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1 Introduction 

Let X be a smooth projective variety over ~ and let )~ be its universal cover. The 
conjecture of [Sh, IX.4.3] asserts that there is a proper morphism shi: )~ ~ Sh (X) 
onto a normal Stein space Sh 0~). We may assume that sh2 has connected fibers, 
and then sh~ is unique. The fundamental group hi(X) acts on )~ proper ly  dis- 
continuously, and this action descends to a proper action of 7h(X) on Sh(X). In 
general .this action has fixed points, but we can still take the quotient Sh ( X ) =  
Sh(X)/nl(X). The morphism sh()~) descends to a morphism 

shx: X --* Sh(X). (1.1) 

Sh(X) will be called the Shafarevich variety of X and shx the Shafarevich mor- 
phism. At the moment the existence of (1.1) is hypothetical. 

It is possible to give an internal characterisation of the Shafarevich morphism 
without recourse to universal covers. Let Z c X be a connected subvariety. It is 
easy to see that 

shx(Z) = point iff im [~l(Z) ~ gl (X)]  is finite. (1.2) 

The right hand side of (1.2) can be used to define an equivalence relation on the 
closed points of X by 

xl ~ x 2 ~ 3  a connected xl,  x2eZ ~ X s.t. im [nx(Z)~  nl(X)]  is finite. (1.3) 

If Sh(X) exists, it is the quotient of X by the equivalence relation ~ .  
Even if Sh (X) exist, it is usually singular and shx is not flat. Quotients by such 

equivalence relations are very hard to handle. The problem becomes easier if we 
want to find the Shafarevich variety only "generically". 

i.4. Definition. Let X be a normal and proper variety. A normal variety Sh(X) and 
a rational map shx: X .. . .  Sh(X) are called the Shafarevich variety and the 
Shafarevich map of X if 
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(1.4.1) shx has connected fibers, and 
(1.4.2) there are countably many closed subvarieties Di c X (Di 4= X) such that 

for every irreducible Z c X such that Z r w Dz, 

shx(Z) = point iff im [nl(Z) -~ nl(X)] is finite. 

Here Z is the normalisation of Z. The change from nl(Z) to nl(Z) is done for 
technical reasons and does not effect the results. 

It is quite likely that finitely many D~ would be sufficient, but I do not know 
how to prove this. 

It is easy to see that shx: X ~ Sh(X) is unique up to birational equivalence if it 
exists. 

I will usually think of Sh(X) and shx as birational equivalence classes of 
varieties and maps, and the "true" Shafarevich variety Sh (X) (resp. Shafarevich 
morphism shx) is a distinguished representative (if it exists). The following is the 
first result: 

1.5. Theorem. For any normal and proper variety X (over ~E) the Shafarevich map 
shx: X .... Sh(X) exists. 

In algebraic geometry it is very hard to see the whole fundamental group. Grothen- 
dieck defined the algebraic fundamental group of an arbitrary scheme X [SGA1, 
V] ; we will denote it by ~I(X). I f X  is defined over tE then ~ ( X )  is the profinite 
completion of nl(X) [SGA1, XII.5.2]. One can define the algebraic Shafarevich 
map s~ix: X--*fffi(X) by replacing the condition "im [n~(Z)~ ~Zl(X)] is finite" in 
(1.4) by "ira [~r~(Z) ~ r~(X)] is finite". 

The algebraic version of (1.5) is the following: 

1.6. Theorem. For any normal and proper variety X (defined over an algebraically 
closed field of arbitrary characteristic) the algebraic Shafarevich map s~ix: 
X .... " ~ ( X )  exists. 

One aim of the Shafarevich conjecture is to find a way to construct every variety 
using two simpler building blocs: 

Type I: varieties with finite fundamental group, and 
Type II: varieties whose universal covers are Stein. 

We have to replace type II by one of the the following larger classes: 

1.7. Definition. Let X be a normal and proper variety. We say that X has 
generically large fundamental group (resp. generically large algebraic fundamental 
group) if the following equivalent conditions are satisfied: 

(1.7.1) shx (resp. s's'tix) is birational; 
(1.7.2) If x e X  is a sufficiently general point and x ~ Z  c X is an irreducible 

positive dimensional subvariety then 

im [-7h(Z) ~ nl(X)] (resp. im ['~1 (Z) ~ ~I (X)] )  is infinite. 

If X has generically large algebraic fundamental group, then X has generically 
large fundamental group. The converse is not known. 

The fibers of the Shafarevich map either have finite fundamental group or they 
can be further decomposed by induction on the dimension. Sh (X) is supposed to be 
the part which carries the whole fundamental group of X. Choose a smooth model 
for Sh(X) and then ~I(Sh(X)) is well defined. 
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Unfortunately it happens frequently that n l (X)  is large but Sh(X) is simply 
connected. This is caused by possible fixed points of the action of nl (X) on Sh (X). 
We can however hope that a finite index subgroup of nl (X) acts freely on Sh (X). 
This happens if nl(X ) is residually finite, which is unfortunately not always the case 
[Tol, Cat, Ko]. Algebraic fundamental groups are by definition residually finite 
and in the algebraic case the following holds: 

1.8. Theorem. Let X be a smooth and proper variety (over I1~). Then there is a finite 
ktale cover X'  ~ X such that 

(1.8.1) s~i,: 7~1(X' ) ~ 7~1(~ (X')) is an isomorphism, and 
0.8.2) ~'fi(X') has generically large algebraic fundamental group. 

[n the topological case there are counterexamples (4.11). 

There are two types of classical examples of varieties whose universal covers 
are Stein: 

Flat: quotients of ~E" by a group of translations, called Abelian 
varieties. 

Negatively curved: quotients of bounded symmetric domains by discrete sub- 
groups of the corresponding Lie groups. 

The following observation is very useful in distinguishing these two types. 
For  a smooth variety X let Kx denote the canonical line bundle (i.e. local 

sections of Kx are the holomorphic (dimX)-forms). For  an Abelian variety A the 
canonical bundle KA is trivial and so KA ~" has only the constant sections for every 
n. If X is a quotient of a bounded symmetric domain then Kx ~" has lots of sections 
for n >> 1, in fact sections separate points of X. 

1.9. Definition. A smooth proper variety X is of  general type if sections of 
Kx ~" separate points over an open dense set U ~ X for n >> l. (We will frequently 
say that sections generically separate points.) 

Products of Abelian varieties and varieties of general type give nearly all 
varieties with generically large algebraic fundamental group: 

1.10. Conjecture. Let X be a smooth projective variety (over C). Assume that X has 
generically large fundamental group. Then X has a finite ktale cover p: X'  ~ X such 
that X'  is birational to a smooth family of  Abelian varieties over a projective variety of  
general type Z which has generically large fundamental group. 

The conjecture is true if dim X < 2. The general case would need various parts of 
the Minimal Model Program and a singular generalisation of the Cheeger- 
Gromotl Splitting Theorem. 

Let X be a quotient of a bounded (not necessarily symmetric) domain H (by 
a fixed point free group). The theory of automorphic forms connects the holomor- 
phic function theory of H and the meromorphic function theory of X. [Si., 6.1] 
constructs automorphic forms which show that for n >> 1 the sections of Kx ~" 
separate points of X. The choice of n is however not clear from the construction. 

Using the Nonvanishing Theorem proved in [Ko3] the presence of a large 
fundamental group can be exploited to prove the existence of sections of Kx ~ 
(Unfortunately I do not see how to use the theory to produce holomorphic 
functions on X.) 

1.11. Definition. Let X be a proper variety and let L be a line bundle on X. We say 
that L is big if sections of L | generically separate points for n >> 1. 
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1.12. Theorem. Let  X be a smooth proper variety over IE and let L be a big line 
bundle on X.  Assume that X has generically large algebraic fundamental group. Then 
h~ K x |  >= 1. 

If L is a power of K x  we can say even more: 

1.13. Theorem. Let  X be a smooth projective variety over (U. Assume that X has 
generically large algebraic fundamental group and X is o f  general type. Then 

(1.13.1) h~ K~ ") > l for  m > 2; 
(1.13.2) h~ K~ m) > 2 fo r  m > 4; 
(1.13.3) Sections of K~x m generically separate points for m > 10 dimx" 

1.14. Examples. (1.14.1) There are several examples of surfaces of general type 
X such that X has generically large algebraic fundamental  group and 
h~ Kx)  = 0 (see [BPV, VII.11] for a list). 

(1.14.2) For  every M there are smooth projective varieties of general type 
X such that h~ g~ m) = 0 for m < M (8.6). In the examples dim X is roughly 
3M. 

For  threefolds one can weaken the assumption about  the fundamental  group 
further: 

1.15. Theorem. Let  X be a smooth projective threefold over C. Assume that fCl (X)  is 
infinite and X is of  general type. Then 

(1.15.1) h~ K~x m) > l for  m > 2; 
(1.15.2) h~ K~x '') > 2 for  m > 4; 
(1.15.3) The sections of  K~ m generically separate points for m > 49. 

In general, the methods of Sects. 8-10 show that in any dimension the worst 
varieties with respect to existence of sections of K | are the simply connected 
ones. 

(1.12) is also useful in several other contexts as well. One application is the 
following characterisation of Abelian varieties (bl is the first Betti number): 

1.16. Theorem. Let  X be a smooth proper variety over IE. I f  h~ Kx ~m) = 1 for 
some m > 3 then b l (X)  < 2dimX. 

1.17. Theorem. Let  X be a smooth proper variety over ~ .  The following are equiva- 
lent: 

(1.17.1) X is birational to an Abelian variety; 
(1.17.2) b l ( X )  = 2 d i m X  and h~ Kx ~4) = 1; 
(1.17.3) bt (X) = 2 d i m X  and h~ K~x m) = l for some m > 4. 

For  technical reasons the 3 in (1.16) is replaced by 4 in (1.17). It  is possible that in 
both theorems 2 is the optimal value. 

2 Definitions and Basic Properties 

2.1. Definition. Let X be a normal  variety. By a normal cycle on X we mean an 
irreducible and normal  variety Wtogether  with a finite morphism w: W ~  X which 
is birat ional  to its image. 

Let Z c X be any closed irreducible subvariety. Let n: Z ~ Z c X be the 
normalisation.  This is a normal  cycle on X. 
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2.2. Definition. Let X be a normal  variety. A family of normal cycles on X is 
a diagram 

U U , X  

p3. 
S 

where 
(2.2.1) every connected component  of U and of S is of finite type (but there can 

be infinitely many such components); 
(2.2.2) p is fiat with irreducible, geometrically reduced and normal  fibers; 
(2.2.3) for every s~S, ul Us: U~ ~ X is a normal  cycle. (Here and later Us stands 

for the fiber of p over s~S.) 
We say that the family U ~ S is dominan t  if u is dominant ,  We will usually use 

this no t ion  only if S is irreducible, 

2.3. Definition. Notat ion as above. Assume that everything is defined over a field K. 
(2.3.1) We say that U ~ S is a weakly complete family of normal cycles if for every 

normal  cycle w : W ~  XL defined over a field L ~ K there is a unique morphism 
s: Spec L -~ S such that W ~- U • sS. (In positive characteristic it is better to restrict 
to cycles W that are geometrically normal.) 

(2,3.2) (over C) We say that U ~ S is a weakly complete family of locally 
topologically trivial normal cycles if it is a weakly complete family of normal  cycles 
and p is a locally trivial f ibration in the Euclidean topology. 

(2.3.3) We will use the first not ion when dealing with the algebraic fundamental  
group and the second one when dealing with the topological fundamental  group. 
We will usually say that U ~ S is a weakly compIetejamily of normal cycles and we 
understand that local topological triviality is required in the topological case. 

2.4. Proposition. Let X be a normal variety. There is a weakly complete family of 
normal cycles 

u(x) 
U ( X )  , X 

p(x) 

S(X). 

Proof Let X '  ~ X be a compactification. If U(X') ~ S(X') is a weakly complete 
family of normal  cycles on X'  then take U(X)= u(X')-I(X) and S ( X ) =  
p(X')U(X). This is a weakly complete family of normal  cycles on X. Topological 
triviality will be discussed at the end of the proof. 

Thus assume that X is proper. Start with a family of all cycles or subschemes 
r: Univ  ~ R (one can take R to be Chow(X)  or Hilb(X)).  Replace R by redR and 
take the largest open subset which parametrises reduced and irreducible cycles or 
subschemes. We still use R to denote the resulting scheme. 

Let f: Univ  ~ R be the normalisation.  There is a dense open subset Q0 c R 
such that ~ is flat over Qo and every fiber of ? is the normalisat ion of the 
corresponding fiber of r. Restrict r to R1 = R - Qo and iterate this procedure. We 
end up with countably many families Pi: V~ ~ Q~ which satisfy the properties (2.2). 
(In positive characteristic we may have to take a purely inseparable morphism 
R' ~ R and subdivide further,) 
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In the topological case we need one more step. In general let f :  Y--* Z be 
a proper and fiat morphism and let B c Y be a closed subvariety. Choose a 
Whitney stratification of Y such that B is the union of strata. Then Z has an 
open and dense set Z ~  Z such that every stratum is smooth over Z ~ By 
[GoMacPh, 1.1.11] f : f -  I (Z~  ~ Z ~ is a locally trivial fibration in the Euclidean 
topology. [] 

2.4.1. Remark. It is frequently convenient to do a further subdivision of S(X) to 
achieve that every irreducible component of S(X) is also a connected component. 
We will assume that this has been done if this makes a proof easier. 

The constructed S(X) is not unique but fortunately we do not need uniqueness 
beyond what is required in (2.3). 

2.5. Corollary. Let X be a normal variety. There are countably many closed sub- 
varieties Di ~ X (Di ~ X)  such that if  w: W ~ X is a normal cycle and im w r w Di 
then there is a unique point s~S(X)  such that the following two statements hold: 

(2.5.1) [u(X): Vs(X)--, x]~-[w: w--, x]. 
(2.5.2) Let s~Sj (X)  = S(X) be the irreducible componenet containinq s. Then 

uj (X): Uj(X) --* X is dominant. 

