i e N such that 

It = 21 =< s#l'21 + mllfll  = 22 =< �9 . . _-< s#r_1"2,-i + m , - l l f l , - i  = 2r = 2 

Theorem. Let It, 2 + p e X  + and we  W, i > O. l f  Lr(p)  is a composition factor of  
H~(w.2) then It is strongly linked to 4. 

Proof. Apply the rank 1 case in section 4 together with induction on 2 and 
Corollary 7.4 (compare [A 2]). [] 

Corollary 8.2. Let VeC~'r and suppose V is indecomposable. I f2 ,  # e  X + such that 
Lr(2) and Lr (#)  both are composition factors of  V, then p e  Wl" 2. 

Proof. It is enough to verify that any extension 

0 -o Lr(2) ~ V-+ Lr(it)  --* 0 

with Ve~gr and 2 , # e X  +, It~ W~.2 splits. To see this we may assume It :~ 2 
(dualize ff necessary). Then 2 is a maximal weight of V, i.e. we have a U ~- 
homomorphism V-o 2 which by Frobenius reciprocity gives a Ur-homomorphism 
V ~  H~ Since #~ W~' 2 we see by Theorem 8.1 that Lr( i t )  is not a composition 
factor of/-/~ Hence the map V ~  H~ has image Lr(2) and the sequence is 
split. [] 

8.3. Let C denote the bot tom alcove in X +, i.e. 

C =  { 2 e X l 0 < ( 4 + p , a  v )  < l , a e R  +} 

and set 

= { 2 E x I 0  _-< <~. + p, ~ ) <= l, cteR+ } 

Note that C 4: ~ if and only if l >- h (the Coxeter number). 
For  2, It e C we define the translation functor T~ :Cgr ~ cg r as follows 

T~ V = pr.( V| H~ - 4))) 
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Here pr,:Cgr --, ~r  is the projection onto the biggest submodule (summand accord- 
ing to Corollary 8.2) whose composition factors have highest weights in Wt. ~ and 

e W is chosen such that z(# - 4) e X +. 
We have (compare [Ja 3], Chapter II.7) 

Theorem. Suppose 4 e C, # ~ C. 
(i) T~n~(w" 4) ~- n~(w.  it), i > O, we  Wl. 
(ii) I f  w e W~ such that w. 4 e X + then 

T~Lr (w '4 )=  { or(W'#) otherwiseif W'p is in the upper cl~ ~  w ' C  

(rio Suppose { y e Wily" # = # } = { 1, s} and let w e Wl such that w " 4 < ws . 4. 
Then there is an exact sequence 

0 ~ H~ 4) ~ T~H~ - ,  H~ . 4) --, 

H~(w-2) - - ,  TZ.H~(w "#) ~ H~r(WS �9 4) --, 

Proof (i) and (iii) follow from the linkage principle 8.1 and the tensor identity 
2.16 via a close analysis of the weights of w . 4 | 1 7 6  - 4)), resp. w . # |  
H ~  It)). (ii) follows from (i) by recalling that Lr(w'4)  is the image of 
H~(wow" 2) ~ H~ �9 2), see Corollary 7.4. [] 

8.4. As in the modular case we get the following corollary, sometimes called the 
translation principle. 

Corollary. (/) Let 4, 2' e C, w, y e IV,. Then 

[nir(W" 2):Lr(y" 4)] = [nir(W" 2'):Lr(Y" 2')] for all i 

(ii) Let 2 e C, It e C, y e Wl. I f  y.  It is in the upper closure of  y.  C c X + then 
for all i 

[n~(w" 4) :Lr (y '  2)3 = [Hir(w" #) :Lr(y"  #)] = [H~r(WS �9 4): Lr( y" 4)3 

for all s e Wl with s . # = It. 

9. Finite dimensional Ur-modules 

Let d ~ F be a specialization of M into a field F, and let ~a = Ker(f) .  Let ( be the 
image of v in F. If ( is a root of unity, then it has order l = pe for some e > 0, by 
Lemma 6.6. In particular, if char(F) * 0 then r = 1. 

9.1. By abuse of notation, we still denote by Z,,~ the character Z,,z | 1 of U ~ 
Then, we have the: 

Lemma. The characters ~ ,~  of  U ~ are pairwise distinct. 

Proof. Assume that Xr = ~.u. If ( is not a root of unity, then dearly/~ = 2 and 
T = a. Assume now that ~ = 1. Then z = tr, and for each i, and t >_- O, the integers 
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(2t~) and ( ~ )  are equal, modulo go c~ 7L It is well known that this implies 2, = #,. 

Assume finally that ( =~ I is a root of unity, of odd order l = p~ (e > 0). 
Necessarily, char(F) = 0. From th( a'a' = z~( a'u', we obtain (2di(,~i--lq) ~__. 1. Since 2di 
has no common factor with l, we conclude that l divides 2i - / h .  It follows that 

( [ K i ; )  ( [  K, 1 )  implies, by [L 3, 3.3. (b)] a~ = z~. Then the equality: Z~, a 1 = ;G,u I 

that 2 =/~. [] 

9.2. If M is a Ur-module, we set: @.(M) = Gz~x M.,x. This is a Ur-submodule of 
M (see 1.4). Our aim in this section is to prove the: 

Theorem. Let M be a finite dimensional Ur-module. Then M = ~#(9,(M). 

The proof splits into three different cases. 

9.3. ~ is not a root of  unity. Then all E~ and Fi are nilpotent on M. We reproduce 
the argument given in [R 1]. From the equality K~- ~ F~K~ = (2d, Fi, it follows that, if 
z is an eigenvalue of F~ on M then so is (2d'z. Since M is finite dimensional and ~ not  

�9 a root of unity, this implies that 0 is the only possible eigenvalue. Hence F~ is 
nilpotent on M. 

Say F!")M = 0. For t > 1, set 

2 t - 1  

~, = 1-I (K, (  " - s -  K 7 1 ~ - ' )  . 
s = l  

Using the commutation formula 1.11 (1) we prove by induction on t that 
7,F! '- ' )M = 0. Therefore, VI2,-1 (K 2 _ (2(~-,)) annihilates M. Since the poly- lls=l 
nomial I-/~'=~ x (X - (2(~-,)) has distinct roots, we obtain that K~ is diagonalizable. 
Hence, so is Ki, with eigenvalues + (', I t[ < r - I. But Ur ~ is gcnerated by the K~'s, 
since ~ is not a root of unity, and therefore wc concludc that M is the (direct) sum of 
weight spaces M,,~. [] 

9.4. In view of 9.2, Corollary 7.7 can be restated in the form: 

Theorem. (Lusztig [L 6], Rosso [R 1-2],  Xi [X]). Assume that ~ is not a root of  
unity. Then any finite dimensional Ur-module is completely reducible. 

9.5. ( = 1. In that case, each Ki is in the center of Ur and satisfies K 2 = 1. It 
follows that M = @ , ~ z M , ,  where M ,  is the Ur-submodule of M on which each 
Ki acts by th = _ 1. 

Following ([L 3]), we say that M is of type a if M = M, .  Recall that we denote 
by F ,  the Ur-module F on which Ur acts by the character e, (see 1.6). I fM is of type 
tr then M | F ,  is of type 1, and conversely. Therefore, we can assume that M is of 
type 1. In that case M is a module for the algebra Ur/(K, - 1). By [L 6, 8.15] this 
algebra identifies with Ur,  the hyperalgebra of the algebraic group Gr. Moreover, 
U~ 1) identifies with the hyperalgebra /,7 ~ of a maximal torus, and 
•z corresponds to the usual character Z~ of/7o. Therefore, the weight spaces of M, 
considered as a Ur or Ur-module, are the same. But, as a t,7~ M is the 
(direct) sum of weight spaces Ma, with 2 e X. If char(F) = 0, this is well known, and 
for char(F) > 0 this was proved in [S], [CPS 2]. [] 
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9.6. ~ is a primitive I th root of unity, where I = pe, e > 0. The rest of this Section will 
be devoted to that case. 

