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Summary. We consider two equivalent density concepts for the unit disk that 
provide a complete description of sampling and interpolation in A -" (the Banach 
space of functions f analytic in the unit disk with (1 - I zl z)" If(z) [ bounded). This 
study reveals a 'Nyquist density': A sequence of points is (roughly speaking) a set of 
sampling if and only if its density in every part of the disk is strictly larger than n, 
and it is a set of interpolation if and only if its density in every part of the disk is 
strictly smaller than n. Similar density theorems are also obtained for weighted 
Bergman spaces. 

1 Introduction and main theorems 

In this paper we introduce a notion of density that enables us to describe com- 
pletely what we call sets of sampling and interpolation for Bergman type spaces on 
the unit disk. There appears in these results a critical density that resembles the 
familiar Nyquist density. We reveal thus a basic similarity between spaces of 
bandlimited functions and Bergman type spaces, not recognized in previous treat- 
ments on decomposition and interpolation problems for such spaces [5, 11, 1, 
12, 3]. We find also a corresponding resemblance with Bargmann-Fock type 
spaces, in view of the papers [14, 15]. 

A main inspiration for this research are two theorems of Beurling for band- 
limited functions [2], or more precisely, for the Banach space of functions of 
exponential type at most a, bounded on the real line. We say that a discrete set of 
real numbers is a set of sampling if the associated restriction operator has 
a bounded inverse, and that it is a set of interpolation if the interpolation problem 
associated to the set has a solution for all bounded sequences of complex numbers 
(we adopt here Landau's terminology from [-10]). Roughly speaking, Beurling 
proved that a discrete set is a set of sampling if and only if its density in every part 
of the line is larger than a/g, and a set of interpolation if and only if its density in 
every part of the line is smaller than a/K; here 'density' in an interval means the 
number of points in the interval divided by its length. These two theorems give, in 
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a remarkably precise manner,  meaning to the engineers'  not ion  of the Nyquist  
density. 

The natural  counterpart  in the unit disk to Beurling's class of bandlimited 
functions is the L ~ version of the weighted Bergman space, i.e., the Banach space 
A -" (n > 0), which consists of all func t ions fana ly t i c  in the open unit  disk U with 

IIfti = iif[[, = sup(1 - I z i2 ) " l f ( z ) i  < ~ .  
ze~U 

We say that a sequence of distinct points F = {zj} is a set ofsamplin9 for A - "  if 
there exists a positive constant  L such that 

life[ __< Lsup(1  --[zjI2)"[f(zj)[  
J 

for a l l f~  A - ' .  If for every sequence { a t } for which { (1 - I zj ]2 ), at } is bounded,  there 
is a n f ~ A - "  withf(z~) = a t for all j, we say that F is a set of interpolation for A -". 
We shall focus our  at tent ion on A - ' ,  leaving the last section of the paper for some 
remarks on the corresponding L z problems. The L 2 density theorems are not less 
interesting, bu t  their proofs rely on our work on A -" or on arguments very similar 
to those used for A-".  

Let now 

p(z, ~) = ~ , 

which is the pseudo-hyperbolic distance function on U. We say that a sequence 
F = {zl } is uniformly discrete (or separated) if 

6 = inf p (z j, Zk) > 0. 
j + k  

For  a uniformly discrete set F = {zj} and  �89 < r < 1, let 

2 log - -1  
D(F, r) = I/2<I~i<~ Iz~l 

1 
log 1 - r 

For  every z ~ U, we form a new sequence 

r 

The lower and upper uniform densities of F are defined, respectively, as 

D -  (F)  = tim inf infD(Fz,  r) 
r ~  1 z ~ U  

and 

D § (F)  = lim sup sup D (F~, r). 
t ~ 1 Z~U 

Our  main theorems are given below. Besides the connect ion to Beurling's work, 
Theorem 1.2 appears as a natural  counterpart  to Carleson's interpolat ion theorem 
for H ~ [4]. 
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Theorem 1.1 A sequence F of  distinct points in U is a set of  sampling for A -n if and 
only i f  it contains a uniformly discrete subsequence F' for  which D -  (F ' )  > n. 

Theorem 1,2 A sequence F of  distinct points in U is a set of  interpolation for A - "  i f  
and only i f  F is uniformly discrete and D + (F) < n. 

An interesting example of a 'typical' sequence F is the following. For  a > 1, b > 0, 
let F denote the image of {aJ(bk + i)}j, ke z under the Cayley transform of the upper 
half-plane to the unit disk. Then, using the results of [13], it is easily verified that 

2~ 
D -  (F) = D + (F) - bloga"  

This is an analogue of the standard sampling sets (multiples of the integers) for 
band-limited functions. [-13] was in fact the first paper clearly suggesting the 
above-mentioned resemblance between spaces of bandlimited functions and 
Bergman type spaces. 

One may define the uniform densities in a slightly different manner, that makes 
the connection to Beurling's density concept more transparent. For  each z, let nz(r) 
denote the number of points from Fz contained in the disk [ (1 < r, and put 

r 

Nz (r) = ~ n~ (z) dz. 
0 

The hyperbolic area of the disk 1([ < r is a(r) = 2r2(1 - rE) -1 (suitably nor- 
malized). If we put 

A(r) = i a(p)dp, 
0 

we easily find that 

and 

D -  (F) = lira inf inf Nz(r) 
,~1 ~ v  A(r) 

Nz(r) 
D+(F)  = lim sup sup A(r) " 

r ~  l z6U 

Beurling's approach suggests that we should consider nz (r)/a(r). The reason that it 
is natural to divide averages instead, is that the main contribution to a(r) comes 
from points that lie 'close' to the boundary of the disk; this gives rise to an 
instability which is removed by taking averages. 

