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Summary. Some generalizations of the Lusztig-Lascoux-Schiitzenberger operators
for affine Hecke algebras are considered. As corollaries we obtain Lusztig’s isomor-
phisms from affine Hecke algebras to their degenerate versions, a “natural” inter-
pretation of the Dunkl operators and a new class of differential-difference
operators generalizing Dunk!’s ones and the Knizhnik-Zamolodchikov operators
from the two dimensional conformal field theory.
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Introduction

The first aim of this paper is to consider natural vector versions of the Lusztig
operators [Lu3] and the Lascoux-Schiitzenberger operators [LS1, LS2] and
calculate (in the scalar case) the representations of the corresponding affine Hecke
algebras in which these operators act. The key point of this calculation is equival-
ent to some form of the main theorem from [Ka] (we give a new more simple proof
of it.) As corollaries one obtains Lusztig’s isomorphisms between affine Hecke
algebras and their degenerate (graded) versions [Lul] and a natural construction
of the Dunkl differential-difference operators [Du, Hel] together with their trigon-
ometric counterparts close to Heckman’s operators [He2]. The second aim is
a unification of the Dunkl and the Knizhnik-Zamolodchikov operators from [Chl,
Ch 2] taking the vector analogue of the Lusztig operators as a basis. Given a root
system X < R" and a representation of the corresponding Weyl group
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412 I. Cherednik

W < Aut(R"), we define a new commutative family of differential-difference
operators generalizing both the Knizhnik-Zamolodchikov and the Dunkl
operators.

Several preliminary points on affine Hecke algebras and the intertwining
operators are worth mentioning. The intertwiners play a very important role in the
theory of p-adic representations of unramified principal series. The latter are
directly connected with the representations of the corresponding p-adic affine
Hecke algebra # which are induced from characters of the so-called Bernstein-
Zelevinsky commutative subalgebra % < . Here # depends on a parameter g
which is a power of prime p. However it is quite natural to assume g to be an
arbitrary complex number, because the defining relations for # depends on
q algebraically. In several papers (see [Ma, Ka, Ro]) explicit formulas were used for
the intertwining operators between the representations induced from conjugated
characters with respect to a natural action of W on #%. For example, they were
useful to Rogawski in making more lucid the Zelevinsky theorems on p-adic
representations of GL, [Ze]. These intertwiners can be considered as elements of
H satisfying the Coxeter relations of W. The last fact was not formulated in the
above papers, but follows directly from them (see [Lul] and e.g. [Ch 3], where the
case W = &, was considered).

As a consequence one gets an isomorphism 7 between %[ W] (the semi-direct
product of % and C[W]) and # after some localization of %. This isomorphism is
useless for the most interesting (special) representations of # because of this
localization. Nevertheless, it can be applied to obtain a certain map without
denominators from # to its degeneration .

The relations for ' in the case W = &, ., were found for the first time by
Murphy (see [Mu]). She defined a commutative subalgebra in C[S, ], closely
connected with the so-called Young’s bases for S, 1, and calculated the cross-
relations between its generators and the adjacent transpositions. It was shown in
[Dr] (see also [Ch 4]) that her subalgebra is the image of the counterpart %’ < #”
of % with respect to a canonical surjection #’ — C{S, , ]. Drinfeld defined s#" for
W =&, as a certain limit of 5, when q —> 1.

Drinfeld’s construction can be extended naturally to arbitrary Weyl groups W.
Lusztig gave the general definition of #’ (which he called the graded affine Hecke
algebra) in papers [Lul, Lu2]. The analogues of the above intertwiners can be
easily calculated for #” and coincide with the formulas from the paper [Ch 5]
devoted to the W-invariant quantum R-matrices. By the way, the Matsumoto-
Rogawski formulas for the intertwiners are closely connected with the basic
trigonometric R-matrix (in Jimbo’s form).

In [Ch 3, Ch 4] and some other papers it was shown by means of the technique
of intertwiners that the classification of the irreducible representations, the theory
of Young bases, the character formulas and some other points are quite parallel for
H' and A, when W= &,,, and ¢ is generic. It is now possible to explain this
coincidence a priori.

After some localization we get an isomorphism #': #{,.~3 ¥{,.[ W] in the same
manner as 7. The semi-direct product #'{ W] of #’ and C[ W] can be identified
with %[ W7 after a suitable completion of % and #’. Then the composition map
f=mo(n’)"! will be an isomorphism between #, #' both localized and com-
pleted. It follows from [Lul] that the completion (without any localization) is
enough to define #. This completion is compatible with the category of finite-
dimensional representations.
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Independently, analogous isomorphisms were obtained in [Ch2] for
W = &, as aresult of some direct calculation of the monodromy matrices for the
generalized Knizhnik-Zamolodchikov equation on . It was mentioned there
that the final formula (an expression of generators of # in terms of these of #') can
be considered independently of its monodromy interpretation and can be directly
extended to arbitrary Weyl groups W.

Summarizing, we have the following approaches: guess and check formulas for
72 Hoompt = H compr Without any preliminary theory, use the intertwiners (as was
explained above) or calculate some monodromy representation. A fourth possibil-
ity is to use the Lusztig-Lascoux-Schiitzenberger operators (see Sect. 2).

Another part of this paper (Sect. 3) is connected with the following construction.
It was demonstrated in [Ch 1, Ch 2] that one can define some kind of Knizhnik-
Zamolodchikov equations for arbitrary classical W-invariant r-matrices. The latter
are certain quasi-classical limits of the quantum W-invariant R-matrices from
[Ch 5] (see also [Ch 1]). These two notions for W = &, ; are equivalent respect-
ively to the ordinary concepts of r-matrices and R-matrices from the Soliton theory
(Faddeev, Sklyanin et al.). Some r-matrices of type D, were introduced by Sklyanin
for certain integrable equations with boundary conditions.

We consider our version of the Lusztig-Lascoux-Schiitzenberger operators as
a certain quantum R-matrix (with a new type of dependence on the spectral
parameter). The quasi-classical limit of these operators of the first kind (connected
with ") gives the family of Dunkl operators [Du, He2]. The operators of the
second kind (for #°) produce some family of “trigonometric” operators, which are
close to Heckman’s ones [Hel] but do not coincide with them.

We note that the origins of all these operators are in the Bernstein-Gelfand-
Gelfand and Demazure difference operations [BGG, De]. The Laplacians defined
for the Dunkl and Heckman operators are conjugate to the Schrédinger “rational
and trigonometric” operators from the quantum theory of the Calogero-Moser and
Olshanetsky-Perelomov integrable systems (see ¢.g. [HO]). Our trigonometric
operators have the above property as well. Another application is connected with
Macdonald’s g-analogues of the Jacobi polynomials. The corresponding property
of Heckman’s operators (to be self-adjoint with respect to some form) holds good
for our operators as well.

