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Summary. Some generalizations of the Lusztig-Lascoux-Schfitzenberger operators 
for affine Hecke algebras are considered. As corollaries we obtain Lusztig's isomor- 
phisms from affine Hecke algebras to their degenerate versions, a "natural" inter- 
pretation of the Dunkl operators and a new class of differential-difference 
operators generalizing Dunkl 's  ones and the Knizhnik-Zamolodchikov operators 
from the two dimensional conformal field theory. 

Table of contents 

0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411 
1 Affine Heeke algebras and the Intertwiners . . . . . . . . . . . . . . . . . . .  413 
2 The Lusztig-Lascoux-Sch/itzenberger operators . . . . . . . . . . . . . . . . .  417 
3 The unification, some examples . . . . . . . . . . . . . . . . . . . . . . . .  424 

Introduction 

The first aim of this paper is to consider natural vector versions of the Lusztig 
operators [Lu3] and the Lascoux-Schfitzenberger operators [LS1, LS2] and 
calculate (in the scalar case) the representations of the corresponding affine Hecke 
algebras in which these operators act. The key point of this calculation is equival- 
ent to some form of the main theorem from [Ka]  (we give a new more simple proof 
of it.) As corollaries one obtains Lusztig's isomorphisms between affine Hecke 
algebras and their degenerate (graded) versions [Lu l l  and a natural construction 
of the Dunkl differential-difference operators [Du, H e l l  together with their trigon- 
ometric counterparts close to Heckman's operators [He2]. The second aim is 
a unification of the Dunkl and the Knizhnik-Zamolodchikov operators from [Chl, 
Ch 2] taking the vector analogue of the Lusztig operators as a basis. Given a root 
system 27 c R n and a representation of the corresponding Weyl group 
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W c Aut(R"), we define a new commutative family of differential-difference 
operators generalizing both the Knizhnik-Zamolodchikov and the Dunkl 
operators. 

Several preliminary points on affine Hecke algebras and the intertwining 
operators are worth mentioning. The intertwiners play a very important role in the 
theory of p-adic representations of unramified principal series. The latter are 
directly connected with the representations of the corresponding p-adic affine 
Hecke algebra ~f' which are induced from characters of the so-called Bernstein- 
Zelevinsky commutative subalgebra ~J c ~vf. Here ~ depends on a parameter q 
which is a power of prime p. However it is quite natural to assume q to be an 
arbitrary complex number, because the defining relations for ovf depends on 
q algebraically. In several papers (see [Ma, Ka, Ro]) explicit formulas were used for 
the intertwining operators between the representations induced from conjugated 
characters with respect to a natural action of W on ~J. For example, they were 
useful to Rogawski in making more lucid the Zelevinsky theorems on p-adic 
representations of GL,  [Ze]. These intertwiners can be considered as elements of 

satisfying the Coxeter relations of W. The last fact was not formulated in the 
above papers, but follows directly from them (see [Lu l l  and e.g. [Ch 3], where the 
case W = 6 ,+  1 was considered). 

As a consequence one gets an isomorphism rc between q/[ W] (the semi-direct 
product of ~ and C [ W]) and ~'~ after some localization of ~J. This isomorphism is 
useless for the most interesting (special) representations of ovf because of this 
localization. Nevertheless, it can be applied to obtain a certain map without 
denominators from ~ to its degeneration ~ ' .  

The relations for ~r in the case W =  6,+1 were found for the first time by 
Murphy (see [-Mu]). She defined a commutative subalgebra in C [ 6 ,  + 1], closely 
connected with the so-called Young's bases for 6 ,  + 1, and calculated the cross- 
relations between its generators and the adjacent transpositions. It was shown in 
[Dr] (see also [Ch 4]) that her subalgebra is the image of the counterpart ~ '  c ovg' 
of ~J with respect to a canonical surjection ovf' ~ C [ 6 ,  + 1 ]. Drinfeld defined ovf' for 
W = 6 ,  + i as a certain limit of ~ ,  when q ~ 1. 

Drinfeld's construction can be extended naturally to arbitrary Weyl groups W. 
Lusztig gave the general definition of ~vg' (which he called the graded affine Hecke 
algebra) in papers [-Lul, Lu2]. The analogues of the above intertwiners can be 
easily calculated for ovg' and coincide with the formulas from the paper [-Ch 5] 
devoted to the W-invariant quantum R-matrices. By the way, the Matsumoto- 
Rogawski formulas for the intertwiners are closely connected with the basic 
trigonometric R-matrix (in Jimbo's form). 

In [-Ch 3, Ch 4] and some other papers it was shown by means of the technique 
of intertwiners that the classification of the irreducible representations, the theory 
of Young bases, the character formulas and some other points are quite parallel for 
gt ~ and ~vf, when W = ~,+ 1 and q is generic. It is now possible to explain this 
coincidence a priori .  

After some localization we get an isomorphism re': ~f'~oc :~ q/~oc [ W] in the same 
manner as zc. The semi-direct product ~ ' [  W] of ~J' and C [ W] can be identified 
with q/[  W] after a suitable completion of ~ and qr Then the composition map 

= rco 0r') -1 will be an isomorphism between ~r Yf' both localized and com- 
pleted. It follows from [Lul ]  that the completion (without any localization) is 
enough to define ~. This completion is compatible with the category of finite- 
dimensional representations. 
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Independently, analogous isomorphisms were obtained in [Ch2] for 
W = 6 ,  + 1 as a result of some direct calculation of the monodromy matrices for the 
generalized Knizhnik-Zamolodchikov equation on J4, ~'. It was mentioned there 
that the final formula (an expression of generators of Yg in terms of these of oug ') can 
be considered independently of its monodromy interpretation and can be directly 
extended to arbitrary Weyl groups W. 

Summarizing, we have the following approaches: guess and check formulas for 
n: Jgcor, pl ~ ~'compl without any preliminary theory, use the intertwiners (as was 
explained above) or calculate some monodromy representation. A fourth possibil- 
ity is to use the Lusztig-Lascoux-Schfitzenberger operators (see Sect. 2). 

Another part of this paper (Sect. 3) is connected with the following construction. 
It was demonstrated in [Ch 1, Ch 2] that one can define some kind of Knizhnik- 
Zamolodchikov equations for arbitrary classical W-invariant r-matrices. The latter 
are certain quasi-classical limits of the quantum W-invariant R-matrices from 
[Ch 5] (see also [Ch 1]). These two notions for W = ~,+1 are equivalent respect- 
ively to the ordinary concepts of r-matrices and R-matrices from the Soliton theory 
(Faddeev, Sklyanin et al.). Some r-matrices of type D, were introduced by Sklyanin 
for certain integrable equations with boundary conditions. 

We consider our version of the Lusztig-Lascoux-Schfitzenberger operators as 
a certain quantum R-matrix (with a new type of dependence on the spectral 
parameter). The quasi-classical limit of these operators of the first kind (connected 
with ~ ' )  gives the family of Dunkl operators [Du, He2]. The operators of the 
second kind (for ~ )  produce some family of "trigonometric" operators, which are 
close to Heckman's ones [He l l  but do not coincide with them. 

We note that the origins of all these operators are in the Bernstein-Gelfand- 
Gelfand and Demazure difference operations [BGG, De]. The Laplacians defined 
for the Dunkl and Heckman operators are conjugate to the Schr6dinger "rational 
and trigonometric" operators from the quantum theory of the Calogero-Moser and 
Olshanetsky-Perelomov integrable systems (see e.g. [HO]). Our trigonometric 
operators have the above property as well. Another application is connected with 
Macdonald's q-analogues of the Jacobi polynomials. The corresponding property 
of Heckman's operators (to be self-adjoint with respect to some form) holds good 
for our operators as well. 

The main point of this paper is a common definition for both the Knizhnik- 
Zamolodchikov and the Dunkl operators (together with their trigonometric ana- 
logues) on the basis of the general form of the Lusztig-Lascoux-Schfitzenberger 
operators. It gives birth to many interesting algebraic and analytical questions in 
the theory of Hecke algebras. Moreover, this construction should be connected 
with some (maybe new) quantum groups. The corresponding quasi-classical limits 
are expected to yield a new kind of r-functions. 

