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1 Introduction 

Let  k be a field. In  a previous  paper  [ A T V ]  (see also [ O F ] )  some graded  
k-algebras  A, regular  a lgebras  of d imension 3, were const ructed  from cer ta in  
au t om orph i sms  a of elliptic curves or  of  more  general  one-d imens ional  schemes 
E with a r i thmet ic  genus 1, which are embedded  as cubics in ~72 or  as divisors  of 
bidegree  (2, 2) in ~,1 x ~1. In  this correspondence,  the points  of the scheme E were 
shown to paramet r ize  cer tain A-modules  called point modules. A poin t  modu le  N is 
a g raded  r ight  A-modu le  with these propert ies:  

(1.1) (i) No = k, 
(ii) No generates  N, and  

(iii) dimk N / =  1 for all n > 0. 

The s t ructure  of  these po in t  modules  is related in a nice way to the geomet ry  of the 
scheme E and  its a u t o m o r p h i s m  a. F o r  example,  if N = Nv is the modu le  corres-  
pond ing  to a po in t  p of E, then the normal ized  shift N +, defined by 

(1.2) N, + = ) ' N , + I  if i > 0  
( O  if i < 0  , 
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is the point module which corresponds to the point ap. The object of this paper is 
to study point modules and their relation to the geometry of E. The main results 
were announced in [VdB]. 

To fix ideas, let us consider the case that our algebra A corresponds to a cubic 
curve E in the plane. In this case, A is a non-commutative analogue of a polynomial 
ring in 3 variables. There is a normalizing element g of degree 3 in A which is 
unique up to constant factor. It is the analogue of the cubic equation defining the 
curve, and the ring B = A l g A  is the analogue of the homogeneous coordinate ring 
of E, defined explicitly by B = O H ~ 1 7 4 1 7 4 1 7 4  where 

= (~E(1) (see [ATV]). 
If R is a graded k-algebra, then by analogy with the commutative case, we 

imagine Proj R to be defined and to have a geometric meaning, and we think of it as 
the non-commutative analogue of a projective scheme. Thus Proj A is a non- 
commutative (or "quantum") analogue of the projective plane IP 2. We call two 
A-modules equivalent if they are isomorphic modulo m-torsion, i.e., if they corres- 
pond to the same imagined sheaf on Proj A (see (6.5)). 

Again by analogy, if B = A l g A  as above, then Proj A contains Proj B as 
a "closed subscheme". And though the structure of Proj A is somewhat obscure, 
that of Proj B is well understood. The category of graded left (or of right) B- 
modules modulo torsion is equivalent to the category of quasi-coherent sheaves on 
the cubic curve E, just as in the commutative case when a is the identity (see [AV]). 
The new feature comes into the shift operation on graded B-modules. In the 
commutative case, the corresponding operation on sheaves is f f~ ,L ,e  | of f ,  
where ~ = O~(1). Here this operation is replaced by the operation 

In addition to A and B, We will consider the 7Z-graded ring A-- -A[g  -1 ] 
obtained by adjoining the inverse of the normalizing element g, and its subring Ao 
of elements of degree zero. Intuitively, the non-commutative affine scheme Spec Ao 
plays the role of the "open complement" of Proj B in Proj A. It is clear that the 
structures of A and of Ao are closely related. For the ring Ao, we have the following 
rather strong dichotomy (see (7.3)). 

Theorem I Let s denote the order of the a-orbit of the class [-~q~] of ~q ~ = CE(1) in the 
Picard group orE. Then if s < ~ ,  Ao is an Azumaya algebra of rank s 2 over its center, 
while if s= oo, Ao is a simple ring. 

We are also able to show (7.18) in the elliptic case that if o- itself is of finite order, 
then some power of the normalizing element g is in the center of A. Using this fact, 
we derive the result which is one of our main goals (see (7.1)): 

Theorem II A regular algebra of dimension 3 is a finite module over its center if and 
only if the automorphism tr has finite order. 

It is quite easy to exhibit the center of the associated algebra B explicitly, so 
Theorem II is easy to prove in the linear case [ATV, 8.5]. But since we don't have 
a conceptual description of the algebra A in terms of its triple (E, a, S~) in the 
elliptic case, we aren't able to exhibit the center of an elliptic algebra A explicitly. 
Instead, we construct a family of graded A-modules of gk-dimension 1 and fixed 
multiplicity, such that the intersection of their annihilators is zero. This is the main 
step, because it proves that A is a polynomial identity ring [SSW]. 
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The space A1 of elements of degree 1 in A has dimension 3, and there is an 
interplay between the geometry of Proj A and of the ordinary projective space 
~2 = lP(A1). (We use Grothendieck's notation: IP(V) denotes Proj (S(V)), where 
S(V) is the symmetric algebra on a vector space V. Thus points of ~'(A1) are in 
bijective correspondence with one-dimensional subspaces of A1.) For example, 
right modules of the form M = A/aA, where a is a non-zero element of A 1, are in 
canonical bijective correspondence with lines E in the projective space IP 2. We call 
these modules line modules. 

Let M be the line module corresponding to a line f. The point modules which 
are quotients of M correspond to points of intersection of E with f (6.23). This is 
not very surprising. A less intuitive fact is that any critical module N of 9k- 
dimension 1 (such a module may be thought of as corresponding to a closed point 
of Proj A) is equivalent to a quotient of some line module M, which we interpret 
intuitively as saying that N is supported on the line corresponding to M (6.7). This 
gives us a start towards the construction of the modules of dimension 1 which we 
use for the proofs of Theorems I and II. These considerations are carried out in 
Sects. 5, 6, and 7. 

Section 2 reviews standard material about Hilbert series, and it contains an 
important characterization of line modules (2.43). In Sect. 3 we prove that noether- 
ian regular graded algebras of dimension at most 4 are domains. The duality 
relating left and right A-modules is described in Sect. 4. 

In Sect. 8, we describe a process of twisting a graded algebra A by an 
automorphism ~ to obtain a new algebra A~. This twisted algebra can be quite 
different from A, but it should be considered as having the same Proj. We then 
determine explicitly those regular algebras which correspond to non-reduced 
divisors E, by showing that they are all twists of a few special types. The corres- 
ponding algebras A0 are unchanged by twisting, and can be determined com- 
pletely. They are closely related to the Weyl algebra. 

Acknowledgement. We thank the referee for suggesting an improvement of our original version of 
Proposition (3.4). 

2 Modules over regular algebras 

This section reviews well-known properties of graded modules over regular 
noetherian graded algebras. The only results which may be new are at the end of 
the section, beginning with Proposition 2.41. Except when the contrary is stated 
explicitly, our algebras will be assumed to be finitely generated graded k-algebras of 
the form A = k + A1 + A 2  -t- . . . .  Such an algebra is called regular if it has the 
following properties: 

(2.1) (i) A has finite global dimension d, 
(ii) polynomial growth, and 

(iii) is Gorenstein. 

(See[ArSch, ATV].) When not otherwise specified, the symbol A will denote 
a regular algebra, which in addition is left and right noetherian. These properties of 
A are equivalent to the following: 
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(2.2) (i) The left module ak has a minimal graded resolution 

O_., pd o .  . ._., p l  ~ po  ~ Ak ~ 0 

of length d by projectives of finite type. 
(ii) (the Gorenstein condition) The transpose of this resolution is a resolution of 

a right module isomorphic to kA(C), the shift of ka to some degree c: 

0 *- kA(C) *-- pal. , ,__. . . ._ p O . . . .  0 . 

(iii) There are positive constants a, b such that dimk A,  < bn a for all n > 0. 
(iv) Every finite graded A-module M has a graded resolution (which will be of 

length at most d) by projectives of finite type. 

Remarks. We conjecture that all regular algebras are noetherian domains. Also, in 
all examples which we know, the integer d is equal to the gk-dimension fi of A. By 
definition, 6 is 1 more than the minimal a in (iii) (see below). 

In later sections, we will be concerned mainly with the regular algebras of 
dimension 3 which are generated in degree 1. These are the algebras which were 
studied in [ArSch] and [ATV], and they are noetherian [ATV, 8.1]. We recall that 
there are two basic possibilities for such an algebra A: It will have r generators and 
r defining relations of degree 5 - r, where 

(2.3) r = 2 or 3. 

This number will be denoted by r throughout. In order to shorten the phrase, let us 
agree that by regular algebra of  dimension 3 we will mean one which is generated in 
degree 1, unless we mention the contrary. 

By A-module, we will mean a graded left or right module over A. We often use 
the termfini te  A-module to mean finitely generated graded A-module. The symbol 
Homa (M, N) will denote the graded group whose component of degree v consists 
of the degree-preserving homomorphisms M--* N(v) ,  where N ( v )  denotes the 
shifted module defined by N ( v ) ,  = Nv+,. The notation Ext](M, N) is to be inter- 
preted as the derived functor of the graded Homa (M, N) in the category of graded 
modules. There are enough projectives and injectives in that category [ NV, Ch. A]. 
Note that HomA (A, N) = N is true in the graded category. It follows that if M is 
a finite module, then Ext,] (M, N) agrees with the ungraded Ext. 

The projective dimension of a module M will be denoted by pd(M).  Considera- 
tion of a minimal projective resolution for M shows that for M #: O, pd M is the 
largest integer i such that Ext~ (M, k) ~ 0, and hence also the largest integer such 
that Ext , (M,  A) =1: 0. 