The main point of this paper is a common definition for both the Knizhnik-
Zamolodchikov and the Dunkl operators (together with their trigonometric ana-
logues) on the basis of the general form of the Lusztig-Lascoux-Schiitzenberger
operators. It gives birth to many interesting algebraic and analytical questions in
the theory of Hecke algebras. Moreover, this construction should be connected
with some (maybe new) quantum groups. The corresponding quasi-classical limits
are expected to yield a new kind of z-functions.

1 Affine Hecke algebras and the intertwiners

Most of the following facts are known. Nevertheless we prefer to give the proofs,
because they are short and either new or useful for Sect. 2. The main references are
[Ma, Ka, Ro, KL, Lul, Lu2, Ch3].

Let & = {a} = R" be a root system of type A,, B,, . .., G2, and let s, be _the
orthogonal reflections in the hyperplanes («, u) = 0 with respect to the canonical
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euclidean form (,) on R"au. Later on, {a;, . . ., ®,} = Z will be the simple roots for
some fixed Weyl chamber, 2., Z_ the sets of all positive (¢ > 0) and negative
(« < O)roots and W the Weyl group generated by the reflections s; = 5, (1 < i < n).

The length of we W/( the length of the reduced decompositions of w with respect
to sy, . . ., s,) will be denoted by I(w); I(id) = 0. Let C[W] = @,,Cw be the group
algebra of W. We assume (,) and the action of W to be extended C-linearly to
ueC".

Throughout this paper we fix arbitrary ¢, ¢"eC and k', h"eC and put q, = ¢’
or g, h,="Hh or h" respectively for short or long a. We also set g¢; = q,,,
hi=h,(1<iZn).

Definition 1.1 (see [Ma, Lul]) (a) The Hecke algebra H is generated over C by
Ty, ..., T, with the following homogeneous relations of degree m

T, T:T, .. . =T; T;T; T;. . . (m factors on both sides} , (L.1)
where m = my; is the order of s;s;, 1 £ i,i’ £ n,
(T;+D)(Ti—q)=0, q=¢. (1.2)

(b) The affine Hecke algebra s is generated by # and {Y,, ae 2} satisfying
the following relations (1 < i < n)

Ti Ya - Ys,-(a) Ti = (61; - 1)(Ys,~(az) - Ya)(Yi - 1)-1 s (13)
[Ya’ Yﬂ] = 0, o, ﬂEZ, Ya+ﬂ = Ya Yﬂa (14)
def def .
where the latter holds for « + feZ U {0}, ¥; = ¥,, Yo = 1, the rhs. of (1.3) is
a polynomial of {Y;, Y7 '}.

(c) The degenerate affine Hecke algebra ' is obtained by adding pairwise
commuting {y,, a€ 2} with the relations

SiVa — Vsya)Si = hi(ysi(a) = Ya)/yi= — 2hi(o, o) (o, ;) (1.5)

def
where y,+p =y, + ypfor a + feZ U {0}, yi = y,, yo=0,to H = C[W].

def
Let C(Y), C(y) be the quotient fields of the ring of polynomials C[ Y] =

def - -
ClY,,aeX],C[y] = Cly,,ae 2], and #, #  be generated by H and C(Y) or

respectively by H' and C(y). The algebras 5, #" are well-defined and contain 5,
A’ because of the decomposition

H = ("DweWC[Y]Tw = @weWTwC[Y] B (16)

and the analogous decomposition for s#” with w instead of T, (see [Lul, Proposi-
tion 3.7]). Here

T,=T,...T,, if w=s;...5, for I=IWw) 1.7)

1
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depends only on w owing to (1.1). We note that (1.6) and its counterpart for #’ can
be deduced directly from formulas (2.9)-(2.12) below. But one has to prove
independently that (2.9)—(2.12) give a representation of # or #" in this way. This is
not difficult. Another way is to use @; and ¢, below. For some questions (e.g., for
q'q" = 0) it is convenient to replace C[ Y] by C[Y,, ae X _] in the definitions. To
do this we multiply (1.3) by ¥;*.

There is the action

W( Ya) = Yw(a)s W(y,) = Yw@)s ael,

of the Weyl group Wsw on C[ Y] and C[y]. Note that ®”.; Cy; can be identified
with our basic C" in a natural way. Then C[y] is nothing else but the symmetric
algebra of C" with the usual induced action of W.

Proposition 1.2 (a) The elements
& =T +(q— DAY, —)e#, 15i<n, (1.8)

satisfy the relations
¢i Y(l = Ysi(a) ¢i’ OZGZ . (1.9)

(b) The elements @, = ;... ®; ,wherew =s; ... s;,, l(w) = I, have the following
properties

$,Y,=Y,y?,, 0, (1.10)
H = @uew C(Y)D,, = @rew @, C(7) . (1.11)
(c) The element ®,, does not depend on the choice of reduced decomposition of w:
@, D, =0, if lww)=Iw+I1W). (1.12)
(d) Properties (a), (b), (¢) hold good for #' with Y; replaced by y; and &; by
bi=s;+hyl, 1Zign. (1.13)

The proof can be found in [Lul, Sect. 5]. The particular case of 4, (to be more
precise, of the root system for GL, ) was considered in [Ch 3, Sect. 3]. Statements
(a), (b), (c) are close to the corresponding (slightly weaker) properties of the
intertwiners from [Ma, (4.3.2)] and [Ro]. For the sake of completeness we will
prove the proposition briefly (the proof from [Lul] is somewhat different).

Formulas (1.8), (1.9) are nothing else but relations (1.3). Let us introduce the set
{®,} for some choice of the corresponding reduced decompositions of elements
we W (now we do not worry about the uniqueness). Then (1.10) is quite clear.
Assertion (1.11) can be easily deduced from (1.6) by induction. The only thing we
need for this is the set of decompositions

(pw= Tw+zpw’ Tw's (1.14)

where P,, e C(Y), w, w' e W, l(w') < l(w). To prove (c) we will use the following

Lemma 1.3 (a) The algebra C[Y] coincides with its centralizer ZC[Y]=
{ZeA#|[Z, C[Y]] = O} (see [Ch3] for GL,+,).

(b) The centre of # is the algebra C[Y1" of W-invariant polynomials in C[ Y]
{due to Bernstein). B N

(c) The above statements hold good for C(Y) = # and for #', A".
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Proof. Let Z=Y yewZ,®, < ZC(Y)c # and Z, +0 for some w =+ id (see
(1.11)). Then PZ — ZP + 0 for Pe C(Y) such that w(P) % P, because of (1.10) and
(1.11). The proof of (b), (c) is of the same length (see [Lul] for (b)). O

It results from (1.10) that @,®,, = @, P for some PeC(Y). However 9,,P.,
and @, for I(ww')=1I(w)+[(w') belong to the same affine space
Tww + (@sew T,C(Y)), where I(s) < I(ww') by virtue of (1.14) together with defini-
tion (1.7). Hence P = 1 because of (1.6). Thus, we have got (1.12). As for #”, the
proof of (a), (b), (c) is the same. [J

Let us fix a pair M > m of maximal ideals M < C[Y],m < C[Y]" (M & Specm
C[ Y], meSpecm C[Y]¥, where Specm means Spec maximal). The corresponding
homomorphisms C[ Y] —» C[Y]/M — C,C[y]¥ — C[y]¥/m — C will be denoted
bY xar» ¥m- For all elements from 2# and almost all elements Z € 5 it is possible to
define “the right value” of Z at M.