Proof Let Si(X) be the irreducible components of S(X). Let Di be the closure of 
u(X) (Ui(X)) for UI(X) --* X not dominant. [] 

2.6. Proposition. Let U(X) --* S(X) be a weakly complete family of  normal cycles. In 
the algebraic case assume that X is proper. Assume that s, t~S(X)  are in the same 
irreducible component. Then 

im [~l(Us(X)) ~ r~l(X)] = im[fh(U~(X)) --*/ti(X)] resp. 

im [hi(Us(X)) ~ nl(X)]  = im [~1 (Ut(X)) --* nl(X)]. 

Proof The topological case is clear. In the algebraic case let q be the geometric 
generic point of the corresponding component. By [SGA1, X.2.3] there is 
a (nonunique) surjective specialisation map r r Thus 

im [~c,(U~(X)) -o rt~(X)] = im [~t (U,(X)) --* 7t~(X)] = im [r --, ~I(X)]. 

In the nonproper case very little is known about specialisations of ~ ,  especially 
in positive characteristic. This is the reason of the properness assumption. [] 

Let X be a projective variety over II~ and let 3~ be its universal cover. If )~ is 
Stein then it does not contain positive dimensional proper subspaces. The follow- 
ing notions should be viewed as weaker versions of this property. 

2.7. Definition. (2.7.1) Let X be a normal variety. We say that X has larye algebraic 
fundamental 9roup (resp. large fundamental 9roup) if for every normal cycle 
w : W ~ X  

im [Oh(W) ~ rtl(X)] resp. im [Xl(W) ~ nl(X)]  is infinite. 

(2.7.2) Let X be a normal variety. We say that X has generically large algebraic 
fundamental 9roup (resp. 9enerieally large fundamental 9roup) if for every normal 
cycle w: W--*X such that imw r w Di (cf. (2.5)) 

i m [ ~ l ( W )  ~ ~i(X)]  resp. im[n l (W)  ~ nl(X)]  is infinite. 
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2.8. Remark. Let X be a normal variety over �9 and assume that its universal cover 
is holomorphically convex. Let Z c X be a connected subscheme. Let Zi be the 

connected components of 2. [Gu] observed that im [ n l ( Z ) ~  nl(X)] is finite iff 
im [~zl(Zi)~ nl(X)] is finite for every i. (This is not stated in [Gu] but follows 
easily from the proof.) Thus if the Shafarevich conjecture is true, it is not important 
that in (2.7.1) we restricted our attention to normal cycles. 

The following proposition shows that in (2.7) we could have considered arbit- 
rary morphisms W ~ X or we could have restricted ourselves to dim W = 1. 

2.9. Proposition. (2.9.1) [Caml]  Let X ,  Y be irreducible normal varieties. Let 
f :  X ~ Y be a dominant morphism such that the geometric generic fiber has at most 
k irreducible components. Then the image ofTzx(X ) -+ ~zl(Y) has index at most k in 
~zx(Y) . The same holds for ~1. 

(2.9.2) [D2] Let C ~ Y be a smooth curve obtained as a complete intersection 
of  general very ample divisors. Then f~I (C)-~k l (Y)  and zra(C)-~zl(Y ) are sur- 
jective. 

Proof. We prove the topological case and give only references to the algebraic case. 
Assume first tha t f i s  an open immersion and let h: Y' --, Ybe an 6tale cover of 

Y. Then X • v Y' c Y is a Zariski open subset, thus connected if Y' is normal. This 
shows that ~I(X) --* 7zl(Y) is surjective [SGA1, V.8.2]. 

We can factorfthrough a proper morphism, thus we may assume that f itself is 
proper. Let y o c  y be open and let X ~ 1 7 6  By the first step 
7~l(X 0) --~ 7~l(X ) and =I(Y ~ --* nl(Y) are surjective, thus it is sufficient to prove 
(2.9) forfO :XO + yo. 

By choosing y0 suitably we may assume that there is a factorisation 
X 0 + Z o ~ yo where X ~ -~ Z ~ is a topological fiber bundle with connected fibers 
and Z ~  yo is finite and 6tale of degree at most k. Thus n l (X ~ ~ zl(Z ~ is 
surjective [SGA1, IX.4.10, IX.6.11]. Finally n~(Z ~ --* =l(yo)  is injective and the 
image has index at most k. [] 

As an aside, let us note a corollary of (2.9.1) which will be useful later. 

2.9.3. Corollary. Let g : W--* X be a morphism between normal varieties and let x e X  
be a very general point. Assume that x~im g and let H = im [nl(W) ~ nl (X)]. Then 
the normaliser o f  H has finite index in n~ (X)  . The same holds in the algebraic case if  
X is proper. 

I f  W is a general fiber o f  a morphism X ~ Y then H< nl (X) .  

Proof  Let Z be the closure of img and let H ' =  im [n l (Z , )~  g~(X)]. By (2.9.1) 
H < H'  has finite index. 

I fZ  = {x} then H = {1}. If dim Z > 0 then by (2.5) there is a dominant family of 
topologically trivial cycles p: U~ ~ S~ such that Z = im [-Us ~ X] for some seS. 
Then i m [ n l ( Z , ) ~ n l ( U ) ]  is a normal subgroup of 7h(U ). By (2.9.1) 
G ' =  i m [ n l ( U ) ~  hi(X)] has finite index in nl(X) and is contained in the nor- 
maliser of H'. G' acts by conjugation on H' and H has only finitely many 
conjugates since H'  is finitely generated. Thus there is a finite index subgroup 
G < G' which normalises H. 

I f W i s a g e n e r a l f i b e r o f a m o r p h i s m X ~  Ythentake U ~ = X a n d S ~ =  Y. [] 

The following properties are straightforward: 
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2.10. Proposition. (2.10.1) Let f :  X ~ Y be a generically finite and dominant mor- 
phism between irreducible and normal varieties. Assume that Y has generically large 
algebraic fundamental group (resp. generically large fundamental group). Then X has 
generically large algebraic fundamental group (resp. generically large fundamental 
group). 

(2.10.2) Let f :  X--+ Y be a proper birational morphism between irreducible and 
normal varieties. Assume that f ,  : ~ 1 (X) ~ r 1 (Y) (resp. f ,  : rc i (X) -~ 7z 1(Y)) is an 
isomorphism. (This holds e.g. if Y is smooth.) Then Y has generically large algebraic 
fundamental group (resp. generically large fundamental group) iff X has. 

(2.10.3) Let X be a normal variety. Let Z ~ X be a positive dimensional sub- 
variety such that Z ck u Di. Assume that X has generically large algebraic funda- 
mental group (resp. generically large fundamental group). Then so does Z. [] 

For the rest of the section we assume that everything is defined over C. 

2.11. Definition. Let X be a connected analytic space. By tT:)~ ~ X we denote the 
universal covering space (which is again a connected analytic space); 

Let K c 7h (X) be the kernel of the map 7q (X)~  ~I(X). Let t i :X ~ X be the 
covering space corresponding to K. This will be called the universal algebraic 
covering of X. Observe that usually X is not an algebraic variety. Also, usually 
)~ # )( [Tol, CatKo]. 

The above notions can easily be translated to properties of )~ resp. X. (2.7) 
makes sense for arbitrary analytic spaces and we formulate the next result in this 
form. 

2.12. Proposition. Let X be a connected analytic space. 
(2.12.1) X has large fundamental group iff X does not contain any positive 

dimensional proper complex subspaces. 
(2.12.2) X has generically large fundamental group iff )~ does not contain any 

positive dimensional proper complex subspaces containing a very general point x ~ X  
(i.e. x 4~ f i - l (  w Di)). 

(2.12.3) X has large algebraic fundamental group iff )( does not contain any 
positive dimensional proper complex subspaces. 

(2.12.4) X has generically large algebraic fundamental group iff )( does not 
contain any positive dimensional proper complex subspaces containing a very general 
point x e X  (i.e. x r 1~- 1 ( w Di) ). 

Proof Let X'  stand for )~ or )l'. Let Y c X' be an irreducible compact complex 
subspace with normalisation Y. The projection morphism Y ~  X has discrete 
(hence finite) fibers. Thus Y is an algebraic variety. Let Z c X be the image of 11. 
Then 

im [~I(Z) ~ ~I(X)] resp. im [nl(Z)--* nl(X)] 

is the same as the Galois group of Y/Z, in particular finite. 
This shows that (up to deck transformations of X '  ~ X) there is a one-to-one 

correspondence between irreducible compact complex subspaces of X' and irredu- 
cible subvarieties Z c X such that 

im [r ~ ~I(X)] resp. im [~1(Z7,)-~ ~I(X)] 

is finite. [] 
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2.13. Example. Let X be a small neighbourhood of the minimal  resolution of the 
singularity (xyz + x '~ + y4 + z 4 = 0). The exceptional set E is a triangle of 3 lines. 
In the universal cover we obta in  an infinite chain of P~-s. Here the difference 
between looking at 

i m [ n l ( E ) ~ n l ( X ) ]  or i m [ n l ( E ) ~ n l ( X ) ]  

is significant. 

3 Construction of the Shafarevich Map 

The aim of this section is to construct the Shafarevich map. We will construct 
a more general version, which we introduce first. 

3.1. Definition. Let G be a group and let Hi ,  H2 be subgroups. We say that H1 is 
essentially a subgroup of H2 if H1 c~ H2 has finite index in Hi.  We denote this 
relationship by H1 ~ H  2. 

By definition, H < {1 } iffH is finite. 

3.2. Definition. Let X be a normal  variety. Let H~ ~ ( X )  be a normal  subgroup. 
A normal  variety Shn(X)  and a rational map shx~:X .. . .  ShU(X) are called the 
H-Shafarevich variety and the H-Shafarevich map of  X if 

(3.2.1) shx ~ has connected fibers, and 
(3.2.2) there are countably many closed subvarieties Di ~ X(Di 4: X)  such that 

for every closed, irreducible subvariety Z c X such that Z 4: u D~. 

shxn(Z) = point  iff im [nl(z~) ~ ~I(X)] ~<H. 

It is easy to see that shxU : X ~ ShU(X) is unique up to birat ional  equivalence if 
it exists. 

In the algebraic case we take /44  ~ ( X )  to be a closed subgroup, otherwise the 
definition is the same. 

Clearly shx = sh~x 11. 

3.2.3. Example. Let X be an Abelian variety and let H < ~zl(X) = HI(X,  77) be 
a subgroup. Let A r X be a maximal dimensional Abelian subvariety such that 
im [n~ (A) ~ n~ (X)] < H. Then sh~ is the quotient morphism X --* X/A.  In  particu- 
lar, ShH(X) is also Abelian. 

3.3. Proposition. Let X be a normal variety and let H ~ x I ( X )  . Consider the 
following diagram: 

i w n 

T , W ~ Z , X 

p3, 

V 

where all the schemes are irreducible and normal, p o i and w are dominant. Let Wge. be 
the geometric generic fiber of  p. Assume that 

i m [ n l ( T ) - ~ n l ( X ) ] < H  and im[n l (Woe , ) -~n t (X)]<H.  

Then 

im [~I(Z)  ~ ~I(X)] < H .  

The same holds for 41. 
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Proof  By (2.9.1) im [7~1 (W) ~ nl (Z)] has finite index in nl (Z)  thus it is sufficient to 
show that  im [h i  (W) ~ nl (X)] < H. Replacing W by W • v T and V by T we may  
assume that  i is a section s: V ~ T ~  IV, Let V ~ be an open subset (or a purely 
inseparable cover of an open subset in char. p) and let W ~ = p- l (VO).  By suitable 
choice of V ~ we may  assume that  pO : W o ~ V o is fiat with only geometrical ly 
reduced fibers and that  pO is locally trivial in the Euclidean topology.  We have 
a right split exact sequence 

nl(Wgen ) ~ n l ( W  0) ~-~ ~I(V 0) ~ 1. (3.3.1) 

Let H l = i m [ g l ( W g e , ) ~ T h ( X ) ] ,  H 2 = i m [ n l ( V ~  and H 3 =  
im[TZl (W~ Then HI'~H3 and H3 = H 1 H 2  by (3.3.1). H I < H  and 
H2 < H  since Hz c im [~ I (T)  ~ 7tx(X)]. 

Let H} = Hi c~ H and let Hi = ~jb~ jHi .  Since H1 is normal  in H3, 

H3 = H1 ( w bz iH'2) = u bz j(bzj 1Hlbzj)H'2 = U b2j blk H'l H'2. 
j ,k  

Thus H 3 ~< H. 
In the algebraic case the proof  is the same. The existence of (3.3.1) is assured by 

[SGA1,  X.1.4]. [] 

The following result is the main step in the construction of the H-Shafarevich map: 

3.4. Theorem. Let X be a normal variety. In the algebraic case assume that X is also 
proper. Fix a normal subgroup H,~ nl (X) . Let 

U U, X 

p$ 
S 

be a family of  normal cycles. Assume that 
(3.4.1.1) S is irreducible, 
(3.4.1.2) u is dominant, 
(3.4.1.3) im [n l (UA ~ n l (X) ]  < H ,  
(3.4.1.4) u(U~) 4: u(Ut) for s 4 = t, and 
(3.4.1.5) dim (U/S) is the greatest possible with the above properties. 
(3.4.2) Assume first that we are in characteristic zero. Then 
(3.4.2.1) u is birational, and 
(3.4.2.2) if  we have another diagram satisfying (3.4.1.1-3) (we can even drop the 

assumption that u : U'~ ~ u(U'~) be birational) 

U' ~ X  

p,~ (3.4.2.3) 

S'  

then there is a unique rational map g : S ' ~  S which completes (3.4.2.3) to a corn- 
mutative diagram u, 

U' , X  

S' g ~ S .  

The same holds in the algebraic case. 

(3.4.2.4) 
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(3.4.3) Assume next that we are in positive characteristic. Then u is purely 
inseparable over an open set. Thus a suitable power of the Frobenius can be 
factored as 

u u - t  

Fm: U , X ~ - ,  U. 