Necessarily char(F) = 0, and we can follow the arguments in [L 3]. Each KI is 
in the center of Ur and satisfies K2~= 1. Then M is the direct sum of the 
Ur-submodules M~, a e ~, where M~ is the subspace on which each KI acts by ai. 
Following [loc. cit.], we say that M has type tr i fM = M~. Again, by tensoring with 
F~, we can reduce to the case where M has type 1. 

9.7. So, let ~ r  be the category of all type 1 finite dimensional Ur-modules, and let 
CgrY be the subcategory consisting of those M e ~ r  such that M = ~wxM~.  Ob- 
serve that cgY r is dosed under formation of submodules, quotient modules and 
tensor products. 

Our  aim is to prove that in fact any Meo~ r belongs to (gr y. By [loc. cit., 
Proposition 6.4], it is so if M is simple, because in that case M is isomorphic to 
some L(2), 2 e X  § 

9.8. We follow the ideas of the proof of [CPS 2, 9.4]. Let St denote the Ur-module 
H~ - 1 )p )e~ r  y. Note that St is self-dual and simple, see Remark 7.6. But St has 
an even more striking property: 

Theorem. St is a projective object in ~r .  

Proof It is enough to prove that Extb~(St, L(2)) = 0 for all 2 e X 4. From the exact 
sequence: 0 --* L(2) ~ H~ ~ Q(2) ~ 0 we get an exact sequence: 

Homvr(St, Q(2)) ~ Extbr(St, L(2)) ~ Extb~(St, n ~  

If (l - 1)p is not  linked to 4, then St is not  a composition factor of H~ by 8.1, 
and therefore Homv~(St, Q(2)) = 0. On the other hand, i f ( / -  1)p is linked to 2 then 
2 = (l - 1)p + I/~ for some kteX +, and then Q(2) = 0 by Corollary 7.6. Hence it is 
enough to prove that Extb~(St, H~ = 0. Since St is self-dual, this will follow 
from the: 

Lemma 9.9. Let 4, I~eX +. Then Extbr(H~ *, H~ = 0. 

Proof By proposition 3.3, what we have to prove is that Extb~(D(2), D(#)') = 0 for 
all 2, # ~ X +. Note that the highest weight of D(#)t is - Wo# = It*. Assume firstly 
that 2 ~/ t* ,  and consider an exact sequence: 

(1) 0 ~ D(#) '  -~ M -~ D(2) ~ 0 .  

Since the extreme terms belong to qfr I ,  we obtain that M = ~ x M ( ~ ) ,  where 
M(~) denotes the generalized eigenspace: 

M(~) = {xeM[(u - Z~(u))2x = 0 for all u e  U ~ . 

From the commutation relations in [L 6, 6.5. (a3-5)]  we deduce that for all 
j e { 1 . . . . .  n}, r e N there exists a bijection ~j,:  U ~ --* U ~ such that uE} ") = E} ') ~bJo,(U) 
and X,(~b~(u)) = X~+~(u) for all ue U ~ v e X .  Let xeM(~). Then, for all ue Ur 

0 = l~t'~(4~s,(u) - x , ( ~ j , ( u ) ) )  z x = (u - x ,  + , ~ / u ) )  ~ ~}'~x. 
This proves that E}')M(~) c_ M(~+,,j). By maximality of 2 among the generalized 
eigenspaces of M, we conclude that E}r)M(x) = 0 for all j, and r > 0. Also, we can 
take s>>0 such that F}~)M(a)= 0. From the commutation relation 1.11(1), we 
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de ucet atI  ] , ,-0 Ta e ,oboamu'tip'e/.of' S n   iso  y.ea 
any K;  acts semi-simply on M, with eigenvalues ( ' ,  0 < m < I. Therefore, by [L 3, 

4.2-3], we conclude that ~I J - t annihilates M~). Since the polynomial 
t = O  

] ] t=o(X - t) has distinct roots, we obtain that the action of on M(a) is 

diagonalizable. Since the Kfs  are also diagonalizable, we conclude that Mt~) con- 
sists of vectors of weight 2. Therefore, a highest weight vector vz ~ D(2) can be lifted 
to a highest weight vector xx e Mx. Let N be the Ur-submodule of M generated by 
x~. Then N maps onto D(2). On the other hand, by 1.20 (ii) we have 
dim N < dim D(2). It follows that N maps isomorphically onto D(2), and this gives 
a splitting of the exact sequence (1). Hence the lemma is proved in the case 2 ~/ t*.  

Now, assume that 2 < #* and consider an exact sequence: 0 ~ D ( p ) t - - *  
M ~ D ( 2 ) ~ 0 .  Then we obtain an exact sequence: 0 ~ D ( 2 ) *  
M* ~ D(/~) -~ 0, which is split by the previous argument, since # ,/~ 2*. Then taking 
t-duals we obtain a splitting of the original sequence. Hence Lemma 9.9 is proved, 
as well as Theorem 9.8. [] 

9.10. Since St is self-dual, then it is also an injective object in ~ r .  Then, the lemma 
below produces more projective and injective objects. 

Lemma. Let E be a finite dimensional U r-module. Then St | E and E | St are both 
projective and injective objects in ~ r .  

Proof By 1.18, for any Ur-modules M, N there are isomorphisms: 

Homv,(M @ E, N) ~ Homv~(M, N | E*) 

and Homv~(E | M, N) "-~ Homu,(M, E t | N) 

The lemma follows. [] 

Lemma 9.11. Let 2 ~ X  +. Then there exists an imbedding of  L(2) into St | E for 
some E ~ cgY r. 

Proof. By Lusztig's tensor product theorem [L 3, Theorem 7.4] and Lemma 9.10, 
we can reduce to the case where 2 is restricted. In that case, # = (l - 1)p - 2 
belongs to X +, and then the U~-homomorphism L(2) |  L ( /~ )~  (l -- 1)p induces 
by Frobenius reciprocity a non-zero Ur-homomorphism L(2) | L(/z) ~ St, which 
in turn corresponds to an injective Ur-homomorphism L(2) ~ St | L(/~)*. [] 

Theorem 9.12. (i) Any M ~ ~ r  belongs to cgY r. In other words, ~ r  = C~Yr. 
(ii) The category ~ r  has enough injectives. Moreover any indecomposable injec- 

tire is a direct summand of some St | E, E e cgY r. 
(iii) Injective modules in ~ r  are projective, and conversely. 

Proof. Let M ~ r .  Since the socle S of M is a direct sum of L(2)'s, 2 e X  +, then by 
9.11 we can imbed S into some St | E, E ~ { .  By 9.10, the latter is an injective 
object in ~ 'r ,  hence we obtain an imbedding of M into St | E. Since the latter 
belongs to c-grY, we conclude that M also belongs to ~ r  I .  
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This proves (i) as well as (ii). As for (iii), it follows from (ii) and 9.10 that any 
injective is also projective. Now, if M ~ ~-r is projective, then M*  is injective, hence 
also projective, and therefore M is also injective. [] 

9.13. Assertion 9.12 (i) concludes the proof of Theorem 9.2. [] 

10. Sum formulas 

In this section we define some filtrations of the cohomology modules for quantum 
algebras following the method used by the first author in the modular  case and we 
prove sum formulas analogous to the Jantzen sum formula by using exactly the 
same arguments as in Jantzen's book [Ja 3]. Moreover, since the usual case is also 
a specialization of the quantum case, we get something new for modular repres- 
entations. However, we expect that in the lowest pZ-alcove the new filtrations 
coincide with Jantzen's filtration. For  this, we formulate some conjectures. 