ZM)y=Y T.xu(Z,), where Z=Y T,Z, , (1.15)

Z,eC(Y), weW, Z(M)e H. The set of all M where Z is well-defined is open in
Specm C[Y]. The analogous pairs M > m and the same definition (1.15) will be
used for .

Definition 1.4 Let I,, = Indc‘”{y] x» be the universal s#-module generated by the
representation y,, of C[ Y] (see e.g., [Ma, Ka, Ro]). As a H-module it is canonically
isomorphic to H with the left regular action (4(B) = AB for A, BeH). The
H-module structure of I, can be uniquely determined by the relations

def
Y,(1) = ym(Y,) = Y (M), aeXZ, 1eH =1 .

The analogous definition can be given for #’ and H' = C[W].
The Weyl group W acts on M and y = y, in the following way:

YoMy) = 10 (Ya) = W 00N (Yo) = 1(Yow) = V(M) (1.16)

where a2, we W. Note that M, = (M), for w, w' e W, (ww'} (x) = w(w'(x)).
The ideals M,,, we W, constitute the set of all maximal ideals over m (i.e., contain-
ing m). The same holds for #’. We will fix M and denote Iy by I,, (Iis = Iy).

Proposition 1.5 (See e.g. [Ro]) (a) The action of the center C[Y]¥ < # on each I,
is scalar and induces the above homomorphism y,,.

(b) Every irreducible representation U of # with the action of C[ Y Y (it should
be scalar) via y,, is a quotient-module of some I,.

(c) Given 1,,, 1,,, there is a non-trivial 2 -homomorphism u:1,,—I,,..

(d) All the irreducible constituents of each I, with the corresponding multiplicities
(i.e. the composition factors) coincide with those of Iiq = I .

(€} These statements hold good for #'.
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Proof. The action of C[LY¥ on 1€ H ~ I, is via y,,. By definition, 1 generates I,,
as H-module. Hence, the centre acts on I,, by y,. As for (b), U is to be finite-
dimensional. Indeed, elements of C[ Y] act on U as some scalars, since U is
irreducible and # is finite-dimensional over C[ Y]". Therefore there is at least one
eigenvector uy of C[ Y] in U, corresponding to some character yy , The map
1 — u, gives the required homomorphism I,, - U. We have checked (a)-(b). State-
ment (c) results from

Lemma 1.6 Given M, w, there is a one-dimensional family M (v) of maximal ideals in
CLY], analytically depending on a parameter ve C, which is close to 0, such that

M(0) = M and the function v* @, (M(v)) (see (1.15)) has a non-zero value ®,,€ H for
some ke Z. Then the map

Iy ~HoA->Ab,eH~1 M =M, ., (1.17)
is a A-homomorphism. It is true for H' as well.

Proof. Tt is enough to prove (1.17) for M’ = M(v), @, = &, (M(v)), v + 0. Concern-
ing the H-action, the statement is clear. Therefore one has to check the following
relation only:

Yo(Dy) = y(Ya) D, in Iy . (1.18)
Let us use (1.10) and (1.16):
Yo(,) = (Yo B )(M) = (D, V1) (M) = @, (-1 (M)
= 0,(M)Y,(M') = Y,(M)D,(M) = Y (M)®,. =13 (Y,) D, .

The existence of M (v) is evident because @,, is well-defined in some open subset of
Speem C[Y]. O

It is sufficient to prove (d) for w = s;(1 £ i < n). There are three possibilities for
&, from Lemma 1.6. It is invertible and therefore has to give an isomorphism
between I;4 and I, if Yi(M) # gi*' or g; = 1. Otherwise @, (M) is to be propor-
tional to

Cr=Ti+lor Ci =T, —gq;. (1.19)
Then &;(s;(M)) is proportional to C; or C;* respectively. The corresponding

H# -homomorphisms Iy 5 I, 51 . satisfy the following relations:

ker(p) = im(y), ker(u') = im(p) .

Really, {A€H, AC' =0} = HC%. Thus, ker(u)® (Jia/ker(u)) = ker(p)®
(I /ker(y')). It completes the proof for . The case of #” is quite analogous. U

2 The Lusztig-Lascoux-Schiitzenberger operators

We preserve the notations of Sect. 1. Let us fix a representation v: H — End V for
some C-space V or respectively v:H' = C[W]—End V and introduce the space
Vo = C[Y]®cV (or V° = C[y] ®c V). We will denote P ®v by Pvfor Pe C[ Y],
C(y], ve V. The algebra C[W] x H acts on V% in a natural way (W on (;[ Y] and
H on V via v). We will identify v(4) x 1 with v(4) for AcH and 1 xw with we W.
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Similarly, ¥° for C[y] can be considered as a C[ W] x H'-module. We will keep
the same notations in this case.

Theorem 2.1 (a) The representation Ind#¥ V (the universal #-module, generated by
the above H-module V) is isomorphic to V° as a C-vector space and can be uniquely
determined by the formulas (¢f. [Lul, 3.12])

T? = sv(T) + (g — D(Y? — 1)~ (s, — 1), 15isn, 2.1)
Y%(P) = Y,P, where PeV°, acX, (22

and X° is the image of X € # in End V°,
(b) The analogous 3#'-module Ind¥’V is isomorphic to V° as a C-space and
satisfies the following defining relations (c¢f. [Lul, 4.4])

= sv(s) + MO s — 1), 1Si<n, @3)
y(g(p) = VaD, for pPE VO, aed . (24)

(c) The homomorphism # 5 X — X°eEnd V° and the corresponding one for H both
are injective.

Proof. Formulas (2.2), (2.4) are valid by definition. It results from (1.3) that the
relations

[TPsi, Yol =(q: — )(Y? — )7 (Y, — si(Y))s:
hold good in End V°. The operators
4;:P° > [TPs;, P°], 4;= P° > ((1 — 5)(P))’s;,

acting from C{ Y1°3P°to C[Y]°* W < End V°, both satisfy the main property of
derivatives

A(P°Q%) = P°A(Q°) + 4(P°)Q°% P,QeC[Y].
Hence, .
4;=(q:— 1) (Yio -4
and
T?(Pv) = (T?s;) (s:(P)v)

= [T?s;,5:(P)°1(v) + s:(P)° (v(T')v)
= {so(Ty) + (g — D(Y? — 1) (s; — 1)} (Pv)
for arbitrary P e C[ Y], ve V. The proof of (b) is the same.