In (3.4.2.4) we need to replace pou - ~ by pou2,1for suitable m >> 1. 

Proof We prove the assertions (3.4.2.1-3) simultaneously. In case (3.4.2.1) set 
U'  = U etc. Pick a point  x ~ X  such that x ~ w D~ and u' is flat over x. Pick seS 
such that xeu(U,). Let T be an irreducible component  of u'-l(u(U~)) which 
dominates u(U~). Let V =  p'(T) and W =  p'- l (V) .  Let Z be the normalisat ion 
of u'(W) ~ X. T, V, W , Z  satisfy the assumptions of (3.3). Thus 
i m [ n ~ ( Z ) ~ n ~ ( X ) ] < H ,  x is in the image of Z ~ X ,  hence by (2.5) there is 
a dominan t  family of normal  cycles containing Z and satisfying the assumptions 
(3.4.1.1-4). 

By construction u(U~) is contained in the closure of Z. By the assumption 
(3.4.1.5) this implies that u'(W) = u(U~). At the set theoretic level this means the 
following: 

Let B be the un ion  of the Di and of the set over which u' is not  flat. 
Then 

u(U,) c~ u'(U3 r B~u'(U',) ~ u(gs). 

Assume that u is not  purely inseparable. Then u -  l(x) has at least two connected 
components,  thus there are s # teS  such that x~u(Us) c~ u(U~). Thus u(U~) c u(Us) 
which implies s = t, a contradiction. 

(3.4.2.2) is also clear. Pick general tsS'. Then u'(U't) is contained in a unique 
g(t)eS such that u(Uo(t) ). The correspondence t ~ g ( t )  gives a rat ional  map 
g : S' ~ S. In positive characteristic g is unique only up to a purely inseparable map; 
this accounts for the slightly different formulation. [] 

3.5. Corollary. Let X be a normal variety, 
(3.5.1) Assume that X is defined over ~.  For any normal subgroup H,~ ~zl(X) the 

H-Shafarevich map shx n : X ... .  Shn(X)  exists. 
(3.5.2) I f  X is proper (over any algebraically closed field) then for any closed 

normal subgroup H , ~ I  (X) the algebraic H-Shafarevich map s~i~iX .... ~'fin(X) 
exists. 

Proof Choose u : U ~ X as in (3.4). u is birational (resp. generically purely insepar- 
able). Thus p o u -  1 : X ~ S is a rat ional  map with connected fibers. (3.4) shows that 
ShU(X) = S and shx H = p o u-1 satisfy the requirements. 

In  positive characteristic we take shx H to be the Stein factorisation of 
pou~, 1 . [] 

The following result describes the basic functoriality property of the 
Shafarevich maps. 

3.6. Theorem. Let f :  X --* Y be a dominant morphism between normal varieties. Let 
H ' ~ I ( X )  and G , ~ I ( Y )  be normal subgroups. Assume that f , H  <G, Then there is 
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a rational map sh ( f ) :Shn(X)  . . . .  Sh6:(Y) which makes the following diagram 
commutative: 

f 
X , Y 

sh~ ,L ,L shy 
Shn(X) shId{ She(y)" 

The same holds in the algebraic case if X and Y are proper. 

Proof Let Us c X be a general fiber of sh~ and let V~ =f(U~). By (2.9.1) 
im [nl(V~) --* 7zl(Y)] < G, thus V~ is contained in a fiber of shy ~ This gives sh(f).  [] 

3.7. Corollary. Let f :  X -* Y be a finite dtale morphism between normal varieties. 
Then Sh(X) is the normalisation of Sh(Y) in the function field of X. 

3.8. Corollary, Let f: X--* Y be a birational map between smooth and proper 
varieties. Then there is a birational map sh( f ) :  Sh(X) .. . .  Sh(Y) which makes the 
following diagram commutative: 

f 
X , Y 

sh,.,, 1 ~ shy 

Sh(X) ~h(f{ Sh( r ) .  

The same holds in the algebraic case. 

Proof Let Z be the normalisation of the graph of f By (3.6) there are maps sh(prx) 
and sh(prr) where prx and pry are the projections. It is sufficient to prove that 
sh(prx) and sh(prr) are birational. 

It is easy to see that (prx) ,  :~I(Z)  --* ~I(X) is an isomorphism. Let Us ~ X be 
a general fiber of shx. There is a proper modification U'~ ~ Us which fits into 
a diagram 

U ' s ~ Z  

U s ~ X  

which shows that 

im [Th (U'~) ~ ~1 (Z) ]  = im [Th (U~) -o ~1 ( X ) ] .  

Therefore U', is contained in a fiber of shz. Thus sh(prx) is birational and similarly 
for sh(prr). [] 

3.9. Remark. If f :  X ~ Yis a birational map between proper and normal varieties 
then usually there is no natural map between Sh(X) and Sh(Y) since there is not 
much relationship between 7rl (X) and 7rl (Y). The problem is to relate ~h(X) to the 
fundamental group of a resolution. This question will be investigated in Sect. 7. 

3.10. Relative Shafarevich maps. Let f :  X--* Y be a dominant morphism with 
connected fibers. One can define the relative H-Shafarevich map. In (3.2) we have to 
add the additional assumption that f (Z) = point. The existence and basic proper- 
ties can be established the same way as for the absolute version. Thus we have 
Sh~(X) ~ r .  
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Let Xy ~ X be a very general fiber and let K,~nl(Xy) be the preimage of 
H under the natural  map nl(Xy) ~ hi(X).  Then the fiber of Sh f (X)  --* Yover  y s  Y 
is birational to Sht~(Xy). 

4 Properties of the Shafarevich map 

The following theorem asserts that  the Shafarevich map is defined on a large open 
set: 

4.1. Theorem. Let X be a normal and proper variety and let shx n" X . . . .  Shu(X)  be 
the H-Shafarevich map. There is an open subset X o ~ X such that shn lX o is proper. 

The same holds in the algebraic case. 

Proof Let u : U ~ X be as in (3.4). Let E ~ U be the union of positive dimensional 
fibres of u. Assume that p: E ~ S is dominant.  

Let s~S be a general point. By assumption there is an x ~ X  and an irreducible 
curve T ~  u- l (x)  such that s e p ( T ) ~  E is one dimensional. Apply (3.3) to 
T =  T, V = p(T), W =  p- i (p (T) )  and Z = the normalisat ion of u(W). By con- 
struction dim Z = dim (U/S) + 1, im [n i (Z)  --, nl (X)] < H and the image of Z is 
not contained in w Di. This is a contradiction, thus there is an open subset S o c S 
such that u:p-a(S o ) ~ X  is quasifinite. Let X ~ = u(p-~(S~ Then 
sh~lX ~ :X  ~ -* S o is a proper  morphism. 

The algebraic case can be proved the same way. [] 

4.1.1. Remark. If X is not  proper  the above proof  shows that there is an open 
X ~ ~ X such that the fibers of sh~ lX ~ are closed in X. 

4.2. Corollary. Let X be a smooth and proper variety. Assume that rank Pic(X) = 1. 
If  h i (X)  is infinite then X has generically large fundamental group. I f  T~i (X ) is infinite 
then X has generically large algebraic fundamental group. 

Proof Assume the contrary and let s h x : X  ... .  Sh(X) be the Shafarevich map. Let 
D' c Sh(X) be an effective divisor and let D ~ X be the closure of its pull back. D is 
disjoint from the general fiber of shx, thus D is not ample. This is impossible since 
r a n k P i c ( X ) =  1. [] 

4.2.1. Remark. It is possible that under the above assumptions X has large 
fundamental  group. This is indeed the case if Sh (X) exists and is projective. 

The Albanese morphism is a special case of H-Shafarevich maps: 

4.3. Proposition. Let X be a smooth and proper variety. Let a l b : X  
A(X)---,Alb(X) be the Stein factorisation of the Albanese morphism and let 
H = [nl (X) ,  n i (X) ]  be the commutator subgroup. Then Shu(X)  = A (X). 

Proof nl(Alb(X)) = (n~(X)/H)/(torsion) and an Abelian variety has large funda- 
mental group. Thus for an irreducible Z c X ,  im[nl(Z)-- ,n~(X)]<~H iff 
albx(Z) = point. [] 

4.3.1. Remark. Assume that n l (X)  is Abelian. Then A ( X )  = Sh(X). 

One would like to compare  the fundamental  group of X with the fundamental  
group of Sh(X). This question does not  make sense at the moment  since Sh(X) is 
only a birat ional  equivalence class and the fundamental  group is not  a birat ional  
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invariant  for normal  varieties. We can however restrict our at tent ion to smooth 
models of Sh(X) and define ~I(Sh(X)) as the fundamental  group of a smooth 
model. If X is not  smooth then in general we do not  have any map from n l (X)  to 
n l (Sh(X)) ,  thus let us assume that X itself is smooth. By choosing a suitable model 
we may assume that shx : X ~ Sh(X) is a morphism. In general the fundamental  
group of Sh(X) can be very small: 

4.4. Example. Let C be a hyperelliptic curve with the involut ion z and let S be 
a K3 surface with a fixed point free involut ion or. Let X = C x S/(z, or). The 
Shafarevich map is the natural  morphism X ~ C/r  ~ P 1 and the general fiber is S. 
Thus im [ ~ t ( S ) ~  rt l(X)] = t and ~I(Sh(X)) = 1 but  7tl(X) is infinite. 

In many cases the above pathology can be eliminated by taking a finite 6tale 
cover: 

4.5. Theorem. Let  X be a smooth and proper variety over ~.  Assume that r~l(X) is 
residually finite (i.e., the intersection o f  all finite index subgroups is { 1 }). Then there is 
a finite Otale cover X '  ~ X such that 

(4.5.1) sh: l t l (X'  ) ~ n l (Sh(X ' ) )  is an isomorphism, and 
(4.5.2) Sh(X')  has generically algebraic large fundamental group. 

We formulate separately the algebraic case: 

4.5'. Theorem. (char = 0) Let  X be a smooth and proper variety. There is a finite 
btale cover X '  ~ X such that 

^ ~ _ _ ~  ^ , �9 (4.5'.1) s ~ , : l t l ( X  ) 7rl('S'fi(X )) zs an isomorphism, and 
(4.5'.2) ~'fi(X') has generically large algebraic fundamental group. 

More  generally, for, every H,~ ~tl (X)  there is a finite &ale cover X ' ~  X such that 
(4.5.3) "g'fin'(x ) has generically large algebraic fundamental group, where 

H'  = H c~ r 

We will prove a more general result about  arbitrary morphisms. First some 
notation.  

4.6. Definition. Let H < G. B y / 7  < G we denote the closure o f  H in the profinite 
topology of G (i.e., I7 is the intersection of all finite index subgroups of G which 
conta in  H). 

4.7. Notation. Let f :  X --* Y be a dominan t  morphism between proper varieties. 
Let G c nt  (X) be a subgroup of finite index and let X(G)  ~ X be the correspond- 
ing 6tale cover. Let Y(G) be the normal isa t ion of Y in X(G). Let 
f ( G ) : X ( G )  ~ Y(G) and q(G): Y(G) --* Y be the natural  morphisms. 

4.8. Theorem. (char = 0) Let  f : X ~ Y be a dominant morphism between smooth 
and proper varieties with connected general fiber F. Let  H = im [Ttl(F)--* n l(X)].  
Then 

(4.8.1) There is a finite index normal subgroup H < F,~ ~ (X)  such that 

ker [ z l (X(F) )  ~ z l (Y(F))]  c / 7 .  

(4.8.2) I f  H = / 7  then 

n l (F)  --* n l (X(F) )  ~ z l ( Y ( F ) )  ~ 1 is exact. 

4.8.3. Remark.  The condi t ion H = / 7  is satisfied in two impor tant  cases: 
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(4.8.3.1) In the algebraic case H is closed since any algebraic fundamental  
group is compact. 

(4.8.3.2) If gI(X) is residually finite and H is finite. 

Proof By (2.9.3) H,~ nl(X),  hence /4  is the intersection of all finite index normal  
subgroups of g l (X)  which contain H. 

Let W c Y be the open subset over which f is smooth. By blowing up we may 
assume that Y -  W = w Bj is a divisor with normal  crossings only. 

Let G,~z~(X) be a normal  subgroup of finite index. If H < G then 
deg (Y (G) /Y )=deg (X(G) /X ) ,  q(G) is 6tale over W thus it ramifies only 
along w Bj. In particular Y(G) has only quotient singularities for every G. 

The main technical lemma is the following: 

4.8.4. Lemma. Notation as above. Let f-~(B~) = ~ibljBij .  Let qj(G) be the ramifi- 
cation index of q(G) over the generic point of Bj. 

Then qj(G)[bijfor every i,j. 

Proof Fix i, j .  Let A c Y be a small disc transversal to Bj at a general point. Let 
D ~ f - l ( A )  be a neighborhood of a general point of Bij c~ f - l (A ) .  Let A' be 
a component  of q(G)-I(A). Choose coordinates xl  . . . . .  Xk on D, z on A and z' on 
A' such that f f D  and q(G)[A' are given by 

z = x  b'~ and z = ( z ' )  qJ(~l. 

By assumption X ( G ) ~  X is &ale which means that 

D x a A ' - ~  D 

is 6tale where denotes normalisation. Explicit computat ion yields that 
qj(G)/bij. [] 

4.8.5. Lemma. Notation as above. Let G1, G2"~ 7c1(X) be two normal subgroups. I f  
G 1 < G 2 then qj(G1) ~ qj(G2). 

Proof This is clear since q(G1) factors as q(G1): Y(G1) --* Y(G2) ~ Y. [] 

4.8.6. Corollary. Notation as above. There is a finite index normal subgroup 
H < G1,~ 7zl(X ) such that for every finite index normal subgroup H < G,~ G 1 the 
induced morphism Y(G) --+ Y(G 1) is Otale in codimension one. 