We begin by reviewing standard material about the growth properties of finite 
(graded) modules over noetherian regular algebras. A good general reference for 
this material is [Stan]. The Hilbert series of a module or a graded k-vector space 
M is, by definition, the series 

(2.4) h M (t) = ~ (dimk M,) t". 
n 

This is an additive function on the Grothendieck group of finite A-modules M. The 
resolution (2.2i) provides a recursion relation which allows us to compute the 
Hilbert series 

(2.5) ha(t)  = ~, a , t " .  
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of  A. A finitely generated projective module  P is a sum of shifts of  A. (To see this, 
choose a minimal  surjection O i  A(vi) ~ P. Minimali ty  means that  q~ | k is bijec- 
tive. Since P is projective this m a p  splits, and the N a k a y a m a  lemma [ATV1, 
Propos i t ion  2.2] shows that  it is bijective.) So we m a y  write 

r i  

(2.6) P' = 0 A( - -~ iJ ) '  
j = l  

for suitable non-negat ive integers ri and d~j. Of  course, pO = A. 
The characteristic polynomial of A is defined to be 

d r i  

(2.7) pa( t )  = ~'. ( - - 1 ) '  ~ t e'j = 1 + . . .  + (--1)dt c , 
i=o j=o  

with c and d as in (2.2). 
For  a regular algebra of dimension 3, the resolution (2.2i) has the form 

O ~  A ( - s - 1 ) ~  A ( - s ) r  ~ A ( - 1 ) r  ~ A--+ Ak ~ O ,  

where s = 5 - r. Hence  the characteristic polynomial  of such an algebra is 

{ l l - - 3 t + 3 t 2 - - t 3 = ( 1 - - t ) 3  if r = 3 ,  
(2.8) pA(t) = 2t + 2t 3 t 4 (1 02(1 -- t 2) if r = 2 . 

Proposition 2.9 With the above notation, 

hA(t)pn(t  ) = 1. 

Proof The coefficient of t" in this product  is 

d r i  

(2.10) Z ( - 1 )  ~ ~ a,-t,j = ~ ( - 1 ) ~ d i m ( p i ) ,  �9 
i=o j = l  i 

This coefficient is 0 if n 4= 0 and 1 if n = 0 because the sequence (2.2i) is exact. [] 

We factor PA in IE [ t ] ,  writing 

(2.11) pA(t) = I-I (1 -- Ctvt), 
v 

and calling ~v the characteristic roots of A. Then 

(2.12) h A ( t ) = I ] ( l - ~ t ) - l = i - I ( 1 + c ( v t  +~Et2 + . . . ) .  
v v 

This p roduc t  expansion implies the following proposit ion: 

Proposit ion 2.13 Let A be a graded algebra satisfying (2.2i). With the above nota- 
tion, the following are equivalent: 

(i) A has polynomial growth, 
(ii) hA(t) converges for t < 1, 

(iii) the characteristic roots ~ have absolute value < 1. 

Next,  we note that  the Gorenste in  condit ion (2.2ii) yields a functional equat ion 
for the Hilber t  function: 
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Proposition 2.14 Let A be a graded algebra satisfying (2.2i) and (ii). Then 

(i) PA (t) = ( -  1) d tCpa ( t -  1), 

where c is as in (2.2ii), and is also the degree of PA. 
(ii) The product of the characteristic roots of A is ( - 1 )  d+c. 
(iii) I f  A has polynomial growth, then the characteristic roots of A are roots of 

unity. 

Proof. The integers fii appearing in (2.6) are determined by the formula 

(2.15) Tor~ (kA, A k) = ( ~  k ( -  •ii) , 
J 

so they are unchanged if the sequence (2.2i) is replaced by a resolution of the right 
module ka. Moreover, 

n i .  = HomA(Pi, A) = ~,A(f i~) .  
J 

The functional equation (i) follows immediately from this equation, and the fact 
that c is the degree of PA is clear from its shape. Since the constant term of PA is t, 
the functional equation shows that its leading coefficient is ( -  1) d. Finally, if A has 
polynomial growth, then the characteristic roots have absolute value < 1 (2.13), 
and their product is _+ 1. Thus [~l = 1 for each characteristic root ~. Since PA is 
a polynomial with integer coefficients and leading coefficient + t, it follows that 7 is 
an algebraic integer all of whose conjugates have absolute value 1. Therefore a is 
a root of unity [BS, Ch. 2, Thm. 2.]. [] 

We now turn to Hilbert series of arbitrary finite modules. It will be convenient 
to work in the derived category Db(A) of bounded complexes of finite left A- 
modules. It follows from (2.2iv) that every such complex is isomorphic in D b (A) to 
a finite complex of projectives. Since every projective is a sum of modules A (v), we 
can compute the Hilbert series of an arbitrary module M or of an element of D b (A) 
in terms of that of A. Given a resolution 

(2.16) O ~  Pr ~ . . . ~ P I - ~  P~  M ~ O  

of a module M, we have 

(2.17) hu = ~ ( -  1)ihp, �9 

The Hilbert series of A (--v) is tV/pA(t). So if we write pi = ~ j  A ( -v i i ) ,  we obtain 
the formula 

(2.18) 

where 

(2.19) 

hM = qu(t)/pA(t),  or hu/ha = qu(t) , 

qM(t) = ~ (-- 1)'tv'J~Z [ t , t - 1 ]  . 
i , j  

Similarly, the Hilbert series of an arbitrary bounded complex M of modules is 
defined by the same formula. It satisfies the rule 

(2.20) hM = ~ (-- 1)' hu,(u) ,  

Hi (M)  denoting the cohomology of the complex M. 
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Proposition 2.21 Let hM = ~ re, t" be the Hilbert series of a finite A-module M. 
Then 

(i) The order p of pole of h at t = 1 is the maximum order of pole at points t 4: O. 
(ii) The order of growth of the coefficients m, is as a polynomial of degree p - 1 in 

n. More precisely, if p = O, then m, = 0 for sufficiently large n. I f  p > O, then 
m. = O(n p-l)  as n~oo, but m, 4: O(n p-I-~) if6 > O. 

(iii) The leading coefficient e(M) of the series expansion OfhM in powers of l -- t, 
called the multiplicity of M, is positive, and it is an integer multiple of the multiplicity 
e(A) of A. 

For  convenience, we set 

(2.22) z := e ( A ) -  1 

Par t  (iii) of the proposi t ion  asserts that, for a module  over one of these algebras, 

(2.23) ~(M) := le( M) = e( M) /  e( A ) 

is an integer. It  is often convenient  to work with e(M) rather than with e(M). 
If  we expand qu(t) in powers  of 1 -- t: 

(2.24) qm(t) = qo + ql(1 - t) + q2(1 -- t) 2 + . . . .  

where qo = qM(1), ql = --q~t (1)/1 !, etc., then formula (2.18) tells us that  e(M) is the 
first non-vanishing coefficient qi. 

Fo r  a regular a lgebra of dimension 3 we have 

{~ if r = 3  ~e(M) if r = 3  
(2.25) t--- if r = 2 ' a n d e ( M ) = [ 2 e ( M )  if r = 2 '  

Proof of Proposition 2.21 We have seen that  the characteristic roots of  A are roots 
of unity; say they are powers  of a primitive N- th  root  of  unity ~. Let p be the highest 
order  of pole of hM at the characteristic roots  of A. Then  hM has  a part ial  fraction 
expansion 

(2.26) hM(t) = Z eij/(1 - ( i t ) J  + f (  t) , 
i , j  

where i = 0 . . . . .  N - 1, j  = 1 . . . .  , p, and f ( t )~7z[ t ,  t - l ] .  The  binomial  expan-  
sion of 1/(I - t) j shows that,  for large n, 

m, = cij j -  1 

= ( ~ c ~ ( i " ) n P - 1 / ( p  - 1)! + (terms of lower degree in n) , 

where c~ = cip. This function cycles through N polynomials ,  according to the 
congruence class (modulo N)  [S tan] .  If p = O, i.e., if hM(t) = f ( t ) ,  then (i) and  (ii) 
are obvious.  Suppose p > O. Then by assumpt ion  the c~ are not  all zero. So the 
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leading coefficients ~ ci (~n are not all zero (Vandermonde). This proves (ii). Also, 
since m, > 0, ~ c~ (i" > 0 for all n. Summing n from 0 to N - 1, we find 

N - 1  

O< ~ ci( i~=Nco .  
n , / = 0  

Therefore Co > 0. This proves (i), and also shows that 

(2.27) Co = e(M), if p > 0 .  

If p = 0, then hM (t) ~ Z [ t, t - 1 ] has coefficients > 0, and eM = hu (1), so eM > 0 for 
all M # 0. Since hu h~ ~ is a polynomial with integer coefficients in all cases, 
~(M)~Z.  [] 

This proposition allows us to define the gk-dimension gk(M) of a non-zero 
module M to be the order of pole of hu(t) at t = 1. Equivalently, the gk-dimension 
measures the order of growth of dimkMn. One can define the g k-dimension of 
a module more generally [ K L ] ,  but in our case, the dimensions which arise are 
non-negative integers. 

Note that, by its definition, gk(M) depends only on M as a graded k-module, 
and does not depend on the A-module structure, although if M is a finite left or 
right A-module, then gk(M) < gk(A). 