Lemma 2.2 The elements ®; and ¢:(1 < i < n) from (1.8) and (1.13) act on V° as the
operators

O = ((T) + (@ — DI~ D Ysi, 2.5)
@) = (v(s) + h(y?) " Vsi - (2.6)

It results from the lemma that @2 = F,w for we W, where F,, & 0 belong to
v(H)-C(Y)°. Hence, % are commuting with any elements from
W =1x W < End V°. Since w are linearly independent over v(H)-C(Y)° the
same holds good for { #9}. Hence, the homomorphism # 5 X — X is an embed-
ding (see (1.11)). O
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Corollary 2.3 The operators given by formulas (2.1)+2.4) take V° into V° and satisfy
relations (1.1)~(1.4) and the corresponding relations in H#".

This corollary was proven directly in the case of one-dimensional ¥ by Lusztig
[Lu3] and for A, by Lascoux-Schiitzenberger (see [LS1, LS2], where the root
system of GL,, . ; without the affine relation was considered). As far as I know, Kato
was the first to explain the formulas from [Lu3] by means of the construction of
Theorem 2.1 for one-dimensional V (see also [KL]).

Till the end of this section we will consider only one-dimensional ¥ ., though

several subsequent statements can be extended to general V. By definition, for
1Zign

volTi)=¢q; or vi(s)=1, 2.7
v.T)=—1 or v_(s;)=—-1. (2.8)

The formulas from Theorem 2.1 respectively for # and ' look as follows
TP+ 1=(q—~ Y)Y - 1) (s — 1), 29
—(T? —g) = (i + W@ Y2 —1)(Y? = 1)t for v_, (29a)
TP —qi=@Y’ - )Y’ -1 s~ 1), (2.10)
—(T2+)=(si + D(gi— Y)(Y?—1)~! forv, (2.10a)
st 1=~y s = 1), @11)
—P=D=(s; + D + D))~ for v_, (2.11a)
= 1=+ y)O) i — 1), (2.12)
— (1) =i+ Dl — y7) (7) 7 for vy, (2.12a)

where (2.9) is equivalent to (2.9a) and soon, 1 £ i< n.

def
Leth=1=h",qg —1=0,9"—1=¢", C[§] = C[y]®cC[[]] the alge-
bra of formal power series of &', §” with the coefficients in C[y], and let £ be
generated by #’ and C [[6]]. Due to Drinfeld [Dr] one should substitute ¢}* for Y;
to obtain ' from .

Corollary 24 (see [Lul, Sect. 91) After the formal substitution Y;=q'=1+
6;y: + ... e CLy], where 5; = &' or 8" for short or long a;(1 < i £ n), the pairwise
equivalent formulas

T+ 1=(q—q)1 —y) g = D'y + 1), (2.13)
Ti—qi=( — D@ — D+ )7 g~ D7y, (2.13a)
Ti—q=@* = D+ D)7 @ = D7 6P - 1), (2.14)
Ti+1=(sP + (g — ) —p) @ =Dy, (2.14a)

where s? are respectively from (2.11)—(2.12a), give two homomorphisms from .}f with
undetermined ¢/, q" into H#'. If ¢, q" are not roots of unity they induce an equivalence
of the categories of finite-dimensional representations of # and H".

The proof is in combining (2.9)—(2.12). O
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Formula (2.14a) is in fact from [Lul] (see 5.1). An analogue of (2.13), (2.14) (with
more complicated multipliers) was obtained in [Ch 2], in terms of @?, ¢? from (2.5),
(2.6). Without going into detail we will give another application of (2.9)-(2.12).

Corollary 2.5 Let us mtroduce one more affine Hecke algebra # with generators
(T, ¥;, 1< isn} for ¢ =(q'), 4" =(q")", where k', k"eC. Then the formal
substitution Y=Yk, =k or k” for short or long o;) together with one of the
Jollowing four sets of formulas

T+ 1=(q" = YF)g:— Y) '(YE = )" (Y- )T+ 1),  (215)
T~ qf = (Ti = g) (" YF = D(q, Y, = D7 (YF - )7H(Y; — 1), (2152)
T, —qf = (" YY = D)@Y, - D) (yF =) (Y= )T —q), (216)

Ti+1=(Ti+ (g — Y g — Y) ' (YE—-1) (Y, —1)  (216a)

induces a homomorphism from H# to some extension of H or its representation in
which the functions of Y from the r.hs. of (2.15) and (2.16) are well-defined. In
particular, it is so if either q', q" are not roots of unity or Y,, ..., Y, act as some
operators with Spec Y;% q; for all i (resp. Spec Y;3q; '). For k', k" € N the localization
of # by the elements (Y& — 1)(Y; — 1)71, 1 £ i £ n, is the required extension. In all
these cases (2.15) is equivalent to (2.15a) and (2.16) to (2.16a).

Now we will start to calculate the #-module ¥ for V = V,, e = +,v = v, (see
2.7), (2.8)). Put

Q+ = Z T,, Q_ = Z (_ l)l(wo)—l(w) qulTw ,

weW weW
4w =(q) "),

where w,, is the element of the maximal length, I'(w) (or I”(w)) is the number of s;,_for
short «; (or respectively for long ;) in the reduced decompositions
w=s;...5(=1w)=1Ww)+1"(w). The well-known defining properties of Q.
are as follows:

CFQ:+=0:C7F =0,CFQ: =Q.Cf =(q: + Q= , (2.17)
where 1 <i < n, C7 are from (1.19).

Definition 2.6 (a) A s#-module J is called v-special of type ¢ = + if dim¢(Q,J) = 1
and J is generated by (“the space of v,-spherical vectors”) Q.J as a #’-module or,
equivalently, as a C[Y]-module. The same definition is for ' and

Qi = ZwsW( + 1)I(WO)_KW)W

(b) A character y:C[Y]— C is called v,-special if, firstly, W(X) {we W,
w(y) = x} is generated by elements in {s;, ..., s,} 0 W(y) (i.e. x is special in the
sense of [Ro, Sect. 4]). Secondly, for g, % 1

x(Y,) is forbidden to be equal to g, where we have identified + and =+ 1.

As for #', the last condition has the form x(y,) * ¢ for o > 0.

Lemma 2.7 A v,-special J has only one non-zero irreducible quotient-module. The
latter is also v,-special and is of multiplicity one in J as an irreducible constituent.

Proof. 1f ¢:J —» U # {0} is a surjective #-homomorphism and U is irreducible,
then U is generated by ¢(Q.J) = Q.U. Hence, U is v,-special.
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Let N = kera, N » N’ < J be a #-submodule. Then N + N’ = J(U is irredu-
cible) and N'/(NNN')~ U. Therefore Q,N’' % {0} and Q,J = N’ because of
dime(Q.J) = 1. But Q,J generates J. We see that N' = N. If there is another
ve-special irreducible constituent in J, then it has to be in N and Q,N + {0}. This is
impossible. []

Lemma 2.8 Suppose a #'-module J to contain an eigenvector u, of C[Y] (or C[y]
for #') with a v-special character y. If y = w(y) is ve-special for some we W, then
there exists an eigenvector uy € J for Y generating the same #’-submodule of J as u,.

