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Summary. The main goal of this paper is to establish finiteness properties of local 
cohomology modules in characteristic 0 that would be analogous to those proven 
by C. Huneke and R. Sharp in characteristic p > 0. Our method, based on the 
theory of algebraic D-modules, seems to be the first application of D-modules to 
Commutative Algebra. 

0 Introduction 

Throughout this paper R is a commutative Noetherian ring. If M is an R-module 
and Y a locally closed subscheme of Spec R, we denote by H~r(M) the i-th local 
cohomology module of M with support in Y. If Y is closed in Spec R with defining 
ideal I c R, H~r(M) is denoted by H~(M). These local cohomology modules have 
been studied by a number of authors. See, for example, Faltings IF1, F2], Grothen- 
dieck [G1, G2], Hartshorne [Hal,  Ha2, Ha3], Hartshorne and Speiser [Ha-Sp], 
Hochster and Roberts [Ho-R], Huneke and Koh [Hu-K],  Huneke and Lyubeznik 
[-Hu-Ly], Huneke and Sharp [Hu-Sh], Ogus [O], Peskine and Szpiro [P-Sz] and 
Sharp [Sh]. Yet despite this extensive effort, the structure of these modules is still 
full of mystery. In most cases one cannot even tell if a given local cohomology 
module is zero. When it is non-zero, it is rarely finitely generated, even if M is. The 
more finiteness properties one could prove about them, the better understanding of 
their structure one would achieve. 

In the case that dim R/I = 0, the structure of H~(M), for a finitely generated M, 
has been extensively studied by Grothendieck [G2] and is well-understood. Al- 
though not necessarily finitely generated, it is Artinian. In particular, 
HomR (R/I, H~ (M)) is finitely generated. This lead Grothendieck to conjecture that 
HomR(R/I,H~(M)) is always finitely generated, if M is [G2, Exp.XIII, 1.1]. 
Grothendieck's conjecture was shown to be false by Hartshorne [Ha2, Sect. 3], 
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who gave an example of a (non-regular) three-dimensional local domain R and an 
ideal I c R such that H~(R) is supported only at the maximal ideal, but is not 
Artinian, so even HomR (K, H~ (R)), where K is the residue field of R, is not finitely 
generated. 

If R is regular, HOmR (R/I, H~ (R)) need not be finitely generated either. In fact, 
Huneke and Koh [-Hu-K, 2.3i] proved, that if R is any regular ring and r is bigger 
than the height of all minimal primes of I, HomR (R/I, H~ (R)) is finitely generated 
for all i > r if and only if H~ (R) = 0 for all i > r. Huneke and Koh also proved 
[Hu-K,2.3ii], that ifR is a regular ring containing a field of characteristic p > 0 and 
i is any integer bigger than the height of all minimal primes of I, then 
HomR(R/1, HI(R)) is finitely generated if and only if HI(R) = 0. In this paper we 
extend this latter result to the case of a regular ring containing a field of any 
characteristic (see (3.5) and (3.6e)). 

On the bright side, the finiteness of HomR (K, H~ (R)), where R is local and K is 
the residue field of R, has been known in some important cases. Ogus [O,2.7] 
proved that if R is regular local, contains a field of characteristic 0, and H~ (R), for 
all i > r, where r is some integer, are supported only at the maximal ideal, then 
HomR(K, HI(R)) are finitely generated for all i > r, while Hartshorne and Speiser 
[Ha-Sp, 2.4] proved, that if R is regular local, contains a field of characteristic 
p > 0, and HI(R ) is supported only at the maximal ideal, then HomR (K, HI(R)) is 
finitely generated and, moreover, H~(R) is injective. 

Huneke and Sharp [Hu-Sh] made a remarkable breakthrough. They generaliz- 
ed the above-mentioned results of Hartshorne and Speiser by proving that if R is 
any regular ring containing a field of characteristic p > 0, the local cohomology 
modules of R have the following properties: 

(i) H~(H~(R)) is injective, where m is any maximal ideal of R. 
(ii) inj.dimRH~(R) =< dimRH~(R). 

(iii) The set of the associated primes of HI(R ) is finite. 
(iv) All the Bass numbers of H~(R) are finite. 

Here inj.dimR H~(R) stands for the injective dimension of H~ (R), i.e. the length of 
its minimal injective resolution, dimRH~(R) stands for the dimension of the 
support of HI(R ) in SpecR and the j-th Bass number of H~(R) with respect to 
a prime ideal P of R is defined as #j(P, H~(R))= lengthriR/p)(Ext~,(K(R/P), 
(H} (R))p)), where K(R/P) is the fraction field of R/P (see [Ba]). In particular, (iv) 
implies that if R is local with residue field K and maximal ideal m, then 
lengthK(HOmR(K, HI(R))) = I~o(m, H~(R)) is finite. 

The main purpose of this paper is to obtain characteristic 0 analogs of these 
results of Huneke-Sharp. We prove, in particular, that if R is any regular ring 
containing a field of characteristic 0 and Y c Spec R is a locally closed subscheme, 
the local cohomology modules T(R) = HI(R ) have the following properties: 
(0.1) H~(T(R)) is injective, where m is any maximal ideal of R (see (3.4a)). 
(0.2) inj. direr T(R) <= dimR T(R) (see (3.4b)). 
(0.3) For every maximal ideal m of R, the number of associated primes of T(R) 
contained in m is finite (see (3.4c)). 
(0.4) All the Bass numbers of T(R) are finite (see (3.4d)). 

Our results are more general than all the previous ones not only in that we 
assume Y to be just locally closed, rather than closed ((0. l) and (0.2) hold even more 
generally, for T(R) = H~,/~(R) where q~ c ~b are two arbitrary families of supports 
on Spec R). In fact, we prove that (0.1)-(0.4) hold for a considerably larger class of 
functors. Namely, if Y1 C Y2 are closed subsets of Spec R and T is either the kernel, 
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or the image, or the cokernel of any of the three natural  t ransformation H I ,  a ( - - ) +  H~(-), Hr2(-)+i i i ,, r , i + l , "  Hi ,~_r , ( - ) ,  or H i ,~ - r , ( -~  ~ n r ,  t - ) ,  then T(R) satisfies 
(0.1)-(0.4). So does a composit ion of a finite number  of such functors. In  particular, 
if Y~, Y2 . . . . .  Yt are locally closed subsets of SpecR, the module T(R)= 
H~, (H~ ( . . .  H ~ , ( R ) . . .  )) satisfies (0.1)-(0.4). 

Our  method is completely different from that of Huneke and Sharp [Hu-Sh]  
and is, in fact, quite new in Commutat ive  Algebra. While Huneke and Sharp use 
the Frobenius  morphism, we use D-modules. Our  results (0.1) (0.4) proven in 
Theorem 3.4 follow from our results on D-modules proven in Theorem 2.4. To the 
best of our knowledge, this is the first application of D-modules to Commutat ive  
Algebra. 