We obtain an additive function ep on the Grothendieck group of modules of 
gk-dimension < p, by putting ep(M)= e(M) if g k ( M ) =  p and ep(M)= 0 if 
gk(M)  < p. We can also define the order of pole and multiplicity of an arbitrary 
bounded complex formally, but the alternating sign may cause cancellation. There- 
fore the order of pole need not reflect the growth of the cohomology modules, 
though we do have the following trivial fact: 

Corollary 2.28 Let M be a bounded complex of A-modules. Assume that the order of 
pole ofhM(t) at t = 1 is p, and that there is an integer i such that gk(H~(M))  < p if 
v :# i. Then gk(H~(M)) = p, and e(Hg(M)) = ( -  1)~e(M) = ( -  1)~ep(M). 

The following proposition is standard [KL] .  

Proposition 2.29 Let A be a noetherian regular algebra, and let M be a finite left or 
right A-module of gk-dimension m. 

(i) The sum My of all submodules of M of gk-dimension < v is a characteristic 
submodule of M, gk(Mv) <= v, and if m = gk(M), then 

M = M m  ~ M , . - 1  ~ " . . ~ M 1  D M o  . 

(ii) The quotient module M~/M~_ ~ is pure v-dimensional. That is, all of its 
non-zero submodules have gk-dimension v. 

(iii) I f  M is a bimodule which is finite as left and as right module, then M~ is 
a two-sided submodule, independent of choice of left or right in the definition. 

(iv) For all finite right modules NA and all q, the graded vector space 
Torqa(N, M) has gk-dimension <= m. 

We also need to recall the definition of critical module. An A-module M is 
critical if it is not zero and if every proper quotient has lower gk-dimension. Note 
that a critical module is pure. Some other key facts about critical modules are as 
follows: 
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Proposition 2.30 (i) Every non-zero finite module contains a critical submodule. In 
fact, every finite module M contains an essential submodule which is a direct sum of 
critical modules. (A submodule is called essential if it is not a direct summand of 
a strictly larger submodule.) 

(ii) A finite module has a finite filtration whose successive quotients are critical. 
(iii) I f  M is a module of  gk-dimension v, the successive quotients in such a filtra- 

tion are of gk-dimension < v, and the number whose gk-dimension is equal to v is 
independent of  the filtration. It  will be called the v-length of M. 

(iv) I f  M is pure v-dimensional then it has a filtration such that the successive 
quotients are critical and of gk-dimension v. 

(v) I f  A is a prime ring of gk-dimension 6 with left ring of  fractions K, then A is 
a pure A-module, and a left module M has gk-dimension <6 if  and only if 
K @ A M  = O. I r A  is a domain, then A is a critical A-module. 

(vi) Let M be a finite critical A-module. The annihilator P of  M is a prime ideal, 
and P is also the annihilator of each non-zero submodule of M. 

(vii) Suppose that k is algebraically closed. Then the only degree-zero endomor- 
phisms of  a critical module are scalars. 

Since these results are standard, we will content ourselves with a proof of (vi). Let 
M'  be a non-zero submodule, and let P '  be its annihilator. Tensoring the exact 
sequence 

O ~  M ' ~  M ~ M / M '  ~ O  

by A l P '  yields an exact sequence T o r ~ ( A / P ' ,  M / M ' )  ~ M '  ~ M / P ' M .  Since 
gk (Tor~ ( A /  P', M / M') )  < gk( M)  = gk( M' )  by the previous proposition, we have 
gk (M ' )  = g k ( M / P ' M ) .  Since M is critical, P ' M  = 0. This shows that P' = P. To 
show that P is a prime ideal, suppose that P ~ I J  but that J M  :~ O. We set 
M '  = J M  and apply what has been shown. [] 

If M is a finite module or an element of Db(A), we denote by M D its dual 
RHoma(M,  A), which is an element of the derived category Db(A) of bounded 
complexes of finite right modules. When M is represented by a finite complex of 
projectives 

(2.31) o ~ p k  ~ . . .  ~ p 1  ~ p O ~ o  , 

for example by means of projective resolution if M is a module, then M ~ is 
represented by the transpose sequence of right modules 

(2.32) 0 ~--  pk* ~_ . . . ~__ p 1 ,  ~ pO, ~ 0 , 

where P* = HomA (P, A). The q-th cohomology of this complex is Ext ) (M,  A). 
Clearly, there is a "biduality" isomorphism M --, M ~176 which expresses itself on 

Ext by a spectral sequence 

E~ 'q = Ext~ (Ext2~ (M, A), A) =~ M. 

In order to put this spectral sequence into the standard first quadrant form, we 
reindex, writing it as 

(2.33) E~ 'q = Ext]  (Ext~ -q (M, A), A) =:- Mtd I . 

where Mta I denotes the shift of position by d in the complex M. 
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The Hilbert series of the dual M ~ can be computed directly in terms of that of 
M. Write hM = qM(t)/pA(t) as before. Then 

(2.34) qM, (t) = qta (t -1 ) .  

Combining this with (2.14), we obtain the formula 

(2.35) hMD( t) = (--1)a tChM(t-1) , 

which gives us the following corollary: 

Proposition 2.36 Let M be a bounded complex of A-modules. Then 
(i) The order m of pole Of hM at t = 1 is equal to the order of pole of h(M ~ 

a r t =  1. 
(ii) e(M D) = ( - 1 ) a - ' e ( M ) .  

The last general property of Hilbert series which we will review is their behavior 
with respect to tensor products. If M, N are bounded complexes of finite right and 

L 
left A-modules, we denote by M | N the tensor product in the derived category. It 
is represented by the tensor product complex, provided that one of the complexes is z 
replaced by a bounded complex of projectives. Thus M | N is a complex of graded 
vector spaces, and as such it has a Hilbert series, which we denote by hM~ u (t) .  We 
have 

(2.37) h M ~ N ( t )  = 2 ( - -  l ) ihTor , (M,N)(  t )  " 
i 

Direct computation of this Hilbert series yields the following 

Proposition 2.38 Let M, N be bounded 

respectively. Then the Hilbert series of M 

complexes of right and left A-modules 
L 
| N has the form 

hM+u(t) = qM(t)qs(t)/pa(t) , 

where qM and qN are the "numerators" of the Hilbert series' for M and N which 
appear in (2.18), and Pa is the characteristic polynomial of A. [] 

Copying the definition from commutative algebra, we will say that a finite 
module M is a k-th syzygy if there is an exact sequence of the form 

(2.39) O ~ M ~ p 1  __~ p 2 _ _ . . . .  _+ p k , 

where pi  are finitely generated projective modules. 

Proposition 2.40 (i) I f  A has global dimension d and M is a k-th syzygy, then the 
projective dimension pd(M) is at most max{O, d - k }. 

(ii) A module M is a first syzygy if and only if the map M ~ M** from M to its 
bidual is injective, and M is a second syzygy if and only if this map is bijective, i.e., if 
and only if M is reflexive. 

The first assertion is trivial, and the second results from the consideration of 
a projective resolution of M* (see lEG, Thm. 3.6]). 
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Proposition 2.41 Let A be a regular noetherian algebra of  gk-dimension n. Let  M be 
a non-zero A-module such that pd(M)  < 1, and let 

(2.42) O ~  E A ( - i )  b~ ~ E A ( - i ) ~ '  ~ M ~ O  
i i 

be a minimal resolution of  M.  Then gk( M)  > n -- 1, and gk( M)  = n - 1 if and only if 
~ i  ai = ~ i  bg, in which case we have 

Z bi < ~ i ( b , -  ai) = e ( M ) .  
i i 

Corollary 2.43 The following properties of  a graded A-module M with pd(M)  = 1 
are equivalent: 

(i) g k ( M )  = n -- 1, and r  = 1, 
(ii) M is isomorphic to a shift of  a module of  the form A / a A ,  where a is a left 

regular element of  A1. 

Proof of  the corollary, assuming the proposition. Suppose that  (i) holds. Then 

E i a i  = E i b l  ~ 1. Hence ai - -  1 for a single index i, say i = il, and is zero otherwise. 
Similarly, b~= 1 for some i =  i2, and b ~ = 0  otherwise. The equat ion 
i2 - il = ~ i(b~ - a~) = 1 shows that  the minimal  resolution of M is 

(2.44) 0 ~ A ( - i l  -- 1)--* A( - il) ~ M ~ 0 ,  

i.e., that  M is i somorphic  to ( A / a A )  ( - i~ ) ,  where a is a left regular element of 
degree 1. Thus (ii) holds. 

Conversely, assume (ii). Then the minimal  resolution is of  the form (2.44) for 
some integer il. Hence h M ( t ) = t i ' h a ( t ) ( 1 - - t ) ,  f rom which we find 
g k ( m )  = gk (A)  and e ( m )  = e(A), i.e., that  (i) holds. [] 

Proof of  Proposition 2.41 The difference n - g k ( M )  is the order  of zero at t = 1 of 
the function 

hM(t) 
(2.45) qM(t) -- hA(t ) = ~'~ (a~ -- b~) t ~ = ~ q~ (1 - t) ~ , 

i v 

where 

(see (2.24)). Thus g k ( M )  < n if and only if qo = 0, i.e., ~ ai = ~ b~. Suppose that  this 

is the case. To  finish the p roof  we must  prove the inequality ~ b i  < ~i(b~ - at) 
( = ql).  Then, since M ~: 0 implies ~b~  > 0, it will follow that  ql * 0, hence that  

g k ( M )  = n - 1, and  e (M)  = q le (A) ,  as required (see (2.21iii)). 
Since (2.42) is minimal,  the matr ix  entries of the m a p  f all have positive degree. 

It follows from this fact that  for each integer j the image by f of the module  
~ i < j A ( - - i )  bi is contained i n  Ei<jA(- - i )a ' .  