It is a relatively simple matter to verify Theorem 1.1 using Beurling's method of 
proof from [2]. The most difficult part is to prove Theorem 1.2. The crucial 
ingredients in our proof of this theorem are, in addition to Beurling's techniques, 
the following. We prove (see Sect. 3) that our density concept is equivalent to one 
based on Korenblum's description of the zero sets for A -" [9], and we improve (see 
Sect. 4) Korenblum's main theorem concerning the zero sets. 

2 Preliminaries 

In this section we describe some notational conventions and introduce some tools 
to be used in the proofs. 
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We let 

I I / I r l l  -- IIflFII,  = sup(1 - Iz l2)" l f (z) l .  
z~F 

For any sequence F, L(F) = L(F, n) will denote the smallest number L such that 

Ilfll _-< Lll fIFll  

for a l l fe  A -". F is consequently a set of sampling for A -" if and only if L(F) < oe. 
If F = {z~ } is a set of interpolation for A-" ,  a standard argument based on the 

closed graph theorem [8, p. 196], shows that the interpolation can be performed in 
a stable way. This means that there exists a positive number M such that for every 
bounded sequence {a j} we can find f e A-"  with f ( z j ) =  (1 - I z / 2 )  -" aj for all j, 
and 

Ilfll < MII f IF t l .  

The smallest such M is denoted M(F)  = M(F, n), and we put M(F)  = ~ if F is 
not a set of interpolation for A-"  

We recall the transformation rule of the Bergman kernel: 

(1) (1 - ~ ( ( )  ~ ( z ) ) -  2 ~ ' ( z )  ~ ' ( ~ )  = (1 - ~-z)-  2, 

~b a M6bius self map of U; z, ~ arbitrary points in U. Using (1) with ~ = z, we see 
that the transformations 

( T~ f)(z) = ( Tc f)(z)  = ( ~' (z))" f ( cl)(z)), 

act isometrically in A-". This M6bius invariance implies immediately that 
L(F) = L(q,F) and M(F)  = M(~F) ,  and it will permit us to transfer our analysis 
around an arbitrary point z to 0. 

An important feature of A-"  is the following compactness property: If { fk } is 
a sequence in the ball 

{ feA-" : l l f l [  < R}, 

then there is a subsequence {fk, } converging pointwise and uniformly on compact 
sets to some function in the ball. This is immediate from the definition of A-"  and 
a normal family argument. 

A sequence Qj of closed sets converges strongly to Q, denoted Qj ~ Q, if 
[Q, Q~] ~ 0; here [.,.] denotes the Hausdorff distance (with respect to pseudo- 
hyperbolic distance) between two closed sets. Q1 converges weakly I to Q, denoted 
Q~--~Q, if for every compact set D, (Q3 c~ D) ~ (30 ~ (Q c~ D) u aD. 

Following Beurling, for a closed set F, we let W(F) denote the collection of 
weak limits of the sequences ~F ,  �9 ranging over the M6bius self-maps of U. The 
compactness property and the M6bius invariance of A-"  make W(F) an important 
tool in our analysis; as in [14], we find that most of Beurling's arguments 
concerning W(F) can be carried over to our situation. 

The following lemma will play the role that Bernstein's theorem does for 
bandlimited functions. 

Note that in this definition we have eliminated an obvious error in Beurling's notes. Unfortu- 
nately, the same error appears in [14], where a corresponding correction is required. 
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Lemma 2.1 For f e A - "  we have for S(w) -- (1 - Iwl2)"f(w), 

I S ( z ) l -  IS(~)l I ~ u(p(z, f f ) ) l t f l l ,  

we have 

(2) (1 -Izjl2)~lf(zi)l 2 ~ C(&) ~ (1 -IzlZ)~-21f(z)12dco(z) 
z j ~ S  S + 

where 

u(r)= mln { ( l - r 2 )  - " - l + ( r / p ) ( 1 - ( r + p ) 2 ) - "  
0 < p < l - - r  

Proof We consider 

S~(w) = (1 - lwI2)"(Tc~J)(w) = (1 - lwlZ)"f~(w), 

where r is the M6bius t ransformation that interchanges 0 and (, 1.e., 

( - z  
�9 ~(z) = 1 - ( z  

Observe first that ]S(z)l = [S~(O~(z))l, in view of (1) and the fact that r is in- 
volutory. Thus, 

I I S ( z ) l -  [S(G)I I = I Is~(r - I&(O)l I < IS~(,t,r - s~(o)[ 

=< (1 -- (1 -- p(z, ())")lfc(@;(z))[ + [fc(tb~(z)) --fr 

From this the result follows by an application of Cauchy's formula. [] 

Note that u(r) = O(r) as r ~ 0. 
Let Ao" denote the class of functions f for which 

( 1  - IzlZ)"lf(z)l--0 

as Izl ~ l; it is easily seen that Ao" is a closed subspace of A-" .  We may as well 
consider sets of sampling and interpolat ion for Ao";  a sequence of distinct points 
{z~} in U is said to be a set of interpolat ion for Ao" if for every sequence {aj} for 
which (1 - Izj[Z)"lajl ~ 0 as [zjl ~ 1, there is a n f ~  Ao" withf(zj)  = aj for allj .  We 
may replace the numbers  L(F) and M (F) by the corresponding numbers  for A o", 
which we denote by Lo(F) and Mo(F). It is then easy to check that all that was said 
above is also true for Ao".  