Our  results together with those of [Hu-Sh]  imply that if R is any regular ring 
containing a field, then all the Bass numbers  of H~ (R) are finite. In the last section 
of this paper we show that this fact enables one to define a new set of numerical 
invariants of any local ring A containing a field (of any characteristic). Namely, we 
prove, that if ~ : R + A is a surjection with R a regular local ring of dimension 
n containing a field and 1 = Ker ~z, then #p(m, H~-i(B)), the p-th Bass number  of 
H~-~(R) with respect to the maximal ideal, depends neither on R, nor  on ~, but  is 
an invariant  of A, p and i. 

1 Preliminaries 

Throughout  the whole paper R is a commutative Noetherian ring. In this section 
we introduce functors Y and T that are the main objects of study in this paper. 

A family of supports ~O on X = Spec R is a set of closed subsets of X such that 
every closed subset of every Z e @ belongs to ~p and Z',  Z" ~ r implies Z '  ~ Z" ~ 4J. 
For  an abelian sheaf S on X the group of the global sections of S whose support  is 
contained in ~, is denoted by F , ( X ,  S). If (p c ~O is another  family of supports, 
Fo(X,S)/F~o(X,S ) is denoted by F~,/~(X, S). The i-th right derived functors of 
Fo(X, - ) and Fo/+(X, - )  are denoted respectively, by Ho(X,i _) and H~,/~i (X, -). 
Clearly, i i H~,(X, - )  is a special case of H+/+(X, - )  with ~0 = 0. These functors are 
related by the following long exact sequence [Ha l ,  IV.l]:  

0 0 0 0 --* + Hq,/+ (X, HgX, - )  + H+(X, -)  - )  

(1.1) -+ H~(X, -)-+ HI(X, -)-+ H~/~(X, - ) . . .  

One of our  main  objects of study in this paper will be composite functors 9-  
of the form 9-  = 3-109-2 . . . . .  9 - ,  where each Y-/ is either H),/o:(X, -), or 
the kernel of any arrow appearing in (1.1) with ~0 = q~/and ~ = q+j where <p/c ~/ 
are two families of supports on X. Since (1.1) is exact, allowing ~ to be the 
image, or the cokernel of any arrow appearing in (1.1) produces the same class of 
functors. 

If Y is a closed subset of X and q~i, is the set of all closed subsets of Y, the 
functors F+,(X, --) and H~:(X, - )  are written as Fy(X, - )  and F~(X, -). More 
generally, if Y is a locally closed subset of X, i.e. Y = Y" - Y', where Y' ~ Y" are 
two closed subsets of X, the functors F i H i +, /+, (X, - )  and +,/+~ (X, - )  are written 
as FI,(X, - )  and H~.(X, - ) ;  they depend only on Y, but  not  on Y', Y" [G1, p. 1-2]. 
Clearly, H~(X, - )  is a special case of H~/+(X,-). If Y ' c  Y" are two 
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closed subsets of X, (1.1) takes the following form: 

O ~ HOr,(X, o -)-~ Hy,,(x, - ) ~  H~ --) 

(1.2) -~ H~,(X, - )  -~ H~,,(X, - )  --, H~,,_r,(X,  - ) . . .  

A special case of functors 3- are composite functors T of the form 
i j  T = T1 o T2 . . . . .  Tt, where each Tj is either Hr,(X,  - )  with Yj a locally closed 

subscheme of X, or the kernel of any arrow appearing in (1.2) with Y' = Y~ and 
Y" = Yy, where Y~ = Yy are two closed subschemes of X. Since (1.2) is exact, 
allowing Tj to be the image, or the cokernel of any arrow appearing in (1.2) 
produces the same class of functors. 

If M is an R-module, we denote by M ~ the associated quasicoherent sheaf on X. 
If G is a functor from the category of abelian sheaves on X to the category of 
abelian groups, we denote G(M ~) by G(M). For every r ~ R, the multiplication by 
r ~ R on M induces a map M ~ ~  M ,  which, if G is covariant, in turn induces a map 
G(M) -* G(M) which we also call the multiplication by r. If G is both covariant and 
additive, the multiplication by elements of R thus defined gives G(M ) a structure of 
R-module. In particular, 3-(M) and T(M)  are R-modules, since J and T are 
covariant and additive. Every natural transformation t/: G ~ G' with both G and G' 
covariant and additive, induces a homomorphism of R-modules t/ ':G(M) ~ G'(M). 
In particular, since all arrows appearing in (1.1) and (1.2) are natural transforma- 
tions, (1.1) and (1.2), applied to M- ,  become exact sequences of R-modules and 
homomorphisms of R-modules. We denote F~,/~ (X, M' ) ,  i H q,/~o(X, M~), Fr(X, M - )  
and i Hr(X ,  M~)  by, respectively, F,/~(M,), H~/~(M), Fy(M) and H~r(M). If Y is 
closed in X and I = R is the defining ideal of Y, we denote Fr(M) and H I ( M )  by, 
respectively, FI(M) and H~(M). 

(1.2) with Y' = Y and Y" = X and the vanishing of Hi(X, M ~) for i > 0, imply 
an exact sequence 0 ~ H~ ) ~ M -~ H I (X - Y, M ~) ~ H ~ (M ) ~ 0 and isomor- 
phisms Hit(M) = H i - I ( X  - Y, M -  ) for i => 2. Let f l  . . . . .  f ~ R  generate the 
defining ideal of Y. Since H*(X - Y, M ]  are the cohomology modules of the (~ech 
complex of M ~ [(X - Y) for the covering of X - Y by Spec R f,, splicing the above 
exact sequence with this Cech complex and considering the above isomorphisms 
we get a complex 

(1.3) 0 ~ M ~ G MS, ~ (~ Mf.f~ ~ ~ Ms.s, sk ~ . . .  

whose i-th cohomology module is Hit(M) for all i => 0. Here the map ML..L 
Ms,  ,.y,,., induced by the corresponding differential is the natural localization (up to 
sign) if {il . . . . .  ij} is a subset of {kl . . . . .  kj+l} and is 0 otherwise. 

Let P be a prime ideal of R. By definition, the i-th Bass number of M with 
respect to P is I.ti(P, M )  = lengthx(R/e)(Extig~(K(R/P), Mp)), where K(R/P) is the 
fraction field of RIP. We need the following lemma. 

Lemma 1.4 Let P be a prime of R and let M be an R-module such that (Hip(M ))v are 
injective for all i. Let J* be a minimal injective resolution of  M. Then all the 
differentials in the complex (Fv(J*))e are zero, (Hiv(M))v=(Fe(Ji))p and 
Ext~(K(R/P) ,  My) = HomR,(K(R/P), (H~e(M))p) = HomR~(K(R/P), (Fp(Ji))v). 
Hence #i(P, M )  = #o(P, H~(M)). 