Let X be the quotient  module  and let hx be its Hilber t  function. Since f is 
injective, 

h x ( t ) =  Z a i t i -  E bi ti" 
hA(t) ~<~ ~ j  
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Letting t approach i from below shows that 

a i -  ~ b i > O .  
i < j  i<--_j 

We write this inequality in the form 

bj < ~ ( a i - b i )  
i < j  

and sum over j for j __< m, where m is a fixed integer large enough so that 
a~ = b, = 0 for all/2 _>_ m. Since qo = O, we find 

~ bj = ~ h i <  ~ ~ ( a ~ - b , ) =  ~ ( m -  i ) ( a , -  b,) = mqo + q, = ql , 
j j < m  j < m i < j  i<m 

as was to be shown. [] 

Proposition 2.46 Let A be a noetherian regular algebra of  global dimension d, and let 
M be afinite A-module. Let m = A1 + A2 + �9 �9 �9 be the augmentation ideal of A. 

(i) l f  pd(M) < d then the socle Homa (k, M) of M is zero. The converse is true if 
d > 0 .  

(ii) Let T denote the m-torsion submodule of  M. Then E x t ~ ( M , A ) ~  
Ext~ ( T, A ). In particular, Ext~ ( M, A) is a finite-dimensional k-vector space of  the 
same dimension as T. 

(iii) Let M = M/T.  Then Extq(M, A) ~ Extq(.M, A) for all q < d. 

Proof. Note that T * 0 if and only if Homa (k, M) 4= 0. Moreover, since T has 
finite length, the fact that A is Gorenstein shows that Ext'4 (T, A) = 0 if i < d, and 
that Extda (T, A) is dual to T. Since A has global dimension d, we obtain an exact 
sequence 

Ext~ (2~, A) ~ Ext~ (M, A) ~ Ext~ (T, A) ~ 0 .  

Thus pd(M) = d if the socle of M is non-zero. Since the socle of M is zero, this 
sequence shows that (ii) follows from (i), applied to 3~. Also, (iii) follows from (ii) 
and from the Ext sequence associated to the exact sequence 

O ~  T ~  M ~_~I ~ O .  

To complete the proof of (i), we may assume that pd M = d > 0. Let 

O__, pe ~ p e - l _ . .  . .._, pO__. M ~ 0 

be a minimal resolution. The boundary maps in this complex carry PJ to m P  j -  ~ for 
each j, and it follows that the maps Ext~ (k, Pi) ._. Ext~ (k, P*-1) vanish for all i, in 
particular for i = d. Set M ~ = M and M i =  i m ( p i - *  pi -1 )  = ker (p i -1  __. pi-2) ,  
so that there are exact sequences 

O--. Mi--* P i-1 ~ M i-1 --*0 

for i = 1 . . . . .  d - 1. These sequences induce isomorphisms 

HOmA(k , M ~ m Ext~ (k, M 1) ~"  �9 �9 m Ext~ -1 (k, M d - 1 ) .  

We also have an exact sequence 

O"-~ Pd"} P a-1 --} M d-1 --*0, 
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which gives rise to an exact sequence 

0 --* Extra - 1 (k, M d- 1) ~ Extd(k, pd) __. Ext~ (k, P e -  1). 

As we remarked, the right hand map in this sequence is zero. This shows that 
Homa  (k, M) = 0 if and only if pd = 0, as required. [] 

3 Proof that regular algebras of dimension at most 4 are domains 

Throughout  this section, the term module will mean finite graded A-module, and 
bimodule will mean graded A-bimodule which is finite as left and as right module. 
As we have noted, the characteristic filtration (2.29) is the same, whether we view 
M as a left or as a right module, and it consists of two-sided submodules. In 
particular, if M is pure v-dimensional as a left module, it is so as a right module as 
well, and vice versa. 

Our  goal in this section is to prove that regular noetherian algebras are 
domains if their dimension is at most 4. This is an old result of Ramras [R] for rings 
of dimension 2 and it has also been proved by Snider [Sn] for rings of dimension 3. 
Before proving the theorem, we will collect some elementary facts about bimodules 
over regular noetherian algebras, which will then be applied to study the character- 
istic filtration (2.29) of A. 

Proposition 3.1 Let A be a regular noetherian algebra, and let M be an A-bimodule. 
Let I be the right (or left) annihilator of M. Then gk(A/1) = gk(M).  

Proof The inequality g k ( A / I ) >  gk (M)  holds because M is a finite right A/I -  
module. To prove the other inequality, choose generators xl  . . . .  , Xk for M as left 
module, and let Iv be the right annihilator of xv, so that xvA ~ A/Iv, and I = c~ L.  
Then gk (A / I )  < max {gk(A/IO} = max {gk(xvA)}  < gk(M). [] 

Proposition 3.2 Let B be a quotient of gk-dimension k of a regular noetherian 
algebra A, and let N be a pure k-dimensional B-bimodule. Then every regular element 
of B is left N-regular. 

Proof Let u be a left regular element of B, and let N '  = ker 2, where 2 = 2u denotes 
left multiplication by u on N. This is a right B-module. To show that N '  = 0, it 
suffices to show gk(N')  < ok(B). The sequence 0 --* B ~ B ~ B/uB ~ 0 shows that 
gk(B/uB)  < gk(B) and also that N '  = Tor~(B/uB, N). Therefore gk(N ' )  < 
gk(B/uB) < gk(B)  (2.29iv). [] 

Proposition 3.3 Let M be critical as an A-bimodule, and let P be the left annihilator 
of M. Then P is a prime ideal, and gk (A /P )  = gk(M). 

Proof Let Q denote the annihilator of M in A | A ~ This is a prime ideal (2.30vi). 
Since A | A ~ is centrally generated over A, the intersection of Q with A, which is P, 
is prime too. The last assertion is a special case of (3.1). [] 

Proposition 3.4 Let A = k + A1 + , 4 2  d -  . . . be a noetherian graded k-algebra, and 
let P1 . . . . .  Pr be a finite set of graded prime ideals of A, not including the augmenta- 
tion ideal m = A1 + A 2  4 -  . . . .  There is a homogeneous element x e A  of positive 
degree whose residue in B~ = A/Pi is a regular element for each i. 
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Proof The proof is similar to the one given in the ungraded case by Stafford [Staf, 
Prop. 2.4]. We order the prime ideals Pj in such a way that P, does not contain Pj 
for allj < r. By induction, we may assume that there exists a homogeneous element 
b which is regular in Bj for allj < r. We set I = P~ c~. . .  ~ P,_ 2. It suffices to find 
a homogeneous element d e I such that, for some k, b k + d is homogeneous and has 
a regular image in Br. From our chosen ordering of the prime ideals, it follows that 
the image of I is a nonzero two-sided ideal of Br. Reducing modulo P~, we see that 
it suffices to prove the following lemma. 

Lemma 3.5 Let B be a 9raded noetherian prime ring, let I be a nonzero two-sided 
ideal orB, and let b an arbitrary homogeneous element of B. There exists an element 
d ~ l such that, for some k, b k -}- d is homogeneous and regular. 

Proof Since I 4 :0  and B is prime, I is an essential ideal. We set b = bo. Replacing 
bo by a power as necessary, we may assume that ann(bo) = ann(b~) for every 
n > 0, where ann denotes the left annihilator. 

We follow the proof of the graded Goldie theorem [NV, Theorem C.I.1.6]. 
(When r = 2, the lemma follows directly from this theorem.) If ann (bo) + 0, then 
since I is essential, there exists an element bl in I ~ ann (bo) which is not nilpotent 
[NV, Lemma C.I.1.4]. (Note: The word "semisimple" in the statement of this 
lemma should read "semiprime".) Replacing bl by a power, we may assume that 
ann(b1) = ann(b~) for every n > 0. If ann(bo) c~ ann(b1) + 0, we choose a non- 
nilpotent element b2~I n ann(bo)n  ann(b1), and we replace it by a power as 
necessary, so that a n n ( b z ) =  ann(b~) for every n > 0. This procedure can be 
repeated so long as a n n ( b o ) n . . . n a n n ( b ~ ) 4 : 0 ,  and it yields a sequence of 
nonzero elements bo, bl, b2 . . . .  

From the choice of bl, it follows that the sum of right ideals 
boA + b~A + bzA + . . .  + b~A is a direct sum. So since B is noetherian, the 
procedure must stop, at which time ann (bo)c~. . .  n ann(bs) = 0. 

Choose k i s o  that x = b~ ~ + b k' + . . .  + b ff~ is homogeneous. Then from the 
above direct sum decomposition, we find ann (x) c ann(bo) ~ . . .  n ann (b,) = 0. 
Hence x is regular. Furthermore, by construction, d = b k~ + . . .  + b if" is an ele- 
ment of I. [] 

We now return to our regular noetherian algebra A. Let M be an A-bimodule, 
and consider the characteristic filtration (2.29) 

(3.6) M = Mr ~ �9 �9 �9 ~ Mo , 

in which M~ has 9k-dimension v, and where Mv/M~_ ~ = N~ is pure v-dimensional. 
We may choose a filtration of each of the modules Nv, whose successive quotients 
are critical v-dimensional bimodules. Each of these quotients will have a left 
annihilator P which, by Proposition 3.3, is a prime ideal. Let P1 . . . .  , Ps be the set 
of these prime ideals. It is natural to call them (the) associated primes of M. 

Corollary 3.7 Let M be an A-bimodule whose socle is trivial. There exists a homo- 
geneous element x ~ A of  positive degree which is M-regular. 