Proof. Tt resuits from (1.18) that
Y (PuM)u,) = tae(Y,) (B(M)uy) (2.18)

where a€ X, y = yp, M' = M,,-1, &, is from Lemma 1.6 for we W. Following the
proof of Lemma 1.6 one can easily show that for every v.-special y which is
conjugated to y there is we W such that ¢ = w(y) = xs and @, is invertible.
Really, we can find w = 5. . . 5;,, where all @, (M), ¢;,(Mj, ), D:,(M,, 5, ) and so on
are invertible. ]

Let V° be defined for ¥=7V,, ¢e= +, m be a maximal ideal of C[Y1¥
(meSpecm C[Y]%). Our aim is to calculate ¥ = V°/mV°. The latter is a #-
module because of Lemma 1.3(b).

Proposition 2.9 The module V2 is v,-special. The set of its characters coincides with
that of arbitrary Iy, M > m, and is equal to {w(yy), we W}.

Proof. Let us construct a family m(v)e SpecmC[ Y]%, depending on small veC,
such that m(0) = m and m(v) are in a general position. The latter means that
W(y) = {id} for each y = yy, where me MeSpeem C[ Y], and x(Y,) # ¢;°' for
arbitrary a € X (see Lemma 1.6). Then every Vo, for v = 0 is irreducible. Indeed, it
is linearly generated by its eigenvectors, which all are simple. Moreover, the set of
the corresponding characters is W-invariant. Therefore the existence of eigen-
vectors results directly from the following well-known

Lemma 2.10 Let C < EndcK, K =C¥ be a commutative subalgebra. Then
K = @K, where y runs over the set of all characters of C,

KP=(xeK,(c—x(c)’x=0 forall ceC}

Here K¥ = KY. If C = C(0), where subalgebras C (v)e End¢K are commutative and
depend continuously on small ve C, then K = lim,_o(® K, ), when x(v) runs over
all the continuous characters of C(v) with x(0) = y.

For generic m(v), v = 0, V'3, is isomorphic to H with the left regular action as
a H-module because of the irreducibility of V) Hence, dime(Q. Vo) = 1 for
v % 0. It is clear, that dimc(Q, V3) has to be equal to 1 or less. But V2 is generated
by Q,V°, since it is so for V°. Hence, V;, is v-special. [

The only non-trivial part of our calculation is

Proposition 2.11 Every induced representation I with special y = xu has only one
eigenvector with respect to y and possesses only one non-zero irreducible quotient-
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module. If y is v-special, then I,; is v-special as well. The analogous holds true
Jor .

Proof. As for 5, the second statement is from Theorem 2.4 [Ka] (the p-adic case
was considered by Muller). Close results can be found in papers by Casselman,
Kato, Steinberg et al. on cyclic vectors and spherical functions in p-adic representa-
tions (see [Ka] for some references). We will give a short proof “without calcu-
lations” based on the Lusztig-Lascoux-Schiitzenberger operators. The reduction of
the first statement to Lemma 2.12 below is due to [Ro].

Given special y = ya, let us include M into some family M(v) from Lemma 1.6
in a general position (see above). By Lemma 2.10 we obtain that

def

(Im)y = H, = ®,CT,, we W(y). Note that H, is generated by its subalgebras
H?, where HZ is the algebraic span of T; for «; from the p-th connected component
o, of the suset {a;, s;€ W(x)} in the Dynkin diagram. Moreover H, >~ @ ,H%. Let us
suppose, that dim¢(Iy)} 2 2. Then one can find an element C3u” € H? such that
Yy (u?) = u? for o, € 6, and some p. Indeed, if Caue(l M)y then there exists a com-
ponent u;¢ C (for some p) in the decomposition u = ) ; u;i;, where u;e H? and the
elements #;e[ ], . , HZ are linearly independent. We have Y, (u) = ) ; Yi(u;)4; for
. €0,. Hence, u? = u; is the required element because of the independence of {#;}.
The existence of such u? contradicts the following key

Lemma 212 Let ¢ £ 1% q", y = xyu, = x1, where x,(Y;) = Yi(M,) =1 for any
1 <i < n. Then the induced #-module I, = I is irreducible and dim¢(I,)y, = 1.
The same is true for #' if x(y;)=0for 1 £i < n

Proof. Let us first consider #’ and V2 = V'°/mV?° for the ideal m = m, generated
by all homogeneous elements from C[y]% of deg > 0 (by definition deg y, = 1,
deg1 = 0, xe X). This my corresponds to y = yo = 0. Given homogeneous ue V'°,
we put deg it = min{deg(u + mV"°)} for the image i of u in V5. The following four
subspaces in V'3, are coinciding;

(a) Cd, where d=T[[_, v

(b) {aEVrg, Si(ﬁ)z—ﬁ, 1 élén},

(© {ueVa, yu=0, 1ZiZn}

(d) {homogeneous i of deg i = max{deg V3}} .

The coincidence of () and (b) is clear, since 5;(d) = —d for 1 £i < nand V5,
considered as a W-module in a natural way, is isomorphic to C[ W] with the left
regular action of W (use Lemma 2.10 and the semi-simplicity of C[ W] or see [Bo]).
Let the image @ for some homogeneous ue V° be from (c). Then #; for u; = su + u
are from the same space, 1 <i<n One has: u; = (yu; — s;(yw))yi ' =
S(si(4) = f) i gk, whete yii = 3, figh, 96€Cy1". fie CLy], deg g > 0.
Hence, 4; = 0 and e Cd because (5,(fi) — fi}yi 1€ C[y¥]. The inclusion (d) < (¢} is
evident (deg(y;i1) = degii + 1 if y;i =+ 0). However there is at least one non-zero
element in (d). It belongs to (c) = (b) = (a) (see above) and therefore is proportional
to d. Thus, (a) = (d). Q.E.D.

As a corollary we obtain that V3 is linearly generated by d and its images with
respect to successive applications of the operations p—(s;(p)— p)yi ' for
1 <i<n Hence, VS =C[W°]d, where W° is generated by s?, 1 £i < n (see
(2.11), (2.12)). Here we have used the above representation for i;, where u is
homogeneous.
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As for Io(with y = 0), there is a #’-homomorphism ¢: I, — V2 taking 1 to d. It
is surjective because of V2= C[W,]d. Hence, o is an isomorphism
(dim¢ I = dim¢ V) and I, has only one eigenvector 1. If {0} + J < I, is a #-
submodule, then J contains an yg-eigenvector u % 0 (see Proposition 2.9 and
Lemma 2.10). But u is to be proportional to 1. It gives the irreducibility.