Proof. If J is an injective R-module, J ~ is flasque, so J* ~ is a flasque resolution of 
M ~. Since flasque sheaves are acyclic for the functor Fr(X, - )  [Hal ,  IV, 1], the i-th 
cobomology module of Fe(J*) is H~(M), so the i-th cohomology module of 
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(Fp(J*))p is (Hip(M))p. Assume s is the smallest integer with non-zero 
ds : (Fe(JS))p -~ (Fp(J ~+ ~ ))p. Then Kerds = HS((Fp(J*))p) = (HSp(M))p is injective, 
so (Fp(J~))e=Kerds(~J '. Since J* is minimal, the map HomR,(K(R/P), 
(Fp(JS))p)-~HOmR,(K(R/P), (Fp(J~+I))p) induced by ds, is zero, so the map 
HomR,(K(R/P),J')~HOmR,(K(R/P), (Fp(J~+I))p) is zero as well. Since J '  is 
supported only at the maximal ideal of Rp and the map J'-~(Fe(J~+~))p is 
injective, J '  = 0. So ( l 'e(JS))p = Kerd~ and ds -- 0. This contradiction proves that 
all the differentials in the complex (Fp(J*) )p  a r e  zero. Hence (Hip(M))p = 
Hi((Fp(J*))p) = (Fp(ji))p. Since ExtIR,(K(R/P), (Mp) = Hi(HOmR,(K(R/P), (J*)e 
= Hi(HOmR,(K(R/P), (Fv(J*))p)= nomg,(K(g/P), (Fp(J~))p), the lemma is 

proven. 

2 D-modules 

The main result of this section is Theorem 2.4 that gives information about the 
injective dimension, the associated primes and the Bass numbers of D-modules. It is 
of independent interest plus it will be used in the next section to obtain similar results 
about modules of the form J-(R) and T(R), which is the main goal of this paper. 

Let K be a subring of R. We denote by D(R, K) the subring of HomK(R, R) 
generated by the K-linear derivations R ~ R and the multiplications by elements of 
R. By a D(R, K)-module we always mean a left D(R, K)-module. The injective ring 
homomorphism R ~ D(R, K) that sends r to the map R -~ R which is the multipli- 
cation by r, gives D(R, K) a structure of R-algebra. Every D(R, K)-module M is 
automatically an R-module via this map. We denote by M~the associated 
quasicoherent sheaf on Spec R. 

Examples 2.1(i) The natural action of D(R, K) on R makes R a D(R, K)-module. 
(ii) If M is a D(R, K)-module and S c R is a multiplicative system of elements, 

Ms carries a natural structure of D(R, K)-module. Namely, for r~R we set 
r(m/s) = (rm)/s, for a derivation d we define d(m/s) using the quotient rule, i.e. 
d(m/s) = (sd(m) - d(s)m)/s 2 and this uniquely extends to an action of D(R, K) on 
Ms. In particular, D(R, K)s has a natural structure of D(R, K)-module. This 
implies that D(R, K)s has a natural ring structure and Ms has a natural structure of 
D(R, K)s-module. 

(iii) Let M be a D(R, K)-module and let G be any covariant additive functor 
from the category of sheaves of K-modules on Spec R to the category of abelian 
groups. We claim that G(M) has a natural structure of D(R, K)-module and every 
natural transformation r/: G -~ G' induces a homomorphism of D(R, K)-modules 
rf : G(M ) -.  G'(M ). Indeed, for all f e R, M: carries a natural structure of D(R, K)- 
module, so there exists a natural ring homomorphism h : : D ( R , K ) ~  
HomK(M:,M:) that sends each 6~D(R,K) to the action of 6 on M:. Since 
Spec R: form a base for the topology of Spec R, the h:'s patch up to give a ring 
homomorphism h : D(R, K) -~ End(M-),  where the endomorphisms are taken in 
the category of sheaves of K-modules. Since G(M) has a natural structure of 
End(M-)-module,  h gives it a natural structure of D(R, K)-module. Since 0' is 
a homomorphism of End (M-)-modules, it is a homomorphism of D(R, K)-mod- 
ules via h. 

(iv) Let M be a D(R, K)-module. Since ~-- and T are additive and covariant, 
(iii) implies, that ~Y'(M) and T(M) have a natural structure of D(R, K)-modules. 
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All functors involved in (1.1) and (1.2) are additive and covariant and all arrows are 
natural transformations. So, (1.1) and (1.2) applied to M ~, become sequences of 
D(R, K)-modules and homomorphisms of D(R, K)-modules. 

(v) If R = K [ [ X 1  . . . . .  Xn]]  is the ring of formal power series in n variables 
over K, the K-linear derivations form a free R-module on the n generators 
dl . . . . .  d,, where d j :R  ~ R  is the partial differentiation with respect to Xj. 
D(R, K) is generated by d~ . . . . .  d, as an R-algebra and is a free left (as well as right) 
R-module on the monomials d i l . . ,  d~, with ij > 0 (we set d o . . . . .  d o = 1). 
D(R, K) may be thought of as the associative non-commutative R-algebra with 
generators dl . . . . .  d, and relations didj = djdi and dir - rdi = ~r/t3Xi for all i, j 
and all r ~ R. 

In general, the ring D(R, K) does not have too many good properties. But i fK is 
a field of characteristic 0 and R is a ring of formal power series in a finite number of 
variables over K, then D(R, K) is left and right Noetherian [Bj, 3.1.6]. This implies 
that every finitely generated D(R, K)-module is Noetherian. In addition there exists 
a remarkable class of finitely generated D(R, K)-modules, called holonomic D(R, K)- 
modules [Bj, p. 100]. Some of the properties of holonomic modules are as follows: 
(2.2a) R with its natural structure of D(R, K)-module is holonomic [Bj, 3.3.2]. 
(2.2b) If M is holonomic and f ~ R ,  then My is holonomic [Bj, 3.4.1]. 
(2.2c) The holonomic modules form an abelian subcategory of the category of 
D(R, K)-modules, which is closed under formation of submodules, quotient mod- 
ules and extensions. (A proof of this is completely analogous to the proof of 
[Bj, 1.5.2].) 
(2.2d) If M is holonomic, then T(M) is holonomic. Indeed, as 
T =  T1 o T1 . . . . .  Tt, by induction on t it is enough to prove that T,(M) is 
holonomic. It follows from the definition of T~ that Tt(M) is a D(R, K)-submodule 
of H~(M), where Yis locally closed in Spec R. So by (2.2c) it is enough to prove that 
H~(M) is holonomic. By (1.2), there exists an exact sequence 
H~-(M)--* ~ ~ i+i y, y,, Hr(M)  H r '  (M), where and are closed. So, by (2.2c) it is 
enough to prove that Hit(M) is holonomic, where Y is closed in Spec R. By (2.2b) 
all modules appearing in (1.3) are holonomic. All the maps Ms, ..~ ~ Mf~ y,y~ 
induced by the differentials of (1.3) are either 0 or the natural locafi~ations (up to 
sign), so every arrow in (1.3) is a homomorphism of D(R, K)-modules and by (2.2c) 
H~, (M) is holonomic. 
(2.2e) A holonomic module is semisimple, i.e. has a finite filtration with simple 
quotients [Bj,2.7.13]. (Of course, a simple D(R, K)-module is one with no non- 
trivial D(R, K)-submodules.) 
(2.2f) A simple holonomic module M has just one associated prime [Bj, 3.3.16-17]. 
Let Q be the associated prime of M and let Mo = {m ~ M IQm = 0}. Then there 
exists a non-zero element h ~ R/Q such that (Mo)h is a finitely generated (R/Q)h- 
module. This is because, by Noether normalization, there exists a linear change of 
variables such that R/Q is finite over R' = K[[X1 . . . . .  Xk]]  where k = dim R/Q, 
and by [Bj, p. 109, lines 3-6]  there exists a non-zero h~R' such that (Mo) h is 
a finitely generated R~,-module. 