This is clear from the preceeding remarks and from Propositions 3.2 and 3.4. [] 

Proposition 3.8 Let A be a regular noetherian algebra of global dimension d. For any 
bimodule M, the gk-dimension ofExta  d-1 (M,A  ) is at most I. 
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Proof We may also assume that the socle of M is zero (cf. Proposition 2.46(iii)). 
Then Corollary 3.7 tells us that there is a homogeneous element x ~ A of positive 
degree v which is not a right zero-divisor in M. Let N = M / M x ,  and let 
E = Ext d- 1 (M, A). Right multiplication by x on M induces an exact sequence 

~x 
E , E ~ E x t a a ( N , A ) ,  

where 2x is left multiplication on the left module E. Since Extd(N, A) has finite 
length over k (2.46), it follows that 2x is surjective in large degree. Thus 
d imE,  > dimE,+v if n>>0, which shows that 9k(E) < 1, as required. [] 

We are now ready to prove the main result of the section: 

Theorem 3.9 A regular noetherian algebra of global dimension and #k-dimension 
d < 4 is a domain. 

Our proof is arranged as a sequence of lemmas, some of which are true in 
arbitrary dimension. We denote the global dimension of our regular noetherian 
algebra A by d, and its 9k-dimension by d'. 

Lemma 3.10 The d'-length of A is 1. 

Proof Every finite A-module has a finite resolution by finite sums of modules A(v). 
Since d'-length is an additive function on the Grothendieck group of finite modules, 
the d'-length of any module is an integer multiple of the d'-length of A. On the other 
hand, every critical module of gk-dimension d' has d'-length 1. [] 

For  the rest of this section, we denote by N the largest ideal of A of #k- 
dimension < d'. The next lemma shows that it suffices to prove N = 0. 

Lemma 3.11 A/N is a domain. 

Proof. By the definition of N, the module ,4 = A/N is pured'-dimensional .  Let 
K be the left annihilator of an element b e A, so that Ab ,~ A/K. By the previous 
lemma, one of the two left ideals K or ,4b has gk-dimension < d', and is therefore 
zero. [] 

Lemma 3.12 Let I be the right annihilator of the ideal N. Then g k ( I ) =  gk(A), 
hence there is an element b ~ I which is not in N. 

This follows from Proposition 3.1 and the definition of N. [] 

Lemma 3.13 N is a reflexive A-module, and pd(N) < max {0, d - 2} . 

Proof Lemma 3.12 tells us that there is an element b in the annihilator of N, but 
not in N. Therefore the kernel of right multiplication Pb = P by b on A contains N, 
while right multiplication by b on the domain A = A/N is injective. It follows that 
ker p = N, and that the sequence 

P 
(3.14) 0 --. U --. A , A --. A/Ab ~ 0 

is exact. So N is a second syzygy, and hence is reflexive and of projective 
dimension < max (0, d - 2) by (2.40). [] 

Lemma 3.15 Theorem (3.9) is true if the global dimension d is ~ 2. 
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Proof If the global dimension d of A is at most 2, then N is projective, by the 
previous lemma, hence it is a sum of shifts of A. Since gk(N) < gk(A), it follows 
that N = 0, and by Lemma 3.11 that A is a domain. [] 

Note that we did not use the hypothesis d --- d' here. In fact, the structure of 
regular graded algebras of global dimension N 2 is known (see [ATV, 3.14] for the 
case of algebras of dimension 2 generated in degree 1) and from the structure 
theorem it is easy to see that they are noetherian domains with d = d'. 

We assume from now on that d = d' > 3. 

Lemma 3.16 N contains no non-zero submodule of gk-dimension < 1. 

Proof Since N is reflexive, pd (N) < d - 2. Also, the Gorenstein condition implies 
that the socle of N is trivial (2.46). Let N1 be the characteristic submodule of N of 
9k-d imens ion< 1. We want to show that Nx = 0 .  Now the bimodule 
M = N1 �9 N ~ (N/N1) has trivial socle, and so Corollary 3.7 tells us that there is 
an element x in A of positive degree which is M-regular. Note that N1 has 9k- 
dimension < 1. If N~ :t: 0, it follows that Na/xN1 is a non-zero module of finite 
length. Since x is (N/N1)-regular, multiplication by x in the exact sequence 

0 ~ N1 ~ N ~ (N /Ni )  ~ 0 

shows that N / x N  has a non-zero socle, which implies that pd (N/xN)  = d (2.46). 
This contradicts the facts that x is N-regular and that pd(N) < d - 2. [] 

We now proceed with the proof of Theorem 3.9. To simplify notation, we will 
write 

Eq(M) := Ext~ (M, A) .  

Suppose d = d ' =  3 and N :# 0. Then by Lemma 3.13, p d ( N ) <  1, hence by 
Proposition 2.41, gk (N) > 2. By the definition of N, gk(N) < 2, hence gk(N) = 2. 
Proposition 2.36 tells us that e(N ~ = - e ( N ) .  On the other hand, the only homol- 
ogy modules of the complex N o are N*  = E o (N) and E 1 (N). Moreover, since N is 
a second syzygy, E l ( N ) =  Ea(M)  for some M, hence E l ( N )  is a finite length 
module. Therefore N* has gk-dimension 2, and e ( N * ) =  e ( N ~  This 
contradicts the fact that e(N*) > O, and completes the proof  in the case of global 
dimension 3. 

From now on we assume that d = d' = 4. The proof is harder in this case, when 
we know only that pd(N) < 2. 

Lemma 3.17 Let M be a reflexive A-bimodule. Then gk (E l (M))  <= 1. 

Proof The dual module M *  = E~ is also a reflexive bimodule, so replacing 
M by M *  shows that it suffices to prove gk(E l (E~  < 1. We consider the 
spectral sequence (2.33) E~ q = EP(E4-q(M)) ~ M t 4  r Denoting E i(E ~(M)) by 
E ~ E ~, we have E i E o = E2~ a. Since the abutment of the spectral sequence is Mr41, we 
know that E~ '~=0 .  The non-zero coboundary maps involving E 14 are 
d2: El  4 ~ E 33 = E3E l and da: E314 ~ E~ 2, where E342 is a quotient of 
E~ 2 = E4E 2. Proposition 3.8 tells us that gk(E3E 1) < 1, and E4(L) has finite 
length for every finite module L. It  follows that gk(E1E ~ <= 1, as required. [] 
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Lemma 3.18 N is pure 2-dimensional. 

Proof. By definition, gk(N) < 3, and by Lemma 3.16, N contains no submodule of 
gk-dimension < 1. On the other hand, if gk(N) = 3, then we can argue as above: 
Proposition 2.36 tells us that e ( N ~  On the other hand, Eq(N)= 0 
except for q = 0, 1,2. Moreover, EE(N) = E4(M) for some M, and so EE(N) is 
a finite length module, while El(N)  has gk-dimension <1  by the preceeding 
proposition. Therefore N* has gk-dimension 3 by Proposition 2.36, and e ( N * ) =  
e(N~ by Corollary 2.28. This contradicts e(N~ -e (N) .  [] 

Lemma 3.19 Let M be a right module such that pd(M) < 2. Then Tori(M, N) = 0 
/ f i  > 0. 

Proof. Since N is a second syzygy, there is a module N '  such that 
Tori(M, N) = Tori+E(M, N'). Since pd(M) < 2, Tori+z(M, N') = 0 if i > 0. [] 

Lemma 3.20 Suppose that N 4: 0 and that M is a non-zero module of projective 
dimension < 2. Then gk(M) > 2. 

Proof. Suppose gk(M) < 1, and that M is a right module. Let qM(t) denote the 
numerator  of the Hilbert series hM(t), defined as in (2.18). Since gk(A) = 4, the 
order of zero of qM(t) at t = 1 is at least 3. Also, since gk(N) = 2, the numerator  
qN(t) has a zero of order at least 2. By the previous lemma and by Proposition 2.38, 
the Hilbert series of the tensor product module M |  has the form 
hu | n (t) = qM (t) qN (t) / Pa (t). The numerat or of this series has a zero of order at 
least 5 at t = 1. Therefore hu | N vanishes at t = 1. This happens only for the zero 
module. But since M, N are not zero, neither is M | N. [] 

Lemma 3.21 Assume that N 4: O. Let M be a module of gk-dimension < 1. Then 
p d ( E l ( M ) )  < 2. 

Proof. We examine the spectral sequence (2.33) E~ q = EP(E4-q(M)) ~ Mr4 j again. 
The assertion of the lemma is t h a t  E ~  3 = EP(E~(M)) = 0 when p > 2. Since N is 
pure 2-dimensional and gk(M) < 1, M* = E~ = 0, and so E~ 4 = Ei(M *) = O. 
And, since the abutment of the spectral sequence is Mr41, the terms E 33 and 
E ~  3 vanish. This implies that E 33 = E243 = 0 tOO, as required. [] 

Lemma 3.22 N = 0. 