Bruna and Pascuas proved that the sets of interpolat ion for Ao" and for A - "  
are the same [3]. This follows from an argument  based on the fact that A -" is the 
second dual of Ao" [16]. We shall at a certain stage find it convenient  to make use 
of this result. (It may likewise be proved that the sets of sampling for Ao" coincide 
with the sets of sampling for A-" ,  but  this will not  be needed.) 

The following simple fact will be used repeatedly. Let co denote Lebesgue 
measure on C, and for a domain  S c U, let S + = {z: p(z, S) < 6}. I f f i s  analytic in 
S + and 

6 = inf p(zj, zk) > O, 



26 K. Seip 

whenever s > 0 (both sides may  be infinite). This is easy to see, e.g., as a conse- 
quence of the Cauchy-Schwarz inequali ty and the following reproducing formula, 

f(z) = C(6, s) ~ (1 - ~-z)-~f(~)(1 - l~12)~-2d~o((); 
p ( z , O < ~  

for z = 0 this formula is a consequence of the mean value theorem, and for general 
z it follows from this special case by a change of variables by a M6bius  self-map of 
the unit  disk. Note  in par t icular  that  (2) yields the est imate 

l~ < C(6) S ( 1 -  IfflZ)-ldog(~). (3) 
z j~S  [z" I j S +  

3 An equivalent density concept 

In this section we introduce another  way of measuring density, based on Koren-  
blum's  descript ion of zero sets of functions in A-" .  We shall prove that  this density 
concept  is equivalent to that  in t roduced above. 

F o r  an arbi t rary  finite subset F of the unit circle OU, let {Ik} denote the set of 
complementary  arcs of F. We put  

~ I lk l / ' ,  2n + 1 ) ,  
~ ( F )  = k2k, 2 n - n ~ ' ~  / 

which is called the Carleson characteristic of F. The normal ized angular  distance on 
~U is defined by 

]t - s + 2nk] d(e it, e is) = min 
k ~ Z  7"r 

For  a finite set F c t?U and parameters  0 < a < 1/2, l < q, define 

Gv;q ,a={z~/ -7 :  1-]zl>=adq(~z[,F ) ,  I z ] > ~ } .  

F o r  a sequence of points  F from U we put  

1 
az(r, q, a) = • logl-  ~ ,  

and define 

and 

m~- (ct; q, a) = inf (a~(F, q, a) - crY(F)) 
F 

m + (a;q, a) = sup (az(F, q, a) -- a~(F)). 
F 

The lower and upper uniform Korenblum densities are then 

D~ (F)  = sup { a: inf m;- (ct; 1, a) > - oo } 
z 
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and 

D~ (F) = inf{a: sup m + (~; 1, a ) <  + ~ }. 
z 

It is easy to see that these definitions are independent  of a. 
Korenblum's  not ion of ~c-area suggests that there is a close connection between 

our two density concepts. The ~c-area of a measurable set S ~ U is 

1 r dco(z) 
KA (S) 

~ 1 - I z l '  

We observe that 

1 
m r ~  ~cA({lz[<r}) l O g l _  r 

while on the other  hand, we easily verify that 

(4) ItcA(GF;1,a)- t~(F)[ < C, 

C independent  of F. 
We now prove: 

Proposition 3.1 I f  F is uniformly discrete, we have D ~ ( F ) = D - ( F )  and 
D;, ( r )  = o + (r ) .  

Proof To see that D -  (F) > D~ (F) and D + (F) < D~ (F), let F consist of N equi- 
distant points on dU. Then ~(F)  = l o g N  + 1, and we see that GF;I,, contains the 
disk Uu = {[zl < 1 - (C/N)}, with C a constant  depending on a. We also find that 

sup~cA(Gv;1,~\Uu) < ~ ,  
N 

and therefore, by (3), that 
1 

log ~ < C, 
zj E Gp, 1,a\ U~ 

With C depending only on 6 and a. Thus the estimate holds for all Fz, C indepen- 
dent of z. Hence, 

D(F~, 1 (C/N)) tTz(F, 1, a) _ _ _ _  + O ( ( l o g N ) - l ) ,  
~(F) 

from which the stated inequalities follow. 
We next prove that D - ( F )  < D~ (F). Let c~ = D -  (F) and for any e > 0, let r be 

so large that 

(5) D(Fz, s) > ot - e 

for all z and s > r. Choose also a sufficiently small a > 0 so that for each F and each 
~OGF;I,a, I~1 < 1, we have 

(6) P(~, Ge;1,1/4) > r; 

it is easy to check that this is possible. 
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Consider an arbitrary F, fix z, and put  {zj } = F~ c~ GF;1,a. Let 

/ k  1 + r \  
r k =  tanh~ ~ l ~  r )  -- 

k a nonnegative integer, so that 

1 - -  r ~  k 
1 - \ ~ /  

l - -  r ~  k' 

l + \ l + r J  

(8) 

Let 

(7) P ( rk ,  rk + 1 ) ~--- r .  