Proposition 2.3 Let K be afield of characteristic 0, let R = K [ [ X t  . . . . .  X , ] ]  be 
a ring offormal power series in n variables over K and let m be the maximal ideal of R. 
Then as an R-module, D(R, K)/D(R, K)m is isomorphic to ER(K), the injective hull of 
the residue field of R in the category of R-modules. 
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Proof Since R is regular, ER(K) = H"~(R). Since m is generated by Xt  . . . . .  Xn, 
it follows from (1.3) that ER(K) is the vector space over K spanned by the 
monomials  X~ 1 . �9 X ~  with all ij < - 1  and with a natural  R-module structure 
(that is, if X" = X]I . . . X~"eR  and Xr = X~' . . . X~neER(K), then X~X ~ = 
X ~ + ~  . . X  ~ +t~ .~ = �9 , n, 1I ~i +/3i < 0 for all i and X=X ~ 0 otherwise). It  follows from 
(2.1v) that D(R, K)/D(R, K)m is a free K-module  on the monomials  d{' . . .  d~ 
with i j > 0 .  The K-linear map D ( R , K ) / D ( R , K ) m ~ E R ( K )  that sends 
d]~ . . .  d~" to ( - 1 )  i'+ .... + " ( i 1 ! ) . . .  ( in [ )X i l t - t . . .  Xn  i"-I is an isomorphism of 
R-modules. q.e.d. 

Our  main  result in this section is the following. 

Theorem 2.4 Let K be a field of  characteristic O, let R = K [ [ X x  . . . . .  X , ] ]  be 
a rin9 offormal power series in n variables over K, let m be the maximal ideal of  R and 
let M be a D(R, K)-module. 

(a) l f  dimRM = O, then M is a direct sum of copies of  D(R, K)/D(R, K)m. 
(b) inj .  dimR M < dimR M. 
(c) I f  M is finitely generated, the set of  the associated primes of  M is finite. 

(Of course, by an associated prime of M we mean a prime of  R associated to the 
R-module M ). 

(d) I f  M is holonomic, all the Bass numbers of  M are finite. 

Proof (a) The socle of D(R, K)/D(R, K)m is the one-dimensional  vector space 
over K spanned by 1. (The socle of an R-module is the submodule annihilated by 
m). Let {ei}i~ be a K-basis of the socle of M. There is a homomorphism of 
D(R, K)-modules (D(R, K)/D(R, K)m) ~ ~ M, that sends the element 1 of the i-th 
copy of D(R, K)/D(R, K)m to ei. This map  is injective, because it induces an 
isomorphism on the socles and (D(R, K)/D(R, K)m) ~ is supported only at m. By 
(2.3) (D(R, K)/D(R, K)m) I is an injective R-module, so M = (D(R, K)/  D(R, K)m) t 

N, where N is an R-module supported only at m. Since the map on the socles is 
an isomorphism, N = 0, so M = (D(R, K)/D(R, K)m) I. This proves (a). 

(b) Let P be a minimal  prime of M and let (Rp) ̂  be the completion of the local 
ring Rp with respect to its maximal ideal. We claim that Me has a natural  structure 
of D((Rp) ̂ , K')-module,  where K'  ~ (Rp) ^ is a suitable coefficient field of (Rp) ̂ . 
Indeed, Mp has a natural  structure of Rp-module and since every element of Me is 
annihilated by a power of P, Mp has a natural  structure of (Rp)^-module. Let the 
height of P be h�9 By Noether  normalizat ion,  we can assume, after a possible change 
of variables, that R/P is finite over S = K [ [Xh + 1 . . . . .  X , ]  ]. Let t2 be the module 
of cont inuous S-linear differentials of R and let d : R ~ f2 be the canonical  S-linear 
derivation�9 So, t2 is the free R-module of rank h on d X 1 , . . . ,  dXh. We denote the 
R-module of S-linear derivations R ~ R by Ders R. The universal property of 
12 implies that the map HomR(f2, R ) ~  De r s R  that sends f~HomR(f2 ,  R) to the 
derivation fd : R ~ R is an isomorphism of R-modules. Since f2 and R are finitely 
generated, (DersR)e = (HOmR (f2, R))p = HomR~(f2e, Re). Let K(S) be the fraction 
field of S. Then d : R ~ f2 extends via the quotient  rule to the K(S)-linear derivation 
dp : Rp ~ f2p. Let Z ~ , . . . ,  Zh~.R generate Pp ~ Re. Since 12p is a free Rp-module 
of rank h on  dZ1 . . . . .  dZh, we get K(S)-linear derivations ~i =f~dp : Re ~ Re 
(i = 1 . . . . .  h), where f~HOmR~(Op,Re)  is defined by f d d Z j ) =  0 if i4:  j and 
fi(dZi) = 1. Since 6i((Pj,) t) ~ (pp)t-1, the 6i's uniquely extend to derivations 
6~ :(Rp) ^ ~ (Re) ^. Let K' be the algebraic closure of K(S) in (Re)". Every 
K(S)-linear derivation (Re) ^ ~ (Re) ^ is automatically K'-linear.  Hence the 67 's  
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are K'-linear. By Cohen's structure theorem (Re) ^ = K '[[Zx  . . . . .  Zh]] .  The only 
K'-linear derivation (Re) ^ --* (Re) ^ that sends Zi to 1 and Zj to 0 for all j 4: i is the 
partial differentiation with respect to Zi. Hence 67 is nothing but the partial 
differentiation with respect to Zi. So 67 6~ = 6~ 6? and 67 r ^ - r ^ 6[' = 6[" (r) ̂  
for all i , j  and all re(Re)  ^, where we denote by rA:(Re) ^ --* (Re) ^ (resp. 6? (r)^: 
(Re) ^ ~ (Re) ^ ) the multiplication by r (resp. 6? (r)). By (2.1ii) D(R, S)e forms a ring. 
By restricting the above relations to Re ~ (Re) ^ we see that 6~6j = 6j8~ and 
61r - r f i  = 6i(r) in D(R, S)p for all i , j  and all r e Rp. Since D(R, S) is a subring of 
D(R, K) and Me is a D(R, K)-module, Me is a D(R, S)-module, hence also 
a D(R, S)e-module. So, 6*J* = 6"6" and 6*r* - r*6*  = 6i(r)* for all i , j  and all 
r e Rp, where 6" : Mp --* Mp, r*: Mp ~ Me and 6i(r)*: Mp ~ Me are induced by the 
D(R, S)p-module structure. Note that r*: Mp ~ Me (resp. 6~(r)*: Me--* Mp) is 
nothing but the multiplication by r (resp. 6~(r)) induced by the Rp-module struc- 
ture. For  each r e (Re) ̂  and v e Mp there exists r' e Rp such that 6" r'* (v) = 6* r* (v), 
r'*t~*(v)=r*6*(v) and 6i(r')*(v)= 6['(r)*(v), so 6 * r * - r * 6 *  =6/^(r)  * for all 
re(Re)  ^. Since 6/^ (r) = c~r/t3Zi, (2.1v) implies that by letting di act on Me via 6* we 
get a well-defined ring homomorphism D((Rp) ^, K')--* EndK,(Mp). This makes 
Me a D((Rp) ^, K')-module and proves the claim. 