1 Affine Hecke algebras and the intertwiners 

Most of the following facts are known. Nevertheless we prefer to give the proofs, 
because they are short and either new or useful for Sect. 2. The main references are 
[Ma, Ka, Ro, KL, Lul,  Lu2, Ch3]. 

Let 2; = {e} c R" be a root system of type A,, B . . . . . .  G2, and let s, be the 
orthogonal reflections in the hyperplanes (e, u) = 0 with respect to the canonical 
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euclidean form (,) on R" ~ u. Later o n ,  {(~1 . . . . .  (~n} ~ 2; will be the simple roots for 
some fixed Weyl chamber, Z+, Z_ the sets of all positive (a > 0) and negative 
(a < 0) roots and Wthe Weyl group generated by the reflections sl = s,, (1 < i _< n). 

The length of w e W( the length of the reduced decompositions of w with respect 
to sl . . . . .  s,) will be denoted by l(w); l(id) = 0. Let C [W ]  = (~wCw be the group 
algebra of W. We assume (,) and the action of W to be extended C-linearly to 
u ~ C  n. 

Throughout this paper we fix arbitrary q', q"e C and h', h"~ C and put q~ = q' 
or q", ha = h' or h" respectively for short or long e. We also set q i=  q,,, 
hi = h ~ ( 1  __< i __< n). 

Definition 1.1 (see [Ma, Lul ] )  (a) The Hecke algebra H is generated over C by 
T1 . . . . .  T, with the following homogeneous relations of degree m 

Ti Ti, Ti  Ti . . . . .  Tv  Ti  Ti, Ti . �9 �9 (m factors on both sides), (1.1) 

where m = m , ,  is the order of sisv,  1 < i, i' < n, 

( T i + l ) ( T i - q i ) = 0 ,  q i = q ' .  (1.2) 

(b) The affine Hecke algebra o f  is generated by o f  and { Y,, e e 2;} satisfying 
the following relations (1 N i <__ n) 

T ~ Y ,  - Y~,(,)T~ = ( q , -  1)(Y~,(~,) - Y , ) ( Y ~  - 1) -~ , (1.3) 

[Y~, Y/z]=0,  cqfleX, Y~+a--- Y~YtJ,  (1.4) 

def dcf 

where the latter holds for ct + fie 2; w {0}, Yi = Y~,, Yo = I, the r.h.s, of (1.3) is 
a polynomial of { Yi, Yi- i }. 

(c) The degenerate affine Hecke algebra of' is obtained by adding pairwisc 
commuting {y~, ~ e 2;} with the relations 

siy~ --  ys,(~)sl = hi(ys,(~) - Y~)/Yi  = - 2hi(e, ~i)/(ai ,  e l ) ,  (1.5) 

def 
where Y~+t~ = Y~ + Yp for ~ + f l ~ Z ~  {0}, Yi = Y~,, Yo = 0, to H'  = C[W] .  

def 
Let C(Y), C(y) be the quotient fields of the ring of polynomials C [ Y ]  = 

def 
C [ Y,, ~ e X l, C [ y] = C [y , ,  ~ �9 2;], and of,  o f '  be generated by H and C(Y) or 
respectively by H '  and C(y). The algebras of ,  o f '  are well-defined and contain of ,  
o f '  because of the decomposition 

o f  = @ w ~ w C E  Y ] T w  = $ w ~ w  T w C E  Y ]  , (1.6) 

and the analogous decomposition for o f '  with w instead of Tw (see [Lul,  Proposi- 
tion 3.7]). Here 

T w = T i , . . . T i ,  if w = s i , . . . s i ,  for l= l (w )  (1.7) 
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depends only on w owing to (1.1). We note that (1.6) and its counterpart for o~eg ' can 
be deduced directly from formulas (2.9)-(2.12) below. But one has to prove 
independently that (2.9)-(2.12) give a representation of ~ or ~t ~ in this way. This is 
not difficult. Another way is to use q~i and q~i below. For some questions (e.g., for 
q'q" = 0) it is convenient to replace C[ Y] by C [ Y~, a ~ 2;_ ] in the definitions. To 
do this we multiply (1.3) by y - 1 .  

There is the action 

w(Y~)= Yw(~), w(y~)=  y~,~), ~ Z  , 

of the Weyl group W~ w on C [ Y] and C [y]. Note that GT= ~ Cyl can be identified 
with our basic C" in a natural way. Then CI-y] is nothing else but the symmetric 
algebra of C" with the usual induced action of IV. 

Proposition 1.2 (a) The elements 

�9 , =  T,+(q~--I)/(Y,-1)~9~, l < i < n ,  (1.8) 

satisfy the relations 
~i Y~ = Ys,(~)~i, OrES . (1.9) 

(b) The elements rbw = q)i, �9 �9 �9 ~q ,  where w = si, �9 �9 �9 si,, l(w) = l, have the following 
properties 

�9 ~ Y ,  = Y~t,)ebw, c ~ Z ,  (1.10) 

-- @w~wC(Y)~w = @~,~w4~,~C(Y). (1.11) 

(c) The element ~b~ does not depend on the choice of  reduced decomposition of  w: 

Ow~w, = ~ ,  i f  l(ww') = l(w) + l(w') . (1.12) 

(d) Properties (a), (b), (c) hold good for ovg' with Yi replaced by Yl and eP i by 

q S ~ = s i + h i y [  -1, 1 <i<<_n. (1.13) 

The proof can be found in [Lul,  Sect. 5]. The particular case of A, (to be more 
precise, of the root system for GL,  + ~) was considered in [Ch 3, Sect. 3]. Statements 
(a), (b), (c) are close to the corresponding (slightly weaker) properties of the 
intertwiners from [Ma, (4.3.2)] and [Ro]. For the sake of completeness we will 
prove the proposition briefly (the proof from [Lul]  is somewhat different). 

Formulas (1.8), (1.9) are nothing else but relations (1.3). Let us introduce the set 
{q%} for some choice of the corresponding reduced decompositions of elements 
we W (now we do not worry about the uniqueness). Then (1.10) is quite clear. 
Assertion (1.11) can be easily deduced from (1.6) by induction. The only thing we 
need for this is the set of decompositions 

~ = T~ + ~, e~, T~,, (1.14) 
W' 

where P~, ~ C(Y), w, w '~  W, l(w') < l(w). To prove (c) we will use the following 

Lemma 1.3 (a)The algebra C[Y]  coincides with its centralizer Z C [ Y ] =  
{ Z ~ I [ Z ,  C[Y]]  = 0} (see [ C h 3 ] f o r  GL,+~). 

(b) The centre of  Yg is the algebra C[ y]W of  W-invariant polynomials in C[ Y] 
(due to Bernstein). 

(c) The above statements hold good for  C(Y) = ~ and for 9~', 9~'. 
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Proof Let Z = ~ , ~ w Z , ~ c b w c Z C ( Y )  c ~  and Z w * 0  for some w 4 : i d  (see 
(1.11)). Then PZ - Z P ,  0 for P~C(Y)  such that w ( P ) ,  P, because of (1.10) and 
(1.11). The proof of (b), (c) is of the same length (see [Lu 1] for (b)). [] 

It results from (1.10) that ~ , ~ ,  = ~ww.P for some PeC(Y) .  However ~w~" 
and ~ ,  for l(ww') =l(w)+ l(w') belong to the same affine space 
Two. + (@s~W T~C(Y)), where l(s) < l(ww') by virtue of (1.14) together with defini- 
tion (1.7). Hence P = 1 because of (1.6). Thus, we have got (1.12). As for Jq', the 
proof of (a), (b), (c) is the same. [] 

Let us fix a pair M ~ m of maximal ideals M c C[Y],  m c C[Y] w (Me Specm 
C [ Y], m e Specm C [ y-jw, where Specm means Spec maximal). The corresponding 
homornorphisms C[  Y] --* C[Y]/  M --* C, C[y] w --* C[y]W /m ~ C will be denoted 
by ZM, Z,,. For  all elements from ~ and almost all elements Z ~ ~ it is possible to 
define "the right value" of Z at M. 