We put  Ak = {rk < [~1 < rk+2}, k = 0, 1, 2 . . . . .  and correspondingly we define 

fk(~) = 1--[ Z j - - ~  

We apply Jensen's formula tofk in the disk [(I == rk+l: 

1 2~ 
loglzjl = ~ log Iz~l + ~ ! loglA(r~+,e,O)laO. 

zj~A~, z~Ak(~ A k -  I r k +  1 

Jk(x) = {0: rk+ 1 e '~ ~ 6F~ 1,x }. 

From (8) we deduce that 

1 
(9) ~ log?T 5 > [Jk(1/4)[(c~ -- e)[log(1 -- r)[ -- C [ J k - l ( a ) ] ,  

zj~Ak+ I 0 Ak 

with C depending on 6, but  not  on r. Here we have applied (5) to those points 
rk+le  ~~ in the integral in (8) with O~Jk(1/4);  this is possible by (6) and (7). One 
arrives then at (9) after checking that 

1 
log ~ 1 < C I J k - l ( a ) ] ,  

r k +  1 zjeAk(3 Ak-  1 

which is a consequence of (2). 
Note next that 

1 r 1 + rk + 1 
(10) l o g ( 1 - - r k ) - - l o g ( 1 - - r k + l ) = l o g  - - r - - l ~  I + r k  

Hence, upon summing (9) over k, we obta in  

trz(F;1, a) > (o: - e) tcA(Gv;a,x/4)  - C[log(1 - r ) l - l ~ A ( G v : l , a )  - C', 

C' depending on a, and thus on r. In  view of (4), this implies 

trz(F;1, a) > (ct - ~ - C(6)]log(1 - r ) l - ~ ) ~ ( F )  - c(5, r). 

Since the estimate is independent  of z, we conclude that D -  (F) < D~ (F). 
We follow the same pattern in order to prove that Dt~ (F) > D + (F). Choose r so 

large that 

(11) D ( F z ,  s) <= ~ + 
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for all z and s > r. Let a be as above, and make the same definitions with one 
exception: Now {z~} = Fz ~ GF;1,1/4. Jensen's formula applied to fk as above is 
again our  start ing point: 

1 2~t 

(12) ~ loglzj l  = ~, log Iz~l + 2n~ ! l~176 
zj~Ak zj~Ak O Atr 1 r k + l  

Apply  first (11) to those points rk+ ~ e i~ in the integral  in (12) for which 0 z Jk(a). 
We see that  we also need a bound on the contr ibut ion to [fk(rk+te~~ from those 
points zj for which p (z j, rk +~e ~~ > r and p (zi, rk+ 1 e~~ < 1/2. To treat  the points 
for which p(zj ,  rk+~e ~~ > r, put 

S ~ = { ( : p ( ( , w ) > r , t ~ l <  I w l + r  } 
' = 1 + [ w l r  ' 

and check by direct computa t ion  that  

(13) ~ (1 - p((,  w))(1 - / f f [ 2 ) - e & o ( O  < Co, 
Sw,r 

Co an absolute constant.  This can be done by t ranspor t ing w to 0, so that  we get 

(1 - p(C, w))(1 - 1~12)-2&o(0 _-< ~ (1 - ICI) -~d~(O,  

where Sr = {~: Iffl > r, I~ -- ~ 1  < aUI}- It is easy to show that  the latter integral 
is bounded  by a constant  which does not  depend on r. Applying (2) in an 
appropr ia te  way, we find by (13) that  

1 
~ log rfk(rk+~eiO)ldO > -- Jk(a)((C~ + e)llog(1 -- r)l + Cb + C), ~ 

J a} 

where C corresponds to the contr ibut ion from the points for which 
p(z~, rk+~e ~~ <= 1/2; this bound depends on 6. 

As to the integral  a long the remaining part, J* = OU\Jk(a) ,  an elementary 
computat ion,  using (6), gives 

1 ~ loglfk(rk+le~O)ld 0 >= _ C l J d l / 4 ) [ ( 1  - r)(log(1 - rk) -- log(1 -- rk+Z))- 
2n S~ 

We sum (12) over  k, use (10), and obta in  

a~(F;1, a) <= (~ + e + C[log(1 - r ) I - ~ ) K A ( G v ; L , )  + C', 

C' depending only on a, and hence, 

a~(F;1, a) < (c~ + e + C(6)]log(1 - r ) l -1)s2(F)  + c(6, r). 

The estimate is independent  of z, and so O + (F) < D~ (F). [] 

4 A density theorem for zero sets 

In this section we add an argument  to Korenb lum's  analysis in [9] in order  to 
obtain a sharp density theorem for the zero sets for A - "  
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We first recall Korenblum's theorem [9, p. 192]: For F (a sequence of not 
necessarily distinct points with no accumulation point in U) to be the zero set of  
a function in A -", it is necessary that m~ (~; 1, a) < oo for all cl > 2n, and sufficient 
that m~ (ct; 1, a) < oo for  some ct < n/2. We prove now that the latter condition can 
be sharpened to read ~ < n. More precisely, we prove the following (to make our 
result fit into the rest of our exposition, we disregard the points close to 0, which are 
of no interest in any case). 