So, by (a) and (2.3), Mp is a direct sum of copies of EIR,)A ((Rp)^/P(Rp) ^ ). But as 
an R-module EIR,)~ ((Rp) ^/P(Rp) ^ ) is isomorphic to ER(R/P), so Me is an injective 
R-module. 

Now we use induction on d = dimR M. The case d = 0 follows from (a) and (2.3). 
Assume d > 0 and let M '  = Fo(M), where q~ is the family of all closed subsets of 
Spec R of dimension < d. This is a D(R, K)-module by (2.1iv), so, by induction inj. 
d imRM'  < d. The resulting short exact sequence 0 ~ M ' ~  M ~ M "  ~ 0  shows 
that it is enough to prove that inj. dimR M "  < d. In other words, we can assume 
that M -- M",  i.e. that all the associated primes of M have dimension d. Let {Pj } be 
the associated primes of M. Since M has no embedded associated primes, the 
natural map M ~ ~) Mp. is an injective homomorphism of D(R, K)-modules and 
its cokernel has dimension < d. Since this cokernel is a D(R, K)-module, its 
injective dimension is < d by induction. Since 03 Mp, is injective, inj. direr M < d. 
This proves (b). 

(c) We claim there is a finite filtration of M by D(R,K)-submodules 
0 = M o = M ~  = . . .  c M ~ = M  such that Mj/Mj_~ has only one associated 
prime. For  let P~ be a maximal element in the set of the associated primes of M. 
Then Fe~ (M) c M is non-zero and has only one associated prime, namely, P1- Set 
Ma = FpI (M). By (2.1iv) this is a D(R, K)-submodule of M, so M/M1 is a O(R, K)- 
module. Let Pz be a maximal element in the set of the associated primes of M/Mx.  
Then Fp2(M/M1) is a non-zero D(R, K)-submodule of M/M1 and has only one 
associated prime, namely, P2. Set M2 to be the preimage of FP2 (M/M1) in M. Since 
M is Noetherian [Bj, 3.1.6], this process eventually stops. This proves the claim. 
The set of the associated primes of M is contained in the union of the sets of the 
associated primes of all Mj/Mj_  ~. This proves (c). 

(d) Let P be a prime ideal of R. By (2.1iv) H~(M) is a D(R, K)-module. Since 
P is a minimal prime of H~ (M), it follows like in the proof of (b) that (H~ (M))p is 
an injective R-module. So, (1.4) implies that I~i(P, M ) =  po(P, H~(M)). By (2.2d) 
H~(M) is holonomic, so it is enough to prove, that if N is holonomic 
and Supp N = V(P), then po(P, N) is finite. By (2.2e) there is a finite filtration of 
N with simple quotients. By (2.2c) these quotients are holonomic. A short exact 
sequence 0 ~ N '  --* N ~ N" --* 0 gives an exact sequence 0 ~ HomR,(K(R/P), N'e) 
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--* HomR~(K(R(P), Nv) -~ HomRr(K(R/P), N~;), hence, if #o(P, N') and #o(P, N") 
are finite, so is/to(P, N). So by induction on the length of the filtration, it is enough 
to consider the case that N is simple. By (2.2f) N has just one associated prime Q. If 
Q4:P, then Np=O and / t o (P ,N)=0 .  So, assume Q = P .  Set No = 
{v~NIPv = 0}. By (2.2f) there is a non-zero element h~R/P such that (No)h is a 
finitely generated (R/P)h-module. Since HomRp(K(R/P), Np) = (No)v = ((No)h)V, 
we are done. 

Corollary 2.5 Let R be a tin 9 of formal power series in a finite number of variables 
over a field of characteristic 0 and let G be any additive covariant functor from 
the cateyory of abelian sheaves on Spec R to the category of abelian groups. 
Then inj. dimg(G(R)) <_ dimR(G(R)). In particular,/fdimg(a(R)) = 0, then G(R) is 
injective. For example, inj. dimRY(R)<=dimRg-(R) and, in particular, if 
dimg(3-(R)) = 0, then ~-(R) is injective. 

Proof. This follows from (2.1iii) and (2.4b). 

Remark 2.6 In [Ly] we prove that a result completely analogous to (2.5) holds if 
R is a ring of formal power series in a finite number of variables over a field of 
characteristic p > 0. 

Corollary 2.7 Let R be a rin 9 of formal power series in a finite number of variables 
over afield of characteristic O. Then the set of the associated primes of T(R) is finite 
and all the Bass numbers of T(R) are finite. 

Proof. This follows from (2.2d) and (2.4.c, d). 

Question 2.8 If R is a ring of formal power series in a finite number of variables 
over a field of characteristic 0 and K, K'  c R are two different coefficient fields of 
R (of course, K is isomorphic to K'), then D(R, K) is isomorphic to D(R, K'). Call 
this ring D. A priori D(R, K) and D(R, K') give T(R) two different structures of 
D-module. In other words, the structure of D-module on T(R) depends on the 
choice of a coefficient field. To what extent is this structure independent of the 
choice of a coefficient field? For example, is the length of T(R) as a holonomic 
D-module independent of the choice of a coefficient field? 

Remark 2.9 Properties (2.2a) (2.2f) are valid also in the case that K is an algebraic- 
ally closed field of characteristic 0 and R is a regular domain finitely generated as 
K-algebra [Bj, 3.2]. In this case results analogous to (2.4) and (2.5) also hold and 
their proofs are practically the same as above. 

3 The main result 

The main result of this section (and the whole paper) is Theorem 3.4. It establishes 
properties of the injective dimension, the associated primes and the Bass numbers 
of modules of the form J-(R) and T(R), that are analogous to those proven in the 
above Theorem 2.4 for D-modules. Our method is to reduce to results of the 
preceding section by localization and completion. We begin with a few preliminary 
remarks concerning the behavior of the functors Y- and T under ring homomor- 
phisms. 

Let R ^ be another commutative Noetherian ring and let 9 : R ~ R ^ be a ring 
homomorphism. For a locally closed subscheme Y of X = Spec R we denote by 
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Y ^ its preimage in X ^ = Spec R ^. If (# is a family of supports on Spec R, we 
denote by ~0 ̂  the family of supports on Spec R ^ consisting of all the closed subsets 
of all the Y^, where Y~ q~. If Y = H,/~,(X, - )  (resp. T = HI(X,  - ) ) ,  we denote by 
~-  ^ (resp. T ^ ) the functor H~/~o^ (X ^, - )  (resp. Hi^  (X ^, - ) ) .  If J -  (resp. T) is the 
kernel of an arrow appearing in (1.1) (resp. (1.2)), we denote by ~-- ̂  (resp. T ^ ) the 
kernel of the same arrow with X replaced by X ^ and ~ and tp (resp. Y" and Y') 
replaced by ~k ̂  and ~0 ̂  (resp. Y"^ and Y'^). If Y = Y l  ~ . . . . .  ~'-t 
(resp. T r t  T2 �9 �9 ~ Tt)), we set o~-^ = ~'-i" ~-^ ~ . . . . .  ~ 2 . . . ~ - f  (resp. 
T ^ = Ti' o T~' . . . . .  T? ). 