Proof Choose H < G 1 such that qj(G ~) is the maximal possible for every j. [] 

Back to the proof of (4.8). Let G 1 be as in (4.8.6) and let w Vj = Sing Y(G ~) be 
a Whitney stratification. For  each stratum pick a transversal slice 0e Tj and let 
Lj be the fundamental  group of Tj - {0}. As we remarked earlier, Y(G 1) has 
quotient singularities which implies that every Lj is finite. 

Given a normal  subgroup H < G,~ G ~ the resulting cover Y ( G ) ~  Y(G 1) indu- 
ces covers of Tj - {0} corresponding to normal  subgroups Lj(G)~ Lj. If G 2 < G 1 

then Lj(G2) < Li(Ga). Choose H < G 2 < G 1, G2~nl (X)  such that every Li(G 2) is 
the smallest possible. Thus if H < G < G 2 then Y(G) ~ Y(G 2) is 6tale everywhere. 

Look at the diagram 

X(G) P , X(G 2) • y(GE) Y(G) 

X(G 2) X(G2). 
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As we noted at the beginning, deg(Y(G)/Y(G2))= deg(X(G)/X(GZ)), thus p has 
degree one and it is &ale, hence an isomorphism. Thus every &ale Galois cover of 
X(G 2) which is trivial on F is obtained from a Galois &ale cover of Y(G 2) via base 
change. Therefore every finite index normal  subgroup H < G,~ G 2 is the preimage 
of a finite index normal  subgroup of 7tl (Y(G 2)), Set F = G 2. [] 

4.9. Remark. The proof has three problems in positive characteristic. First of 
all we need resolution of singularities. In (4.8.4) one would have to conisider 
the possibility of wild ramification. Also, the singularities of Y(G) may not  be 
quotient.  

4.10. Proof of (4.5) Let us prove the algebraic version. 
Let Us be a general fiber of shx. By assumption im [~I(UA ~ r is finite, 

thus there is a finite index normal  subgroup G c ~1 (X) such that 

G c~ im [COl(Us)--* ~ ( X ) ]  = 1. 

Replacing X with its cover corresponding to G we are reduced to the situation 
when im [r (UA ~ ~I(X)]  = 1. 

Let F .~ nl  (X) be as in (4.8). By (3.7) fffi (X(F)) is birational to Y(F) and we will 
see in (7.8) that ~1 (Y(F))~  r (fffi (X(F))) since g(r) has only quotient  singularities. 

Let F c X be a general fiber of the H-Shafarevich map. By (4.8) we can choose 
X '  -* X such that 

~a(F) ~ r ~ ~ ( 'S~H ' (X ' ) )  ~ 1 

is exact where H '  = H c~ ~a(X'). I claim that S"fin'(X ') has generically large alge- 
braic fundamental  group. Let Z c S~H'(X ') be a subvariety containing a very 
general point. Let Z '  = (s~i~;)-l(Z). Then 

im [~1 (;g') --* ~I (X' ) ]  _ im [~1(2) ~ r (fffin'(X'))]. 
im [r (F) --, ~ (X')]  

The left hand side is infinite by the definition of the H'-Shafarevich map. Thus 
g'fin'(X') has generically large algebraic fundamental  group. [] 

4.11. Example. This example shows that (4.5) fails if n~(X) is not  residually 
finite. 

Let X be a smooth projective variety of dimension n with fundamental  group F. 
Let L be a very ample line bundle on X and let c(L)eH2(X, 7ZA be the rood r 
reduction of el(L), c(L) corresponds to a central extension 

O ~ 7Z, ~ A ~ F --* I. 

Choose a finite morphism g : X  ~ IP" such that 9"(9(1) = L. Let r:IP" --, IP" be the 
. . . . . .  IP". As in [Cat  Toy] rth power map (xo: :x,)~--~(x~: : x[,). Let X, = X x ~0.~) 

one can show that rq(X,)~-A. 
Let S be a surface and Ls a line bundle  on S. Let X = S x p , - 2  and pick L such 

that 

c(L) = (c(Ls), O)eH2(S, 2g,) x H2(Ip "-2, 7I~)~- Hz(X, Z~). 

Thus we obta in  f :  X, ~ S. If n > 3 t h e n f h a s  connected fibers. Let F ~ X, be the 
general fiber. By construct ion im [ n l ( F )  --* 7h (X~)] c 2g,. Therefore, ifS has generi- 
cally large fundamental  group, then f = shxr. 
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For  suitable choices of S and Ls (see [Ca tKo]  ) every finite index subgroup of 
A contains 7 l .  Thus for any finite 6tale cover X '  ~ X, the kernel of the induced 
map n i ( X ' )  ~ 7tl(Sh(X')) is exactly 7z,. 

5 Fundamental group and the Kodaira dimension 

The aim of this section is to describe some relationships between the Kodaira  
dimension and the fundamental  group of a variety. All varieties considered in this 
section are defined over cE. The results remain true over any field of characteristic 
zero. 

Sometimes it will be necessary to assume various results from Mori 's  program 
which are known at the moment  only in dimension three. See e.g. [Ko2]  or [Ko 
et al.] for introductions. 

Let X be a smooth projective variety. Its basic algebro-geometric invariant  is 
the Kodai ra  dimension denoted by ~c(X). If X is covered by rational curves (i.e. 
uniruled) then ~c(X) = - o o  and conjecturally the converse also holds. 

Since ~1 (px) = 1 we can expect that varieties with lots of rational curves have 
small fundamental  groups. Our  first aim is to see that this is indeed the case. 

5.1. Definition. Let X be a smooth proper variety. We say that X is rationally 
connected if any two points can be connected by an irreducible rational curve. See 
[KoMiMo,  2.1] for further equivalent conditions. 

In characteristic zero it is known that if X is rationally connected then 
h~(X, (~x) = 0 for i > 0 and X is simply connected [Caml ,  3.4-5; KoM iM o,  2.5]. 

5.2. Theorem. Let f : X ~ Y be a dominant morphism between smooth and proper 
varieties with connected fibers. Assume that general fibers are rationally connected. 
Then f ,  : l t l (X) ~ h i (Y)  is an isomorphism. 

Proof By choosing suitable birat ional  models we may asume that the following 
additional assumptions are satisfied: 

Let Y~ c Ybe the open set over which f is smooth. Then D = y \ y s  is a normal  
crossing divisor and E --- f -  1 (D) is also a normal  crossing divisor. 

Let D s c D be the dense open set over which f i e  is semi-smooth (i.e. it is 
smooth on the irreducible components  of E, on the irreducible components  of the 
double locus, triple locus etc.). Let y0  = ys u D ~ and let X ~ = f - l ( y o ) .  

5.2.1. Lemma. Every fiber of  f ~  : X ~ --* yO is simply connected. 

Using (5.2.1) let us finish the proof of (52). The lemma implies that 
~ l ( X ~ 1 7 6  ). Since Y\  yo has codimension two, n l ( Y ) ~ n l ( Y  ~ and by (2.9.1) 
we have a surjection 7t 1 (X o) ~ ,  ~ 1 (X). Putt ing these together we obtain 

rq (XO)~, l t l (X)  f* , rh (Y)%ni (Y~ 

and the two ends are isomorphic. This shows (5.2). 
In order to prove (5.2.1) we need two further results which are very useful in 

many other situations as well. 

5.2.2. Lemma. Let f :  X ~ A be a proper morphism from a normal analytic space 
to a small disc. By shrinking A we may assume that f is a locally topolooically 
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trivial fibration over A -  O. Let X o be the fiber over a point q e A -  O. Let 
T: n~ (Xa) -~ n~ (Xo) be the monodromy representation obtained from going around in 
A - O. Let Xo = ~miX~o be the central fiber and let r be the gcd of  the mi. Then there 
is an exact sequence (unique up to monodromy) 

s 

n~(xo) , n ~ ( X ) ~ T z r .  

Proof. Let D i c X be a disc transversal to X~ at a general point, mi is the degree of 
D i--, A. Choose a t r iangulat ion of X which induces a t r iangulat ion of Xo and D i. 
Use this t r iangulat ion to obta in  Xo as a retract of X. This gives a cont inuous map 
t : X \ X o  ~ Xo. The general fiber of t over X~ is connected (the punctured disc D i) 
and all the fibers are also connected since X \ X o  is connected in the neighborhood 
of any point  of X0 (X is normal). Thus we have a surjection n l  (X \ Xo) -~ n l (Xo). 
X \ X o  is a fiber bundle over a punctured disc which gives an exact sequence 

n l ( X  o) -~ n l ( X \ X o )  ~ �9 ~ 1. (5.2.2.1) 

Let t ~ n l ( X \ X o )  be a lifting of 1~7/. Let 7 i E n l ( X \ X o )  be the element correspond- 
ing to a loop in D ~. Then there are pi~nl(Xo) such that tm' = 7~P~. By construct ion 
s(Ti) = 1 thus s(t)m'~s(nl(Xo)) for every i. This implies that s(t)r~s(ni(Xg)). [] 

5.2.3. Lemma [St, 2.14] Let X be a complex space and let D ~ X be a divisor such 
that D as a complex space is proper and has normal crossings only. Assume that D is 
a retract of  X (topologically). Then the restriction maps hi(X, (gx) ~ hi(D, Co) are 
surjective. 

Proof. This is what the proof of [St, 2.14] gives. Observe that  it is sufficient to 
assume that D has DuBois singularities. [] 

Proof of  (5.2.1) Pick y~ yo. If y~ Y~ then Xy is rationally connected [KoMiMo,  
2.4] thus it is simply connected. If y~D s then let A c yO be a small disc transver- 
sally intersecting D ~ at y. After base change we have a morphism f '  : X '  ~ A such 
that X '  is smooth, X'y = Xr is a normal  crossing divisor and the general fiber of f '  
is rat ionally connected. R ' f .  (gx, is torsion free (see e.g. [Ko l ,  Step 6 on p. 20]) thus 
it is zero for i >  0. By (5.2.3) this implies that hi(red Xy, (9)= 0 for i >  0 and 
z(redXy, (9) = 1. 

F rom (5.2.2) we conclude that n l ( X ' ) ~  7~l(X 0) is finite cyclic, say of order r. Let 
X" ~ X '  be the universal cover and let f "  : X"  ~ A" be the induced morphism with 
connected fibers. The general fiber is unchanged, so the same argument  as before 
shows that ;((red X~, (9) = 1. red X~ ~ red X'y is 6tale of degree r which shows that 
r = l .  [] 

5.3. Corollary. Let X '  be a smooth and proper variety. There is a variety X bira- 
tional to X '  and a dominant morphism with connected fibers g : X ~ Z onto a smooth 
proper variety Z such that 

(5.3.1) Z is not uniruled, and 
(5.3.2) g ,  : n l ( X )  ~ hi(Z)  is an isomorphism. 

Proof. If X '  is no t  uniruled then take X = Y = X'. Otherwise by [Cam2: 
KoM i M o,  2.7] there is a morphism g: X ~ Yas in (5.2). Cont inue  with Yreplacing 
X'.  The dimension of the target drops at each step so eventually we stop with some 
g : X  ~ Z. [] 
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The next step is to consider varieties with ~c = 0. At least conjecturally the 
situation is again very simple: 

5.4. Conjecture. Let X be a smooth and proper variety with ~ (X) = O. Then: 
(5.4.1) X has a finite ktale cover X'  which is birational to the product of a simply 

connected and of an Abelian variety. 
(5.4.2) nx(X) has a finite index Abelian subgroup. 

5.5 Corollary-Conjecture.  Let X be a smooth proper variety with ~(X) = O. The 
following are equivalent: 

(5.5.1) X has a generically large algebraic fundamental group, 
(5.5.2) X has a generically large fundamental group, 
(5.5.3) X has a finite Otale cover which is birational to an Abelian variety. 

(5.6). Implications between the conjectures. 

(5.6.1) Clearly (5.4.1)~ (5.4.2). The converse seems more delicate: 

5.6.2. Claim. Let X be a projective variety (smooth or with terminal singularities) 
such that x (X)  = O. Assume that ~I(X) is Abelian. Then 

(5.6.2.1) The Albanese morphism a l b : X  ~ Alb(X) is surjective and coincides 
with the Shafarevich map. 

(5.6.2.2) l f  X has a generically large fundamental group, then X is birational to an 
Abelian variety. 

(5.6.2.3) I f  X has terminal singularities and K x is numerically trivial then X has 
a finite dtale cover X'  which is isomorphic to the product AIb(X' )x  Z where Z has 
terminal singularities, K z  = 0 and Z is simply connected. 

Proof Let albx :X--* Alb(X) be the Albanese morphism. Since K ( X ) =  0 [ K a l ]  
(or see (10.1)) implies that albx is surjective with connected fibers. This shows the 
first two claims. 

The third one is a consequence of [Ka2]. [] 

(5.6.3) Clearly (5.5.3) ~ (5.5.1)~(5.5.2) is true in all dimensions. 5.6.2.2) shows 
that if (5.4.2) holds then (5.5.2) ~ (5.5.3). 

Finally let us look at varieties with positive Kodaira  dimension. As usual, 
varieties of general type are too general to deal with. We will be interested in the 
case 0 < K ( X ) <  dim X. By the Iitaka fibration theorem X is birational to 
a smooth variety X'  such that there is a morphism with connected fibers 
4: X ' ~  I (X)  such that for very general z e l ( X )  the fiber X~ = ~b-l(z) satisfies 

dimXz = d i m X -  x(X) and ~c(Xz) = 0. 

Therefore by (2.10.3) if dim Xz < 2 (and conjecturally always) Xz has a finite 6tale 
cover which is birational to an Abelian variety. 

5.7. Definition. An Abelian scheme over a variety Y is a proper and smooth 
morphism f :  X ~ Y with a section s : Y ~  X such that every fiber is an Abelian 
variety. 

Every such X ~ Y is a C| bundle with fiber ~,20/7l z~ but the complex 
structure of the fibers may vary. 
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5.8. Theorem. Let X be a smooth projective variety. Assume that X has generically 
large fundamental group and ~c(X) > dim X - 2. Then X has a finite ~tale cover 
X '  ~ X such that 

(5.8.1) X'  ~ I (X ' )  is birational to an Abelian scheme over a proper variety, 
(5.8.2) I (X ' )  is of  general type, 
(5.8.3) (a smooth model of) I (X ' )  has generically large fundamental group. 