Lemma 10.1. Any prime ideal in ~ other than r is principal. 

Proof. Since ~r has dimension 2 then any prime ideal go 4: ~ has height at most 
one and is therefore principal, since ~r is a unique factorization domain. [] 

Lemma 10.2. Let go be a prime ideal in d other than ~ and O. Then 

(i) sd v is a discrete valuation ring. 
(ii) d/gd is a discrete valuation ring if and only if  the generator o f  go can be 

written as a linear combination of p and (v - 1) with at least one of the coefficients 
invertible in d ,  i.e. go = (alp + a2(v - 1)) with al,  a 2 E ~  r such that either al or 
a2 (or both) is a unit of  ~ .  

Proof. (i) This is clear from Lemma 10.1. 

(ii) The "if" part is easy because in that case m/go is generated either by p + go 
or by (v - 1) + go. Now suppose m/go is generated by g + go with # e d .  Then g is 
in ~ and we can write g = alp + a2(v - 1). If al and a2 were both in ~ then g e 2 
and m/go = (~/go)2, in contradiction with Nakayama's  Lemma. So at least one of 
them is not in ~ ,  hence a unit in d .  [] 

Remark. In fact the prime ideal in (ii) is generated either by ep + (v - 1) t or  by 
eft + (v - 1) where e is a unit in M and t is a positive integer. 

10.3. For  a positive integer l, 

v l -  1 
- -  -~- V 1 - 1  -]- V 1 - 2  " [ - . . . - [ - V - l -  1 E ~  
v - - 1  

if and only if pll. Moreover  we have that for any positive integer e, 

v ~t - 1 = (v~):_ 1 + ( r e ) l _  2 "~ . . . ~'- we "~ 1 e r  

if and only if p ] I. 
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V p -  1 
Lemma. (i) Let c~,(v) = v -- 1 " Then c~p(v p~) ~ ~ and it generates a prime ideal of 

satisfying the condition stated in Lemma 10.2 (ii). 
(ii) Let ~ be a prime ideal of  ~ different from ~ and those in (i). Then the 

Borel-Weil-Bott theorem holds over ~ = d ~ / ~  (see Theorem 6.4). 

Proof (i) ~,(v")=(vP~) "-1 - ( v - 1 )  p'~p-1) mod(p). We can write c~p(vP~)= 
(v - 1) p~ + a(v)p for some a(v )~d .  Specializing v to 1 we get a(1)p = p, i.e. 
a(1) = 1. Hence a ( v ) ~  is a unit in ~ .  

(ii) The homomorphism ~ ~ ~ does not take v to a root of 1. [] 

v p ~  1 
Remark. In fact ~- t 

v - 1 - ~ = o  4~. (v" ' ) .  

10.4. Let F denote either ~r for ~a a prime ideal of d given in Lemma 10.3 (i) or 
~//~a for a prime ideal of ~r satisfying the condition in Lemma 10.2 (ii) but not 
those appearing in Lemma 10.3 (i). Then F is a discrete valuation ring with unique 
maximal ideal here denoted by q. Denote by vq the valuation on the fraction 
field F' .  

If a ~ F then we set v(F/(a)) = Vq(a). Extending v by linearity, to each finitely 
generated torsion F-module V we get associated an element v( V)~ 7L 

Let tp:M ~ M '  be a homomorphism between two finitely generated F-mod-  
ules. Suppose ~p | 1 : M |  F '  ~ M'  |  F '  is an isomorphism. Then the cokernel of 
the induced map ~pf: My ~ M~ on the free parts of M and M '  is a torsion module. 
We set 

v(~p) = v(coker(~pl) ) 

If in the above setting V e e r  ~ (resp. M, M ' ~ ~  then we define 

vc(V)= ~ v(V~)e"ETt[X] 
# e X  

respectively 

vc(~p) = vC(coker ~p) 

10.5. Fix 2 s X  + and we W. Let Wo = sji �9 �9 s~ be a reduced expression for Wo. By 
have Hr(wo'2)  = H (Wo'~)| F and the vanishing theorems 5.7 and 5.8 we " N N 

Hr~ = H~ | F. Using this also in the rank 1 case we get by Corollary 4.5 
a natural homomorphism (compare Lemma 6.5) 

j+  1 . . .  " ,~ ) -+  H ~ r ( s j  . �9 s~l"  ~)  H r (s jr+, sj~ r" 

for L r > O. Denote by Two the composite of 

H N ( W O  " ~ )  "-~ H N - I ( s j , _ ,  . . . S j , "  ,~,) --~ . . . " ~  HI(s~ "2) --* H~ 

Let Mt denote the torsion submodule of a F-module M. We see from Lemma 
10.3 that H~-(w.2), = H~-(w.2) for i • l(w) and Two| l :H~[(Wo'A)|  '--* 
H~ |  is an isomorphism. Hence vC(T~o) is defined, and we find 

Proposition. 

vc(r~o) = - ~ ~ Vq([m])z(2 - m~t) 
~ R  + m =  1 
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V m __ v - m ~  
Recall that [m] = v - - - ' ~  / 

Proof Let Tm : H ] - ( 2 - , , - 2 ) ~  Hr~ be the homomorphism considered in Corol- 
lary 4.5. Since 

])q "~- ~ Vq([m - - j  + 1]) - -  V q ( [ - j l )  
j = t  

we easily get vC(Tm)= - ~ j s =  1 Vq([j])z(2m-2j). This proves the proposit ion in 
ease n = 1. The .general case then follows just as in the modular  case, see [A 3], by 
noting that H~-(2), = 0 = H~(wo'2)t for all j when 2 ~ X  + (Kempf vanishing 
theorem 5.7 and Serre duality 7.3). [] 

10.6. Remark. For  each p e X, let D u denote the determinant of the restriction of 
Two to the /l-weight space of HrtC(Wo'2). Also, for v e X  let (v:#) denote the 
coefficient of e u in X(v). Set 

( ~ , + p , ~ v ) -  1 

4.= H H [']~"~+":"~ 
~eR + m = l  

By proposit ion 10.5, D~ and A~ have the same ~-valuation,  for any height one 
prime ideal ~o contained in ~ = (v - 1, p). Since p is an arbi tary odd prime (distinct 
from 3 if (agj) has a component  of type G2), it follows that D~ and A u only differ by 
a unit in S - ~ Z  [v, v - l ] ,  where S denotes the complement of ~ p .  2, 3( v - 1, p). We 
are indebted to G. Lusztig for this observation. 

10.7. By the vanishing theorem we know that both H~(wo" 2) and Hr~ are free F- 
modules. Define a filtration of Ht/(Wo . 2) as follows: 

H~(Wo" 2) j = {x e HNr(Wo" 2)[ Two x ~ qJH~ 

This is clearly a Ur-filtration of H~(wo" 2) and if we let/~ denote the residue field 
of F and H~r(Wo �9 2) ~ the image in H~r(Wo "2)'~ HNr(Wo �9 2) |  then this gives a 
Uf-fil tration of H~r(Wo �9 2). 

Note that  H~r(Wo �9 2) 1 is the kernel of the homomorphism 

Two | l:n'~(Wo.2) -~ n~ 

Hence by Corollary 7.4 we see that  H~(wo" 2) 1 is the maximal proper  submodule of 
H~Wo" 2). 