Lemma 3.1 I f  M is an R^-module which is flat over R and N is any R-module, then 
there are isomorphisms J - ^ ( M | 1 7 4  and T ^ ( M |  
M | T(N) which are functorial in N. 

Proof. Since T is a special case of ~-, it is enough to prove that there is an 
isomorphism 9-- ̂  (M | N) = M | J -  (N) which is functorial in N. If P is a prime 
ideal of R, then Eg(R/P) is divisible by every r e R \ P .  Since M is a flat R-module, 
M | ER (R/P) also is divisible by every r e R\P.  Since Supp(M | 
ER (R/P)) c V(P), the sheaf (M | ER (R/P)) ~ is constant  on its support,  therefore 
it is flasque. So, (M | J )~  is flasque for every injective R-module J, because J is 
a direct sum of modules of the form ER (R/P). Hence if J*  is an injective resolution 
of an R-module N, then (M @R J*)  ~ is a flasque resolution of (M |  ~. 
Since flasque sheaves are acyclic for Fo/~(X, - )  [Ha l ,  IV, 1], 
H ~ / o ( X , ( M Q R N ) ~ ) = H ' ( F , / o ( M |  Since M is fa t ,  the functors 
Fo/~,(M | --) and M | F~,/o(--) are isomorphic, so 

= | HO/,p (N). (3.2) i H~/,(M | N) M 

Every map N ~ N'  lifts to a chain map  of injective resolutions which is unique up 
to homotopy.  This implies that (3.2) is functorial in N. If L is an R ^-module, we 
denote by RL the same L regarded as an R-module via g. If J is an injective 
R^-module ,  J~  is flasque, hence so is (RJ) ~. So, if J*  is a resolution of L by 
injective R^-modules ,  H'o/,(RL) is the i-th cohomology module of the complex 
F,/,(RJ*). Since H~^/,^(L) is the i-th cohomology module of the complex 
F,^ /,^ ( d * ), and  since F~/~ (R-- ) = F,^ /~^ ( - ) ,  

(3.3) = Ho^/~ (L). 

(3.2) and (3.3) with L = M | N imply (3.1) in the case that 3-  is Ho/e(X,~ - ) .  Since 
M is flat over R, (3.1) also follows in the case that 9-  is the kernel of any arrow 
appearing in (1.1). The general case follows from these special cases by induct ion on 
t. q.e.d. 

Now we are ready for our  main  result. 

Theorem 3.4 Let K be afield of  characteristic 0 and let R be any regular K-algebra. 
(a) Let m be a maximal ideal of R. Then H~(~'-(R)) is an injective R-module. 
(b) inj. dimR(~--(R)) < dimR(3-(R)). In particular, if d im~(J ' (R) )  = 0, then 

~q- (R ) is injective. 
(c) For every maximal ideal m of R the set of the associated primes of T(R) 

contained in m is finite. 
(d) All the Bass numbers of T(R) are finite. 
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Proof (a) Let R ^ be the complet ion of R with respect to m. Then (3.1), applied to 
the functor H ~ ( J ( - - ) )  shows that  n~n.. ( J ^  (R ^ )) = R ^ |  Since 
H ~ ( Y ( R ) )  is suppor ted  only at m, R ^ |  so 
H~R~ (J- ^ (R ^ )) = H~(J-(R)).  By one of Cohen's  structure theorems R ^ is a ring 
of power series in several variables over a coefficient field K '  of R ^. By (2.1iv) 
HJmRA (J-  ^ (R ^ )) is a D(R ^, K')-module ,  and since its dimension is 0, (2.4a) and (2.3) 
show that  H~RO ( J -^  (R ^ )) is a direct sum of copies of ER r (R ^/mR ^ ) = ER(R/m), 
hence injective. This proves (a). 

(b) inj. d imR(J - (R) )<d imR(~- - (R) )  if and only if inj. dimn,(~--(R)e) 
< d i m R , ( J ( R ) e )  for all primes P of R. Since (3.1) with N = R and M = R ^ = Re 

implies that  Y-(R)v = Y-^(Rp),  we can assume that  R is local. Let m be the 
maximal  ideal of R and let J*  be a minimal  injective resolution of ~ ( R ) .  By 
induction on dimR Y- (R)) we can assume, that  for all non-maximal  primes P of R, 
inj. dimR~(J-(R)v) < dimR~(Y(R)v) < dimR(~-(R)).  Hence all j i  with 
i __> d img(3- (R) )  are suppor ted  at m, i.e. F=(J i) = j i  for i > dimR(J-(R)) .  Now (a) 
and (1.4) imply that  all the differentials j i ~  j i+l  are zero for i_-> d img(J - (R)) .  
Since J*  is minimal,  j i  _- 0 for i > dimR(Y(R)) .  This proves (b). 

(c) If P is an associated prime of T(R) contained in m, it is necessarily the 
restriction to R of an associated prime of R ^ (~R T(R), where R ^ is the comple-  
tion of R with respect to m. By one of Cohen 's  structure theorems 
R ^ = K'[[X1 . . . . .  X , ] ]  where K ' =  R/m. By (3.1) with N = R and M = R ^, 
R^ | T ( R ) =  T ^ (R^). By (2.2d) this is a holonomic  D(R ^, K')-module ,  so by 
(2.4c) it has finitely many  associated primes. This proves (c). 

(d) Let P be a prime ideal of R. By definition #i(P, T(R)) = 
r i ' K '  K '  lengthr,  r~xtR~ , T(R)p), where is the field of fractions of R/P. By (3.1) with 

N = R  and M = R  ^ = R e ,  we get T ( R ) e = T ^ ( R p ) ,  so # i (P ,T(R) )=  
#i(Pe, T ^ (Re)). Therefore, we can assume that  R is local and P is the maximal  ideal 
of R. By (a) and (1.4), #i(P, T(R)) = lengthx, HOmg (K', Hie (T(R))). Let R ^ be the 
complet ion of R with respect to its maximal  ideal. Then R ^ = K'I-[X1 . . . . .  Xh]] 
and PR ^ = ( X 1  . . . . .  Xh). Lemma3.1  applied to Hie(T(- ) )  shows that  

i = R  ^ ^ = HpR~(T^(R^))  |  But R |  Hie(T(R)) as 
dimR Hie(T(R)) = 0. So, lengthK, HomR (K', Hg(T(R)) )  = lengthK, HomR^ (K', 

i H.pR~(T ̂  (R ^))), that  is, #~(P, T(R)) = #o(PR ^, HgR~(T ̂  (R ^))). By (2.2d) 
H~,R, (T^ (R^ )) is a ho lonomic  D ( R ^ , K ' ) - m o d u l e .  So (2.4d) implies that  
#o(PR ^, HieR^ (T ̂  (R ^ ))) is finite. This proves (d) and the theorem. 