5.8.4. Remark. If ~c(X) = dim X - 1 then X '  is birat ional  to the product  of I (X ' )  
and of an  elliptic curve. For  •(X) < dim X - 2 there are other examples too (6.2.1). 

Proof. The hardest part is (5.8.t) and we postpone its proof to the next section. 
Assuming it, the other statements follow from the next result about  Abelian 
schemes: 

5.9. Proposition. Let f :  X--+ Y be an Abelian scheme over a smooth and proper 
variety Y. Then 

(5.9.1) K(X) = K(Y), and 
(5.9.2) X is birational to Sh(X) • shtr) Y. 

Proof. We may replace Y with a suitable finite 6tale cover, hence we may assume 
that X ~ Yadmits a level three structure. The main point  is that there is a universal 
family U3 -~ d a  over the moduli  space of Abelian varieties with level three struc- 
ture. (We omitted the dimension and the polarisation from the subscripts.) 

Let u : Y ~ ~ a  be the induced morphism, let Z be a desingularisation of the 
image and  let Uz ~ Z be the pull back of U3 to Z. 

Let us prove first (5.9.2). sea is the quotient  of the Siegel upper half space, thus 
Z has generically large fundamental  group, Thus there is a map S h ( Y ) - ~ Z .  
By choosing suitable birat ional  models we may assume that Y - ~ S h ( Y ) - - * Z  
are all morphisms. Since X = Y x z U  z we obta in  a dominan t  morphism 
X - ~  Sh(Y)x  z Uz.  I claim that this is the Shafarevich map of X. Let F c Y be 
a general fiber of Y ~ Sh(Y). Then  f -  i(F) c X is the direct product  of F and of an 
Abelian variety AF. Let F1 o f - l ( F )  be a horizontal  section (isomorphic to F). We 
need to show that im [~l(F1) --* hi (X)]  is finite. Look at the commutat ive diagram 
with exact rows: 

0 ~ ul(A~) -* u i (X)  -* r c l (Y) -~ l  

0 -* u l (Ar)  --* u l ( S h ( Y ) •  ~ ~h (Sh (Y) ) -* l .  

F1 is mapped to a point by X - *  Sh(Y)x  z Uz, thus 

im [ul(F1) -~ u l (X) ]  c~ im [ , I ( A )  ~ , I ( X ) ]  - {1). 

By assumption im [Ul(F1) ~ ~zl(Y)] is finite, hence so is im [ul(F1) -* ut(X)].  Thus 
S h ( X ) ~ S h ( Y )  • zUz  and 

Sh(X) x shtr) Y ~  Uz • zSh(Y) • s~tr) Y ~  Uz x z Y ~ X .  

We use the same notat ion for (5.9.1). By (5.9.3) Z has general type. Let zEZ  be 
a very general point.  By [Ka l ,  V] we see that 

K(X) = x(X~) + d i m Z  and x(Y) = K(Y~) + d i m Z ,  

where Xz  and Y~ denote a very general fiber. As was noted above, X~ = Yz x Az for 
some Abelian variety A~, thus tc(X~) = K(Y~). [] 
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5.9.3. Lemma. Let Z be a desingularisation of a proper subvariety of ~43. Then Z is 
of general type. 

Proof. I thank D. Toledo for explaining this simple proof to me. 
More generally, let X be a quotient  of a bounded symmetric domain  H and let 

g:Z-~  M ~ X be a desingularisation of a compact  subvariety. Let h be the 
invariant  Hermit ian metric on the holomorphic tangent  bundle of H and let 

O: TH -~ ~21'I | Tn 

be the curvature tensor. For  a holomorphic tangent vector u set O(u) = (Ou, ~) 
which is a (l, 1) covector. 0 is Griffiths seminegative and H has negative holomor-  
phic sectional curvatures. I.e., for any two nonzero holomorphic tangent vectors 
U, V 

x / -  10(u)(v, f) < 0 and ~ - 1 0 ( u ) ( u ,  ~) < O. 

Both of these properties are inherited by the tangent bundle of any submanifold 
M = X. We are interested in the canonical  bundle KM, which is the determinant  of 
the cotangent  bundle. Its curvature OK is minus the trace of the curvature tensor O. 
Given u, fix an  or thonormal  basis vl = u, v2, ... of the holomorphic tangent  
vectors. Then 

~-- lO,,(u, ~) = - E ~ / -  i o(~,){~, ~) > 0. 
i 

Thus if M ~ X is a compact  and smooth subvariety then KM is even ample. In 
general by choosing Z suitably we can achieve that 

T~ def saturat ion of im [Tz ~ g*Tx] 

is a subbundle and the above computat ions yield that det - 1 T )  is nef and big on Z. 
It is a subsheaf of (-9(Kz), hence (9(Kz) itself is big. [] 

6 Fiber spaces of abelian varieties 

The aim of this section is to prove (5.8.1) in a more general form. 

6.1. Definition. Let Y c X be a closed and irreducible subvariety. We say that 
X has generically large fundamental  group on Y (resp. X has generically large 
algebraic fundamental  group on Y) if the following condit ion is satisfied: 

If x~ Y is a sufficiently general point and x e Z  c Y is an irreducible positive 
dimensional subvariety then 

im [~I(Z)  ~ h i (X) ]  (resp. im [il l(Z) ~ ~I(X)])  is infinite. 

We will be especially interested in the case when Yis a general fiber of a morphism 
X ~ X ' .  

6.2. Examples. (6.2.1) Let h: U ~ V be a smooth morphism between smooth and 
proper varieties. Assume that h has a section s: V ~ U and that every fiber of h is an 
Abelian variety of dimension g (i.e. U/V is an Abelian group scheme over a proper 
base). 
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There is a split exact sequence 

0 ~ 7/20 -~ ~l(U) - ~ I ( V )  -~ 1. 

~I(V) acts on Z 2g by conjugation, which is the same as the monodromy action on 
HI(Av, 7l) for a smooth fiber Av. If Z c Av then 

im [Tq (2) ~ zq (Av)] = im [~Zx (2) ~ lh (U )]. 

By (4.3) U has generically large fundamental  group on A..  
If the monodromy  representation in Aut(Hx(A,,  7Z)) has a finite image, then 

U becomes a product  after a finite 6tale cover. This is always the case if g = 1. 
However for 9 => 2 there are many examples where the fibers of h have variable 
moduli: 

Let Univ  ~ rig, 3 be the universal family over the moduli  space of Abelian 
varieties of dimension g with a level three structure (and with some polarisation). 
(See [Ch] for a go_od introduct ion to these notions.) Let ~g,3 be the Satake 
compactification, rig, 3 - rig. 3 has codimension 9 in ~r 3. Thus by taking generic 
hyperplane sections we obta in  a proper and smooth subvariety Z ~ ~4g,3 
(dim Z = g -  1). Univz ~ Z gives an Abelian scheme where the fibers have 
variable moduli. 

(6.2.2) Let A be an Abelian variety and let za be an automorphism of finite 
order m. Let E be an elliptic curve and let re be a t ranslat ion of order m. r = (zA, re) 
is a fixed point  free automorphism of order m of A x E. Let C be a curve with an 
order m automorphism or. Let X = A x E x C/(z, a), Y = C/a and let f :  X -* Ybe  
the induced morphism. For  general ye  Y the fiber X~ is isomorphic to A x E. Since 
A x E x C --* X is 6tale, X has generically large fundamental  group on Xy. The 
monodromy around a fixed point  of a is a power of r, thus in general it is nontrivial  
on H I ( A x E ,  7/). 

6.3. Theorem. Let f :  X ~ Y be a dominant morphism with connected fibers between 
smooth and proper varieties. Let y s  Y be a very general point. Assume that 

(6.3.1) Xy has a flnite ~tale cover which is birational to an Abelian variety, and 
(6.3.2) X has generically large fundamental group on Xy. 
Then X has a finite btale cover X '  ~ X such that f '  : X '  ~ Y' is birational an 

Abelian group scheme over a proper base (6.2.1), where X '  ~ Y' ~ Y is the Stein 
factorisation of  X '  --* X ~ Y. 

Proof  The proof will be done in several steps. 

6.4. Reduction to the case o f  Abelian general fiber. The main  point is a group 
theoretic result whose proof we postpone to the end. 

Let G = lr~ (X) and let H = im [~za (Xy) -~ g a (X)]. By (2.9.3) H <  G, H is finitely 
generated, H has a finite index Abetian subgroup and H is infinite. Choose G~ < G 
as in (6.4.3.2) and take the corresponding cover X1 --, X. Let X~ --, I:1 --+ Y be the 
Stein factorisation of Xa ~ X -+ Y. Let X~y be a general fiber of X~ ~ I:1. Then 

im [n l (X l r )  --+ n l (X1)]  c H c~ G1, 

thus it is Abelian. I claim that X~y is birat ional  to an Abelian variety. Let F c X~y 
be a general fiber of the Albanese morphism of X~r. Then im [nl  (F) ~ n~ (Xly)] has 
finite image in any commutat ive quotient  of n~(X~y), thus it has finite image in 
n~(X1). Therefore F is zero dimensional  and Xly is Abelian by (10.1). [] 
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The group theoretic results are the following: 

6.4.1. Proposition. Let G be a group and let H,~ G be a normal subgroup. Assume 
that H is finitely generated and residually finite. Let H1 < H be a finite index 
subgroup. Then G has a finite index subgroup G1 < G such that H c~ G1 < H1 �9 Z(H) 
where Z(  ) denotes the center. Equivalently, 

ker [ /)  ~ (;] < Z(/r 

6.4.2. Remark. In general one can not choose Gt such that H c~ G 1 < H 1. Also, it 
is necessary to assume that H is finitely generated. 

Proof Since H is finitely generated, finite index characteristic subgroups give 
a basis for the profinite topology. Thus we may assume that H1 < H is normal. 

If K < H is characteristic of finite index, let qK : H --, H /K  be the quotient map. 
G acts on H/K by conjugation. Let GK,~ G be the subgroup acting trivially. Thus 

GK n H = q~IZ(H/K) .  

Let higH be coset representatives for H1. If hi (~ Z(H)  then there is an h; such that 
[hi, h~] # 1. Choose K < H1 (characteristic of finite index in H) such that if 
hi r Z(H)  then [h~, h'i] r K. Thus 

V i: hi q~ Z(H)  ~ qK(hi) f~ Z(H/K) .  

This implies that 

G K c ~ H = q ~ I Z ( H / K ) < H x . Z ( H ) .  D 

6.4.3. Corollary. Let G be a group and let H,~ G be a normal subgroup. Assume that 
H isfinitely generated and let H1 < H be afinite index subgroup. Then 

(6.4.3.1) If i l l  has an infinite Abelian quotient, then G has a finite index subgroup 
G: < G such that H c~ G~ has an infinite Abelian quotient. 

(6.4.3.2) If H1 is Abelian then G has a finite index subgroup GI < G such that 
H c~ G1 is also Abelian. 

Proof We may assume that H~ is a finite index characteristic subgroup. We can 
replace G by G/[H1, H1], thus we may assume that H1 is Abelian. Hence (6.4.3.2) 
implies (6.4.3.l). H1 .Z(H) is Abelian, thus (6.4.1) implies (6.4.3.2). [] 

From now on we assume that the general fiber of f is an Abelian variety. 

6.5. Notation. (6.5.1) Let Y ~  Y be the open set over which f is smooth, 
X o = f - ~ ( y o )  and f ~ 1 7 6  ~ yo  the restriction. By blowing up we may assume 
that w Di = Y -  yO is a divisor with normal crossings. 

(6.5.2) Pick a very general point y ~ Y  and let V = H ~ ( X y ,  Q). Let 
H = im [lh (Xr) ~ nl(X)]  and let H '  = H/(torsion). H'  is a free Abelian group. Let 
W c V be the kernel of 

V - - * H ' |  

By (6.3.1) if Z ~ Xy is a subvariety then 

im [H~(2, Q) ~ V] r W. (6.5.2.1) 

(6.5.3) Let T: n l (Y ~ y ) ~  Aut(HI(Xy, 7/)) be the monodromy representation. 
Let Mz be the image of T and let M < GL(V) be the Zariski closure of Mz. Let 
M~ M be the connected component. By [D1, 4.2.6] M ~ is semisimple. 
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(6.5.4) For  every D~ choose a disc A i intersecting D~ transversally at a general 
point. Let y~ be a small loop in Ai around D~ c~ At. Let 6~ be a path from y to the 
origin of ~,~, and set Yi = 6F 17~6 i~1(Y~  y). Let Ti = T(yi). 

6.6. Finiteness o f  local monodromies. 

6.6.1. Proposition. Notation and assumptions as above. Then Ti has finite order for 
every i. 

Proof  Let us analyse the situation locally around Di. By base change we obtain the 
family X~ ~ A~ with central fiber X~o and general fiber X~o. As in (5.2.2) there is 
a semidirect product 

0 ~ 7rl(Xig) ~ ~ ( X i \ X ~ o )  ~ 72 ~ O. 

Let ti be a lifting of y~ to 7h(Xi \Xio) .  Then 

t:f a hti = Ti(h), 

where we identified nl(X~o) and 7h(Xy) using the path 6~. (Since ~I(X~o) is com- 
mutative, it does not matter which lifting we choose.) 

By (5.2.2) there is an exact sequence 

s 

thus the image of t" in 7h (Xi) is contained in s(Th (X0)). Therefore s(t")  commutes 
with every element of s(ul(Xo) ) and hence s(h) = s(Tr'(h)) for every heul(Xo) .  

Since 7h(Xo) ~ Ul(X) factors through ul(Xo) ~ ua(X~), this implies that 

im(1 - T?)  = W. (6.6.2) 

The rest is a formal argument using the already established facts and it will be 
used again in (6.7). 