Z(M) = ~ TxzM(Zw), where Z = ~, TwZw , 
~a w 

(1.15) 

Z,~eC(Y), we W, Z(M)eH.  The set of all M where Z is well-defined is open in 
Specm C[Y]. The analogous pairs M D m and the same definition (1.15) will be 
used for ~f~'. 

Definition 1.4 Let IM = Indc~r] ZM be the universal ~ff-module generated by the 
representation ZM of C [ Y] (see e.g., [Ma, Ka, Ro]). As a H-module it is canonically 
isomorphic to H with the left regular action (A(B)= AB for A, Bel l ) .  The 
,,~ff-module structure of IM can be uniquely determined by the relations 

def  
Y,(1) = zM(Y,) = Y,(M), c~eZ, l e H  ~- I~ .  

The analogous definition can be given for Jig' and H'  = C [ W]. 
The Weyl group W acts on M and Z = XM in the following way: 

Y~(Mw) = ZM,~(Y~) = (W- I(;0)(Y~) = z(Y~(~)) = Y~t~)(M), (1.16) 

where ~eE,  we W. Note that M~w, = (M~)w, for w, w'e W, (ww') (Z) = w(w'(z)). 
The ideals Mw, w e W, constitute the set of all maximal ideals over m (i.e., contain- 
ing m). The same holds for ~,~'. We will fix M and denote I~t,~by Iw (lid = IM). 

Proposition 1.5 (See e.g. [Ro])  (a) The action of the center C[Y]  W c YF on each Iw 
is scalar and induces the above homomorphism Xm. 

(b) Every irreducible representation U of ~ with the action of C [ y]W (it should 
be scalar) via )~r~ is a quotient-module of some Iw. 

(c) Given Iw, Iw,, there is a non-trivial ~-homomorphism I~ : Iw ~ I~,. 
(d) All the irreducible constituents of each Iw with the corresponding multiplicities 

(i.e. the composition factors) coincide with those of l i d  = IM" 
(e) These statements hold good for ~ ' .  
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Proof  The action of C [  y]W on I s H ~ Iv, is via Z,,. By definition, 1 generates lw 
as H-module .  Hence, the centre acts on Iw by Z,,. As for (b), U is to be finite- 
dimensional.  Indeed, elements of C [ Y ]  w act on U as some scalars, since U is 
irreducible and ~ is finite-dimensional over C [ y]W. Therefore there is at least one 
eigenvector Uo of C [  Y] in U, corresponding to some character  Zu~. The map  
1 --+ Uo gives the required h o m o m o r p h i s m  Iw -+ U. We have checked (a)-(b). State- 
ment  (c) results from 

Lemma 1.6 Given M, w, there is a one-dimensional family M (v) o f  maximal ideals in 
C [  Y], analytically dependin9 on a parameter v e C, which is close to O, such that 
m(o)  = m and the function vkq)w(M(v)) (see (1.15)) has a non-zero value ~ s H for 
some k s Z. Then the map 

1M, "~ H ~ A  ~ A ~ w s H  ~ 1~, M'  = Mw-1 , (1.17) 

is a 2,~-homomorphism. It  is true for H'  as well. 

Proof  It  is enough to prove (1.17) for M '  = M(v), ~ ,  = ~bw(M(v)), v +- O. Concern- 
ing the H-act ion,  the s ta tement  is clear. Therefore one has to check the following 
relation only: 

Y~(~w) = ZM,(Y~)~w in IM.  (1.18) 

Let us use (1.10) and (1.16): 

Y,(@~) = ( Y~w)(M) = ( ~  Yw- ,M (M) = q~w( rw-,c,)(M)) 

= ~w(M) Y~(M') = Y~(M')cI,,,(M) = Y~(M')cbw. = Z ~ , ( Y ~ ) ~ .  

The existence of M(v) is evident because ~w is well-defined in some open subset of 
Specm C [ Y]. [] 

It  is sufficient to prove (d) for w = s~(1 < i < n). There are three possibilities for 
cb~, f rom L e m m a  1.6. It  is invertible and therefore has to give an i somorphism 
between lid and I~, if Y~(M) ~ q~-~ or q~ = 1. Otherwise ~s,(M) is to be propor-  
tional to 

Ci + = Ti + 1 or Ci- = Ti - qi �9 (1.19) 

Then cb~,(s~(M)) is propor t iona l  to C~- or C~ + respectively. The corresponding 

o~r I~d ~ I~, ~ lid satisfy the following relations: 

ker(/~) = im(#') ,  ker0z')  = im(# ) .  

Really, { A S H ,  AC~ = 0} = I-1C~. Thus, ker ( /~)O(I id /ker (#) )  -~ ker(/~')@ 
(Is,/ker(#')).  It completes  the proof  for ~ .  The case of a f '  is quite analogous.  [] 

2 The Lusztig-Lascoux-Schiitzenberger operators 

We preserve the notat ions  of  Sect. 1. Let us fix a representat ion v : H --+ End V for 
some C-space V or respectively v : H '  = C [ W] --+ End V and introduce the space 
V ~ = C [ Y] | c V (or V ~ = C [ y]  | c V). We will denote P @ v by Pv for P s C [ Y], 
C [ y ] ,  v e  V. The algebra C [ W ]  x H acts on V ~ in a natural  way ( W o n  C [  Y] and 
H on V via v). We will identify v(A) x 1 with v(A) for A s H and 1 x w with w e W. 
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Similarly, V ~ for C [ y ]  can be considered as a CI-W] x H'-module. We will keep 
the same notations in this case. 

Theorem 2.1 (a) The representation Indff V (the universal ~ -modu le ,  generated by 
the above H-module V) is isomorphic to V ~ as a C-vector space and can be uniquely 
determined by the formulas (cf [Lu 1, 3.12]) 

T ~ 1 7 6  l < i < n ,  (2.1) 

yO(p)  = y~p,  where P c  V ~ ~ Z ,  (2.2) 

and X ~ is the image o f  X ~ o~ in End V ~ 
(b) The analogous o~'-module I n d ~ ' V  is isomorphic to V ~ as a C-space and 

satisfies the following defining relations (cf [Lul,  4.41) 

s o = slv(si) + hi(y~ - 1 (si - 1), i < i < n ,  (2.3) 

yO(p) = y,p,  for  p c  V ~ eeS ,  . (2.4) 

(c) The homomorphism ~ ~ X -* X ~ e End V ~ and the corresponding one for  H both 
are injective. 

Proof  Formulas (2.2), (2.4) are valid by definition. It results from (1.3) that the 
relations 

[T~  r , ]  = (qi -- 1)( r  ~ -- 1) -1 ( r ,  - s ,(Y,))~ 

hold good in End V ~ The operators 

A i : P  ~ --* [T~  P~ Ai = pO ---} ((1 - si)(P))~ , 

acting from C[ y]o~  pO to C[ y ]o .  W = End V ~ both satisfy the main property of 
derivatives 

A ( P ~  ~ = P~176 + A(P~ ~ P, Q ~ C[ Y] .  
Hence, 

At = ( q , -  1 ) ( y O _  1)-1 j ,  
and 

T~  Pv) = (T~ (si( P)v  ) 

= [ r ~  s, (p)O] (v) + s,(P)~ 

= {s iv(Ti)+ ( q i -  1)(Y ~ - 1)-1 ( s i -  1)} (Pv) 

for arbitrary P e C [ IT], v e V. The proof of (b) is the same. 