From Proposition 10.5 by using standard arguments (compare [A 3]) we have 
the following sum formula 

Theorem. 

chH~(wo'2)  j = ~ ~ Vq([rn])Z(s~'2 + rn~) 
j ~ 1 ~ R  + m 

0 < m < ( A + p ,  a V )  

Remark. If we  W, then there are similar filtrations of H~W)(w.,~)i |  compare 
[A 3]. The sum formulas for w ~ 1, Wo will in general involve non-zero contribu- 
tions from the torsion in H~(w . 2), i > 0. 
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10.8. Notations are as above. By 10.3 and an easy calculation we have 

Lemma. 

( v " -  1~ //v'" - 1"~ e--X 

for any positive integer m, where e = vp(m). 

10.9. Let ~0:zr ~ X be a homomorphism into a feld X" which takes v into 
a primitive pe'th root of 1 where e is a positive integer (see Lemma 6.6~. Then 
ker~o = (dpp(vP'-1)). Denote d~kerq 5 by F and the residue field of F by F. Then 
~p factors into ~r ~ F ~ F ~ Jd. By Lemma 10.8, we have: 

v p ( l ) -  1 

v/<~s-,)l([l])= ~ vl<~.~,,.-,))(~,,(v"')) 
i = 0  

= { ~  otherwiseifpell(i'e'vp(l)>e) 

Therefore, we get the following sum formula for the filtration of H~r(Wo" 4) (where 
we define H~r(wo" 2) ~ = H~(wo" 2) j | o,~f ") 

chHNx{Wo" 2) j =  ~ ~ X(s, ' ) .+mpee)  
j ~ l  ~teR § O < m p e < ( 2 + p , ~ V )  

10.10. Suppose F is d/go where go is a prime ideal o f a '  generated by an element in 
m which can be written as the combination of p and (v - 1) with at least one of the 
coefficients a unit in d but is not generated by any q~,(v ~') for e a positive integer. 
Then the (unique) maximal ideal of F is q = m/go and the residue field F is k. 
Moreover Hif(w . 2) = H~(w. 2) is just the usual cohomology module for the alge- 
braic group over k. Since there are (infinitely) many such prime ideals we (in 10.7) 
get many filtrations and sum formulas for Hf(Wo" 2). However, Hf(wo" 2) 1 defined 
by any go will always be the same (in fact, it is the maximal proper submodule). 

10.11. If we take go = (v - 1), then ~r = Zp and we get exactly the usual Jantzen 
filtration and sum formula for Hf(wo-2). Moreover we have 

Proposition. Assume go is generated by (v - 1) + ep' where ~ is a unit in s l  and t is 
a positive integer. Then (q = m/go) 

{v t -  lk 
(i) vq t ~ ) = vp( l) and the sum formula of{ H f  (Wo " 2) j } associated to go is the 

I 

Jantzen formula. 
(ii) I f  t is large enough (with respect to ( 2  + p, ~(~ ) )  then the filtration of 

Hf(wo" A) defined by go is the Jantzen filtration 

Proof. Denote Vp(V) by e and write l = pel'. Then 

v t -  1 v p ' -  1 (vP') v -  I 

v - 1  = v - 1  v P ' - I  

I" vt - 1 "~ { v p" - 1"~ (vP') v - 1 
Hence vq/-----T/=vqi~J\v--l/\v--l} since ~-bT-_-- 1 r Note that 
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(v - 1) -= ep'mod(fa). So 
pe-- 1 v"' -  1 (v-- 1) "'-~ ~,  (p_~_--__l)J 

v ~ -  = + i= i!(p e -- i)! p~(v -- 1) I - '  

P~ ( p ~ -  1)! 
_= (_e )e ' - l f f (p ' - l )  + ~,, i!(pe -- i){(-e)i-lPt(~-l)+~mod(g ~ 

i = 1  

Since p > 2 then pe - 1 > e. We get vq \ v - 1 1 /= e which proves (i). 

(ii) Denote the natural map 

H~(wo" 4) --* H~(wo" 4) 

by ~, where F = zJ/ga and 

H~(wo "4) --* HL(Wo" 2) 

by •2. By definition 

H'[(Wo. 4)J = {x ~ H~(wo" 4)1 two(X) e q~H~ 

H~p(Wo" 4) j = {x ~ H~,,(Wo '2)[ Two(X) epJH~ (2)} 

and then 

~;l(H'~(Wo.4)J) = {x~n~(Wo.4)lT,~o(X)~pJH~ + ((v - 1) + ~p')H~ 

n2 l(HzS, (Wo" 4) j) = {x e H~(wo" ),)[ Two(X) e pJH~ + (v - 1)H ~ 

So for j < t, 

~ ;  l( H~(wo. 4)J) = ~ ~(H~p(Wo" 4)) 

Looking at the image of them in H~(wo'2), we get that the two filtrations of 
H~(wo" 4) have the same top t submodules. If t is large enough, e.g. t is larger than 
the length of the usual filtration, (i) forces that the two filtrations are the same. [] 

Corollary. (of the proof). In the filtration of H~(wo" 4) defined by fa the first t terms 
coincide with the corresponding terms in the Jantzen filtration. 

Remark. We think that it is reasonable to conjecture that all the filtrations above 
are identical with the Jantzen filtration. 

10.12. Let us take the opposite case by assuming go = (p). Then F = ~r = 
F~/[v](,-l~, q = ( v -  1) and we get a filtration of H~(wo'4) denoted here by 
H~(wo'4)~p) in order to distinguish it from the usual one. Also there is a sum 
formula which looks a little different 

ch H:(wo" 4){p) = ~ ~ (pVp(mp) _ I)Z(S. 4 -{- mpg) 
j~_O a~R + O < m p < < 2 + p , ~ t v >  

{v'--l) 
because here v(~ _ i) ~ ~ ] = P~ (0 _ I over Fp [v](~_ ,). 

But if 2 is in the lowest p2-alcove, i.e. < 2 + p, ~ > < p2, then the formula is 

Z ch HNk(wo'4)$) = E E (p - 1)Z(s," 2 + mp~) 
j~_O ~t~R + O<mp<<., l .+9,atv > 
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So we would like to conjecture that this filtration is in fact the Jantzen filtration 
"magnified" by p - 1. That means, this filtration consists of the same submodules 
as in the Jantzen filtration, each repeated p - 1 times. 

10.13. Let go be a prime ideal of~r generated by e(v - 1) t + p for e a unit in ~ '  and 
t an integer. Let F = d /ga  and q = m/go. 

Lemma. (i) I f  t < p -- 1, vq~-~--~ J = vq(q~p(v)) = t. 

(ii) If t  > p --  1, Vq(Op(v)) ----- p -- 1. 
(iii) I f  t = p -- 1, vq(~bp(v)) >= p - 1. In this case vq(d~p(v)) depends on 8. 

Proof Note that 

p-2 ( p -  1)! p(v--  1) ~ 
~bp(v) = (v -- 1) p-1 + ~ (i + 1)!(p - i - 1)! 

i = 0  

p-2 (p - t)! e(v - 1) t+i mod(~)  
- -=(v-- l )  p - l -  ~ ( i +  1 ) ! ( p - - i - - I ) !  

i = O  

and q is generated by (v - 1) + ga. So (i) and (ii) are clear. For  (iii) we must look at 
(1 + E)(v - 1) p-1 which depends on v~(1 + e). [] 

P r o p o s i t i o n .  Suppose 2 is in the lowest if-alcove. 
(i) The filtration of  H~(wo" 2) defined by (~(v - 1) t + p) with ~ a unit in s l  and 

t an integer different from p - 1 has sum formula 

Z ch H~(wo" 2) j = ~ Z min(p - 1, t)X(s ," 2 + mpc 0 
j > O  ~t~R + O < r a p < ( 2 + p ,  ot v ) 

(ii) I f  t > p - 1 then the top t terms of  the filtration in (i) coincide with the 
corresponding terms of  the filtration defined by (p) (through Fp[v]~_ 1)). 