By means of Corollary 2.4 one has that the lemma is true for # with generic
g, q'- Therefore it holds good for any ¢, 4" € C apart from some algebraic curve
F(q, q") = 0. We will consider here only the case q'q" & 0. Let us apply Corollary
2.5 for arbitrary k', k"eQ, k'k" 0. We obtain a certain homomorphism
k:# — Endcl; via some extension # ., of . This trick is quite normal, since
k(Y;—1) in End¢l;, are nilpotent and we may use the expansions

k(k —
k(Y =1+k(Y;— 1)+ ( 5 1)(Y,- —1)*+ ... in (2.15—(2.16a) and the ordi-

nary expansions for (g; — Y;)~! (here k = k;). We see that 5, = # in Endc/,.
One has k(Y;)(1) = Y¥(1) = 1 for 1 £i < n. Hence, there is a #-homomor-
phism y:1; — I,(y(1) = 1), where 1, is the analogous induced module with the
character 7, for . Given ¢, ¢", we can find rational k', k" to get ¢', " out of the
above curve F = 0. Then I, is irreducible and y is an embedding. Moreover, it has
to be surjective, sinceﬂdimcf , = dim¢l . By construction, the natural image of 5 in
EndcI, contains k(). Hence I, is irreducible with only one eigenvector. [J

Let us prove that the subspace Q.I) generates Iy (i.e. I3 is ve-special).

Lemma 2.13 Any v,-special #-module J contains an eigenvector u, with v-special \j,
if its characters are W-conjugated to v.-special ones.

Proof. Let U be the unique irreducible quotient-module of J (see Lemma 2.7). First
let us prove this statement for U (it is v,-special as well). There is at least one y with
an eigenvector u, € U}. By means of (2.18) one can find a chain of eigenvectors from
u = u, to u, with a v -special

u =&, (M, u" = @, (M )u, u”" =@ (M5 Ju" and so on for
M =M, ,M"=M,;, M" = M, s, etc.

It is easy to show that we can use in this chain either invertible &, (M =y or
the pairs (s, , M*~ V) with ¥, (M*~") = qi. The values Y, (M* V) = g;.° may be
considered as forbidden.

Let us check that all «, u”,...,u®, ... are non-zero. If u* Y40 and
@, (w*~Y) is invertible, it is clear. Otherwise, Y, (M* V) =¢; and
o, (M*Dy=C;  (see (1.19). K Ciu* V=0, then Q.Ciu V=
(@ + 1)Q,u*" Y = 0 (see (2.17)) and Q,u* "V = 0. But 4%~ Y is an eigenvector and
generates U as a H-module (U is irreducible) Hence, U= Hu*™ Y,
0.U = Q,Hu®* "V = HQ,u* 1 = 0. This contradiction proves the lemma for irre-
ducible U. '

Thanks to Lemma 2.10, J = {0} if U} =+ 0. Therefore J; + {0} and J contains
an eigenvector with some v,-special character. ]

Now let y = yy be vg-special. The module J = Q.1 = Iy is v.-special
(dimc(Q, H) = 1). Hence, J contains an eigenvector with v,-special ¥. It results from
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Lemma 2.8 that J has y as the character of some eigenvector. However, I, is to
have the only eigenvector (namely, 1) up to a scalar factor, which corresponds to y.
We see that leJ and J =1,. O

Now we are in a position to describe the #-module V° for V = V,. We fix
&=+,
Theorem 2.14 (a) Each module V3 = V°/mV° for me Specm C[ Y1¥ is v.-special
and has only one irreducible quotient-module U,, % {0}, which is also v,-special and is
of multiplicity 1 in V9 as a composition factor. These {U,} are pairwise non-
isomorphic and constitute the set of all irreducible quotient-modules of V'° or (that is
equivalent) the set of all irreducible #-modules U generated by Q,U. Moreover, there
is only one homomorphism V° - U, for each m (up to a factor of proportionality).

(b) The module VY is isomorphic to I, where MeSpecm C[Y] is over
m (M = m) and the corresponding character yy is v,-special. The modules I, for the
same m and different v,-special y»s are isomorphic to each other. Up to an isomorphism
there is only one v.-special Iy among all M > m.

{c) The same statements hold good for H#'.

Proof. The modules V3, U,, are v,-special and U,, has the multiplicity one because
of Proposition 2.9 and Lemma 2.7. An arbitrary irreducible #-module U gener-
ated by Q,U is to be some quotient module of ¥° by definition. The action of
C[Y]” on U is scalar (Proposition 1.5). Hence U has to be a quotient-module of
an appropriate V2. Part (a) is proven.

Let u, be an eigenvector of V3 with some v.-special y = yp. Then M > m
(Proposition 1.5) and one can define a homomorphism y: I, — V5, taking 1 to u,.
The image y(I)) is v,-special because I, is v,-special (Proposition 2.11). Hence,
Q.7(Iy) # {0} and it generates the whole V) (the latter is v,-special). One has:
dim¢ H = dimcI,; = dime V2. Therefore y is an isomorphism. The equivalence of
different v,-special I,, for the same m follows from Lemma 2.8. As for the unique-
ness of v,-special I,,, use Proposition 1.5(c).

We mention without going into detail that some points in the proof of
Proposition 2.11 and the proof of the corresponding statement from [Ka] are
parallel. However the reduction to #’ and the utilization of the Lusztig-Lascoux-
Schiitzenberger operators are new.

3 The unification, some examples

We keep to the notations of the beginning of Sect. 1. Let A be some C-algebra
equipped with a homomorphism vo: W — A*, {r,, ae 2} < A. Let us define the
elements

D,= Y (u,a)r, ueC". (3.1

a>0

One has Dy, = (D, + D, u, veC", {, £eC. In particular,

def )
Dy = Dy =Y piry,D,=Ywo)D, 1 <isn, (3.2)

a>0 i
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where {a¥} are dual weights ((2;, o}) = §;; for the Kronecker symbol i), p is the
multiplicity of a; in «. We put D} = " _(u, 9)r,, where ae An 2, 4 is a subset in R™.

Definition 3.1 The set {r,} is a classical A-valued r-matrix of type A,, ..., G, if

Fwi) = VoW)r,vow) ™! for ael, weW, (3.3)

[D},D}]1=0, A=Re + Ry, (34)

Here {a;, a;} runs over all classes of pairs of simple roots modulo the action of

W on the latter (one pair for A,, B,, C;, G5, two for A,, D,, E¢_g, three for B;, C;,
four for B,, C,, F, n > 2).

Proposition 3.2 (see [Ch 1, Ch2]) Elements {D,, ue C"} are pairwise commutative
for {r.} from Definition 3.1.