Lemma 2.2 The elements rp, and q~i(1 < i < n) f rom (1.8) and (1.13) act on V ~ as the 
operators 

rP ~ = (v( Ti) -t- (qi - 1)(]I/~ - 1)- l)si ,  (2.5) 

q)O = (v(s~) + h~(y~ - 1)s~ . (2.6) 

It results from the lemma that ~po = Fww for w e IV, where Fw 4:0 belong to 
v ( H ) ' C ( Y ) ~  Hence, 4~ ~ are commuting with any elements from 
W = 1 x I,V c End V ~ Since w are linearly independent over v(H)" C(Y) ~ the 
same holds good for { q~o}. Hence, the homomorphism o~ ~ X --, X ~ is an embed- 
ding (see (1.11)). [] 
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Corollary 2.3 The operators given by formulas (2.1)-(2.4) take V ~ into V ~ and satisfy 
relations (1.1)-(1.4) and the corresponding relations in ~,~'. 

This corol lary was proven directly in the case of one-dimensional  V by Lusztig 
[Lu3]  and  for A, by Lascoux-Schfitzenberger (see [LS1, LS2], where the root  
system of G L ,  + 1 wi thout  the affine relation was considered). As far as I know, Ka to  
was the first to explain the formulas from [-Lu3] by means of the construct ion of 
Theorem 2.1 for one-dimensional  V (see also [KL]) .  

Till the end of this section we will consider only one-dimensional  V+, though 
several subsequent  s tatements  can be extended to general V. By definition, for 
l < i < n  

v + ( T i ) = q /  or v + ( s / ) = l ,  (2.7) 

v _ ( T / ) = -  I or v _ ( s / ) = -  l . (2.8) 

The  formulas  f rom Theorem 2.1 respectively for ~ and ocg' look as follows 

T ~ + 1 = (q, - yo)  ( yo  _ 1)-1 (s, - 1), (2.9) 

- (T  ~  1)(qiY ~  ~  - I  for v _ ,  (2.9a) 

T ~ _ q / =  (q, y O _  1)(Y~ _ 1 ) - ~ ( s / _  1), (2.i0) 

- (T  ~ + 1) = (s, + 1)(q, - yO)(yO _ 1)-1 for v+ (2.10a) 

s o + 1 = ( h / -  y ~ 1 7 6  1), (2.11) 

- (s o - 1) = (s, + 1)(h/+ yO)(yO)-i  for v_ , (2.11a) 

s o - 1 = (h /+ yO)(yO)-i ( s , -  1), (2.12) 

- (s o + 1) = (st + 1 ) ( h i -  yO) (yO)-i  for v + ,  (2.12a) 

where (2.9) is equivalent  to (2.9a) and so on, 1 < i < n. 
def 

Let h' = 1 = h", q' - 1 = 6', q" - 1 = 6", C[)7] = C [ y ]  |  the alge- 
bra of formal  power  series of 6', 6" with the coefficients in C [ y ] ,  and let ~ '  be 
generated by ~ '  and C [ [ 6 ] ] .  Due  to Drinfeld [Dr ]  one should substitute q~' for Yi 
to obta in  ~r f rom ~r 

Corollary 2.4 (see [Lu l ,  Sect. 9])  After the formal substitution Y~ = q~' = 1 + 
t ~ i Y i  q -  . . . E C[y], where 6~ = 6' or 6" for  short or long ~g(1 < i < n), the pairwise 
equivalent formulas 

Ti + 1 = ( q i -  q/Y')(1 - yi)-l(q~ ' -  1)-1 y,(s ~ + 1), (2.13) 

T / -  q, = (s o - l)(q~ ''+1 - 1 ) (y /+  1)-1 (q~ ' ' -  1 ) - l y / ,  (2.13a) 

T / -  q / =  (q~,,+ x _ 1)(y, + 1 ) - '  (q~' - 1)-1 y/(s o _ 1), (2.14) 

T~ + 1 = (s o + 1)(q, - q~")(1 - y,)-~ (q[' - 1)- ~ y,, (2.14a) 

where s o are respectively from (2.11)-(2.12a), give two homomorphisms from 9~ with 
undetermined q', q" into ~ ' .  l f  q', q" are not roots o f  unity they induce an equivalence 
of the categories of  finite-dimensional representations of  ~ and ~ ' .  

The proof  is in combining (2.9)-(2.12). [] 
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Formula  (2.14a) is in fact from [ L u t ]  (see 5.1). An analogue of (2.13), (2.14) (with 
more  complicated multipliers) was obtained in [Ch 2], in terms of q~o, ~bo from (2.5), 
(2.6). Without  going into detail we will give another  application of (2.9)-(2.12). 

Corollary 2.5 Let  us introduce one more affine Hecke  algebra f g  with generators 
{ Ti, Yi, 1 < i < n} for c~'= (q,)k', ~,,__ (q,,)k", where k', k " ~ C .  Then the formal 
substitution ~'i = Y~i'(ki = k' or k" for short or long ~i) together with one of  the 
following four sets o f  formulas 

T, + 1 = (qk, _ rk,)(q, __ y , ) - l ( y k ,  _ 1)-~(y, _ 1)(T, + 1), (2.15) 

L - q~' = (Ti - q,)(qk, yk, _ 1)(q, Y~ -- 1) -1 (yk, __ 1 ) - l (y~  _ 1),  (2.15a) 

L -- qk, = (qk, yk,__ 1)(q,Y, -- 1) -1 (yk, _ 1)-1 (y ,  _ 1)(T, - q,) ,  (2.16) 

7 ~, + 1 = (T, + 1)(q~' - Yk')(qi -- y~)- l(yk,  __ 1)-1( yi _ 1) (2.16a) 

induces a homomorphism from ~ to some extension of  W or its representation in 
which the functions of  Y from the r.h.s, o f  (2.15) and (2.16) are well-defined. In 
particular, it is so i f  either q', q" are not roots o f  unity or Y~, . . . , I1, act as some 
operators with Spec Yi ~ qi f  Or all i (resp. Spec Yi ~ q;- l). For k', k" ~ N the localization 
of  ~"  by the elements ( yk, _ 1)(YI -- 1)- 1, 1 < i < n, is the required extension. In all 
these cases (2.15) is equivalent to (2.15a) and (2.16) to (2.16a). 

Now we will start to calculate the W-module  V ~ for V = V,, e = + ,  v = v, (see 
(2.7), (2.8)). Put  

Q+ = Y', Tw, Q -  = Z ( -  1)'('~ 
wEW w~W 

qw = (q')l'(w) (q,,)r'(~) , 

where Wo is the element of the maximal length, l'(w) (or l"(w)) is the number  of si~ for 
short  ~i~(or respectively for long ~ )  in the reduced decomposit ions 
w = s i~ . . . sq ( l  = l (w)= l ' (w)+  l"(w)). The well-known defining properties of Q_+ 
are as follows: 

C ? Q • 1 7 7  I ) Q + ,  (2.17) 

where 1 _< i < n, Cfi are from (1.19). 

Definition 2.6 (a) A W-module  J is called v-special o f  type e = + ifdimc(Q~J) = 1 
and d is generated by ("the space of v,-spherical vectors") Q~J as a W-module  or, 
equivalently, as a C[Y] -modu le .  The same definition is for ovt ~' and 
Q• = ~ + w (  + 1) t<~~ 

clef 

(b) A character  z : C [ Y ]  + C  is called v:-special if, firstly, W(~) = {we W, 
w(z) = X} is generated by elements in {s~ . . . . .  s,} c~ W(Z) (i.e. X is special in the 
sense of [Ro, Sect. 4]). Secondly, for q: + 1 

z(Y:) is forbidden to be equal to q~, where we have identified +_ and + 1. 
As for W' ,  the last condit ion has the form X(Y:) + e for ~ > 0. 

Lemma  2.7 A v:-special J has only one non-zero irreducible quotient-module. The 
latter is also v~-special and is o f  multiplicity one in J as an irreducible constituent. 