It is worth  point ing out  that  for any maximal  ideal m of R (3.4) implies that  
H~(T(R))  is a direct sum of a finite number  of copies of ER(R/m). Indeed, by (3.4a) 
H~ (T(R)) is injective, hence a direct sum of copies of ER(R/m). The number  of those 
equals #o(m, HI (T(R) ) ,  hence is finite by (3.4d). 

Corollary 3.5 Let K be afield of characteristic O, let R be any regular K-algebra, let 
I be an ideal of R and let i be an integer bigger than the height of all the minimal 
primes of I. Then Homn(R/I,  HiI(R)) is flnitely generated if and only if H~(R) = O. 

Proof Assume H~(R) 4= O. Let P be a minimal  prime in the suppor t  of H~(R). Then 
dimg, ((H~ (R))e = H~R, (Re)) = 0, so by (3.4b) H~R, (Re) is injective, i.e. a direct sum 
of copies of ER~(Rp/Pp). Since H~R,(Re) 4 = 0, i < dim Re, so dim Re is bigger than 
the height of the minimal  primes of I. So dimR, Re/ IRp > 0, which implies that  
HomR,(Re/IRe, ER,(Rp/Pp)) is not  finitely generated. Hence, neither is 
HomR (Re~IRe, H}R (Re)). Since HomR~(Rp/IRp, H}R~(Rp)) = HomR,(R/I, 
H~(R)I)p, it follows"that HomR(R/I, H~(R)) is not  finitely generated, q.e.d. 
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Corollary 3.6 Let R be any regular ring containing afield (of any characteristic) and 
let I be an ideal of R. Then 

Hm(H,(R)) is injective for every maximal ideal m of R. ( a )  i i 

(b) inj.dimn (H~ (R)) <= dimg (H~ (R)). In particular, if dim~ (H~ (R)) = 0, then 
H~ (R) is injective. 

(c) For every maximal ideal m of R the set of the associated primes of H~(R) 
contained in m is finite. 

(d) All the Bass numbers of H~(R) are finite. 
(e) l f  i is bigger than the height of all the minimal primes of I, then Homg(R/I,  

H~ (g)) is finitely generated if and only if H~ (R) = O. 

Proof. (a)-(d) follow from (3.4) in characteristic 0 and from [Hu-Sh] in character- 
istic p > 0, while (e) follows from (3.5) in characteristic 0 and from [Hu-K, 2.3ii] in 
characteristic p > 0. 

Remarks 3.7 O) It follows from (2.9) that if R is a regular ring which is finitely 
generated as an algebra over a field of characteristic 0, the set of the associated 
primes of T(R) is finite. In [Ly]  we prove that if R is a regular ring containing 
a field of characteristic p > 0, the set of the associated primes of T(R) also is finite. 
Of course, one expects that for every regular ring R the set of the associated primes 
of T(R) is finite, but this remains to be proven. 

(ii) The set of the associated primes of J - (R)  need not be finite. For  example, if 
~0 is the set of all 0-dimensional subsets of Spec R, then the associated primes of 
Hh(R) are precisely the maximal ideals of R height h. 

(iii) Of course, one expects that the statement of (3.4) is valid for every regular 
ring R. We can prove this provided R contains a field of characteristic p > 0 [Ly]. 

Questions 3.8 Let R be any regular ring. 
(i) Are all the Bass numbers of J-(R) finite? 
(ii) Let G be any additive covariant functor from the category of abelian 

sheaves on SpecR to the category of abelian groups. Is it true that 
inj. dimn(O(R)) < dimR(G(R))? (Cf. (2.5), (2.6) and (2.9)) 

We do not know the answers to these questions even in the case that R contains 
a field. 

4 New numerical invariants of local rings 

The goal of this section is to prove the following. 

Theorem-Definition 4.1 Let A be a local ring which admits a surjective ring 
homomorphism n : R ~ A, where R is a regular ring of dimension n containing afield. 
Set I = Ke rn  and let m be the maximal ideal of R. Then #p(m, H~-i(R )) is finite and 
depends only on A, i and p, but neither on R nor on n. We denote this invariant by 
),p.i(A), 

Proof. It follows from (3.6d) that l~p(m, H~-i(R)) is finite. It remains to prove that it 
depends neither on R nor on n. We need a couple of lemmas. 

Lemma 4.2 #p(m, H~-i(R)) = #p(mR ^, , - i  ^ R ^ HInA (R )), where is the completion of 
R with respect to m. 
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Proof By definition pp(m, H~-i(R)! = lengthK(ExtP(K, H~-i(R))) and #p(mR ^, 
= (K, HIR,, ( R ) ) ) ,  where K H~-?(R ^)) l eng th r (Ex t~  " - '  ^ is the residue field of both 

n and n ^. By (3.4a) and (1.4), Ex t , (K,  HT-~(R)) = HomR(K, H~(HT-~(R))) and 
p n--i A p n - i  A 

Hmn~ (H,nR^ ( g  )) ExtR^(K, HIR~(R ))=HOmR.(K,H~R~(H~R~(R ))). By (3.I) P "-~ 
= R ^ | But HPm(HT-~(R)) is supported.at m, so R ^ | 

p n - t  p n - - ~  = H,,(H~ .(R)). Hence lengthx(HomR(K, H,, (Ht (R)))) = lengthr (HOmRo (K, 
p n - |  A H,,R^ (H~R^ (R )))). This proves (4.2). 

Lemma 4.3 Assume R is complete and let g : R' --+ R be a surjective ring homomor- 
phism, where R' is complete local of dimension n'. Set I '  = Ker (ng) and let m' be the 
maximal ideal of R'. Then pp(m, H~-i(R)) = pp(m', H~-i(R')).  

Proof. Since R is regular, Ker g is generated by n' - n  elements that form part of 
a minimal  system of generators of the maximal ideal of R'. By induct ion on n' - n 
we are reduced to the case that n' - n  = 1, so Kerg  is an ideal generated by one 
element f s  m'\m 'z. By Cohen's structure theorem R' = K [IX1 . . . . .  X.+ 1]] and 
by a change of variables we can assume f = X.  + 1. We identify R with the subring 
K[[X1 . . . . .  X , ] ]  ofR' .  I f M  is an R-module, we set g#(M) = (~f=l M X ~ I  and 
we make it into a R'-module as follows: rX,+lJ' vX[+ ~21 = rvX,+lJ'-s2, if j l  < J2 and 