Proof. Assume N 4 0. There is an N-regular element x, (3.7). Dualizing the exact 
sequence 

x 

O ~ N  , N ~ N / x N ~ O  

gives an exact sequence 

X 

O--* N* ' N* ~ E-'* EI(N) , 

where E = E ' ( N / x N ) .  Since g k ( N ) =  2, it follows that g k ( N / x N ) <  1, hence 
pd(E) < 2 by the last lemma. Therefore gk(E) > 2, by Lemma 3.20. On the other 
hand, gk(E~(N)) < 1 by Lemma 3.17. Therefore gk(N*) > 3. Since N is reflexive, 
the left annihilator of N is the right annihilator of N*, and so Proposition 3.1 shows 
that gk(N) = gk(N*). This is a contradiction, which completes the proof of the 
Lemma and of Theorem 3.9. [] 
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4 Dimensions of the dual modules 

In this section we estimate the g k-dimensions of the modules Eq(M):= Ext q (M, A) 
when A is a noether ian regular ring of global dimension 3. As in Sect. 3, we will use 
the facts that 9k(A)  = 3 and that A is noetherian, but  will make no other  use of our 
assumption that  A is generated in degree 1. The results are summed up in the 
following theorem. 

Theorem 4.1 Let A be a regular algebra of dimension 3, and let M ~- 0 be a finite left 
A-module of g k-dimension m. Let E i ( M ) = E x t , ( M ,  A ), and denote E 3 - m ( M ) by 
M v. Then 

(i) EJ(M) = 0 i f j  < 3 - m. 
(ii) gk(M v ) = m, and e(M ~) = e(M). 

(iii) gk( EJ( M)  ) < 3 - j  for all j. Moreover, the following assertions are equivalent: 
(a) g k ( e J ( M ) ) =  3 - j ,  
(b) EJ(EJ(M)) ~= O, 
(c) M contains a non-zero submodule of ok-dimension 3 - j .  

The next corollary describes the duality between left and right modules given by 
M ~ , M  ~. A module  M is called Cohen-Macaulay if E q ( M ) =  0 for all 
q =~ 3 - gk(M), or equivalently if pd (M)  = 3 - gk(M). 

Corollary 4.2 With the notations of the previous theorem, 
(i) There is a canonical map # = #M: M ~ M v v, which is an isomorphism if M is 

Cohen-Macaulay. 
(ii) I f  m < 3, M ~ is Cohen-Macaulay. 

(iii) M ~ is pure m-dimensional. 
(iv) ker # is the maximal submodule of M which has gk-dimension < m, and 

gk(coker/~) < m - 2. 

Needless to say, (4.1) and (4.2) are true for right modules as well. 

Note. The referee remarks that  (4.1i, iii) implies that A is Auslander regular in the 
sense of Bj6rk [Bj]. Moreover ,  (4.2iii) implies that the filtration defined by the 
spectral sequence (2.33) is the same as the filtration (2.29i) by 0k-dimension. 

We note the following corollary to Theorem 3.9: 

Lemma 4.3 Let A be a regular algebra of  dimension 3 and let M be a fn i te  
A-module. Then 

(i) A is a critical A-module, and for every non-zero a EA of positive degree, 
gk(A/Aa)  = 2. 

(ii) E~  = M* = 0 if and only if gk(M)  < 3. 
(iii) For every q > O, 9k(Eq(M))  < 3. 

The proof  of this lemma is routine, part  (iii) being a consequence of the fact that  A is 
a Goldie domain  whose field of fractions is semi-simple. Alternatively, it suffices to 
prove (iii) for M = A/L,  where L is a non-zero left ideal of A. Let a be a non-zero 
element of L. Since gk(L/Aa)  < 2 by (i), we have (L/Aa)* = 0 by (ii). Hence E l ( M )  
injects into E I ( A / A a ) =  A/aA, which has ok-dimension equal to 2 unless it is 
zero. [] 

Note  that  this lemma holds for a graded regular noether ian domain  of arbi t rary 
dimension d', if we replace 3 and 2 by d' and d' - 1. 
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The proofs of Theorem 4.1 and Corol lary 4.2 are based on an analysis of the 
spectral sequence (2.33). Taking into account  the previous lemma, the fact that  A is 
Gorenstein, and the fact that  the abutment  of the spectral sequence is in degree 3, 
produces zeros in the E~ q terms of  this spectral sequence as indicated below: 

E~ ~ E1E ~ 0 0 
0 E1E 1 E2E 1 E3E 1 

(4.4) 0 E1E 2 E2E 2 E3E 2'  

0 0 0 E3E 3 

where EIE j stands for EI(EJ(M)). Lemma 4.7 below tells us that E1E 2 = 0 too. 

Lemma 4.5 Let M be a finite module of gk-dimension < 3. I f  E~(M) 4: O, then 
pd(E~(m))  = 1 and gk(Ea(M))  = 2. 

Proof. Since gk(M) < 3, the previous lemma tells us that E~  = 0. This pro- 
duces some more zeros in the spectral sequence (4.4), as is indicated below: 

(4.6) 

0 0 0 0 
0 E1E 1 0 0 

0 E1E 2 E2E 2 E 3 E  2 '  

0 0 0 E3E 3 

The second row from the top shows that  pd(E~(M)) < 1. By Proposi t ion 2.41, 
gk(E~(M))  > 2. On  the other  hand, 9k(E~(M))  < 3 by (4.3). Thus 
gk(E~(M))  = 2. [] 

Lemma 4.7 For any finite module M, EI E2(M) = O. 

Proof The fact that  the abutment  of the spectral sequence (4.4) is concentrated in 
degree 3 shows that the coboundary  map  E 1 E 2 - * E 3 E  3 is injective. Since 
g k(E z (M)) < 3, the previous lemma applies, to show that either E X E 2 = 0, or else 
gk(E ~ E 2) = 2. On  the other hand, E 3 has finite length for every finite module. So 
E1E 2 = 0 .  []  

Lemma 4.8 Let M be a fn i te  module of gk-dimension <= 1. Then EJ(M) = 0 for 
j =  0,1. 

Proof We already know that  E~  = 0, so the spectral sequence (4.6) gives us an 
exact sequence M ~ E 1 E I ~  E3E 2. Since E 3 has finite length, it follows that 
gk (E IE  ~) < 1. Lemma 4.5 shows that  E1E 1 = 0, so by (4.6), that  EiE ~ = 0 for all 
i. This implies that (E 1)0 = 0, hence that E 1 = 0. []  

We now proceed with the proof  of Theorem 4.1. As we have noted before (2.46), 
the theorem follows in the case that  gk(M) = 0 from the fact that  A is Gorenstein. 
So we assume from now on that  gk (M)  = m > 0. 

Proof of Theorem 4.1 (i) The case m = 1 was treated in Lemma (4.8). Also, if 
m < 3, then E~  = 0 because A is a domain.  This settles the case m = 2, and the 
case m = 3 is trivial. []  
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Proof of Theorem 4.1 (ii) 

Case m = 1 Here M v = E2(M). Lemma 4.8 shows that Ei(M) = 0 unlessj = 2,3. 
Also, E3(M)  has finite length. Thus Corollary 2.28 applies. It shows that M and 
M v have the same gk-dimension and the same multiplicity. 

Case m = 2 Here M ~ = El(M).  In this case formula (2.36) reads e ( M~  - e ( M ) .  
Since gk(E~(M)) < 2 for all j, we have e(M ~ = ~ ( -  1)Jej, where ej = e(EJ(M)) if 
#k(EJ(M)) = 2 and is zero otherwise. Since E~ is zero and E3(M) has finite 
length, we find - e ( M )  = e(MD)= --e~ + e2. This shows that el > 0, hence that 
#k(M ~) = 2. To show that e(M ~) = e(M), we must show that e2 = 0, i.e., that 
9k(EE(M)) < 2. Suppose that 9k(E2(M)) = 2. We substitute EE(M) for M into 
what was just shown, to conclude that 9k(E~EE(M)) = 2. But by Lemma 4.7, 
E1E 2 = 0 .  

Case m = 3 This case follows in the same way, from (2.28) and (4.3). [] 

Proof of Theorem 4.1 (iii) We have seen (4.4), (4.7) that EiE j = 0 if i < j. Part  (ii) of 
the theorem shows that #k(EJ(M)) < 3 - j  and that assertions (a) and (b) are 
equivalent. Moreover, it shows that ffk(EJE j) = 3 - j  if and only if EJE j ~e O. 

To prove that assertion (b) implies (c), we examine the gk-dimensions of the 
non-zero terms E~E j of the spectral sequence (4.4), using the fact just proved, that 
#k( Ei E j) < 3 - i. If g k( E J E j) = 3 - j, we conclude that the corresponding term in 
E~,  which is E~ 3-j, has the same #k-dimension. Then the filtration of M whose 
associated graded module is @ E~ 3-j  supplies a non-zero submodule having 
gk-dimension 3 - j ,  whenever #k(EJE j) = 3 - j ,  i.e., whenever EJE j # O. 

Finally, let us show that (c) implies (a). We assume that M contains a sub- 
module of #k-dimension 3 - j , a n d  we let N denote the largest such submodule. We 
denote the module M / N  by M. Since E J - I ( N )  = 0 by (i), the exact sequence 

O ~ N ~ M--.  )~I ~ O 

gives us an exact sequence 

0 -~ EJ(2VI) ~ EJ(M) ~ E~(N) ~ eJ+l(l~l).  

We know that gk(EJ(N)) = 3 - j ,  and that 9k(EJ+l(l~l)) ~ 3 - j  - 1. Thus the 
image D of Ei (M)  in EJ(N) has #k-dimension 3 - j .  Taking Ext once more, we 
obtain a sequence 

EJ-1EJ(~I) -~ EJ(D) ~ EJE~(M).  