Proo f  If a :  J + U + {0} is a surjective W - h o m o m o r p h i s m  and U is irreducible, 
then U is generated by 6(QeJ ) = Q~ U. Hence, U is vcspecial. 
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Let N = kera ,  N 75 N '  c J be a oUf-submodule. Then N + N '  = J(U is irredu- 
cible) and N ' / ( N c ~ N ' ) ~ _  U. Therefore Q , N ' + - { 0 }  and Q,J  = N '  because of 
d i m c ( Q j )  = 1. But Q~J generates J. We see that  N '  ~ N. If there is another  
v~-special irreducible const i tuent  in J, then it has to be in N and Q , N  +- {0}. This is 
impossible. [] 

L e m m a  2.8 Suppose a o~-module J to contain an eigenvector u z o f  C [ Y] (or C [ y ]  
for  3/g') with a v~-special character Z. I f  ~b = w(z) is v~-special for some w e  W, then 
there exists an eigenvector u~ e J for t) generating the same ~,~-submodule of  J as u z. 

Proof  It  results f rom (1.18) that  

r , (  ~w(M)ux) = ZM,( r , )(  r , (2.18) 

where s e E ,  Z = ZM, M '  = Mw-~, ~w is from L e m m a  1.6 for w e  W. Following the 
p roof  of  L e m m a  1.6 one can easily show that  for every v~-special ff which is 
conjugated to )~ there is w e  W such that  ff = w(z) = ZM, and 4~w is invertible. 
Really, we can find w = si , . .  �9 si,, where all rbil(M), ~i~(M,, ), q)~3(M~,, , , )  and so on 
are invertible. [] 

Let V ~ be defined for V =  V~, e =  +_, m be a maximal  ideal of C [ Y ]  w 
( m e S p e c m C [ y ] w ) .  Our  aim is to calculate V ~ = V ~  ~ The latter is a 9 f -  
module  because of L e m m a  1.3(b). 

Proposition 2.9 The module V ~ is v~-special. The set o f  its characters coincides with 
that o f  arbitrary 1M, M ~ m, and is equal to {w(zM), w e W}. 

Proof. Let us construct  a family m ( v ) e S p e c m C [  y-jw, depending on small v eC ,  
such that  m ( 0 ) =  m and re(v) are in a general position. The latter means that  
W(Z) = {id} for each Z = ZM, where m e m e S p e c m C [ Y ] ,  and z ( Y ~ ) +  q~a for 
arbi t rary  ~t e 1; (see L e m m a  1.6). Then every V~ for v + 0 is irreducible. Indeed, it 
is linearly generated by its eigenvectors, which all are simple. Moreover ,  the set of 
the corresponding characters is W-invariant. Therefore the existence of eigen- 
vectors results directly f rom the following well-known 

L e m m a  2.10 Let  C ~ EndcK,  K = C N, be a commutative subalgebra. Then 
K = G K ; ,  where )~ runs over the set of  all characters of  C, 

K f  = ( x e K ,  (c - )~(c))Px = 0 for all c e C }  

Here K ;  = Kxz. I f  C = C(0), where subalgebras C(v)e E n d c K  are commutative and 
depend continuously on small v e C, then K ~  = lim~o(|  when X(V) runs over 
all the continuous characters of  C(v) with z(O) = Z. 

For  generic m(v), v +- O, o V,,to) is isomorphic to H with the left regular action as 
a H-modu le  because of the irreducibility of V,,to). Hence, dimc(Q, V~ = 1 for 
v :I: 0. It  is clear, that  dimc(Q~ V ~ has to be equal to 1 or  less. But V ~ is generated 
by Q, v ~ since it is so for v ~ Hence, V ~ is v~-special. []  

The  only non-trivial  par t  of our  calculation is 

Proposition 2.11 Every induced representation IM with special )~ = )~M has only one 
eigenvector with respect to X and possesses only one non-zero irreducible quotient- 
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module. I f  Z is v~-special, then IM is vcspecial as well. The analogous holds true 
for  ~ ' .  

Proof  As for ~ff, the second statement is from Theorem 2.4 [Ka]  (the p-adic case 
was considered by Muller). Close results can be found in papers by Casselman, 
Kato,  Steinberg et al. on cyclic vectors and spherical functions in p-adic representa- 
tions (see [Ka]  for some references). We will give a short proof "without calcu- 
lations" based on the Lusztig-Lascoux-Sch/itzenberger operators. The reduction of 
the first statement to Lemma 2.12 below is due to [Ro]. 

Given special X = ZM, let us include M into some family M(v) from Lemma 1.6 
in a general position (see above). By Lemma 2.10 we obtain that 

clef 

(IM)~ = H x = @wCTw, we  W(Z). Note that H x is generated by its subalgebras 
Hx p, where Hz p is the algebraic span of Ti for ~i from the p-th connected component  
ap of the suset {~i, st e W(Z)} in the Dynkin diagram. Moreover H x -~ ~pH~.  Let us 
suppose, that dimc(IM)) > 2. Then one can find an element C~ uP e H~ such that 
YR(U p) = U p for ~k e trp and some p. Indeed, if C ~ u e (IM)), then there exists a com- 
ponent uj ~ C (for some p) in the decomposition u = ~ j ujaj, where uj s H~ and the 
elements aj e l ip '  �9 p H~' are linearly independent. We have Yk(U) = ~ i Yk(Uj)aj for 
(z k ~ O'p. Hence, u p = uj is the required element because of the independence of {t~j}. 
The existence of such u p contradicts the following key 

Lemma 2.12 Let  q' 4:1 ~ q", ~ = ZM~ = Z1, where zI(Y~) = Yi(M1) = 1 for  any 
1 < i < n. Then the induced ~ - m o d u l e  I1 = IM~ is irreducible and dimc(la)zx~ = 1. 
The same is true for  ~ ' / f  Z(Yi) = O for 1 < i <_ n. 

Proof  Let us first consider ~ff' and V~ = V ~  ~ for the ideal m = m o  generated 
by all homogeneous elements from CI-y] w of deg > 0 (by definition deg y~ = 1, 
deg I = 0, ct ~ S). This mo corresponds to Z = Zo = 0. Given homogeneous u ~ V ~ 
we put deg t7 = min(deg(u + mV~ for the image t7 of u in V ~ The following four 
subspaces in V ~ are coinciding: 

(a) Ca~ where d = 1 -L~ .  y,;  
(b) {tT~V ~  1 < i < n } ;  
(c) { f t e V  ~  y i f l=O,  l < i < n } ;  
(d) {homogeneous t~ of deg ti = max{deg V ~ } . 

The coincidence of (a) and (b) is clear, since si(d) = - d for 1 < i < n and V ~ 
considered as a W-module in a natural way, is isomorphic to C [ W-J with the left 
regular action of W(use Lemma 2.10 and the semi-simplicity of C [ W ]  or see [Bo]). 
Let the image t7 for some homogeneous u e V ~ be from (c). Then tT~ for u~ = siu + u 
are from the same space, l < i < n .  One has: Ui=(yiui--si(yiui))yi -1= 
~ , k ( S , ( f k ) - - f k ) y y l g k ,  where y~ui = ~ , ,k fkgk ,  gkEC[y] w, fkEC[-y] ,  deg gk > 0 .  
Hence, t~i = 0 and ti E Cd because (s~(fk) - f~)y/- t ~ Cry ] .  The inclusion (d) ~ (c) is 
evident (deg(y~a) = degt~ + 1 if y~t~ :1: 0). However  there is at least one non-zero 
element in (d). It belongs to (c) ~ (b) c (a) (see above) and therefore is proportional 
to aL Thus, (a) c (d). Q.E.D. 

As a corollary we obtain that V ~ is linearly generated by d and its images with 
respect to successive applications of the operations p ~ ( s ~ ( p ) - p ) y ~  for 
1 < i < n. Hence, V ~ = C [ W  ~  where W ~ is generated by s o , 1 < i < n (see 
(2.11), (2.12)). Here we have used the above representation for ~ ,  where u is 
homogeneous. 
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As for Io(with Z = 0), there is a W ' - h o m o m o r p h i s m  a:  Io ~ V ~ taking 1 to d. It 
is surjective because of V ~ = C [ W o ] ~  Hence, a is an i somorphism 
(dimc Io = d i m c  V ~ and I0 has only one eigenvector 1. If {0} ~: J c Io is a 9 f ' -  
submodule,  then J contains an Xo-eigenvector u ~e 0 (see Proposi t ion 2.9 and 
L e m m a  2.10). But u is to be propor t iona l  to 1. It  gives the irreducibility. 