Let Ma < M be the normal subgroup generated by the elements T['. M ~ is 
semisimple, hence so is M ~ In particular V is completely reducible as an M1- 
module. We can decompose it as V = I + N where I is the trivial representation 
part and N is the nontrivial part. 

6.6.3. Claim. N is the unique smallest M-invariant subspace containing im(1 - T '~) 
for  every i. Thus N ~ W. 

Proof  T ? e M I ,  thus im(1 - T~') ~ N. Let N '  be the smallest M-invariant sub- 
space containing im(1 - T?) for every i. T? acts trivially on V/N',  and so do all 
conjugates and the group they generate. By complete reducibilitty this implies that 
N = N'. [] 

By [D2, 4.2.8] N ~ V = H~(Xy, ff~) is a sub Hodge structure. Thus there is an 
Abelian subvariety B ~ Xy such that 

im[H~(B, ~ )  ~ V] ~ S ~ W. 

By (6.5.2.1) this implies that N = 0, thus TT' = 1 for every i. [] 

6.7. After an &ale cover, local monodromies become trivial. Fix m > 3. mH < H is 
a characteristic subgroup, thus ~ ( X )  acts by conjugation on H/mH. Let 
G~ < ~ ( X )  be the subgroup that acts trivially. H < G~ since H is Abelian. By taking 
the corresponding 6tale cover of X we are reduced to the situation when ~h(Y ~ 
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and so Mz acts trivially on H/mH thus also on H'/mH'. By (6.7.1) every torsion 
element of Mz acts trivially on H' .  

By (6.6), T i e M z  has finite order, thus it acts trivially on H'. This means that  
im(1 - T~) c W f o r  every i. 

We can proceed exactly as in (6.5) to conclude that Ti = 1 for every i. [] 

6.7.1. Proposition (Minkowski) l f  t eAu t  (7l k) has finite order and t acts trivially on 
7Zk/m71 k for some m >= 3 then t = id. [] 

6.8. The case when f h a s  a section. Assume that f :  X -* Yis a dominant  morphism 
between smooth proper  varieties such that the general fiber is an Abelian variety. 
Assume that all local monodromies  are trivial on H1 (Xy, 77). Assume furthermore 
that f has a rat ional section s: Y--* X. 

6.8.1. Claim. Notation and assumptions as above. There is a finite &ale cover 
Y' ~ Y such that X x y Y' - .  Y' is birationat to an AbeIian scheme over Y'. 

Proof. Let U c Y be an open set over which f is smooth  and s is a rnorphism. 
f :  X v  --, U is an Abelian scheme. Let Xv(3) ~ X v  be the subscheme of 3-torsion 
points. X v ( 3 ) ~  U is a finite &ale cover. The monodromy  of Xv(3) around 
a boundary  point  y ' E Y - U  is the same as the monodromy  on Hl(Xy ,  77)/ 
3H1 (Xy, 77) which is assumed to be trivial. Thus the normalisat ion of Y in Xv(3) is 
&ale over  Y. Therefore we can choose a finite &ale cover Y'-- ,  Y such that  
Xv(3) x v U '  is a union of disjoint copies of U '  where U '  c Y' is the preimage of U. 
Thus X v  x vU'  is an Abelian scheme with a level three structure. 

We obtain a morphism U '  -~ ~r which extends to Y' ---, d3  since there are no 
local monodromies.  Thus 

X x r Y' is birationat to Univ x d~ Y'. D 

6.9, Completion o f  the proof. Fix f :  X ~ Y such that X, Y are smooth and projec- 
tive, the general fiber of f is an Abelian variety and there are no local monodromies  
on HI(X~, 77). 

We would like to apply (6.8.1) thus we need to create a section of f .  We assumed 
that X was algebraic, thus there is an irreducible subvariety S c X such that  
f :  S ~ Y is dominant  and generically finite. S is a mult ivalued rational section. 

Let A ~  P i c ~ 1 7 6  be the "naive" relative Albanese variety. 
(See [Grot ,  236-16] for the "true" Albanese.) (The definition makes sense over  
y0 ~ Yand  we compactify it in some way.) The fiber of A ~  ---* Yover  a point  
yeyO is isomorphic to Xy but the isomorphism is not  canonical. Using the 
multisection S we can define a rat ional map  as follows. Let sl(y) . . . . .  sk (y)eX r be 
the points of S c~ Xy (k = deg(S/Y)).  Given x e X y  let albs(x) = kx - ~s i (y) .  (It is 
easy to see that this does not  depend on the choice of the origin on Xy). After 
suitable birational modifications we obtain a morphism 

albs : X ~ A~ 

On the fibers over  ye  yO this is multiplication by k followed by a suitable 
translation. 

A ~ ( X / Y )  --, Y i s  a family of Abelian varieties with a section. H~ (A ~ (X/Y)y ,  77) is 
canonically isomorphic to kH~ (Xy, 77), thus local monodromies  of A ~ ( X / Y ) - *  Y 
are trivial. Therefore by (6.8.1) after a suitable &ale cover we may assume that  
, t~  ~ Y is an Abelian scheme. 
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Let k : A ~  A~  be multilpication by k in the fibers, k is 6tale. 
Thus 

X'  = A~  x k,,lbsX ~ X (6.9.1) 

is &ale. Furthermore for ye  yo  the fiber X '  r is the union of disjoint copies of 
A~ Thus the pull back of the zero section of A~  via the first projection 
in (6.9,1) produces a section of X '  --* Y' where X'--* Y' --* Yis the Stein factorisa- 
tion of X '  --, Y. 

We can apply (6.8.1) to X '  ~ Y' to obtain (6.3). [] 

7 Fundamental groups of resolutions 

Let X be a normal analytic space and let f :  Y ~ X be a resolution of singularities. 
nl(Y) ~ ~I(X) is surjective but in general it has a large kernel. The aim of this 
section is to find local conditions on X which ensure that the above map is an 
isomorphism. 

7.1. Definition. (7.1.1) Let X be a normal analytic space and left f : Y ~ X  be 
a resolution of singularities. ~t(Y) is independent of the choice of Y. It will be 
denoted by ~x(Res X). 

(7.1.2) We say that Res X is locally simply connected (resp. locally algebraically 
simply connected) if every point x �9 X has a contractible neighborhood x �9 U c X 
such that r c i ( f - l ( U ) )  = 1 (resp. 7 z l ( f - l ( U ) )  = 1). 

If X is an algebraic variety (over any field) instead of a contractible neigh- 
borhood U one can take the Henselisation of the local ring of x �9 X. At 
least in characteristic zero, all the results of this chapter go through without 
changes. 

7.2. Lemma. Let X be a normal analytic space. 
(7.2.1) I f  ResX is locally simply connected (resp. locally algebraically simply 

connected) then 7zl (Res X ) ~  rcl (X) (resp. ~l(Res X)-~  r~i (X)) is an isomorphism. 
(7.2.2) Let f :  Y-~ X be a proper bimeromorphic morphism, Y normal. I f  Y is 

(algebraically) simply connected and Res Y is locally (algebraically) simply connected 
then Res X is (algebraically) simply connected. 

7.3. Lemma. Let p : X1 ~ X2 be a proper and dominant morphism between irredu- 
cible normal analytic spaces. Assume that n l (ResXi)  (resp. ~t (ResXi )  is trivial. 
Then ~l(ResX2) (resp. ~l(ResX2)) is finite. (In fact their order is bounded by 
deg p.) 

Proof Consider the following commutative diagram 

f~ e~ 
X i ~ Y1 ~ Y'I -" YI  • r2 Y'z 

p+ p,~ p'~, (7.3.1) 
f2 e2 

X 2  ' Y2 ' Y~ 

where f2 is a resolution, f i  is a resolution which dominates Y2 and e2 is an 6tale 
cover. By construction ex is 6tale, thus Y'~ is a disjoint union of several copies of Ill- 
Thus pr: I11 --" Y2 factors through Y~. Therefore dege2 _-< degp. [] 
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7.4. Lemma. Let p : X1 -~ X2 be a finite and dominant morphism between irreducible 
normal analytic spaces. Assume that 

(7.4.1) XI has rational singularities; 
(7.4.2) rq(Res X1) (resp. r~l (Res X1)) is trivial, and 
(7.4.3) nl (X2) (resp. ~i (Res X2)) is trivial. 

Then ~1 (Res X2) (resp. rt 1 (Res X2)) is trivial. 

Proof. The question is clearly local, thus we may assume that X2 is a contractible 
neighborhood of a point x e X2. Consider the diagram (7.3.1). We may assume that 
D2 = red f21  (x) is a divisor with normal crossings only. By (7.2) nl (Res X2) (resp. 
~1 (Res X2)) is finite, thus Y~ ~ 1(2 is finite. Let X '  be the normalisation of X 2 in 
Y~ and f ' :  Y~ ~ X' the induced morphism. The natural morphisms r : X l  --* X '  
and q : X ' - - * X 2  are finite and dominant. In particular, X '  also has rational 
singularities. Let x '  e X '  be the preimage of x e X2. Let D' = r e d f ' -  l(x'). D' ~ O 2 

is a finite btale morphism thus D' is a divisor with normal crossings only and 
z(O', (9) = degq 'x (O2 ,  (9). 

Since X '  has rational singularities, ;((D', (9) = 1 by (5.2.3). Thus deg q = 1. [] 

Following [Ko et al., 2.13] we use klt as an abbreviation for "Kawamata log 
terminal". (Note that the same notion is called "log terminal" in [KaMM,  0-2-10].) 
Results about kit pairs (X, A) are mentioned for completeness sake. They are not 
used in this article. 

7.5. Theorem. Let  X be a normal analytic space. 
(7.5.1) I f  (X, A) is klt for some A then ResX is locally algebraically simply 

connected. 
(7.5.2) I f  X has quotient singularities then Res X is locally simply connected. 

Proof The second claim follows from (7.4). The first one is local, so consider 
x e X2 c X and let Y~ -~ 112 -~ X2 be as in (7.3.1). Let X'  be the normalisation of 
X2 in Y'2. P :X '  ~ X2 is 6tale over the smooth points of X, thus (X', p ' A )  is klt by 
[Ko et al., 20.3]. Hence X '  has rational singularities by [KaMM,  1-3-6] and (7.4) 
applies. [] 

7.5.3. Remark.  It is quite likely that if(X, A) is klt for some A then Res X is locally 
simply connected. This is true in dimension 3: 

7.6. Theorem. Let X be a three dimensional normal analytic space. I f ( X ,  A) is klt for 
some A then Res X is locally simply connected. 

Proof The problem is local thus we may assume that X is simply connected. 
By [Ko et al., 6.11.1] there is a small projective morphism f l  :(X1, d l )  -~ (X, A) 

~uch that X I is tl~-factorial and K + A~ - f * ( K  + A). Therefore R l ( f l ) . ( g x ,  = 0 
[KaMM, 1-2-6] hence the exceptional set of f l  is a tree of rational curves. In 
particular Xt  is simply connected and by (7.2.2) it is sufficient to prove that Res Xa 
is locally simply connected. 

Since X1 is q-factorial,  X1 is klt. Let X2 -~ X1 be its index one cover. Then X2 
is canonical and by (7.4) it is sufficient to prove that Res X2 is locally simply 
connected. This will be done by following the resolution procedure of [Re2, w 

Let x e X be an index 1 canonical point with general hyperplane section x e H. 
Let f :  X'  ~ X be the weighted blow-up specified by [Re2, 2 . t l ]  (almost always this 
is the ordinary blow up of x). Let S ~ X '  be the reduced exceptional divisor. Let 
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H'--* H bc the corresponding blow up of H with exceptional curve E. Applying 
induction and (7.2.2) it is sufficient to prove two statements: 

(7.6.1) S is simply connected; and 
(7.6.2) if Y is terminal of index one then Res Y is locally simply connected. 
E is a general hypcrplane section of S, thus by (2.9.2) nl (E) ~ nl (S) is surjective. 

H is a minimally elliptic surface singularity IRe2, 2.6] and these are well under- 
stood. From l-L, 3.4] it follows that E is either simply connected, or a cycle of 
rational curves or an elliptic curve. In all these cases nl(E)  is Abelian and therefore 
nl(S)  ~ ~h(S) is injective. By (7.5.1) ~1(S) = 1, thus nl(S)  = 1. 

I fy  ~ Yis terminal of index one, it is a hypersurface double point and Y - {y} is 
simply conncctcd [Mi]. Thus Res Y is locally simply connected. [] 

7.7. Example.  Let S be a surface with q = pg = 0 and let X be the cone over the 
embedding S c pn given by a sufficiently ample complete linear system. X has 
rational singularities and n l ( X ) =  1. However n l ( R e s X ) =  nl(S)  which can be 
quitc large (cf. I-BPV, VII.11]). 

For  ease of reference we summarise our results: 

7.8. Theorem. Let  X be a normal analytic space and let f :  Y--* X be a resolution of 
singularities. Then 

(7.8.1) n l ( Y ) ~ n l ( X ) is an isomorphism if either X has quotient singularities or 
dim X < 3 and X has log terminal singularities. 

(7.8.2) ~tl(Y) ~ ~ I (X)  is an isomorphism if(X, A) is klt for some A. In particular 
this holds i f  X has log terminal singularities. 

8 Nonvanishing theorems 

In this section wc prove a rather strong nonvanishing result for varieties with 
generically large algebraic fundamental group. Let us first recall the following: 

8.1 Theorem [Ko3, 3.2] Let  g : X  ~ S be a surjective morphism, X smooth and 
projective. Let  U ~ S be a dense open set. Let  L be a nef  and big Q-Cartier 

on S, N a Cartier divisor on X ,  M and d ~-divisors on X.  Assume -divisor 
that: 

(8.1.1) 
(8.1.2) 
(8.1.3) 

on X; 
(8.1.4) 
(8.1.5) 

then 

Supp A is a normal crossing divisor and L_AM = 0; 
N [ g - I  (U ) is linearly equivalent to an effective divisor; 
M is nef  and either big on the general fiber o f  g or numerically trivial 

N = K x +  A + M + g * L ;  

If Z ( p U u , X is a dominant family o f  normal cycles (Z irreducible) 

Ldim(U/Z) . Ugen > ( (d im  S)2 -I- dim S - F 1 )  dimtv/z) 

= 2 

Then h~ N)  ~ O. More generally, i f  Xg is the generic fiber of  g then H~ N) 
H~ NIXg) is surjective. 