Lemma 4.1 Let  F be a sequence o f  not necessarily distinct points from the annulus 
�89 < Izl < 1. Then if m~-(ct;1; a ) <  ~ ,  we can, for every q > 1, find an analytic 
function g vanishing on F with g(0) = 1, and 

Ig(z)l < C(q, m~ (cq 1;a))(1 - Iz[) -q~- 

Proof  The lemma is proved by modifying Korenblum's proof of the sufficiency 
part of Theorem 1 in [9, p. 192]. 

Korenblum's starting point is the assumption that m~- (c~; 1; a) < oo (which is 
the condition (T,) in his terminology) and that q > 2. He then constructs (see Sect. 
3.5 in [91) a function g as required by our lemma. We show now that Korenblum's 
proof can be modified to work when assuming q > 1 instead of q > 2. 

Consider Korenblum's proof that his functionfdefined by (3.5.2) in [9, p. 198] 
satisfies condition (ii), i.e., the growth estimate 

I f (z) l  _-< C(1 - I z l )  -q=. 

Let/~ denote a finite part o fF ,  and for every z s U, put ( = z/Izl, G~ = G{(};q, a. Let 
a < 1/4 and define 

, ,  C j + z ~  
S(z) : exp ~ toglzj ( ~ -  z ; '  

zj ~ Y zj ~ G~ 

where (j = zJ[zj]. Korenblum shows that 

- '  [ I  z i - z  < e x p { C 1  S ~ (1--LzJ[)2"~ 
(14)  [ S ( z ) ]  ~j~F 1 - -  ~ z  = ;,'~a: I(j - 212 J' 

and he proves that the right-hand side is bounded by a constant whenever q > 2. 
The idea is now to multiply the left-hand side of (14) (and thus f )  by a suitable 

auxiliary function in order to deal with the expression on the right-hand side. To 
this end, put 

1 
wj = (1 + (1 - I z j l )~Kj ,  

and introduce the function 

v(~) = ~ Iwj - zl 2' 

v(z) is well-defined in U, in fact subharmonic there, since m~ (~; 1, a) < oo implies 
that 

(15) ~ (1 - Izj[) 1 +~ = C(e, m~ (~; 1, a)) < 
J 
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for every ~ > 0 (see [-9, p. 193]). A straightforward computation shows that 

2~ dO 1 
< C(1 - I z j I ) 2 - ~ ,  

[ w j  - r e  ~~ 12 = 

C an absolute positive constant, and thus 

2n 1 
lim S v(rei~ dO < C ~  (1 - Izjl)2-~. 
r ~ l  0 j 

By (15) and the assumption that q > 1, the function 

u(z) = r~llim ~ ! P(z, rei~176 

(P(z, ~) denotes the Poisson kernel) is therefore a harmonic majorant of v(z) in U. 
It is easily verified that 

(1 -Izjl)  2 
(16) ~ < CEV(Z), 

C 2 a positive constant depending on a. We replace the function f(z), defined by 
(3.5.2) in [9], by the function 

O(z) = f(z)exp --lrim ~ -  ! ~ ~ v ( r e  '~ - v(re i~ dO , 

with C1 as in (14) and Cz as in (16), and see that our job is to estimate 

{ -- C r } 
[-S(z)] -1 I ]  z j -_z  lim,~l,~2 S ~ v ( r e i O ) d O  

=jEr 1 - zjz exp r--l 0 re -- z 

instead of the left-hand side of (14). In view of (14) and (16), this expression is 
bounded by 1. 

The rest of the work needed to obtain g as a limit of the functions 0 (modulo 
a constant depending on m~- (~; 1, a)) is verbatimly as that done by Korenblum in 
Sect. 3.5 in [9], to which we refer for details. [] 

5 Proof of Theorem 1.1 

We first make a simple observation. 

Lemma 5.1 Let F and F' be two sequences of distinct points from U. Then 

I L ( r ) - '  - L ( r ' ) - '  I _-< uI [ r , r ' ] ) .  
Proof This follows from Lemma 2.1 (see Theorem 2 in [2, p. 344]). [] 

An immediate consequence of this lemma is the following. 

Lemma 5.2 I f  F is a set of samplin O for A-",  then F contains a uniformly discrete 
subsequence that is also a set of sampling for A-".  

In the sequel, we therefore assume that F is uniformly discrete. 
We turn to the proof of Theorem 1.1. 



32 K. Seip 

Proof of the necessity. Put  a = D -  (F), and assume L(F) < ~ .  Let ej -~ O, and pick 
a sequence of points zj such that 

(17) D(F~j, r~) < ct + ~j, 

with, say, rj > 1 - ej. For  each zi, put  F~j = F i = {z~ j)}, and construct a new 
sequence of points F)  = {(~J)} by letting 

~ i )  = Iz~J)f + 60 z~J) 
1 + 6olz~,J)l Iz~J) I' 

where 6o > 0 is chosen such that U(6o)L(F) < 1. By Lemma 5.1, this implies that 

L(F) 
(18) L(r~) < < ~ .  

= 1 - L(r)u(6o)  

An elementary computa t ion  shows that 

(19) D(F'j, rj) < (1 -- 6o)D(Fj, rj) + CIlog(1 - rj)1-1. 