By means of Corol lary  2.4 one has that  the l emma is true for W with generic 
q, q'. Therefore it holds good for any q', q"~ C apar t  from some algebraic curve 
F(q', q") = 0. We will consider here only the case q'q" ~ O. Let us apply Corol lary 
2.5 for arbi t rary  k', k "~Q,  k'k" :~0. We obtain a certain h o m o m o r p h i s m  

: 9f~ -o EndcI1 via some extension 3r of 3f .  This trick is quite normal,  since 
x ( Y i - 1 )  in EndcI1 are nilpotent and we may  use the expansions 

~(Yi)  k = 1 + k(Yi - 1) + (Yi - 1) 2 + �9 �9 �9 in (2.15)-(2.16a) and the ordi- 

nary  expans ions fo r  ( q ~ -  Y~)-1 (here k = k~). We see that  ~f~ext = o~ in EndcI1 .  
One  has x(Y~)(1) = ~ ' ( 1 )  = 1 for 1 < i _< n. Hence, there is a o~-homomor -  

phism 7 : f l - -*  I 1 ( [ ( 1 ) =  1), where I1 is the analogous induced module  with the 
character  21 for o~. Given q', q", we can find rational k', k" to get 0', 0" out of the 
above curve F = 0. Then I1 is irreducible and 7 is an embedding. Moreover ,  it has 
to be surjective, s incedimc[1 = dimcI1.  By construction, the natural  image of o~ in 
E n d c l l  contains ~(o~). Hence I1 is irreducible with only one eigenvector. [] 

Let us prove  that  the subspace Q~IM generates I ~  (i.e. I ~  is v,-special). 

L e m m a  2.13 Any v~-special ~-module  J contains an eigenvector u o with v,-special ~, 
if its characters are W-conjugated to v,-special ones. 

Proof Let U be the unique irreducible quot ient-module of J (see L e m m a  2.7). First 
let us prove  this s ta tement  for U (it is v~-special as well). There is at least one )~ with 
an eigenvector u~ s U~. By means of (2.18) one can find a chain of eigenvectors from 
u = u x to uo with a v~-special ~: 

u' = ~q(M)u,  u" = ~i2(Ms, )U', u'" = ~ia(Msls,)U" and so on for 

M' = M~,, M"  = M~, ~ M"' -- M~ ~, ~,~ etc. 

It  is easy to show that  we can use in this chain either invertible ~ik(M (k- 1)) or 
the pairs (si~, M tk- 1)) with Yi~(M (k- 1)) = q~. The values Yi~(M tk- 1)) _- qs m a y  be 
considered as forbidden. 

Let us check that  all u', u", . . . .  utk~,..,  are non-zero. If u(R-I )  5 t= 0 and 
�9 i~(u (k-l)) is invertible, it is clear. Otherwise, Yik(Mtk-1))=qi~ and  

ik~tM(k- 1)) ---- Ci~ (see (1.19)). If CTkutk-- 1) = 0, then Q~Ci~utk- 1)= 
(q + 1)Q~u (k-l) = 0 (see (2.17)) and Q~u (k-~) = 0. But u (k-l) is an eigenvector and 
generates U as a H-modu le  (U is irreducible). Hence, U = H u  (~-1), 
Q~ U = Q~Hu (k- 1) = HQ~u(k-1) = 0. This contradict ion proves the l emma for irre- 

ducible U. 
Thanks  to L e m m a  2.10, J ~  =~ {0} if U~ * 0. Therefore J~ #: {0} and J contains 

an eigenvector with some v~-special character.  [] 

N o w  let ;( = ;(u be v~-special. The module J = Q~IM ~ IM is v~-special 
(dimc(Q~H) = 1). Hence, J contains an eigenvector with v~-special ~b. It  results from 
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Lemma 2.8 that J has X as the character of some eigenvector. However, IM is to 
have the only eigenvector (namely, 1) up to a scalar factor, which corresponds to ~(. 
We see that l ~ J a n d J = I M .  [] 

Now we are in a position to describe the 9r V ~ for V = V~. We fix 
~ ~ , ,~ .  

Theorem 2.14 (a) Each module V ~ = V~  V ~ for m ~ Specm C [ y]W is v~-special 
and has only one irreducible quotient-module Um #: {0}, which is also v~-special and is 
o f  multiplicity 1 in V ~ as a composition factor. These {Urn} are pairwise non- 
isomorphic and constitute the set o f  all irreducible quotient-modules of V ~ or (that is 
equivalent) the set of  all irreducible ~-modules  U generated by Q, U. Moreover, there 
is only one homomorphism V~ Urn for each m (up to a factor of  proportionality). 

(b) The module V ~ is isomorphic to IM, where M r  is over 
m (M ~ m) and the corresponding character ZM is v~-special. The modules IMfor the 
same m and different v~-special ZM are isomorphic to each other. Up to an isomorphism 
there is only one v~-special IM among all M ~ m. 

(c) The same statements hold good for ~ ' .  

Proof The modules V ~ Um are v~-special and Um has the multiplicity one because 
of Proposition 2.9 and Lemma 2.7. An arbitrary irreducible ~ - m o d u l e  U gener- 
ated by Q~U is to be some quotient module of V ~ by definition. The action of 
C [  y]W on U is scalar (Proposition 1.5). Hence U has to be a quotient-module of 
an appropriate V ~ Part (a) is proven. 

Let u x be an eigenvector of V ~ with some v~-special Z = ZM. Then M ~ m 
(Proposition 1.5) and one can define a homomorphism 7 : IM ~ V ~ taking 1 to u x . 
The image 7(IM) is v~-special because IM is v~-special (Proposition 2.11). Hence, 
Q~?(IM) # {0} and it generates the whole V ~ (the latter is v~-special). One has: 
dimc H = dimclM = dimc V ~ . Therefore ? is an isomorphism. The equivalence of 
different v~-special IM for the same m follows from Lemma 2.8. As for the unique- 
ness of v~-special 1M, use Proposition 1.5(c). 

We mention without going into detail that some points in the proof of 
Proposition 2.11 and the proof of the corresponding statement from I-Ka] are 
parallel. However the reduction to ~ '  and the utilization of the Lusztig-Lascoux- 
Schfitzenberger operators are new. 

3 The unification, some examples 

We keep to the notations of the beginning of Sect. 1. Let A be some C-algebra 
equipped with a homomorphism v0: W ~  A*, {r,, ~r c A. Let us define the 
elements 

Ou = ~, (u, ~)r~, u E C " .  (3.1) 
a t > 0  

One has D~u+r = (Du + ~Dv, u, v zC" ,  ~, r zC.  In particular, 

d e f  
Dt = D~, ~ i , (3.2) = ll~r~, D u = E ( u ,  ct i)Dt,  1 < i < n 

~t>O i 
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where {c~*} are dual weights ((oh, e*) = 6~ for the Kronecker symbol 6i~),/~ is the 
multiplicity of ~ in ~. We put D~ = ~,(u,  e) r,, where c~ e 2 c~ 2; +, 2 is a subset in R". 

Definition 3.1 The set {r,} is a classical A-valued r-matrix of  type A, ,  . . . , G2, if  

r~t~)=Vo(W)r~vo(w) -1 for ~e12, w e  W ,  (3.3) 

[De, D}] = 0, 2 = R~ + Rcq. (3.4) 

Here {cq, ~j} runs over all classes of pairs of simple roots modulo the action of 
Won the latter (one pair for A2, B2, C2, G2, two for A., D,, E6_8, three for B3, C3, 
four for B,, C,, F4, n > 2). 

Proposition 3.2 (see [Ch 1, Ch 2]) Elements {D,, u ~ C"} are pairwise commutative 
for {r~} from Definition 3.1. 