In order to apply (8.1) to varieties with generically large algebraic fundamental 
group, we need the following: 
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8.2. Lemma. Let Y be a normal and proper variety with generically large algebraic 
fundamental group. Let L be a nef and big divisor on Y and let M > O. Then there is 

a finite ktale cover m: Y ' ~  Y such that if  Z ( p U u , y ,  is a dominant family of  
normal cycles on Y' (Z irreducible) then (m 'L)  dimtv/z). U~en > M. 

Proof Let p(Y): U ( Y ) ~ S ( Y )  be a weakly complete family of normal cycles. 
Let m : Y ' ~ Y  be a finite 6tale cover. Let U ( Y ' ) = U ( Y ) x r Y '  and let 
p(Y'): U ( Y ' ) ~  S(Y' )  be the Stein factorisation of U ( Y ' ) ~  S(Y).  It is clear that 
p(Y'): U(Y')  ~ S(Y' )  is a weakly complete family of normal cycles on Y'. 

Let S ( Y )  = w Si be the irreducible components. If seS~ then the top selfinter- 
section of u(Y)*LI  U~ depends only on i. This value will be denoted by degL Ui/Si. 

Assume that m : Y' ~ Y is 6tale and Galois corresponding to a normal sub- 
group G'~fh(Y) .  Let s'ES} be a preimage of s under the morphism S} ~ St. Let 
u*G < r s) be the preimage of G under the natural homomorphism 
~l(Ui, s) -~ ~I(Y). 

By construction 

deg(U'i,s,/Ui,s) = ]~t(Ui,~):u*GI, thus 

degm.L U'i/S'i = 1~1 (Ui,~) : u* G[ dim U . . . .  deg L Ui/Si. 

There are only finitely many indices i such that deg L Ui/Si <= M. By suitable 
indexing we may assume that these are i = 1, . . . ,  k. Choose t e n  such that 

m~n degL Ui/Si > M/r. 

Since Y has generically large algebraic fundamental group, we can choose a normal 
subgroup G,~ frl(Y) such that if m: Y' --* Y is the corresponding cover then 

deg(U'i,s,/U~,,) = I~(Ug,~):u*GI > r for i =  1 . . . . .  k. 

Thus deg~.rUi/S~ = M for every i. [] 

8.3. Theorem. Let g : X ~ S be a surjective morphism between normal and proper 
varieties. Let L be a big Q-Cartier Q-divisor on S, N a Cartier divisor on X and A an 
effective Q-divisor on X.  Let X o be the general fiber of  g. Assume that: 

(8.3.1) Xg is smooth, SuppA IXg is a normal crossing divisor and k_A IX0_l = 0; 
(8.3.2) N I X  o is linearly equivalent to an effective divisor; 
(8.3.3) M is nef and either big on the general fiber of  g or numerically trivial on X; 
(8.3.4) N =- Kx  + A + M + g ' L ;  
(8.3.5) S has generically large algebraic fundamental group. 
Then h~ N)  * O. 

Proof We can write L = - L ' +  E where L' is ample and E is effective (both 
~l~-Cartier O-divisors). We can incorporate g*(E) into A thus we may assume that 
/~ is nef and big (even ample). 

Let f : X ' - * X  be a log resolution and write f * ( K x  + A) = Kx, + O. By our 
assumptions O = A ' +  H ' - H " ,  where A' is an effective divisor with normal 
crossings only such that I__A'_I = O, H' is an effective integral divisor disjoint from 
f - t ( X o )  and H" is an f-exceptional integral divisor. Hence 

f * N  + H" - H' - Kx,  + A' + f * M  + (g f )*L ,  and 

H ~  N + H" - H')  ~ H ~  N + H") = H~  N). 
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Therefore it is sufficient to show that (8.3) holds under the additional assumptions 
that X is smooth and d is an effective divisor with normal crossings only such that 
LAI =0. 

Let m : S' ~ S be 6tale. By base change we obtain a commutative diagram 
g'  

X' , S' 

rex j, ~ 
g 

X , S. 

8.3.6. Lemma. h~ ', m ' N )  = deg(m)h~ N). 

Proof By [Kol ,  2.1; EV1, 3.1] 

h~ N) = h~ g.(gx(S)) = z(S, g.(gx(S)), and 

h~ ', m ' N )  = h~ ', g . Cx,(m* N)) = z(S', m* g . (gx(N)). 

m is 6tale, thus the Euler characteristic of a sheaf is multipled by the degree under 
pull back. [] 

By (8.2) we can choose m: S' ~ S in such a way that X '  -~ S' satisfies all the 
assumptions of(8.1). Thus h~ ', m ' N )  # 0 which implies that h~ N) # 0. [] 

8.3.7. Remark. In (8.3) it is not true that h~ N) ~ h~ N[Xo) is surjective. 
For example let X be an Abelian variety with a symmetric ample line bundle N and 
let g : X - - * S ~ - X  be multiplication by m. Let L = N / m  2, so N - g * L .  
h~ NIXo) = m 2dimX, thus surjectivity fails for m >> 1. However I do not know 
any examples where g has connected fibers. 

8.3.8. Example. Let F, = Proj~l((9 + (9(n)) (n > 0). Let f be a fiber of the projec- 
tion to IP 1 and let e be the unique section with selfintersection - n .  Let 
L = (9(e + f). Then L is big and h~ K x  | L | = 0 for m < n + 1. Of course 
F, is simply connected. 

8.4. Corollary. Let Y be a normal proper variety and let D be a big Q-Cartier 
Weil-divisor on Y. Assume that resolutions of Y have generically large algebraic 

fundamental group. 
Then h~ ~or(D)) > 0. 

Proof Let g : X  -* Y be a log resolution of(Y, D), D' = Fg*D 7 .  There is a natural 
injective map 9.Cox(D') ~ or(D), thus it is sufficient to prove (8.4) for Y smooth. 
This becomes a special case of (8.3) by setting X = S = Y. [] 

8.5. Corollary. Let X be a smooth projective variety. Assume that X is of general 
type and it has generically large algebraic fundamental 9roup. Then 

Pm(X)>O for m>=2. 

8.6. Examples. In these examples X~ m IP(ao, . . . ,  ak) stands for a general hyper- 
surface of degree d in the indicated weighted projective space. We refer to [F]  for 
the definitions and further notation. We use the standard but slightly misleading 

sn notation ~(a~ ~ . . . . .  an ) to denote a weighted projective space of dimensiol: 
- 1  + ~ si where we have sj coordinates with weight ai. 
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8.6.1. Proposition. Given ao, . . . ,  ak and M there is a smooth projective variety of  
general type X such that 

Pro(X) = h~ . . . ,  ak), @(m)) for m ~ M. 

Proof. Let r = M H at and let s, t be natural  numbers  to be chosen later such that 
s, t _-> max {ai, r + 1}. Choose d ~ 1 such that r(r + 1)[d and then choose suitable 
s, t such that d -- 1 + sr + t(r + 1) + ~ at. We claim that a desingularisation of 

Xd c IP(ao . . . . .  aa, r s, (r + 1) t) 

is a required example. By the choices we made (~(Kxd)~--@(1) thus 

h~ (9(mKxd)) = h~ . . . . .  ak, r s, (r + 1)t), (9(m)) 

= h~ . . . . .  ak), (~(m)) for m =< M. 

We still need to check that Xd has canonical  singularities. Since r(r + Did, I(~p(d)l 
is base point  free, hence by IRe2, 1.13] it is sufficient to prove that 
lP(ao, . . . ,  ak, r ~, (r + 1) t) has canonical  singularities. This is implied by the follow- 
ing special case of [Re2, 3.13: 

Let 7/m act on A" by (xl ,  . . . ,  X,)~--~(eb'xl . . . .  , eb"x,) where e is a primitive ruth 
root of unity. Assume that # {i](m, bi) = 1} > m. Then A" /TZ has canonical  
singularities. [] 

We ment ion three concrete examples: 
(8.6.2) Xd = X3r(r+l) c7_ ~(r  r+2, (r + 1) 2r-1) has terminal singularities and 

satisfies 

PI(Xd) . . . . .  P,- I (Xd)  = O. 

(8.6.3) Xa = X3~(~+1)~ IP(1, r~+a,(r + 1) 2"-2) has terminal singularities and 
satisfies 

Px(Xd) . . . . .  P~-l(Xd) = 1. 

(8.6.4) By IF, II.5.1] X46 c ~(4, 5, 6, 7, 23) has terminal singularities, 

PI(X) = P2(X) = P3(X) = 0 and P4(X) . . . . .  Pg(X) = 1. 

The general analog of (8.5) is slightly technical. Let X be a normal  variety and 
let A be an effecive ~-divisor .  Assume that K + A is Q-Cart ier  and big. Let 
f : X '  ~ X be a resolution and let Kx ,  + A' = f * ( K x  + A). Let E be a sufficiently 
large multiple of the reduced exceptional divisor. Then 

f .(-9(mKx, + L m d ' l  + E) = (9(mKx + LmA_J). 

We would like to apply (8.4) to X'. This can be done with the set-up 
O = (m - 1)Kx, + l -(m - 1)A'-q + E. Thus we obtain: 

8.7. Theorem. Notation as above. Assume that resolutions o f  X have generically 
large algebraic fundamental group. Assume that L m A  A > ( m -  1)d for some m. 
Then 

h~ (9(mKx + LmAA)) > 0. 

The extra condi t ion is satisfied if A = 0 or if every coefficient in A is of the form 
1 - 1/r for some r e N .  
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9 Plurigenera in ~tale covers 

Let X be a smooth projective variety of general type. Assume that Kx is ample. By 
Kodaira's vanishing theorem h~ (~(mKx)) = z(X, (9(mKx)) for m > 2. Thus, for 
instance, plurigenera are multiplicative in 6tale covers. Mori's program asserts that 
even if K x  is not ample, one can find a suitable birational model of X where 
K becomes ample. Thus plurigenera should be multiplicative in 6tale covers for 
every smooth projective variety of general type. The aim of this section is to prove 
this claim and then to use it to get further lower bounds on the plurigenera of 
varieties with generically large algebraic fundamental group. 

It will be useful to handle a more general situation: 

9.1. Notation. Let X be a smooth proper variety. Let M be a Cartier divisor on X, 
A an effective Q-divisor such that SuppA has normal crossings, LA_] = 0 and 
L a nef Q-divisor. Assume that: 

(9.1.1) M = a(Kx + A) + L for some a > 1, and 
(9.1.2) L or M is big. 
Let f :  Y ~ X be a birationat morphism whose exceptional divisor has normal 

crossings. Let f * ( K x  + A) = Ky + A'. By our assumptions - LA'_J is effective. Let 
E be the effective part of - - h a A ' l  and let Ar = (aA' + E)/a. Then Ar is an effective 
Q-divisor such that Supp Ar has normal crossings and L A r ~  = 0. Furthermore 

f * M  + E = a ( K y +  Ar )+  f * L  and h~  + E ) = h ~  

In particular, as long as we are interested only in h~ M), we can perform a series 
of blow-ups and by replacing M by f * M  + E we may continue to assume that our 
divisor is of the form specified above. 

9.2. Proposition. Notation as above. Let The a numerically trivial Cartier divisor on 
X. Then 

n ~  (~(M + T)) = n ~  (~(M)). 

Proof. Let T', T" be numerically trivial Cartier divisors on X. Assume first that 
[r(M + T') I 4:0 for some r > 0 and let Ir(M + T')I = [El + B where B is the fixed 
part. Choosing r >> 1 we may assume that F is big if M is. By blowing up we may 
assume that Supp (A + B) has normal crossings only and IFI is free. By (9.2.3) 

Fn/r-1 > L(a - 1)B/ar + A l  defo(r), 

thus d imlM + T' - D(r)l = d imlM + T'I by (9.2.2). On the other hand, 

a{a,  } M + T ' - D ( r ) -  Kx-~---a- I F  + - L  + B +  A . 
ar a ar 

By assumption either F or L is big, thus 

h~ (~(M + T')) = h~ d)(M + T' - D(r))) = z(X,  (9(M + T' - D(r)). 

Furthermore, 

h~ (_9(M + T' + T")) > h~ (P(M + T' + T" - O(r))) 

= x(X, (P(M + r '  + r "  - D(r))) 

= z ( X ,  (9(M + r '  - D(r)) )  

= h~ (9(M + T')). (9.2.1). 
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Apply the above inequality for T '  = 0, T" = T and then for T'  = T, T" = - T. 
We still have to deal with our assumption that I r ( M +  T')I # 0 .  If 

I M + T'I = 0 for every T'  then (9.2) is clearly satisfied. If L M + T'I # 0 for some T'  
then by (9.2.1) IM + TI ~ 0 for every T and the argument  applies. [] 

9.2.2. Lemma. Let X be a normal and proper variety and let L be a Weil divisor on 
X. Let IrLI = IFI + B where B is the fixed part. Then ILl = I L -  F-B/r-ll + 
I-B/r-1. 

9.2.3. Lemma. Let B and A be effective Weil divisors on a normal variety such that 
LA_I = O. Let 0 < b < 1. Then I--B7 >- LbB + A_I. 

The following application of (9.2) will be used in Sect. 10. 

9.3. Proposition. Let X be a smooth projective variety of  general type and let 
f :  X --* E be a morphism onto an elliptic curve with 9eneral fiber X o. Then for every 
m > 2  

P,n(X) > I~=>Pm(X o) ~ 1. 

Proof The implication ~ is clear. 
Assume that Pm(Xg) > 1. f,(_9(mKx) is a vector bundle on E which can be 

written as the sum of indecomposabte vector bundles Fi. 