On the other hand, consider the function 

1 (~J) - z 

fAz)= ~I i ( i i ) l l_( ( f l )z .  
I(~) I < ,., 

We have II fj II -> 1, and 

IIf~Lr)ll < e x p  2 l o g ~ - n l o g  . 

Thus, by (19), (18), and (17), we have 

(1 - 6o)(~ + ej) + Cllogej1-1 > n, 

C depending only on L(F) and 60. Since ~j ~ 0, we have proved that c~ > n. [] 

Proof of the sufficiency. We first note that if every Fo ~ W(F) is a set of uniqueness 
for A-" ,  i.e., f(z) = 0 for all z~Fo  and f ~ A - "  imply f =  0, then F is a set of 
sampling for A -". This follows by an argument  based on the compactness property 
(see the proof of Theorem 3 in [2, p. 345]). 

We assume then that c~ = D - ( F )  > n. Pick an arbitrary Fo = {~k} ~ W(F), and 
suppose there exists an f ~ A - "  with f (~, )  = 0 for every ~, ~ Fo. We may assume 
that 0 r Fo and f(0)  = l. Since 

D - ( F o )  > ~, 

it follows that 

D(Fo, r) >_ ~t - e, 

e = �89 - n), for all sufficiently large r. But then, by Jensen's formula, we have 

1 
sup log [f(rei~ > (n + e)log t 

0 --?" 

for all sufficiently large r. This con t rad ic t s f~  A -", and so Fo is a set of uniqueness 
for A -". Since Fo was arbitrary, we conclude by the first observation that F is a set 
of sampling for A-" .  [] 
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6 Proof of Theorem 1.2 

We first note the following. 

Lemma 6.1 Every set of interpolation for A - "  is uniformly discrete. 

Proof Let {aj} be a sequence with [ajt < 1, and l ak[ -  [am[ = 1 for some given 
k and m. Then the inequali ty 

1 = la~ - aml = I S(zk) - S(z,,)l < M({zj})u(p(zk, zm)), 

deduced from Lemma 2.1, yields the result. [] 

In proving the necessity par t  of the theorem, we will make  use of Bruna and 
Pascua 's  result that  the sets of interpolat ion for A - "  coincide with those for Ao" .  
We collect first a few auxil iary results 

Lemma 6.2 F j ~  F implies Mo (F) < tim inf Mo (F j). 

Proof We may assume that  the r ight-hand side is bounded,  and even that  
sup ]Mo (F  j)] < oo by picking an appropr ia te  subsequence. The result then follows 
by the compactness  property.  [] 

Lemma 6.3. Let F = {zk} and F ' =  {z~,} be uniformly discrete sets such that 
p(zk, Z'k) <= h for each k, where Mo(F)u(h) < 1. Then 

I M o ( r )  -1  - M o ( r ' ) - 1 1  _-< uth). 

Proof The proof  is a slight modificat ion of the proof  of Lemma 2 in [-2, p. 351], 
where Lemma 2.1 is used instead of Bernstein's theorem. We omit the details. [] 

Thus, in particular,  we have 

Mo(r) 
(20) Mo(F')  <= 

1 - Mo(F)u(h)" 

We remark that  the contents of Lemmas  6.1 and 6.3 were also verified in [3] 
(Theorems 9 and 8) by some other (less direct) arguments.  

Fo r  a certain technical reason, we shall need to consider the following not ion of 
Beurling's. F o r  z ~ U, let 

/~o(Z, F)  = sup (1 - [z]2) " If(z)I,  
f 

where f r a n g e s  over those functions f e  A o" for which f ( 0  = 0, ( e  F, and [[ f H < 1. 
The following analogue of Lemma 3 in [-2, p. 352] is in our context trivial. 

Lemma 6.4 Mo(F) < oo implies #o(Z, F) > 0 when z (~ F. 

Lemma 6.5 For Zo (~ F, we have 

1 + 2Mo(F)  
Mo(r u {Zo})_-< 

~o(Zo, F )  

Proof. We assume, by M6bius  invariance, that  z0 = 0, and proceed as in the proof  
of Lemma 4 in [2, p. 353]. [] 
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Lemma 6.6 Given 60, lo, and n, there exists a positive constant C = C(6o, lo, cr such 
that if Mo(F) <~ lo and p(z, F) > 60, then 

l~o(Z, F) > C. 

Proof As the proof of Lemma 8.4 in [14] (which is a slight modification Lemma 5 
in [2, p. 353]; here it is crucial that we work in Ao" and not  in A-") .  [] 

One part of the proof of Theorem 1.1 can now be completed. 

Proof of the necessity. Put  u = D + (F), and assume Mo(F)  < ~ .  Let ej ~ 0, and 
pick a sequence of points z~ such that 

(21) D(F~j, ri) > ~ - ej, 

with, say, rj > 1 - ej. For  each zj, put  Fzj = Fj = {z~)}, and construct a new 
sequence of points F~ = {(~)} by letting 

1 - 6 o l z ~ l  I z ~ l  ' 

where 6o > 0 is chosen such that U(6o)Mo(F) < 1. An elementary computat ion 
then shows that 

(22) D(F'~, rj) > (1 + 6o)D(F~, r i) - C[log(1 -- r~)[ -1 

On  the other hand,  by Lemma 6.6 and the choice of 6o, we can find a function 
fi ,  vanishing on F~ c~ {[zl > e}, with fj(0) = 1, and 

(1 -Iz[2)"lf~(z)l  < C, 

C depending only on Mo(F) 6o, and ~. Jensen's formula in conjunct ion with (21) 
and (22) then yields 

(1 + 6o)(C~ - ej) - C [ l o g ~ ) l - I  < n. 