Proof  It is sufficient to consider the elements D~ . . . . .  D,. One has: 

[Oi, Dj] = Z d x ,  d~ = ~ I~p~[r , , ra3 ,  
2 ct, rE2 + 

where 2 + = 2 c~ 2; +, 2 runs over all two-dimensional subspaces in R". Indeed, only 
trivial pairs {~ = fl} can belong to some ). n 2' for 2 ee Z. Let 7, 6 be the pair of 
simple roots in 2+ = 2 c~ S+ (if the latter is two-dimensional) and 7~, 6~ be the 
multiplicities of 7, & i n ,  ~ 2+ respectively. Then #~ = 7~/~ + ~ P~. Hence, 

= /.tr,tt,~ ) I-D1, D2]  /~/~ [D~, Dr]  + + - , 

where/)~,/)2 are from (3z2) but for 2+ and {7, 6} in place of 2;+ and {~q . . . . .  ~,}. 
Therefore the identity IDa, D2] = 0 is sufficient to prove the proposition. 

The roots 7, 6 can be included into the system of simple roots corresponding to 
a certain Weyl chamber (see [Bo]). Hence, ;~ = W(~tk), 6 = W(Ct,,) for a suitable 
w s W and appropriate simple ~k, ~ .  We arrive at (3.4). [] 

Proposition 3.3 [Ch 1] Let { R~, ~ ~ 2; } ~ A* be a quantum W-invariant R-matrix in 
def 

the sense of  [Ch 5], i.e. the set {R~} satisfies conditions (3.3) and ti = Rivo(sl)~ A* 
for Ri = R~, satisfy the braid relations (1.1). Assume that R depend on some parameter 
h ~ C  and 

R i = l  +hr~+o(h) ,  l < i < - n ,  r ~ e A ,  (3.5) 

in a neighbourhood o f  h = O. Let  [R~, Ro] = 0 / f  (~, fl) = 0. In the case of  G2 we 
suppose additionally that R~ R~ + pRp = RpR~ + p R~ for long positive roots ~, fl, ~ + ft. 
Then {r ,  1 <_ i <_ n} can be uniquely extended to a classical r-matrix {r~, ~eZ, } by 
means o f  (3.3). 

Proof The cases A2, B2, G2 are enough to consider. Let 0t = cq, fl = ~2. For  A2 
one has the following (quantum Yang-Baxter) identity 

R~R~+aRa = RaR~+aR~ , 
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which gives (see (3.5)) the well-known classical "abstract" Yang-Baxter relation 

[r~, r~+p] + [r~, r~] + [-r~+~, rf]  = 0 .  (3.6) 

For  B2 we obtain the relation 

R~,R~+pR~+ 2~R~ = R~R~+ 2~R~+I~R~ , 
which results in 

[r~, r~ + r~+p] = [-r~+2p,r~+/~ - rf]  (3.7) 

because of the orthogonality conditions [r~, r~+2p] = 0 = [r~+p, r~], which follow 
from the corresponding conditions for R. For G2 one has (see [Bo]) 

RaRa~+#R2~,+#R2#+ a~R~+I~R # = R#R~+#R21~+ s~R2~+#Rs,z+pR ~ 

and the relations 

I-r#, r~ + r~+#] + [r2a+# , r3a+# -- r3~+2#3 = [-r~, r3~+ f ]  + [raa+2#, r~+/~] (3.8) 

together with (3.6) for r a, r3~+# , r3~+2 ~ and 

It#, r2~+#] = [r~+#, r3~+# ] = ~-r~, r3~+2#3 = 0 .  

Relations (3.6-8) modulo the orthogonality conditions ((0~, f l )=0=~  
[r~, rB] = 0) are equivalent to Definition 3.1. Owing to (3.3) we have only one 
unknown element r~ in the case of A2 and two of them (r~ and r~) for B2, G2. [] 

Let us consider .4 = E n d c C ( Y ) |  or .4 = EndcC(y) |  instead of A; 
where C(Y) and C(y) are from Sect. 1. We have the homomorphism Wx W ~  A 
taking 1 x w to Vo(W) ~ 1 |  and w x 1 to the corresponding automorphism of C(Y) 
or C(y). By definition 

%(w) = WVo(W), w e  W ,  (3.9) 

where w, Vo(W) are identified respectively with w x 1 and 1 x Vo(W). One has: 
WVo(W') = Vo(W')W for any w, w'~ W. 

Let (p~, ~2~}  be a classical A-valued (i.e. "constant") r-matrix with the 
following "quasi-unitary" condition 

p~ + Vo(s~)p~vo(s~) = 1 + Vo(S~) or = 0 (3.10) 

respectively in the case of Yor y. We fix x', x", 6', 6" e C and denote by x~ either x' or 
x" for short or long roots, r~ = r~  (the same notations hold for 6). 

Theorem 3.4 The set 

r~ = r,~(p~ + ( Y~ - 1)-i  Vo(S~)(1 - 6~s~)), cr  , (3.11) 

r~ = x~(p~ + y~ :vo(s~)(1 - 6~s~)) for y (3.12) 

is a classical ,4-valued r-matrix with respect to %.  

The proof  is based on the following lemma directly resulting from formulas (2.1), 
(2.3). 



Affine Hecke algebras 427 

L e m m a  3.5 In the setup o f  Sect. 2 let A = EndcV, 

qi - l = hi = xih, h 6 C ,  l -< i < n . (3.13) 

We will assume that the homomorphism v : H ~ Endc V from Sect. 2 (or its counter- 
part for  H '  = C [ W ] )  depends on (small) h. Moreover, let us suppose that for Vo: 
W--* A* = Autc V above 

o r  

and 

o r  

v(Ti) = Vo(&) + h~pyo(Si) + o(h) 

v(si) = Vo(Si) + hlpivo(si) + o(h) 

Vo(W)v(TOvo(W) -1 = v(Tj) if  w(~)  = ~j 

(3.14) 

(3.15) 

(3.16) 

(3.17) Vo(W)V(S3Vo(W) -1 = v(sj) i f  w ( ~ )  = ~ j ,  

where 1 < i , j  < n. Then p,, = Pi satisfy (3.10) because of(1.2) and the set 

o ^ , (3.18) Ri=T~/fo(Si )  or Ri = sl vo(si), l <_ i < n 

for  T ~ s~ f rom Theorem 2.1 and fo from (3.9) can be uniquely extended to a quantum 
A-valued W-invariant R-matrix with respect to fo. The corresponding classical 
r-matrix (see Proposition 3.3) coincides with (3.11), (3.12)for 6 ' =  1 = 6". 

Thanks  to the l emma we obtain  the s tatement  of Theorem 3.4 for A = EndcV 
and 6' = 1 = 6". Really, 

Ri = T~ = 1 + h~i(Yi - 1)-1(1 - si)vo(si) + hxlPi 

(see (2.1)). Here  and further we will identify yO and Y~. As for (3.12), we can apply 
(2.3). In the case 3' = 0 = 3" Theorem 3.4 was proven in [Ch 1, Ch 2]. The case 
6' = 6" ~ ~ is completely analogous to the previous one. A direct consideration 
for A2, B2, G2 shows that  this is enough to prove the theorem. [] 

N o w  let us first combine  all p~ in D, (r~ are as above), then secondly add some 
"scalar" terms to D, .  