10.14. If F is a Dedekind domain (or even a p.i.d.) we can always find a basis for 
nUr(Wo �9 2) and another for H~ such that the matrix of Two: H ~ ( w o . 2 ) ~  H~ 
with respect to these bases is diagonal. Since d is not Dedekind we don't  know 
whether Two can be diagonalized or not. Assuming that this can be done, we have 
the 

P r o p o s i t i o n .  Let e be a unit in d and t an integer. Assume T,~ o can be diagonalized 
over d .  Then 

(i) The filtration of  H~(wo" 2) defined by go = ((v - 1) + ep t) coincides with the 
Jantzen filtration. 

(ii) Suppose 2 is in the lowest p2-alcove. The filtration defined by 
go = (e(v - 1) t + p) is the Jantzen filtration "magnified" by v,/r 

Proof Let {xi}7= 1 and { Yi}7= 1 be basis of Hn(wo �9 2) and H~ respectively such 
that Two(Xi) = aiYi for al = ai(v)E~.  Then det(Two) = I~7=t a~ which is the prod- 

V m _ v - m  

uct of polynomials of the form v - v ---V together with a unit in ~1 by Corollary 4.5, 

and hence each ai is a product of polynomials of the form 4~p(v p') and some unit in 
~/. So by Proposition 10.11 

v~,/~- t)+~r (al) = v~,,/~_ a~ (a~) = v~(al(1)) 
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and if 2 is in the lowest p2-alcove, the only factor of ai belonging to ~ is ~bp(v) which 
occurs vp(ai(1)) times, and we have 

v~/~.v- 1j. + , .  (a~) = v ~ / ~ . v -  , .  + p ,  (~p(v)  v '~~  

= vp(ai(1))v(,/(~(v- 1), +t,))(~bp(v)) 

Let n be the natural map H ~ ( w 0 - 2 ) ~  H~(wo'2) and denote the filtration of 
H~(wo-2) defined by go by H~(wo'2)~. 

For (i) it is easy to see that both H~C(Wo.)~)~ and n~(wo" 2) j have a basis 
consisting of those z(xi) with vp(ai(1)) >j. So they are equal. 

(ii) Let l = v,/~(dpp) where go = ( ( g ( V  - -  1) t -1- p ) ) .  For i = 1, 2 . . . . .  1, 
Hf(wo" ~)~-1~, +i have the common basis consisting of those rc(xi) with vp(adl)) > j 
which is a basis of H~(wo" 2) j. [] 

10.15. Let us formulate the 

Conjecture. T~o : HN (wo �9 2 )~  H " ( 2) can be diagonalized over ~4 

Let q~: d ~ ~ be a homomorphism into a field o~ff which takes v to a primitive p,h 
root of unity. Let {H~r(Wo.Z) j} resp. {H~(wo.).) j} denote the filtration of 
H~c(Wo" 2) resp. the Jantzen filtration of H~(wo" 2). If 2 is in the lowest p2-alcove 
then the two sum formulas of the above two fltrations coincide. Moreover we have 

Remark. O) If we assume the conjecture, then 

ch n~(wo" 2) j = ch H~(wo" 2) j 

for each j = 0, 1 . . . . . .  

Indeed take bases {x~} for HN(wo'2) and {Yi} for H~ such that 
T~o(X,) = a~y, and each x~ lies in a weight space. Let go = ker q~ which is generated 
by dpp(V). The same argument as in I.emma 10.3 shows that v,,(ai) = Vp(ai(1)) over 
~r If we denote the natural maps HN(wo "2)~HNx(wo ').) and 
HrC(Wo ' 2 )~  H~(wo'2) by zt I and r~2, respectively, then HNx-(Wo.2) j has a basis 
consisting of those rq (xi) with vp(ai(1)) > j while H~(wo" 2)J has one consisting of 
lr2(xi) with the same i's. So (i) follows. 

(ii) Since H~r(Wo').)l, resp. H~(wo" 2) 1, is the maximal proper submodule of 
H~(wo'2), resp. H~(wo'2), the theorem implies in particular 

ch Lx(~.) = ch Lk(2) 

where Lx(2), resp. Lk(2), is the irreducible module for U~, resp. Uk, with highest 
weight 2. That is, our conjecture implies Lusztig's conjecture [L 3]. 

11. Examples 

Once the linkage and translation principles are established and the sum formula is 
proved, we can easily obtain the results analogous to those in the modular case 
which are consequences of the corresponding principles and formula. In this 
section we illustrate this by showing that it gives the characters of all simple 
U,r-modules when U corresponds to a Cartan matrix of rank 2 or of type A 3 . The 
result verifies Lusztig's conjecture [L 3-1 for these types. 
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11.1. Let U be the quantum group corresponding to the Cartan matrix of type A 2 .  

Let l = pe for p > 2 a prime and e a positive integer. Let d ~ ~ff be a homomor- 
phism into a field ~ff taking v into a primitive rth root of 1. Let 2 ~ X +. From 
Theorem 10.7 it follows that 

(1) If (2  + p, ~ '  + ~ ) =< 1, then L~r(2) = n~ 
(2) I f ( 2 + p , ~ y ) < l , i = l , 2 ,  and ( 2 + p , ~ '  + ~ ' ) > l ,  then we have the 

exact sequence 

0 --+ L~r(s~, +~2" 2 + 1(~1 + c~2)) ~ n3-(Wo �9 2) ~ L~r(2) ---} 0 

Either from the translation principle 8.3-8.4 or directly from Theorem 10.7, this 
gives us chL~r(2) for all /-restricted 2's (i.e. for {2~X + I ( t ,  c~? ) < l, i =  1, 2}). 
Now by Lusztig's tensor product theorem I-L 3] we can find ch Lx~(2) for general 
2 ~ X +. It is immediate to check that the results agree with Lusztig's conjecture. 

11.2. Consider now type A 3. 
The set of/-restricted weights divides into 6 alcoves, C 1 , . . . ,  C6, which are 

ordered in the usual way as follows: 

C6 

c, j ~c8  

C3 C4 

~-c2/ 
I 

C1 

In this diagram we have also included the 2 non-l-restricted alcoves C7 and 
Cs which are less than C6. If 21 s C1, we let 21 be the Wrconjugated element in C~, 
i = 2 , . . . ,  8. Then we have 

ch L~r (2~) = X(2, ) 

ch Ljr(22) = Z(22) - Z(21) 

chL~r(23) = Z(23) - Z(22) + Z(21) 

chL~r(24) = Z(2,0 - Z(22) + Z(21) 

ch L~c(25) = X(25) - Z(24) - Z(23) "Jr- Z ( 2 2 )  - -  2Z(21) 

chL~(26) = Z ( 2 6 )  - -  g ( 2 7 )  - -  Z ( 2 8 )  - -  Z(25) "q- 2Z(24) + 2Z(23) -- 4Z(22) -}- 5Z(21) 

This is obtained by combining Theorem 10.7 and Corollary 8.4 (compare [Ja 2]). 
As in 11.1, we then get all ch L~r(2) for 2/-restricted by applying Theorem 8.3 and 
finally all ch L:c(2), 2 ~ X § from the tensor product theorem. 