The left hand term is zero and EJ(D) =~ O. Therefore EJEJ(M) # 0, as required. 
This completes the proof  of Theorem 4.1. [] 

Proof of Corollary 4.2 We examine the spectral sequence (4.4) once more. Let 
p = 3 -  m. Using the previous theorem, we find that EJE ~ = 0 for j < p. The 
spectral sequence now provides the canonical map  #M:M--* EPEP(M)= M vv 
Part  (ii) follows by inspection of the spectral sequence (4.6), and it shows that /zu is 
bijective if M is Cohen-Macaulay. Part  (iii) is true if m = 3, because in that case 
M v = M* and A is a domain. I fm  < 3, it follows from part (i) and (4.1iii). To prove 
(iv), we note that the cokernel of the map/~  is controlled by the images of the 
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coboundary  maps  of the spectral sequence (4.4), which are maps  
EPE p ~ Ep+k+~E p+k. Assertion (iii) of the corollary and Theorem 4.1(iii) tell us 
that  9k(Ep+k+~E p+k) < m - 2, hence gk(coker  p) < m - 2. Since (4.1ii) M, M ~, 
and M ~ ~ have the same multiplicity, 9k(ker  #) < m, and since M ~ ~ is pure, ker/~ 
is the maximal  submodule  of gk-dimension < m. [] 

5 Some more preliminary considerations 

For  the rest of the paper,  we restrict our  at tent ion to regular algebras of dimension 
3 generated in degree 1, and we will review some nota t ion  before going on. Recall 
[ A T V ]  that  such an algebra A defines a regular triple Y- = (E, tr, ~ ) ,  where a is an 
au tomorph i sm of the scheme E and 5r is an invertible sheaf on E, and that  
AI = H~ ~) .  There are four possibilities for the triple: 

(5.1) the elliptic case: 

(a) r = 3, E is a cubic divisor in p2, and A a = (ge(1), 
(b) r = 2, E is a divisor of bidegree (2,2) in IP 1 x p1, and ~,e = pr*(9~l(1), 

the linear case: 

(a) r = 3, E = pz,  and LP ~ (gD,:(1), 
(b) r = 2, E = p1 x ]p1, and 5 ~ ~ pr* (9~1(1). 

The  elliptic case is the more  interesting one. 
If r = 2, the au tomorph i sm o- has the form [ATV, 4.5] 

(5.2) a(px,pz) = (P2,f(Pl,P2)). 

In order to be regular, i.e., to define a regular  algebra,  the au tomorph i sm tr must  
be related to the invertible sheaf L~ a in the following way [ATV, 4.81: 

(5.3) ~t ,<~-l)~,-  1) ~ (9~, 

where t = 4 - r as in (2.25). When  (5.3) holds the triple ~-- determines the algebra 
A = A(Y-). (n.b. The  s ta tement  that  Y" is a regular triple does not  imply that  the 
divisor E is smooth!) .  

Let  us denote  by [ ~ ]  the class of the invertible sheaf L a in Pic E. The covar iant  
opera t ion of a on P i cE  is defined by: a lLY]  = [ ~ ~  and (5.3) amoun t s  to 
(a - 1) (a '  - 1) [Ae] = 0. We will often denote  by .~.the invertible sheaf L,e 1 - , - , ,  so 
that  [ ~ ]  = (1 - ~ r ' ) [ ~ ] .  Then our  condit ion (5.3) says that  [ ~ ]  is o'-invariant: 

(5.4) . 9 / ~  .~.  

Moreover ,  the triple is linear if and  only if [.~] = 0, i.e., if and only if [ s  is 
a ' - invar iant  [ATV, 4.8'] .  

Let  S be a scheme, and let z : Es --+ S be a family of divisors of degree 3 in p2 or 
of bidegree (2, 2) in p1 x IP 1, parametr ized  by S. Let Pic~ be the subscheme of 
the relative Picard scheme Pic Es/S of classes of invertible sheaves whose restric- 
tion to each irreducible componen t  of  each geometr ic  fibre of Es/S has degree zero. 
Corol lary  (5.7) below describes an opera t ion of the algebraic group scheme 
Pic~ on the scheme Es, which in the case that  Es is smoo th  is the usual action 
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by translation on an elliptic curve. If p: S ~ Es is a section, we denote by p also its 
image, by Jp ~ (gE~ the ideal sheaf of the image, and by (99 its structure sheaf. 

Proposition 5.5 Let ~ be an invertible sheaf on Es whose restriction to each irredu- 
cible component of each geometric fibre of Es/S has degree zero, and let p be a section 
of Es over S. 
(i) R in ,  ( ~ | Jp) is a locally free (gs-module of rank 1, and R qn, ( ~ | Jp) = 0 if 
q : ~ l .  
(ii) n,(Hom(.~|  is a locally free (9s-module of rank 1, and 
g q n , ( H o m (  ~ | Jp, (9~.~)) = 0 if q ~- O. 
(iii) There is a unique section p' : S ~ Es whose ideal sheaf ~ ,  is, locally over S, 
isomorphic to .~ | J r  

Proof (i) We note that ~ | J~ is (gs-flat. In view of this, standard considerations 
show that it suffices to prove the assertion in the case that S is the spectrum of 
a field K. Then what must be proved is that Hl(Es ,  .~ | Jp) has dimension 1 and 
that Hq(Es, .~ | Jp) = 0 if q 4= 1. A consideration of Euler characteristics reduces 
us to showing that H~ .~ |  0. By I-ATV, 7.12], ~ is tame. If ~ is not 
isomorphic to (gE, then H~ .~) = 0 [ATV, 7.10], hence H~ .~ | Jp) = 0 
too. If.~ ~ (9, then since H ~ (Es, (9) = k, H~ .~ | Jp) = H~ Jp) = 0 as well. 

(ii) This follows from (i) and the Grothendieck duality isomorphism 

(5.6) Rn ,  (RHom (~ | Jp, og~/s)) "~ RHom (RTz,(.~ | Jp), Cs). 

Using (i), the right side reduces to Horn (R 1 n ,  (.~ | Jp), (gs), and this sheaf is locally 
free of rank one. Also, the sheaf ~oEs/s is, locally over S, isomorphic to (9~. The Ext 
sequence associated to the exact sequence 

shows that Extq(.~ | Jp, r = 0 for q > 0. Therefore the left side of (5.6) is 
locally isomorphic to Rzr. (Hom (.~ @ Jp, (9es)), and assertion (ii) follows. 

(iii) Let f ~  Hom (.~ @ Jp, (9Es) be a local generator for rc,(Hom(.~ @ Jp, 0E~)), 
and let J be its image, an ideal in d) = (gEs. We claim that f is injective, and that C/J 
is the structure sheaf of a section of Es/S. Then J will be the ideal sheaf of the 
required section p'. To show this, it is enough to treat the case that S = SpecR, 
where R is an artinian ring. In that case, induction on the nilradical reduces us to 
the case that R is a field again. Moreover, it suffices to show that f is injective. The 
fact that coker f has dimension one will follow from a consideration of degrees. 
Tensoring with .~ *, we interpret f as a map Jp ~ .~*. Suppose that k e r f  = J is not 
zero. Since Jp has no embedded component, f must vanish on some component of 
E. Let A be the largest divisor < E on which f restricts to zero, and let A + B = E. 
Then f defines a map Jpd) B ~ .~*, which we denote by the same symbol. Since 
Pic B is discrete and since 9.* has degree 0 on each component, .~* | (9 B ~ ogE. 
Thus n o m ~  (Jp(9n, -~*) ~ Hom~ ( Jp(gB, O)E). By Serre duality, Horn ( Jp (~,  .~*) is 
dual to H 1 (E, JpOB) = 0. This shows that f =  0, contrary to assumption. 

The uniqueness of the section p' follows easily. If p" is another section, an 
isomorphism Jp,, ~ .~ |  defines a map .~ |  ~ (9. By what has been proved, 
this map is a multiple of f ,  hence p" ~ f ( S )  = p', which implies that p' = p". [] 
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The existence of the operat ion of the algebraic group scheme Pic~  on the 
scheme Es follows immediately  f rom the previous proposit ion.  

Corollary 5.7 With the above notation, there is an operation of  P ic~  on Es, 
which is compatible with base change and which has the following property: Let 
p : S ~ Es be a section, and let ~ denote an invertible sheaf on Es whose class q is 
a section of  P ic~  Then qp = p' is the point determined as in Proposition 5.5(iii). 

We return to the case that  the base scheme S is the spectrum of an algebraically 
closed field k. Given an invertible sheaf ~ whose class q is in Pic~ we often use the 
nota t ion  

(5.8) ~/= r/~ 

for the au tomorph i sm of t ranslat ion of E given by the action of - q described in 
Corol lary  5.7. 

Proposition 5.9 Let t 1 = tl~ be as above. 
(i) I f  p is a smooth point o f  E, then tlp is the unique smooth point with the property 

that (9~(tlp) ~ ~(p). I f  p is a singular point o f  E, then tlp = p. 
(ii) The irreducible components of  E are stabilized by t I. 

(iii) I f  E = 3C is a triple line in 1[ '2, then t 1 restricts to the identity on 2C. 

Proof  (i) If p is a simple point  of E, then jtp = (ge(_p)  is an invertible sheaf, and 
Hom((gE( - -p ) ,  2 )  ~ Hom((9~ ,  ~ ( p ) )  ~ H ~  ~(p)) .  A non-zero section of ~ (p )  
vanishes at the point indicated. If p is a singular point, then p is the unique point  at 
which Jp  fails to be locally free. Since ~ is locally free everywhere, no map  
2 "  | J p ~  (gE can be an i somorphism at p. Hence p = q(p). 