Corollary 3.6 The following elements from .4 are pairwise commutative (1 < i < n): 

/ ) , =  Y, O g / a Y , +  vo(X,)+ ~ x ,  l t ~ ( Y , - 1 ) - l V o ( S , ) ( 1 - f , s , ) ,  (3.19) 

l)i = Og/Oy, + Vo(X ~ + ~ x,U~ y~-lvo(l - 6,s,) (3.20) 
~teZ + 

for Y and y respectively and g from C(Y)  w or C(y) w. Here [xi, xj] = O for 1 < i , j  < n 
and x~ satisfy relation (1.5)for  y* = y~,, hi = -  (~i, ~i) x i /2 ({~t*}-are the dual 
weights), {x ~ } obey the same relations but for h, = 0 (1 < i < n). These {x,} or {x ~ 
are added to {si } and the homomorphism %: C [ W-J --* A is assumed to be extended to 

{x,}, {x~ 

Proof  We will only check here that  

def 
Vo(Xi) "~ ~ ~ I t , ( p ~ - l / 2 ) ,  ~ e X ,  1 < i < n  

at>0 
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satisfy relations (1.5) for y* with the constants  h~ above,  where p ,  are f rom Theorem 
3.4. Indeed, [Vo(Sj), Vo(Xi)] = 0 for j ~= i because s~(~) > 0 if p~ 4= 0, where kt~= 
(~, ~*) = (sj(~), ~*). Similarly, 

Vo(Si)Vo(Xl)Vo(Si)- xi(pi  + Vo(S i )p ivo(s i ) -  1) = ~ ~r162 si(~*)) (p~ - 1/2). 
a > 0  

Here  we have used that  s~ does not  change the terms/J~t j  in cr f o r j .  i and therefore 
takes 0 < ct ~: u~ to some positive root.  Hence, (3.10) results in 

sixi - si(~*), O~k)Xk S~ = -- ~:i, 1 < i < n ,  
k 

which is (1.5) for xi = y* and h~ = - (ei, ei)xi /2,  1 < i < n. 
The commuta t iv i ty  relations [x~, x~] = 0 are valid because the set {p~} is an 

r-matrix.  F o r  {x ~ } (without g) reasoning is the same. One can deduce the general 
s ta tement  (without g) f rom this part ial  results, but the direct calculation of the 
commuta t iv i ty  is a more  natura l  way and is not  difficult. As for the in t roduct ion of 
g, it is due to the relations #i-[r~, y j*] + / ~  [ y*, r~] = 0. This proves the required 
commutat iv i ty .  [] 

N o w  we are in a posit ion to explain the main  theorem of this section. Later  on, 
A = Endc V. Let us introduce part ial  derivatives O., u e C w, on I? ~ = C(Y)  |  V or 
= C ( y ) |  Sect. 2 and L e m m a  3.5) by 

c~,( Y , )  = (u, ~) Y, ,  O, (y , )  = (u, c O, O.(V) = 0 ,  (3.21) 

where ~ e S. In  part icular,  Oi = 0~. (1 < i, j < n). One  has 

0,,+~., = ~O, + fl~.,, wO.w-1  = Ow(.) (3.22) 

for  u, u ' e C " ,  ~, f l e C ,  w e  W. 

T h e o r e m  3.7 Put  

V. = 0. + / ) . , / ) .  = ~ (u, ~i)/gi, u e C " ,  (3.23) 
i = 1  

where l)i are f rom (3.19) or (3.20).,Then V,,, u e C " , f o r m  a commutat ive  fami ly  o f  
operators in Endc ~'~ for  arbitrary ~c , x", ~ ,  ~' ,  g. For  {/)~} of  type (3.20) or in the case 
6' = 0 = 6" one has: ~o(W)/),fo(W) -1 = Dw(.), where fo is f r o m  (3.9), u e C  ~, w e  W. 

Proof. Let us check the identities [0i, #~r~] = [0~,/~r~] for 1 < i , j  < n, ~e2 ,+ .  By 
(3.22) #~0~ ~ ' - #~0~ = 0., where u = # ~ *  - # ~ .  Hence,  0,( Y~ - 1) = (u, ~) Y~ = 0 
= O.(y~) and [O., 1 - 6~s~] = s~(c3, - 0~(.)) = O. 

We will discuss now some par t icular  cases. Let us consider first the "rat ional"  
case of C(y )  with x ~ = 0 for all i. If  6' = 0 = 6", g = 0, then one arrives at the 
generalized Kn izhn ik -Zamolodch ikov  equat ion  f rom [Ch 1, Ch2] .  The  Dunkl  
opera tors  (see [Du,  He2])  can be obtained for V = C and 6' = 1 = 6", g = 0. In  this 
case 

r~ = x~y~-t(1 - s~), ~ e Z +  . (3.24) 

The  Luszt ig-Lascoux-Schfi tzenberger  opera tors  give a natura l  p roof  of  the com- 
muta t iv i ty  of  the corresponding family (3.23). 
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To  get the "tr igonometric" operators {V,} we need some {p,} (Theorem 3.4) or, 
more generally, an extension of our initial representation Vo : W-~ Endc V to some 
representation of the algebra ~ ' ,  generated by C [ W ]  and xl  . . .  x,  above. The 
quantum counterpar t  of the first problem is in constructing representations of 
H satisfying conditions (3.14) and (3.16). For  example, the well-known Baxter 
matrices in tensor powers of vector spaces give an example for W =  S,+1. Our  
basic representations V ~ for one-dimensional V~ are other examples. They satisfy 
conditions (3.14), (3.16) and look to be very universal for many purposes. 

The tr igonometric {V,} without {s,} (i.e. for 6' = 0 = 6") are new and general- 
ize directly the affine system from [Ch 2] in the case of A,, although the latter was 
written down in a rational form. This system is a natural  candidate to obtain some 
interpretat ion of Lusztig's isomorphisms (see (2.13), (2.14) and Sect. 0) via mono- 
dromy matrices. 

Till the end of this paper  we will consider C [ Y], ~' = 1 = 6", V = C, g = 0. 
Then both  (2.9) and (2.10) modulo  some multipliers and constants are equivalent 
and can be written as follows: 

r~, = tc~(Y~ - 1)- 1 (s~ - 1) + c, c~ �9 17, c �9 C ,  (3.25) 

and V, = au + }-',,>o(U, c0r=, u � 9  These {r~} are analogous to 

?, = �89 + 1)(Y~ - 1 ) - l ( s ~ -  1) (3.26) 

from Heckman's  paper  [ H e l l :  f ,  - r ~ = x,(s~ - 1)/2. Our  {r,} are not "unitary" 
(r ~ + s,r~ = K,(1 - s,) # 0). Hence, Vw(,) # wV, w -1 for some w, u. However 
Theorem 3.7 is valid for them. Heckman's  V, = 0, + ~ , > o  (u, ~)?, are W-invariant 
in the above sense, but  do not  form a commutative family. Let us show that V, have 
the two main properties of Heckman's  ~7. Namely, they are self-adjoint with 
respect to some bilinear form and produce the SchrSdinger operator  of the 
Calogero-Moser-Olshanetsky-Perelomov type. We follow [He2]  very closely. Let 

A = l-I (Y~ + y - 1  _ 2)~ , �9  

P =  Co + ~ e'~Y2", if P = Co + ~ , , , ,oc~ 'Y2~ � 9  
a . , m +  0 

( P >  = Co. 

Proposition 3.8 (a) (v ,g ,  P ' )  = (P, V,P') ,  where (P, g') = ( P P ' A } ,  P, P ' � 9  
u � 9  

(b) The operator [] = Z,"--, V,,V, - �88 c = - �89 is equal to ZT= l V,, q, and to 

i = 1  a > O  

after the restriction to C[Y]  w. 

Proof The adjoint V* of V. for c = 0 with respect to ( ,)  is equal to 

A - I @  ~ + , > o ~ x ' ( u ' c 0 ( 1 - s ' ) ( Y 2 - ~ - l ) - l )  A" 
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For  Heckman ' s  one (which is self adjoint-see [ H e l l )  the corresponding formula is 
with ( y - 1  + 1)(y~-i _ 1)-1 instead o f ( Y ~  1 - 1) -1. Hence, 

and 

One has 

r - V* 1 1 = ~ A -  • x=(u,=)(s~- l )A 
~ > 0  

= 2 x,(u,  ~)(s~ - l )  = q .  - v . ,  
~ > 0  

V* = V.. 

[ 2 =  f O = , a , - 2  s K=(Y=-- 1 ) - i O = + 2 c  s t q O , + c  2 
i = 1  ~ > 0  c t>0  

because r~ - c acts trivially on C [  y]W and 

f (u, ~)g~ = f (u, ~t*)~, = ~ 
i = 1  i = 1  

(see [He l ,  Ex. 3.9]). []  
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