We let ej ~ 0, and conclude that ~ > n. [] 

Proof of the sufficiency. Put  u = D+(F) and ~ = �89 - c 0. Since D~ (F) = D+(F), 
we may for each Zk ~ F construct  a function gk with the properties: 

gk(Zk) = (1 --Izkl2) -"+~, 

gk(Zj)=O, j ~= k, 

la~(z)l < C(1 - I z 1 2 )  - '+~, 

C independent  of k. This is an immediate consequence of Lemma 4.1 and the 
M6bius  invariance. The interpolat ion problem is then solved explicitly by the 
formula 

(11 -- ~---~ / (23) f(Z) = ~ ak(1 -- IZdZ)"-~gk(Z) 

where s > 1 + e. To see t h a t f ~ A - " ,  we observe that 

If(z)[ < sup {(1 - IzklZ)"lakl}(1 -- IZIZ) -"+~ ~ (1 -- Izjl2) ~-~ 
j l1 - ~ z l  ~ 
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by the uniform bound on the functions gk. In order  to estimate this sum, we recall 
that  for 1 < t < s, we have 

(24) 5 (1 -- Izl2)'-2d~o(z) < C(1 - [~12) ' - s  
I1  - ~ z l  ~ = 

(see Lemma 4.2.2 in [18, p. 53]). Thus, by (2), we have 

< e l l  _ 
t l  - r  ~ = 

C depending only on 6. We conclude that  

(1 - Izl2)"lf(z)l <= Csup  {(1 - Iz~lZ)"ta~l}, 
k 

which is the desired estimate. [] 

7 L 2 density theorems for sampling and interpolation 

We may now with some extra effort obtain similar density theorems for the 
weighted Bergman spaces. These results should be compared  with the theory of 
nonharmonic  Four ier  series; see [17], and in part icular  [7]. It is remarkable  that  
our  description in terms of densities is complete (as it was for the Bargmann-Fock  
space in [14, 15]), while for the Paley-Wiener  space the necessary and sufficient 
density condi t ions do not  coincide, and correspondingly there is a rich theory of 
Riesz bases of complex exponentials.  

Define for each n > 0 the weighted Bergman space, 

A -n'2 = { f a n a l y t i c  in U: ~ If(z)12(1 - I z l2 )2"- ld~o(z )  < ~ } 
u 

(we use this somewhat  unusual nota t ion  to obta in  a natura l  correspondence to 
Korenb lum's  work). We say that  a sequence of distinct points  {z~} of U is a set of 
sampling for A - " ' 2  if there exist positive constants  K1 and K 2 such that  

(25) K1 ~ [f(z)]Z(1 - [z[2) 2"-1 dco(z) < ~, tf(zj)[2(1 - [zj[2) 2"+1 
u j 

< K2 ~ ]f(z)12(1 - Izl2)Z"-X dco(z) 
U 

for eve r y f ~  A -" '  2. {zj } is a set of  interpolation for A - " '  2 if for every sequence {a j} 
for which { ( 1 - [ z j l 2 ) " + � 8 9  z, there exists a function f ~ A  -n'2 such that  
f ( z j )  = aj for a l l j .  

Our  theorems are the following. 

Theorem 7.1 A sequence F of distinct points in U is a set of  sampling for A - , , z  if and 
only if it can be expressed as a finite union of  uniformly discrete sets and it contains 
a uniformly discrete subsequence F' for which D -  (F')  > n. 

Theorem 7.2 A sequence F of distinct points in U is a set of interpolation for A -"' z if 
and only if F is uniformly discrete and D+ (F) < n. 

The main difficulty consists in proving the sufficiency of the condi t ion in Theorem 
7.1. This proof, which rests on an appl icat ion of Theorem 1.1, will be given in detail  



36 K. Seip 

below, but we start by indicating how the other statements follow from previous 
results and the arguments used above. Note that the "M6bius invariance" of A -"'  2 
is provided by the isometric transformations 

f(z) ~ (~'(z))"+ ~ f (  q~(z)), 

which for A-" '2  play the role that the transformations T~ do for A-" .  

The necessity part of Theorem 7.2 The fact that a set of interpolation is uniformly 
discrete is well known (see [12]). The rest of the proof follows along lines very 
similar to those of the proof of the necessity part of Theorem 1.2; we omit the 
details of making the necessary modification. 

The sufficiency part of Theorem 7.2 It is relatively easy to see that (23) solves the 
interpolation problem for A-"" 2 as well; the technique of estimation is a variant of 
that used in A - "  case and in fact the same as that of the proof of Theorem 1.2 in 
[13], where the details can be found. 

The necessity part of Theorem 7.1 It is easy to see that a set of sampling can be 
expressed as a finite union of uniformly discrete sets; see Lemma 7.1 of [14]. It is 
likewise easy to adopt the proof technique of Lemma 7.2 of [14] in order to see that 
a set of sampling will contain a uniformly discrete set that is also a set of sampling. 
The rest of the proof can be performed essentially as the proof of the necessity part 
of Theorem 1.1; again, we omit the easy details. 