Again it is easy to check that the results agree with Lusztig's conjecture [L 3]. It 
is enough to verify this for 2/-restricted because by Kato's result [K] the conjecture 
"respects" the tensor product theorem. 

11.3. The same argument can be given in the case of a Cartan matrix of type Bz or 
G2. In summary, we have 
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Theorem. Assume U corresponds to a Cartan matrix of  type A2, B2, G 2 or Aa, ~ is 
as above and k = Fp. Then for all j 

ch H~c(Wo" ,~)~ = ch H~(wo" 2) j 

for 2 1-restricted. And for 2 = 20 + p21 such that 2 ~ ~ X1 and 21 is in the lowest alcove 
we have 

ch L:e (2) = ch Ld2) 

Proof I f2  is restricted then all the irreducible factors of H~(wo-2) j have multipli- 
city 1. So the sum formula tells us exactly how ch H~(wo" 2) ~ looks when expressed 
as a linear combination of ch Ls(2)'s, which is in fact the same as ch H~(wo" 2) j 
expressed in terms of chLk(2)'s. Now by induction one gets easily that 
chLar( ls)=chLk(#)  and chH~(wo'2)J=chH~(wo'2)  j for 2 restricted and 
# strongly linked to 2 (when/~ is not restricted we use the tensor product theorem). 

For 2 = 2 o + p21 with 2~ and 21 in the lowest alcove, we use the tensor 
product theorem and get the result easily since it is true for 2 restricted. 

12. Appendix: quantum SL. (by P. Polo) 

In this section we prove that for a Cartan matrix of type A,_I  the quantum 
coordinate algebra defined in Section 1 coincides with the one studied in [PW 
1-23. 

12.1. Coefficient spaces over d .  Let V be a U-module. As usual, Hom(V, d )  is 
denoted by V*. This is made into a U-module as follows: if ~0 e V*, v e U, x e V then 
(u'q~)(x) = tp(S(u)x). Then, there is a U | U-homomorphism e: V* | V ~  U* 
defined by: 

e(q~| = q~(ux), for r  

If several modules are involved, we will write ev, etc. in order to avoid confusion. 
The image of Cv is denoted by e(V) and called the coefficient space of V. If VE c-g, 
then c(V) is a U | U-submodule of d [ U ] .  

Let E be a U-submodule of V. Set Q = V/E, and let n be the projection V ~ Q. 

We assume that Q is a free d -module ,  so that the transposed map V * ~  E* is 
surjective. Let xEE, q ~ E * ,  and ~Oe V* such that tr(~,)= ~0. We claim that the 
element ev(~O | x) e e(V) only depends on x and q~ and not on the choice of ~k. To 
see this, let u~ U. Then e(~ | x)(u) = ~b(ux). But E is a U-submodule of V, hence 
u x e E  and therefore ~k(ux) = q~(ux). This proves our claim. Hence, there exists 
a well-defined d - l inea r  map fl:E * |  E ~ e(V) such that: 

fl(q~ | x) (u) = ~o(ux) for all q~e E*, x ~ E, u e U .  

Observe that fl is a U | U-homomorphism: if ul, u2, ue  U, q~ | x e E *  |  then: 

fl(xl ~o | u2x)(u) = (ul ~o)(uu2x) = ~o(S(ul)uuzx) = ((ul | u2)fl(~ | x))(u) . 

Finally, it is clear from the definition of fl that Ker(fl) = Ker(eE). Hence fl factors 
through an injective U | U-homomorphism e(E) ~ c(V). 

Now, let yeQ,  OeQ*, and ze  V such that n (z )=  y. We identify Q* with the 
subspace: E • = {q6 V*[q(E) = 0}. Again, ev(O | z) only depends on 0 and y, and 
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not on the choice of z. Indeed, let u~ U. Then ev(O | z)(u) = O(uz). But this only 
depends on the image of uz in V / E =  Q, namely uy. Hence, there exists a well- 
defined ~'-linear map 7: Q* @ Q ~ e(V) such that: 

~(0 @ y) (u) = O(uy) for all 0 E Q*, y E Q, u E u. 

Then it is immediate that ). is a U |  U-homomorphism, and that Ker(7)= 
Ker(eQ). Therefore, 7 factors through an injective U|  
e(Q) ~ e(v).  

We record the results in the following: 

Lemma. Let 0 ~ E ~ V ~ Q ~ 0 be an exact sequence of U-modules, such that Q is 
a free ~r Then c(E) and c(Q) are U | U-submodules of  c(V). 

12.2. For any 2 s X  +, we denote D(2) by E(2), and denote by c(~,) its coefficient 
space. If ~ p ~ d [ U ]  is an element of weight v, then by Corollary 1.30 there exists 
~ , / ~ X  +, with ~ + W o # = V ,  such that ~p belongs to the coefficient space of 
E(2) | E (#). But the latter is nothing but c(2)c (/~) (multiplication in d l-U l), and 
therefore we obtain that ~r U] is generated as an algebra by the coefficient spaces 
e(~), ,~eX +. 

12.3. From now on, we assume that the Cartan matrix A is of type An-1. Let 
wl ~X + be the fundamental weight such that E(col): = Vis the natural representa- 
tion of U. We will prove that d [ U ]  is generated as an algebra by the subspace 
c(v). 

The dual module V t is isomorphic to H~ Let 2~X +. Since ~on-1 is 
minuscule, then all weights of the U~-module H~174 belong to 
- p  + X +. By the tensor identity 2.16 and Kempf's vanishing 5.7 we conclude that 

H~ @ H~ ~- H~176 | ~r has a good filtration. From this we 
easily obtain the: 

Lemma. Let M be an ~r U-module with a good filtration. Then 
H~ | M has a good titration. 

From the lemma it follows that (Vt) | has a good filtration, for all m > 1. 
Taking ,-duals, we obtain that V | has a Weft filtration, i.e. a sequence of 
U-submodules: 0 = Mo ~ M~ _~. . .  _ M~ = V | such that each M~/M~_~ is 
isomorphic to some Weyl module E(2i). Observe that each V~ ' /M~ is a free 
~r and therefore by Lemma 12.1 each c(),~) is a U | U-submodule of 
c(V | m) = (e(V)) m, 

12.4. Hence, in order to prove that c(V) generates the algebra ~r [ U], we only 
have to prove that any E(~), 2~X + appears as a subquotient in some V ~ ' .  This 
reduces to a statement about characters, and therefore can be checked in the 
classical case. Namely, let G = SL~(r and let V be the natural representation of G. 
Then the coordinate algebra C[G]  is generated by the functions x~, 1 =< i , j  < n, 
which are the coefficients of the representation of G on V. Therefore, any finite 
dimensional subspace of C[G]  is contained in ~<tc(V| for some t > 0. But 
each V | ~ is completely reducible, and if m~(/~) denotes [ V | ~:E( #)] for # ~ X +, it is 
easily checked that: 

e(V | = ~ E(#)* | E(#), where f2(s) = { #Imp(#) > O} . 
#~O(s) 
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On the other hand, IE[G] = ~z~x§ E(2)* | E(2), by the Peter-Weyl theorem. 
Since the E(v)*| E(v), where v ~ X +, are pairwise non-isomorphic simple G x G- 
modules, it follows from the above decomposition of e( V | that any E(2) is 
a subquotient of some e(V| Hence, we have proved the: 

Proposition. Assume that U is associated to a Cartan matrix of type A,_ 1. Then 
d [ U ]  is 9enerated as an algebra by the coefficient space e(V) = e(col). 