P,,(X) = h~ f ,C(mKx))  > ~ max{0, deg F~}. 

Thus we are done unless deg Fi < 0 for every i. By [Ka2],  deg F~ >_ 0 for every i, 
hence in fact deg Fi = 0. 

By the classification of [A], for every i there is a line bundle Li of degree zero on 
E such that h ~ 1 7 4  1 (in fact = 1). Thus h~ C ( m K x ) |  1. By 
(9.2) this shows that P,,(X) > 1. [] 

9.3.1. Remark. The above argument  proves that f , (9(mKx) is an ample vector 
bundle (or zero) for m > 2. More general results were proved by [EV2] under  
a different set of assumptions. 

9.4. Proposition. Let p: X ' ~  X be a finite ~tale morphism between smooth and 
proper varieties. We keep the notation and assumptions of(9.1 ). Let M'  = p*M. Then 

h~ ', (.0(M')) = degp .  h~ (9(M)). 

Proof Let X"  ~ X '  ~ X be the Galois closure of X ' / X .  By going from X to X"  
and then from X"  to X '  we are reduced to the case when p is Galois. Let d = deg p. 

If IdM[ = 0 then the norm map n: [M'l ~ IdM] shows that IM'l = 0 and we are 
done. Otherwise let [drMI = IF] + B where B is the fixed part. If M is big, choose 
r > ! such that F is also big. By blowing up we may assume that Supp (B + A) has 
normal crossings only and IF] is free. In general p*B may not  be the fixed part of 
I dr M' I. However by looking at the norm map n : I rM'l ~ IdrMI we see that p* B/d is 

, c le f  
contained in the base locus of IrM I. Thus by (9.2.3) L(a -- 1)B/adr + A_I ~ D ( r )  
is contained in the base locus of ]M'[. Fur thermore 

a - 1  1 { a - 1  } 
M - D ( r ) = K x + - - F  + - L  + B +  A . 

ar a ar 
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Therefore vanishing holds for M - D(r) and for M'  - p*D(r). Thus 

h~ ', G(M')) = h~ ', C(M' - p*D(r))) 

= z(X', (9(M' - p*D(r))) 

= d . z ( X ,  C(M - D(r))) 

= d. h~ C(M - D(r))) 

= d . h ~  [] 

9.4.1. Remark. (9.4) should be viewed as a nonabelian version of (9.2). Assume 
that Tin (9.2) is torsion of order k in Pic (X). Then T determines an Abelian Galois 
cover f :  X '  --* X and 

k - - t  

f ,  Ox, = ~ Ox(iT). 
i = 0  

Thus (9.2) implies (9.4) in this case. 
The results of Sect. 8 allow us to find a pluricanonical divisor. The following 

result will enable us to obtain a pluricanonical pencil. The examples given in (8.6) 
show that (9.5) fails for simply connected varieties. 

9.5. Theorem. Let X be a smooth proper variety. Assume that ~I(X) 4 = 1. Let 
M1 - a l (Kx  + d l ) +  L1 and M2 ~ a2(Kx + dE) + L2 be as in (9.1). l f h~  Mi)  
> 1 and h~ M2) ~ 1 then 

h~ M1 d- ME) > h~ M1) + h~ ME). 

Proof Let p:X '  -~ X be the 6tale cover whose existence is assumed; d = degp ->_ 2. 
By (9.4) and (9.5.1) 

h~ M, + M2) = ~ h~ ', M'~ + M~) 

> ~(dh~ M1) + dh~ M2) - 1) 

= h~ M1) + h~ M2) - 1/d. 

h~ M1 + M2) is an integer, thus we are done. [] 

9.5.1. Lemma. Let X be a normal and proper variety and let L, M be effective Weil 
divisors on X. Then h~ L + M)  > h~ L) + h~ M) - 1. 

9.5.2. Corollary. Let X be a smooth proper variety o f  general type. Assume that 
~ ( X ) ~ :  1. I f  Pk(X) > 1 and Pm(X)> I for some k , m >  2 then Pk+m(X) > 
Pk(S) + P,,(X). 

Proof Set k K x  = MI  and mKx = M2 in {9.5). [] 

9.6. Remark. Let (Y, D) be a klt pair. Let My be a Q-Cartier  Weil divisor on 
X such that Mr  = a(Kr + D)+  Lr  where Lr  is a Q-Cartier Q-divisor. Let 
f : X  ~ Y be a log resolution and let K x  + Dx = f * ( K r  + D) where - LDx--] is 
effective by the definition of klt. f ,  ( ( g x ( L f * M / ) )  = Or(M) thus if E is an effective 
f-exceptional divisor then 

h~ Cx (L f*M_]  + E) = h~ (gr(M)). 
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Let E be the effective part of -WaDx - { f * M  }__] and let A = (aDx + E)/a. Then 

t f * M ~  + E = a(Kx + A) + f * L .  

This shows that (9.2, 9.4, 9,5) are valid for (Y, D) klt. 

10 Fiber spaces and plurigenera 

Let f :  X--* S be a dominant morphism between smooth projective varieties with 
general fiber X o. Iitaka's problem [ I ]  asks about relating the plurigenera of 
X, S and Xo. Here we will study this problem assuming that S has generically large 
algebraic fundamental group. 

The original Iitaka problem compares the asymptotic behavior of the 
plurigenera. The first nonasymptotic results appeared in [Kol ]  and the method 
was further developed in [EV1]. Here we improve the results in case S has 
generically large algebraic fundamental group. The main application is the following: 

10.1. Theorem. Let X be a proper and smooth threefold of  general type. Assume that 
~l(X) is infinite. Then 

P , , ( X ) > 0  for m >  2. 

The main idea is of course to apply nonvanishing (7.3). Unfortunately mKx is not of 
the form required. One of the most important results about this question is the 
weak positivity of Kx/s,  due to [V].  Here we need a corollary of it which is 
modeled after similar applications in [EV1; Mo]. 

10.2. Proposition. Let f : X ~ S be a surjective morphism between smooth proper 
varieties. Let E be a Cartier divisor on X,  L a big Q-Cartier divisor on S and B an 
effective Q-divisor on X .  Let Xg be the generic fiber o f f .  Assume that E - 2 f *  L + B 
and EIXo~O. (In particular, B is disjoint from Xo. ) Then for every m > 1 there are 

(10.2.1) a smooth projective birational model f ' : X '  P ~ X ~ S; (Let X g' be the 

generic fiber o f f ' . )  
(10.2.2) an effective Q-divisor A' on X '  such that L A ' I X '  o ]  = (9 and Supp A'[X'  o 

has normal crossings only; 
(10.2.3) a Cartier divisor N '  on X '  such that N '  - Kx,  + A' + i f*L;  
(10.2.4) a map 

f , ( gx , (N ' )  ~ f ,(-gx(Kx + (m - 1)Kx/s + E) 

which is an isomorphism at the generic point of  S. 

Proof By [V] there is an r > 0 such that the restriction map 

H ~  (~(rm(m - 1)Kx/s + rmf*  L)) | r  ~ H~ r -- 1)Kx,)) 

is surjective. Take a general divisor 

Delrm(m - 1)Kx/s + rmf*L].  

Choose p: X'  --* X such that 
(i) Supp D' has normal crossings only, where D'elrm(m - 1)Kx,/s + rmf '*L[  is 

the corresponding divisor; and 
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(ii) ImKx;I = Igl + f where F is the fixed part and IHt is base point free. 
Set 

N' = Kx,  + ( m -  1)Kx,/s - LD'/rm_l + p ' E ,  and A' = {D'/rm} + p*B. 

The only condit ion that needs checking is (10.2.4). D' IX'g = H + r(m - 1)F where 
Flslr(m - 1)HI is a general smooth member. Thus 

N' lX 'o~mKx,  " -- L(1 -- 1/m)F_J and Kx, + (m - 1)Kx,/s + p*ElX'o~mKx ;. 

Since L(1 - 1/m)F~ < F, we obtain that the natural  morphism 

H~ N'[X'o) ~ H~ mKx,8 + p*E]X'g) _~H~ mKxg + EIXo) 

is an isomorphism. Thus 

t ! ~ t 

f ,  Ox,(N ) f . (gx , (K  x, + (m - 1)Kx,/s + p * E ) ~ - f . ~ x ( K x  + (m - 1)Kx/s + E) 

is an isomorphism at the generic point  of S. [] 

10.3. Corollary. Let f : X  ~ S be a surjective morphism between smooth proper 
varieties with 9eneral fiber X o. Assume that S has 9enerically large algebraic 
fundamental group. Let D be a bi9 Cartier divisor on S. Then 

h~ (9(Kx + (m -- 1)Kx/s + f ' D ) )  > Oe*,h~ (9(mKxg)) > O. 

Proof If h~ (9(mKxg)) = 0 then f . (9(Kx + (m - 1)Kx/s + f ' D ) )  = O. 
If h~ (9(mKx,)) > 0 then choose L = D/2 and B -- 0 in (10.2) and construct 

X '  as there. By (7.3) h~ ', (9(N')) > 0 hence by (10.2.4) 

h~ (,9(Kx + (m - 1)Kx/s + f ' D ) )  > O. [] 

The following is the first application to Iitaka-type problems: 

10.4. Theorem. Let f : X ~ S be a surjective morphism between smooth proper 
varieties with 9eneral fiber Xo. Assume that S is of  general type and it has 9enerically 
large algebraic fundamental 9roup. Assume furthermore that Pm(Xg) + 0 for some 
m > 2. Then 

P. , (x)  >= P,,- 2(s). 

Proof Choose O = Ks in (10.3). We obtain that 

h~ (9(2Ks) | f .O(mKx/s))  = h~ (9(Kx + (m - 1)Kxls + f ' K s ) )  > O. 

This gives an injection 

(_9((m -- 2)Ks) --* f .  (P(mKx). [] 

10.5. Remarks. (10.5.1) By choosing D = j K s ,  ( j  = 1, . . . ,  m -  1) we can get the 
slightly stronger result 

Pro(X) >-_ max {Po(S) . . . . .  P~,- 2(S)}. 

In particular Pro(X) > 1. 
(10.5.2) It is possible that P,,(X) >= P,,(Xg)P,,-2(S) if f has connected fibers. 

10.6. Proof o f  (10.1). By (8.4) it is sufficient to prove this for a suitable finite 
6tale cover p : X '  ~ X. By (4.5') and (5.8) there is a finite 6tale cover p : X '  ~ X and 
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a morph i sm f ' : X ' - - ,  S where S has generically large algebraic fundamenta l  
group and ei ther  S is of general type or S is Abelian.  We dist inguish four 
cases; 
(i) dim S = 3. We are done by (8.5). 
(ii) d im S = 1, 2 and S is of  9eneral type. The general fiber of f '  is a curve or 
a surface of general type, thus in both cases P,,(X'o) > 0 for m > 2. (10.4) gives that  
P=(X')  > 0 for m > 2. 
(iii) dim S = 2 and S is Abelian. The general fiber of f '  is a curve of positive genus, 
thus (8.10) applies. 
(iv) dim S = 1 and S is Abelian. The general fiber of f '  is a surface of general type, 
thus P,,(X'o) > 0 for m > 2. (9.3) gives that  P,,(X') > 0 for m > 2. [] 

10.7. Proof o f  (1.13) and (1.15) (8.5)=>(1.13.1); (1.13.1) and (9.5.2)=>(1.13.2); 
(1.13.2) and [ K o l ,  4.6]=>(1.13.3); 
(9.1)=>(1.15.1); (1.15.1) and (9.5.2)~(1.15.2); (1.15.2) and [ K o l ,  4.8]=>(1.15.3). [] 

11 Albanese morphism 

Let X be a smooth  proper  variety. Let a l b : X - - ,  AIb(X)  be the Albanese mor-  
phism. It was unders tood early on that  the methods of the I i taka conjecture work 
especially well to study the structue of this morphism. The main result of this 
chapter  is to put  the previous characterisat ions of Abelian varieties [U; KaV; K a l ;  
Ko l ;  Mo]  into nearly final form: 

11.1. Theorem. Let X be a smooth proper variety. The following are equivalent: 
(11.1.1) X is birational to an Abelian variety; 
(11.1.2) q(X) = d i m X  and P4(X) = 1; 
(11.1.3) q(X) = d i m X  and Pro(X) = l for some m > 4. 

11.1.4. Correction to [ K o l ] .  [ K o l ,  4.4] gives an example o f a  nonabel ian compact  
complex S surface such that  q(S) - 2 and P3(S) = 1. Unfortunately S is not  Kfihler 
and its Albanese is one dimensional.  

It is possible that  q(X) = d i m X  and Pro(X) = 1 for some m > 2 a l ready implies 
that X is birat ional  to an Abelian variety (even for X K/ihler). Fo r  algebraic 
surfaces this was checked in [ K o l ,  4.5]. The higher dimensional  s i tuat ion is 
unknown. 

The proof  rests on the following result which improves [ K o l ,  5.1; Mo, 8.1]. 

11.2. Theorem. Let X be a smooth proper variety. 
I f  P3(X)= 1 or O < P = ( X ) <  2 m - 6  for some m then a l b : X - - + A l b ( X )  is 

surjective. 

Proof. Assume that  a l b : X - - + A l b ( X )  is not  surjective. By [U,  10.9] there is 
a morphism f :  X --+ S where S is a variety of general type which is b i ra t ional  to 
a subvariety of an Abelian variety. By [Gr i l l ,  4.14] [Ks] gives a generically finite 
map, thus for dim S > 2 

P,(S) > h~ dims, (9(r)) = ( r  + d i m S ' ]  
= gim--S ] > 2r. 

For d i m S  = 1 we get P~(S) > 2r - 1 and P,(S) > 2. Thus (10.4) implies (11.2). 
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11.3. Proof of (11.1) It is clear that (11.1.1)~(11.1.2)~(11.1.3). (11.1.3) and (11.2) 
imply that alb (X) is onto, hence generically finite by dimension comparison. By 
[Kol,  4.3] Pro(X) > 2 for m > 4 unless alb(X) is birational. [] 
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