The sufficiency part of Theorem 7.1 The basic ingredient in the proof is a formula 
which we deduce from Theorem 1.1. It is an analogue of Beurling's linear balayage 
operator [2, p. 348-350]. 

The difficulty consists in verifying the left inequality in (25), since the right 
inequality holds trivially by the assumption that F is a finite union of uniformly 
discrete sets. We may assume that F is uniformly discrete and that ~ = D -  (F) > n. 
Then by Theorem 1.1, F is a set of sampling for Ao ~"+~), where, say e = (c~ - n)/2. 
This means that the linear transformation 

T f =  {(1 -Iz~12)"+~f(zj)}zj~r 

is a bounded invertible mapping from Ao t"+~) onto a closed subspace of the 
sequence space co (i.e., the closed subspace of l ~ of sequences {wj} for which 
wj ~ 0). Denote this subspace by ao. Then any bounded linear functional ~b on 
Ao t"+~) induces a bounded linear functional on ao by 

q~(~) = q~(T-1 r 

with ]] ~ II < K II ~b I]. For  each ~ ~ U, let q~r denote the normalized functional of point 
evaluation at ~, i.e., 

qS~(f) = (1 --l~12)"+~f(r 

Trivially, LI ~b; 11 = 1. By the above reasoning, and since the dual space of Co is P, 
there exists for each ~ a sequence of numbers {gj(~)} such that 

(26) (1 - [ ( [ 2 ) , + , f ( ~ ) =  ~ (1 -[z~[2)"+~f(zj)gj(()  
zj~F 
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with 

(27) ~ Igj(~)l =< K. 
J 

In fact, if we apply  (26) to the functionf(z)((1 - 1(t2)/(1 - Cz)) s, s an arbi t rary  real 
number,  we obtain the more general formula 

(28) ( 1 - l ( 1 2 ) ' + ~ f ( O = ~ ( 1 - [ z j l )  f ( z j  ~ gj((). 
J 

It is possible to improve the convergence of (28) even more. Fix an arbi t rary  
positive number  c, and define for each ~, 

{ 1 (1- 1(12)(1 ~jzjl2)~. 
Ar zser: p(zj, O > ~ ;  tgj(Ol>c I 1 - ~ g l  2 J 

It is clear that  A~ satisfies the Blaschke condi t ion so that  we may apply  (28) to 
B~(z)f(z), where B~(z) is the Blaschke product  associated with A~, a n d f e  Ao ("+~). 
Thus 

( 1 - l ( 1 2 ) " + ~ B ~ ( ( ) f ( O = ~ ( 1 - i z j l Z ) " + ~ f ( z j  1 - ~  Or(() 
J 

where 

0~(0 = Bdzjgj(0.  

Note  that  for p(zi, () < 1, we have 

4 . . ( 1  - 1(12)(1 - I z j l~ ) ,  

since by (1), 

( - zj 2 (1 - 1(12)(1 - tzjl 2) 
(29) ~ -- 1 - 

l1 E ( I  2 

So for all j we have 

C independent  of (. Observe also that  by (29), the definition of A~, and (27), 

IBdG)I > C, 

C independent  of (. We have therefore 

r  (1--1(l~)"+V(O=Z(l--lzjl~)"+V(zx)('l--I~-I~hi(O, 
s - ( z s )  

where h j (()  = 0j(O/B~(O, and the following estimates: 

(31) ~ IhA01 _<_ c,  
i 
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and  

(32) Ihj(()[  < C (1 - 1 ( 1 2 ) ( 1  - Izjl2) 

I1 - ~ ( I  2 

(30) holds  for funct ions  in Ao  <"+~. However ,  since Ao <"+') ~ A - " ' 2  is dense in 
A -" '2,  it is now easy to see tha t  (30) is in fact val id for a l l f ~  A -" '2  

(30) seems interes t ing in its own  right. It is an  a l ternat ive  to an  expans ion  based 
on  the  theory  of frames [-7, 6]. No te  tha t  in [13] we ob ta ined  a s imilar  bu t  more  
explicit formula  by the  calculus of residues. F o r  our  present  purpose  we could have 
m a d e  it wi th  s = 0, bu t  we find the formula  interest ing enough  to write d o w n  this 
general  version. 

We  apply the Cauchy-Schwarz  inequal i ty  to (30) wi th  f ~  A - " '  ~, yielding 

1 -I~_12 2 S l h j ( ( ) l ~  Ihk(()l. ( 1 - l ( [ 2 ) 2 < " + ~ ) l f ( ( ) l Z < f ~ ( 1 - l z j l 2 ) Z < " + ~ ) l f ( z j ) 1 2  1 -  (zj 
j k 

F o r  h i ( (  ) in  the  first s u m  we use  the  e s t i m a t e  (32). Hence ,  in  v iew of(31) ,  we o b t a i n  

/'1 - -  1~'1212s-2e 
(1 - - [ r  ~ C Z ( 1  _ [zj[2)2n+l+Ze t'(z ~ 2 . . . . .  

W h e n  n o w  i n t e g r a t i n g  ove r  U, we m a k e  use  of  (24). T h u s  we c h o o s e  s so t h a t  
2s - 2e > - 1 to  o b t a i n  the  des i r ed  n o r m  es t imate .  
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