Proof. 1t is sufficient to consider the elements Dy, ..., D,. One has:
[Db D]] =Zdl> dl= z :u;.t:ué[raa rﬂ] 3
A a, fei +

where 1, = An 2, A runs over all two-dimensional subspaces in R". Indeed, only
trivial pairs {a == §} can belong to some An A’ for A + 1. Let y, 6 be the pair of
simple roots in 1, = An X, (if the latter is two-dimensional) and v,, d, be the
multiplicities of y, 6 in ae A, respectively. Then p}, = y,u’ + 5, 5. Hence,

di= Y (yaptl + 6,115) (vart + 8 ppid)[res 7]
a, fed +

= uwd[Dy, Dy ]+ pspi[Dy, Do1 + (i pd — ) (D4, D1,

where D,, D, are from (3.2) but for 4, and {y, §} in place of £ and {as, . .., a,}.
Therefore the identity [D;, D,] = 0 is sufficient to prove the proposition.

The roots ¥,  can be included into the system of simple roots corresponding to
a certain Weyl chamber (see {Bo]). Hence, y = w{x;), 6 = w{a,,) for a suitable
we W and appropriate simple o, o,. We arrive at (3.4). O

Proposition 3.3 [Ch 1] Let {R,,a€ 2} ¢ A* be a quantum W-invariant R-matrix in

def
the sense of [Ch 5], i.e. the set {R,} satisfies conditions (3.3) and t; = R;vo(s;)e A*
for R; = R,, satisfy the braid relations (1.1). Assume that R depend on some parameter
heC and

Ri=1+hri+oh), 1<5i<n red, (3.5)

in a neighbourhood of h = 0. Let [R,, Rg]1=01if (o, f)=0. In the case of G, we
suppose additionally that R,R,+sRs = RgR,+gR, for long positive roots a, f, & + p.
Then {r;, 1 < i < n} can be uniquely extended to a classical r-matrix {r,, ne X } by
means of (3.3).

Proof. The cases A,, B,, G, are enough to cor}sidelt. Let « = ay, B = a,. For 4,
one has the following (quantum Yang-Baxter) identity

RaRa+ﬂRﬂ = RﬂRa+ﬂRa s
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which gives (see (3.5)) the well-known classical “abstract” Yang-Baxter relation
[ras ra+ﬂ] + [rw rﬁ] + [ra+ﬂ, rﬂ] = 0 . (36)
For B, we obtain the relation

R1R1+ﬂRa+2ﬂRﬂ = RﬂRa+2ﬂRa+ﬂRa s
which results in
[ru’ rﬂ + raz+ﬂ] = [r¢+2ﬂsra+ﬂ - rﬂ] (37)

because of the orthogonality conditions [r,, 7,4 25] = 0 = [r,+4, 5], which follow
from the corresponding conditions for R. For G, one has (see [Bo])

RaR3a+pR2a+ﬁR2ﬂ+3aRa+pRp = RﬂRa+ﬂR2ﬂ+3aR2a+ﬁR3¢+ﬂRa
and the relations
[rg, T + Taipd + [T20+p T30+5 — T32+28] = [Fos Tagrp] + [F3as2p> T2+p] (3.8)
together with (3.6) for ry, 73,44, 34424 and
(76> T2a+5) = [raps T304p] = [Fas F32+261 =0 .

Relations (3.6-8) modulo the orthogonality conditions ((x, f)=0=
[rs, 751 = 0) are equivalent to Definition 3.1. Owing to (3.3) we have only one
unknown element r, in the case of A, and two of them (r, and ry) for B;, G,. U

Let us consider 4 = EndcC(Y)®cA or A =EndcC(y) ®cA instead of A,
where C(Y) and C(y) are from Sect. 1. We have the homomorphism Wx W — 4
taking 1 x wto vo(w)e 1® A4 and w x 1 to the corresponding automorphism of C(Y)
or C(y). By definition

fo(w) = wyg(w), weW, (3.9)
where w, vo(w) are identified respectively with wx 1 and 1xvy(w). One has:
wyo(W') = vo(w')w for any w, w' e W.

Let {p,, aeX} be a classical A-valued (i.e. “constant”) r-matrix with the
following “quasi-unitary” condition
Pa + Vo(Sa) Pavo(Se) =1 + vols,) or =0 (3.10)

respectively in the case of Y or y. We fix «, k", &', 6” € C and denote by x, either ' or
k" for short or long roots, k; = x,, (the same notations hold for ).

Theorem 3.4 The set
To = Ko(pa + (Yo — D71 v0(5,) (1 — 8,5,)), € X, (3.11)
T = Ka(Pa + Y ' Vo(S:) (1 — 8,5)) for y (3.12)
is a classical A-valued r-matrix with respect to 9.

The proof is based on the following lemma directly resulting from formulas (2.1),
2.3).
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Lemma 3.5 In the setup of Sect. 2 let A = End¢V,
gi—1=h=xh heC,1Li<n. (3.13)

We will assume that the homomorphism v: H — Endc V from Sect. 2 (or its counter-

part for H' = C[W1]) depends on (small) h. Moreover, let us suppose that for vy:
W — A* = Autc V above

V(T3) = vo(s:) + hipvo(s;) + o(h) (3.14)
or
v(s;) = vo(s;) + hipivo(s;) + o(h) (3.15)
and
"o(W)V(Ti)"o(W)‘1 =v(Ty) if w)= o; (3.16)
or
voWIv(s)voW) "t = v(s;) i wlo) =y, (3.17)

where 1 < i,j < n. Then p, = p; satisfy (3.10) because of (1.2) and the set
R; = T?0o(s;) or R;=s%0y(s;), 1ZiZnm, (3.18)

for T?,s? from Theorem 2.1 and 9, from (3.9) can be uniquely extended to a quantum
A-valued W-invariant R-matrix with respect to 9o. The corresponding classical
r-matrix (see Proposition 3.3) coincides with (3.11), (3.12) for 6’ = 1 = §".

Thanks to the lemma we obtain the statement of Theorem 3.4 for A = EndcV
and ¢’ =1 = §". Really,

Ry = TP¥o(s;) = 1 + hr(Y; — )71 (1 = s:)vo (s:) + hx; ps

(see (2.1)). Here and further we will identify Y and Y;. As for (3.12), we can apply
(2.3). In the case &' = 0 = 6" Theorem 3.4 was proven in [Ch 1, Ch2]. The case
8 = 8" >o0 is completely analogous to the previous one. A direct consideration
for A,, B,, G, shows that this is enough to prove the theorem. [

Now let us first combine all p, in D, (r, are as above), then secondly add some
“scalar” terms to D, .