J t  - - J 2  - " rX.+ 1 ~ R', v ~ M and vX.+J~ ~ MX~+~] ). If rX .+ lvX .+l  = 0 otherwise (here r~R, i, 
h: M -~ N is a homomorphism of R-modules, we define g# (h) : 9#(M) ~ g# (N) by 
9#(h)(vX;~l)= h(v)X.+~l. This gives us a covariant  exact functor g # :R-  
mod--* R'-mod. Note that socle ( 9# (M) )=  (socle(M))X~-+11. In particular, the 
socles of M and g#(M) have same lengths. The composit ion of functors 
F / , ( - )  = Fx(F(x,+i)(-)) leads to the spectral sequence E~ ' q =  Hf(H~x,§ 
H~+q(R'). It follows from (1.3) that q ' " H(x,+~)(R ) is the q-th cohomology module of 
the complex 0 ~ R' ~ R ]  +, --. 0. Hence H~x + ,)(R') = g# (R) and H~[x.+ I)(R') = 0 
for q * 1. So, the above si~ectral sequence imi~lies that H'] +~ - i (R ' )  = H x - ' ( g #  (R)). 
Let f l  . . . . .  f~ e R generate I. It follows from (1.3) that 
HT-i(g#(R)) = g#(HT-i(R)). If J is an injective R-module, then g#(J)  is an 
injective R'-module, because HOmR,(--, g*(J) )=g#(HOmR( - ,  J)), so, if 
HOmR (-- ,  J ) is exact, HomR, (-- ,  g # (J))  also is exact. So, if J * is a minimal  injective 
resolution of HT-i(R) in the category of R-modules, then g ~ (J*) is an injective 
resolution ofg # (H']-i(R)) = H7 + 1 i(R, ) in the category of R'-modules. Since J*  is 
minimal,  the differentials induce zero maps on the socles of J*. Hence the differen- 
tials induce zero maps on the socles of g#(J*). Since pp(m, HT-i(R)) equals the 
length of the socle of JP, and pp(m', H7 + ~ -~(R'))  equals the length of the socle of 
g#(JP) and since the two lengths coincide, (4.3) is proven. 

Let n ' : R '  ~ A and n" : R" ~ A be surjections with R' = K [[X1 . . . . .  X , , ] ]  and 
R " =  K[[Y1 . . . . .  Y,,,]]. Let I '  = K e r n '  and let I"  = Kern" .  Let R'" = R'(~KR" 
be the complete tensor product,  n"'  = n'  ~K n" : R' (~r R" ~ A and I ' "  = Kern '" .  
Let m', m" and m'" be the maximal  ideals of R', R" and R'". Since n'" factors 
through n', (4.3) shows that I~p(m'", H'[,+""-i(R'"))= l%(m', H"t',-i(R')). Since n'" 
factors through n", (4.3) shows that t~p(m'", HT;,+,""-i(R'")) = pp(m", HT;I-I(R")). 
So, #p(m', HT',-i(R')) = I~p(m '', HT;~-i(R")). This proves (4.1). 

A complete local ring containing a field is always a surjective image of a regular 
local ring containing a field. So, if A is a local ring containing a field, but  not  
necessarily a surjective image of a regular local ring containing a field, one can set 
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2p, i(A) = ),p,i(A ̂  ), where A ^ is the completion of A with respect to the maximal 
ideal. Lemma 3.2 shows that this coincides with our  original definition in the case 
that A is a surjective image of a regular local ring containing a field. 

Set d = dim A. Here are some elementary properties of 2v,~(A): 
(4.4i) ~,p,i(A) = 0 if i > d (because HT-i(R) = 0 for i > dim(R/I)). 
(4.4ii) 2v.~(A) = 0 i fp  > i (because inj. dimR HT-i(R)  < dimRHT-~(R) < i). 
(4.4iii) 2d, d(A) 4: 0. Indeed, in view of (1.4) and (3.4a) all we have to prove is that 
Ha~(HT-d(R)) 4: O. Let I = I c~ I , where all the minimal  primes of I '  have dimen- 
sion d and all the minimal  primes o f / "  have dimension < d, so HT;~(R) = 0 for all 

n - - i  i > d. All the minimal  primes of I '  + I" have dimension < (d -1 ) ,  so Hr+r,(R) 
= 0 for i > d - 1. Hence Mayer-Vietoris  implies that HT-d(R) = H77d(R), so we 

can replace I by I ' ,  i.e. we can assume that I is equidimensional.  There exists 
a spectral sequence E~ 'q = H~(H'I(R)) ~ H~+q(R). Since HT-i(R) = 0 for all i > d, 

H,-iIR E~ " - i = O f o r a l l i > d . I f P  ~ I i s a p r i m e i d e a l , ( H T - i ( R ) ) v =  ip ~ e ) = 0 f o r  
n -- i > dim Re, i.e. for i < dim RIP. If i = dim R/P, Hartshorne 's  local vanishing 

nn-i  theorem l-Ha3, 3.1] implies that (HT-i(R))p = ~ (Rp) = 0 if dim Rp/1p > 0. So, 
a prime of dimension > i belongs to the support  of HT-~(R) if and only if it is 
a minimal  prime of I of dimension i. But all minimal  primes of I have dimension 

d, so i f / <  d, then dimR HT-I(R) < i and so H~(HT-'(R)) = 0. So, E~ n-i = 0 for 
i 4: d. Since H"m(R) + 0, we conclude that H~(HT-d(R)) # O. 
(4.4iv) I fA is analytically normal,  2a, a(A) = 1. To prove this it is enough to show in 
view of (1.4) and (3.4a), that all the differentials that come into and go out of 
Era '~-d are 0, so E~ '"-d = H~(HT-d(R)) = H",,(R). The outgoing differentials land 
in E,  a§ ~ which vanishes because HT-i(R) = 0 for all i > d. The incoming 
differentials come from Ear -~'~-d§ so it is enough to prove that 
E~ -~'"-a+(~-l)  = H~-~(H'~-d+(~-I)(R)) = 0 for all r > 2. We can assume R and 
A complete and, in particular, excellent. If P is a minimal  prime of H7 -d+("- '~(R), 
then Rv/lv is normal  and excellent, so its completion is normal  and by [Hu-Ly, 4.4] 
Iv is formally geometrically irreducible [Hu-Ly, 3.6], so [Hu-Ly, 2.9] implies that 
nn-d+(r-1)t~ ~ ~,,vj = 0 for n - d  + (r - 1 )  > dim Rv - 1 .  This inequality reduces to 
dimR/P > d -r .  Hence dimg HT-n+~"-I)(R) < d - r  and we are done. 
(4.4v) If A is a complete intersection, 2d, a(A) = 1 and 2~,a(A) = 0 for all i < d. 
Indeed, H~(R)= 0 i f / # :  n - d ,  so the spectral sequence E~ ' q =  H~(H'](R))~ 
HP,,+q(R) shows that i , - a  H.,(HI (R)) H~-a+i(R). Hence ~ . - a  = H,.(H~ ( R ) ) = O i f i # d  
and H~(HT-a(R)) = H"m(R). 

Question 4.5 Is it true that 2d, a(A) = 1 for all A? 

Finally, it is worth point ing out that if V is a scheme of finite type over the complex 
numbers  C and A is the local ring of V at a closed point  qe  V, then 2p, i(A) are 
related to the singular topology of V in a neighborhood of q. For  example, it 
follows from [O, 2.3] and  [Ha4, IV.3.1] that if q is an isolated singular point  of V, 
then 2o.i(A), for all i < d imA,  equals the dimension of Hiq(V, C) as a complex 
vector space, where Hiq (V, C) is the i-th singular local cohomology group of V with 
support  in q and with coefficients in C. 
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