Remark. In fact, the Proposition is true for any Cartan matrix A, if we take V to 
correspond to a faithful representation of the simply-connected semi-simple alge- 
braic group G associated to A. If A is of classical type, or E6 o r  E7, we can take V to 
be a direct sum of minuscule representations, and then Lemma 12.3 still holds. For 
types Es, F4, G2, we take V = E(co), where c0EX + is the highest short root. Then 
Lemma 12.3 can still be proved by elementary ad hoe methods ( [P  1, Propositions 
3.6-8]). In fact, the lemma is a particular case of a general result on good 
filtrations, (see [Do], [Ma], and 5.14). 

12.5. The quantum symmetric and exterior algebras 

Following [ P W  1] we define the quantum symmetric and exterior algebras of V as 
follows. As usual, let T(V) denote the tensor algebra of the free d - m o d u l e  V. 
Consider the following d-submodules  of V | V: 

m = d - s p a n  {xi | xj -- vxj | xi[ 1 < i < j < n} 

N = d - s p a n  {xi | xi, xi | xj + v -  1 xj | xi[ 1 < i < j < n} . 

Let ( M ) ,  ( N )  be the two sided ideals of T(V) generated by M, N, respectively. 
Then set: Ss(V) = T ( V ) / ( M )  and As(V  ) = T ( V ) / ( N ) .  

Since v + v - 1 is a unit in d ,  we easily obtain that V | V = M ~ N (direct sum 
of ~r From this it follows that the union of the given generators of M, N 
form an d -bas i s  of V | V. Hence, they respectively form an d -bas i s  of M, N, 
which are therefore free. 

12.6. U-module structures. Clearly, T(1I) is a graded U-module. We leave it to the 
reader to check that both M and N are U-submodules of V | V. Therefore, both 
Ss(V) and As(V) are graded U-modules. 

12.7. Some relations. Now, we describe some relations among the elements of 
e(V), which generate the algebra d [  U]. Firstly, we observe that since V* @ V is 
a simple U | U-module, then the non-zero U | U-homomorphism e: V*@ 
V--* e(V) is an isomorphism. Let xl be a generator of the d - m o d u l e  V~,, and set 
x,+~ = F~x, for all 1 < i _< n - 1. Then, xi has weight co, - co~-1 (with the conven- 
tion COo = co, = 0), Etxi+l = xi for all 1 < i < n - 1, and {xx . . . . .  x,} is an d -  
basis of the d - m o d u l e  V (free of rank n). Let {61 . . . . .  6,} be the d -bas i s  of V*, 
dual to the basis {x~ . . . . .  x,} of V. For all i , j  we denote by X 0 the image of6~ | xj 
in e(V) _ d [ U ] .  

Observe that, by definition of multiplication, we have: 

(Xi~Xlm) (u) = (6i | 6l) (A (u) (xi | x.,)) for all u ~ U .  

From the direct sum decomposition: V |  V = M ~)N (as U-modules), we 
obtain relations among the X;js. Firstly, we observe that the elements 
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( 6 i |  v~j |  ~ill < i < j  < n} form an ~r of the orthogonal M • of M. 
Similarly, the elements {6i | 6~, 6~ | 6j + v-  ~ 6~ | 6~11 < i < j < n} form an 
d -bas i s  of N • Again, both are U-submodules of V*|  V*, and 
V* | V* = M • ~ N • 

Clearly, if g0~M • (resp. N • and x ~ M  (resp. N), then e(go | x) = 0. Applying 
this to: go = 6~ | 6j - v6j | 6~, x = xt | xt, we obtain: 

(1) XuXg~ - vX~lXit = 0 for all l, i < j  

Similarly, we obtain the relations: 

(2) X ,  XIj  - vXl jXl i  = 0 for all l, i < j  

(3) X u X ~ j  - X ~ j X u  = 0 i f / <  m and i > j  

(4) X l i X m j  - X m j X l i  - ( v  - 1)-  1 ) X I j X m  i = 0 if I < m and i < j 

12.8. The determinant. Now, consider the U-module L = A~(V). From the defini- 
tion of Aq(V), we obtain that L is generated as an ~r by the image of the 
element x~ |  | x,, which we denote by x~ ^ . . .  ^ x,. Moreover, we claim 
that L is a free (rank one) ~r For this we observe that by [ P W  1, Theorem 
3.3.1] both L | ~"  and L | k are 1-dimensional. By Nakayama's lemma, this 
shows that L is a free, rank one, ~r (see 1.21). Now, we claim that U acts on 
L via the character ~. In fact, since VeCs then F | LeCg. But L has rank one, hence 
the only weight v e X that can occur in L is e. 

Also, by definition of the "coordinate" functions X~ we have: 
ux~=~'7=~X~j(u)x~ for all u ~ U ,  l < j < n .  Combined with the fact that 
X,~x) ^ . . .  ^ x,~,) = ( -v )"" )xa  ^ . . .  ^ x ,  for all a ~ S , ,  this gives, for all ue  U: 

u.(x~ ^ . . .  ^ x , ) = ( ~  ( - v ) " ~ ) X ~ m ( u ) . . . X ~ , ) , ( u ) ) x ~  ^ . . . ^ x , .  
n 

Since L is a free ~r we conclude that: ~ , ~ s , ( - v ) ~ ' ) X , { ~ ) x . . .  
X,~,), = e. Let us denote the L.H.S. by D. Since e is the identity element of the 
algebra ~r U], this can be rewritten as: 

(5) D = ~ (--v)t{*)X,o}l  . . .  X,{n), = 1 
o~Sn 

12.9. The isomorphism. So far, we have obtained that d [ U ]  is a quotient algebra 
of the algebra d4, defined by the generators Xij ,  1 ~ i , j  ~ n and the relations 
(1)-(5) above. This latter algebra is the one introduced in [ P W  1] (up to the change 

~ / ) -  1). 

tp 

Now, we prove that the surjection .1r } } d [ U ]  is actually an isomorphism�9 
We know already that g o , : ~ |  is an isomorphism, since 
k [ U ]  ~ - k [ S L , ]  is generated by the coordinate functions X~j subject to the sole 
relation det(Xij) = 1. Let Ar = Ker(go). Since ~r [ U] is free ~r by Theorem 
1.33, then: dr --- d [ U ]  @ ~ .  

Our immediate goal is  to prove that J r  is also a free d -module .  For  this, we 
introduce the algebra ~ ,  only subject to the relations (1)-(4). By the arguments of 
[ P W  1, Theorem 3.5.1] we obtain that ~ is a free ~r with a basis 

�9 rfj monomlals . .X. . ,  ri. consisting of the I ] , j  ,j J -> 0, where the product is taken in some 
fixed total order on the set {1 . . . . .  n} 2. ~,lso, ~/[ is a graded integral domain�9 



58 H.H. Andersen et al. 

We fix some total order on {1 . . . . .  n} 2 and define ~ to be the set of all 
�9 r i ~  ~d(.r3 monomlals I -] i jXi j  such that at least one of d l l  . . . .  is zero. For r > 0, let 

~, be the set of such monomials of degree < r, let be the ~r of all 
monomials of degree < r, and let sV(r) be the d - s p a n  of S,. Then, we have the: 

Lemma 12.10../~(r) = (D - 1)Jr - n) ~ ~/'(r), and ~r (r) is a free d-module with 
basis ~,. 

Proof. Set ~ = { ( D - 1 ) x s l l < s < t } w 3 , ,  w h e r e  {x~}~=~ is an d -bas i s  of 
Jg(r  - n). We claim that F, is an zd-basisof ~ ( r ) .  Indeed, ~ ' ( r )  | k is generated by 
the image of F,. Hence by Nakayama JC(r) is generated by ~. Moreover: 

r a n k d ~ ( r )  = d imk(~(r)  | k) = I F, I. 