Corollary 3.6 The following elements from A are pairwise commutative (1 < i £ n):

ﬁi = Ylag/ﬁYl + Vo(xi) + Z K?,,ui( er - 1)_1 vO(Sa)(l - 5asa) ’ (319)

el +

D, = 0g/3y; + volx) + Y, Hatth Ya ' vo(l — 3u5a) (320

ael 4
for Y and y respectively and g from C(Y)¥ or C(y)”. Here [x;, x;] =0for L =i, j<n
and x; satisfy relation (1.5) for y¥ =y, hi=—(o;, oci). ki/2 ({a}}-are the dugl
weights), {x0} obey the same relations but for h; =0 (1 =i = n). These {x;} or {x?}
are added to {s;} and the homomorphism vy: C[W] — A is assumed to be extended to

{xi}, (xP}.
Proof. We will only check here that

def . R
vo(xi) = Y, Kapth(pa—1/2), a€Z, 1sisn

a>0
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satisfy relations (1.5) for y¥* with the constants h; above, where p, are from Theorem
3.4. Indeed, [vo(s;), vo(x:)] = O for j = i because s;(@) > 0 if p} + 0, where u.=
(o, ) = (5;(a), «). Similarly,

vo(s:) vo(xi)vo(si)) — Ki(pi + vo(si) pivol(s) — 1) = Z Ka(ot, si(aF)) (pa — 1/2) .
>0
Here we have used that s; does not change the terms pjo; in o for j + i and therefore
takes 0 < o % o; to some positive root. Hence, (3.10) results in

- < 2 (8 (o), “k)xk>si =—kK, 1ZiZn,
k=1

which is (1.5) for x; = y* and h; = — (o, a;)x;/2, 1 i< n.

The commutativity relations [x;, x;] = 0 are valid because the set {p,} is an
r-matrix. For {x?} (without g) reasoning is the same. One can deduce the general
statement (without g) from this partial results, but the direct calculation of the
commutativity is a more natural way and is not difficult. As for the introduction of
g, it is due to the relations pi[r,, y}]1 + pi[ y¥,r.] = 0. This proves the required
commutativity. O

Now we are in a position to explain the main theorem of this section. Later on,
A = End V. Let us introduce partial derivatives d,, ue C%, on V° = C(Y)®cV or
= C(y)®cV (see Sect. 2 and Lemma 3.5) by
0u(Yo) =, 0) Yy, 0u(ys) = (4, @), 3,(V) =0, (3.21)
where a€ 2. In particular, 0; = 0,4 (1 £ i, j < n). One has

Out pur = 00y + Py, WO W1 = 0, (3.22)
foru,u’'eC" a, feC, we W.
Theorem 3.7 Put
V,=0,+D,, D, = 2 (u, ¢;)D;, ueC", (3.23)

where D; are from_ (3 19) or (3.20). Then V,, ueC", form a commutative family of
operators in Endc V° for arbitrary ¥/, x” 0/,0",g. For {D } of type (3.20) or in the case
8 =0 = 06" one has: Vo(w)D,0o(w)™ ! = Dw(u,, where ¥ is from (3.9), ue C", we W.

Proof. Let us check the identities [0;, pir,] = [0, pir,Jfor1 <i,j<naeX,.By
(3.22) pio; — pio; = 0,, where u = pjo} — u,,cx}‘ Hence, 0,(Y, —~ D=(u, )Y, =0
- au(ya) and [610 1 5 Sa] = sa(a s(u)) -

We will discuss now some particular cases. Let us consider first the “rational”
case of C(y) with x? = 0 for all i. If & = 0 = 8", g = 0, then one arrives at the
generalized Knizhnik-Zamolodchikov equation from [Ch1, Ch2]. The Dunkl
operators (see [Du, He2]) can be obtained for ¥ = Cand §' = 1 = §”,g = 0. In this
case

re =K. Ve 11 —5,), aeZ, . (3.249)

The Lusztig-Lascoux-Schiitzenberger operators give a natural proof of the com-
mutativity of the corresponding family (3.23).
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To get the “trigonometric” operators {V,} we need some {p,} (Theorem 3.4) or,
more generally, an extension of our initial representation v, : W — End. V' to some
representation of the algebra s, generated by C[W] and x, ... x, above. The
quantum counterpart of the first problem is in constructing representations of
H satisfying conditions (3.14) and (3.16). For example, the well-known Baxter
matrices in tensor powers of vector spaces give an example for W =S, ,. Our
basic representations ¥° for one-dimensional ¥, are other examples. They satisfy
conditions (3.14), (3.16) and look to be very universal for many purposes.

The trigonometric {V,} without {s,} (i.e. for 8’ = 0 = §"”) are new and general-
ize directly the affine system from [Ch 2] in the case of A4,, although the latter was
written down in a rational form. This system is a natural candidate to obtain some
interpretation of Lusztig’s isomorphisms (see (2.13), (2.14) and Sect. 0) via mono-
dromy matrices.

Till the end of this paper we will consider C[Y], 8 =1=6", ¥V=C, g=0.
Then both (2.9) and (2.10) modulo some multipliers and constants are equivalent
and can be written as follows:

Fo=1,Y, ~ 1) (s, ~1)+¢c, aeZ, ceC, (3.25)
and V, =0, + Y 4> 0(u, 0)r,, ueC. These {r,} are analogous to
faz = %an(Ya + 1)(Ya - 1)_1(Sa - 1) (326)

from Heckman’s paper [Hel]: , — ro = k,(s, — 1)/2. Our {r,} are not “unitary”
(r + 5,705, = 1,(1 — s,) # 0). Hence, V,, + wV,w~! for some w, u. However
Theorem 3.7 is valid for them. Heckman’s V, = 8, + Y a>0(u, 0)F, are W-invariant
in the above sense, but do not form a commutative family. Let us show that V, have
the two main properties of Heckman’s V,. Namely, they are sel-adjoint with
respect to some bilinear form and produce the Schrodinger operator of the
Calogero-Moser-Olshanetsky-Perelomov type. We follow [He2] very closely. Let

A= ] (Y.+ Y;' —2°eC[ YT,

acl v
P=co+ Y ¥, if P=co+ YamsoCaYoeCLY],
a.,m+ 0
(P} =co.

Proposition 3.8 (a) (V,P, P') = (P, V,P'), where (P, P') = (PP A>, P, PeC[Y],
ueC.

(b) The operator 01 =Y., V, Vi — fforc= — Lisequalto ), VA,,,lVi and to

Z aat,»ai - Z Ka(Ya + 1)(Ya - 1)_161
i=1 a>0

after the restriction to C[Y]".

Proof. The adjoint V¥ of V, for ¢ = 0 with respect to (,) is equal to

A"(@u + Y Kl o) (1 = s) (Yo' — 1)“1)41 )

a>0
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For Heckman’s one (which is self adjoint-see [He1]) the corresponding formula is
with (¥, 1 + 1)(Y; ! — 1) ! instead of (¥Y; ! — 1)~ 1. Hence,

1

V¥ —v*= 54*1 Y Ka(u, @) (s, — 1)4
a>0
= Z Ka(uaa)(sa—' 1)='§u_vu’
>0
and
V¥=V,.
One has

O=3Y 0,0 —2 Y ka(Yo— )70, + 2¢ Y, K0, + ?
i=1

x>0 a>0
because r$ — ¢ acts trivially on C[Y]" and

(ua ai)ai = z (u’ a?)aai = aa

i=1 i=1

M=

(see [Het, Ex. 3.9]). O
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