It follows that ~ is an d -bas i s  of ~7(r), and therefore ~ ( r ) =  
(D - 1)~r - n) G W(r),  and E, is an ~r of N(r) .  [] 

12.11. Let ~ ' ( r )  denote the image  of ~ ( s  in ~ .  Since J~  is a graded integral 
domain, we have: J / ( r )  --- dC(r)/((D - 1)J//(r - n)). From this we deduce the: 

Corollary. (0 J/g(r) is freely generated by the image of 3,,. 
(ii) Jl[ is a free d-module, with basis 2,. 

12.12. Finally, we obtain the: 

Proposition. ~p is an isomorphism. In other words, ~ r  identifies with the quantum 
SL~ introduced in [PW 1]. 

Proof. As a direct summand of ~ ,  the ~r ~ is projective, and is therefore 
free, since ~r is a local ring (see 1.32). On the other hand, J~ff | k = 0 since ~0k is 
injective. It follows o~ff = 0, hence ~0 is an isomorphism�9 [] 

References 

[A 1] 

[A 23 
[A 3] 

[A 4] 

[A 5] 

[CPS 1] 

[cPs 2] 

[De 1] 

[De 2] 
[DE] 
[Do] 

[Dr] 

Andersen, H.H.: Vanishing theorem and induced representations, J. Algebra 62, 86-100 
(1980) 
Andersen, H.H.: The strong linkage principle. J. Reine Angew. Math. 315, 53 59 (1980) 
Andersen, H.H.: Filtrations of cohomology modules for Chevalley groups. Ann. Sci. Ec. 
Norm. Super. 16, 495-528 (1983) 
Andersen, H.H.: Schubert varieties and Demazure's character formula, Invent. Math. 79 
611-618, (1985) 
Andersen, H.H.: The linkage principle and the sum furmula for quantum groups. 
(Preprint) 
Cline, E., ParshaU, B., Scott, L.: Induced modules and extensions of representations. 
Invent. Math. 47, 41-51 (1978) 
Cline, E., Parshall, B., Scott, L.: Cohomology, hyperalgebras and representations. J. 
Algebra 63, 98-123 (1980) 
Demazure, M.: D6singularisation des vari6t6s de Schubert g6n6ralis6es. Ann. Sci. l~c. 
Norm. Super. 7, 53-88 (1974) 
Demazure, M.: A very simple proof of Bott's theorem. Invent. Math. 33, 271-272 (1976) 
Dyer, M., Lusztig, G.: Appendix to [L 6], In Geom. Ded. (1990) (to appear) 
Donkin, S.: Rational representations of algebraic groups (Lect. Notes Math. vol. 1140), 
Berlin Heidelberg New York: Springer 1985 
Drinfeld, V.: Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Dokl. 
32, 254-258 (1985) 



Representations of quantum algebras 59 

[Ja 1] 

[Ja 2] 

[ Ja 3] 

[Jo] 

[ Ji] 

[K] 

[L 1] 

[L 2] 

[L 3] 

[L 4] 
[L 5] 

[L 63 
[Ma] 
[Mu] 

[P 1] 

IF  2] 

[PW 13 
[PW 2] 
[RR] 

[R 13 

JR2] 

[S] 

[W] 

IX] 

Jantzen, J.C.: Darstellungen halbeinfacher Gruppen und kontravariante Formen. J. 
Re,he Angew. Math. 290, 117 141 (1977) 
Jantzen, J.C.: Weyl modules for groups of Lie type. In: Collins M. (ed.) Finite simple 
groups II Proc. Durham 1978, Academic Press, 1980, pp. 291-300 
Jantzen, J.C.: Representations of algebraic groups. Pure Appl. Math., vol. 131, Aca- 
demic Press, 1987 
Joseph, A.: On the Demazure character formula. Ann. Sci. lSc. Norm. Super. 18, 
389-419 (1985) 
Jimbo, M.: A q-difference analogue of U(#) and the Yang-Baxter equation. Lett. Math. 
Phys. 10, 63-69 (1985) 
Kato, S.-i.: On the Kazhdan-Lusztig polynomials for affine Weyl groups. Adv. Math. 
55, 103 130 (1985) 
Lusztig, G.: Some problems in the representation theory of finite Chevalley groups. 
Proc. Syrup. Pure Math. 37, 313 317 (1980) 
Lusztig, G.: Quantum deformations of certain simple modules over enveloping alge- 
bras. Adv. Math. 70, 237-249 (1988) 
Lusztig, G.: Modular representations and quantum groups. In: Classical groups and 
related topics. Contemp. Math. 82, 59 77 (1989) 
Lusztig, G.: On quantum groups. J. Algebra (1990) (to appear) 
Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal en- 
veloping algebras. J. Am. Math. Soc. 3, 257-296 (1990) 
Lusztig, G.: Quantum groups at roots of 1. Geom. Ded. (1990) (to appear) 
Mathieu, O.: Filtrations of G-modules Ann. Sci. lSc. Norm. Sup. (1990) (to appear) 
Matsumura, H.: Commutative ring theory. Cambridge Studies in adv. math. 8, C.U.P. 
(1989) 
Polo, P.: Vari&+s de Schubert et excellentes filtrations. Orbites unipotentes et repres- 
entations, Ast6risque 173-174, 281-311 (1989) 
Polo, P.: Modules associ6s aux vari6t+s de Schubert. C. R. Acad. Sci. Paris, 308, 
123-126 (1989) and to appear in the proceedings of the Bombay geometry colloquium 
1989 
ParshaU, B., Wang, J.-p.: Quantum linear groups I (preprint) 
Parshall, B., Wang, J.-p.: Quantum linear groups II (preprint) 
Ramanan, S., Ramanathan, A.: Projective normality of flag varieties and Schubert 
varieties. Invent. Math. 79, 217 224 (1985) 
Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping 
algebra of a complex simple Lie algebra. Comm. Math. Phys. 117, 581-593 (1988) 
Rosso, M.: Analogues de la forme de Killing et du th6or6me d'Harish-Chandra pour les 
groupes quantiques. Ann. Sci. Ec. Norm. Super. 23 (1990) 
Sullivan, J.B.: Simply connected groups, the hyperalgebra, and Verma's conjecture. Am. 
J. Math. 100, 1015-1019 (1977) 
Wang, J.-p.: Sheaf cohomology of G / B  and tensor products of Weyl modules. J. Algebra 
77, 162-185 (1982) 
Xi, N.: Finite dimensional modules of some quantum groups over Fp(v). Academia 
Sin,ca (Preprint) 

Note added in proof 

The categories cd1's of 2.2 are abel,an categories. One has to check that if M ~ cdr's and N is 
a submodule of M, then N = ~aN~.  This obtains by the usual argument, as follows. Ifx e N then 
x = x~ + . . .  + xt, where x~ e Mx, and 2, ~e 2 i if i 4= j. One proves that all x, ~ N by induction on t. 
For each u E U ~ one has u x  - 2 t (u ) x  = ~ i -  ~ (2, - 2,)(u)x,. By Lemma 9.1 the characters ~., remain 
pairwise distinct after reduction modulo m. Hence there exists Uo e U ~ such that, for all 
i e {1 . . . . .  t - 1}, (2, - 2t)(u0) r ~ .  Then each (2i - 2t)(Uo) is invertible in d ,  and by induction 
hypothesis one obtains x, e N for all i = 1 , . . ,  ,t - 1, and then also x, e N. 