(ii) This follows by continuity f rom the fact that  Pic~  is connected and that  
tt is the identity when ~ ~ (9~. 

(iii) To  show this, it suffices to show that  q acts trivially on points with values in 
k[~] / ( e  z) which are t ransversal  to C. We do this by a local calculation, choosing 
local coordinates  so that  the relevant complet ion becomes (9 ~ k [ [ x ,  y ] ] / ( y3 ) ,  
and tha t  the point  p~ in question is x = 0, y = e. We denote by Po the underlying 
point  with values in k. We also choose a local i somorphism (~ ~ ~. The ideal ofp~ is 
I = (x, y - e) (9[~]. Then the generator  for H o m ( ~ *  | I,^(9) can be viewed as an 
injective m a p  f :  1 ~ (~ [~]. Since x is not a zero divisor in (9[e], f is determined by 
the image f ( x ) .  We have f ( y  - ~) = x - l ( y  _ e ) f ( x ) ,  and this element must  lie in 

C[e] .  We write f ( x ) = ~ a ~ j y i ~  j, where 0 _ < i < 2 ,  0 < j < l ,  and where 

ai~ e k [ [ x ] ] .  Since Po is a singular point  of E, it is fixed by 0. Therefore f ( x )  = ux 
(modulo(y ,  e)), where u is a unit in k [ [ x ] ] .  In other  words, aoo = ux. We may  
adjust f ( x )  by a unit factor in (9 [e ]  to make  aoo = x, and aij s k, if i , j .  O, O. When 
this is done, we have 

x - X ( y  - e ) f ( x )  = y - e + x - l ( a l o y  2 + (aol - a l o )ye  + (a l l  - a 2 0 )  y 2 g )  �9 

Hence alo = aol = 0, and a l l  = azo. Thus f has the form 

f ( x ) = x  + a ( y  2 + y e ) + a ' y 2 e ,  f ( y - e ) = y - e .  

The ideals (x, y - e) and ( f ( x ) ,  f ( y  - e)) are equal, as required. [] 
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Lemma 5.10 Let E be as in the previous proposition. 
(i) For any automorphism ~ o r e  and any invertible sheaf .~ whose class is in Pic~ 

we have ~lS = ~ -  1 rlatr. 
(ii) I f (E,  a, ~q~) is a regular triple and ~ is the sheaf(5.4), then trrla = rlaa. 

(iii) Let ~l = qa, and let ~ be an invertible sheaf on E of  total degree d. Then 

Proof The first assertion is routine, and the second follows from it because ~ ~ 2. 
To prove the third, we recall our assumption that the ground field k is algebraically 
closed. Consider first the case that E is a reduced divisor. In that case, we may write 
s ~ (9(p I + . . .  + p,), where Pi are distinct smooth points of E. Then 
~ = (9(t l - lPl  + . . .  + q-lPa). By (5.9i), (9(q- lpi)  ~ (9(p~) | ~*, so 
5e" .~ ~e | ~ .a ,  as required. 

The case that E is not reduced will be treated by a specialization argument. We 
choose a one-parameter family of divisors Es whose generic fibre is reduced, and we 
extend ~ and 2~' to the family. This is possible locally for the 6tale topology 
because, since Es/S has relative dimension 1, Pic~ is smooth. Having done 
this, we consider the invertible sheaf X = (L~~ -1 @ ~ | It follows from 
(5.8ii) that the class of X in Pic Es/S  defines a section of Pic~ By what has 
been shown, this section is zero above the generic point of S. Since Pie~  is 
separated, it follows that the section is zero. Therefore L,r ~ ~ @ ~ -d, as required. 

Unfortunately, we do not have a reference for the fact that Pie o is separated. So 
we will sketch the verification here for the case that Es is the linear pencil which is 
spanned by our divisor E and a generic divisor E'. This suffices for our purposes. 
The total space of such a family Es will be smooth except at the points of the fibre 
E which correspond to intersection points E c~ E'. At such a point p, Es has 
a rational double point of type A,_ 1, where r is the multiplicity of the component of 
E containing p. Let zt : Zs  ~ Es denote the minimal resolution of singularities of Es. 
Then one verifies that Zs is a minimal model, and that the fibre Z over E has 
a component of multiplicity one. Moreover, Pie ~ Es /S  ~ Pic~ By [BLR, 9.5, 
Thm. 4] this group scheme is the connected component of the N6ron model of 
Pie Zs /S ,  which is separated. [] 

Recall that A = A(~Y-) has a canonical quotient ring B = B(Y-), which is 
defined in terms of the triple Y as follows: Let ~o = (ge, and for n > 0, set 

(5.11) ~ . = ~ | 1 7 4 1 7 4  

Then B = @ B,, where B, = H~ ~,) .  The multiplication B,, x B, ~ Bin+, is 
given by be = b | e ~m, where the tensor product symbol is interpreted using the 
natural isomorphisms ~ , ,  | ~,~" -~ ~, ,+ , .  If the triple is linear, then A = B, and if 
it is elliptic, then B = A/oA, where 9 is a normalizing element of degree ~r, which is 
unique up to scalar factor. One of the important properties of the ring B is that the 
A-modules which are point modules are annihilated by 9, i.e., they are B-modules 
(see [ATV, Sect. 3]). 

Suppose that we are in the elliptic case. If E is reduced and irreducible, the ring 
B is a domain. However, B will not be a domain, and it needn't even be a prime 
ring, if E is reducible. To see this, suppose that E = C + D, where C, D are positive 
divisors. For suitable m, n there exist a non-zero section ~ H ~  ~, , )  which 
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vanishes on C, and a non-zero section 6 ~ H ~  ~ , )  which vanishes on a-roD. 
Then  7 @ 6~ vanishes on E, hence it is the zero section of ~ . ,+ . .  Thus 76 = 0 in B. 

Let us investigate this si tuation a little more  closely. Let n: A ~ B be the 
canonical  h o m o m o r p h i s m ,  and let us write n(7) = ft. We will say that  an element 

~ A vanishes on a divisor C < E if d = 0 on C. Denote  by lc the subset of A of 
such elements. The  asymmet ry  of mult ipl icat ion makes  lc  into a right, but  not  a left 
ideal: If 7~Am vanishes on C and ~ A , ,  then ~ = 7 @ ~ '~  also vanishes on C, 
whereas ~ = ~ | ~ '"  vanishes on tr" C. On the other  hand, if C is a-invariant ,  then 
this computa t ion  shows that  Ic is a two-sided ideal. In this case tr restricts to an 
au tomorph i sm of C, and  we m a y  use the triple (C, ac, ~ c )  to define a ring 
Bc = B( C, ac, 5Pc) by 

t7 n - 1  (5.12) Bc ~ ) H~  S e c | 1 7 4  ) = | 1 7 6  

analogous  to B. There is a canonical  h o m o m o r p h i s m  A --+ Bc whose kernel is Ic. 
Whether  or  not  C is invariant,  (5.12) defines a right A-module  Bo and the canonical 
m a p  A ~ Bc is a h o m o m o r p h i s m  of right A-modules,  with kernel lc. 

We denote the total degree of the divisor C by c. So c = deg C if r = 3, and 
c = c'  + c" i f r  = 2 and C has bidegree (c', c"). The form (5.2) of the au tomorph i sm 
tr shows that  if C < E is o--invariant and r = 2, then the bidegree of C is (1, 1). 

Proposit ion 5.13 Let E = C + D, where C, D are positive divisors. Suppose that 
r = 3 or that r = 2 and (c', c") = (1, 1). 

(i) The map A ~ Bc is surjective. 
(ii) The Hilbert series of Bc is 

( I  - t o ) / ( 1 -  03 if r = 3 

hsc=  (1 to)/(1 t ) 3 ( l + t ) i f  r = 2  . 

(iii) The space Ic of elements of A which vanish on C is a principal right ideal, 
9enerated by an element ~ ~ Ac. The element 7 is unique up to constant factor. 
(iv) I f  C is a-invariant, then 7 is normalizin9, and Ic is the kernel of the canonical 
surjective homomorphism A ~ Bc. 

Proof The divisors C and D are numerically connected [ATV, 7.5], and have 
ari thmetic genus 0. We restrict the tensor products  Co ( - D "  C) | ~ ,  to an irredu- 
cible componen t  Z of D, and  compute  the degree of this invertible sheaf on Z, using 
the facts that  &o ,, is numerical ly equivalent  to ~ [ATV, 7.9] and that  if r = 2, then 
s = pr* (9~, (1). The result is 

L e m m a  5.14 With the above notation, degz CD(--D'C)  | ~ ,  > --1 for all n > O. 

To prove  (i), we tensor the exact sequence 

(5.15) O ~ ( 9 o ( - D ' C ) ~ O e ~ C c ~ O .  

on the right with ~ , .  The l emma implies that  hi(D, O o ( - D ' C )  | ~ , )  = 0 for all 
n > 0, which shows that  the m a p  B, = H~ ~ . ) ~  H~ (_9c | ~ , ) =  ( ~ c ) .  is 
surjective for n > 0. This proves (i), the surjectivity for n = 0 following f rom the fact 
[ATV, 7.9] that  H~ t~c)= k. Par t  (ii) of the proposi t ion  is just  a calculation, 
using the R iemann-Roch  theorem on C. 
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To  prove  (iii), we note that  the form of the Hilber t  series for A and for Bc 
predicts that  there is a non-zero element 7 ~ Ic of degree c. Then Bc is a quotient  of 
the right A-module  A/TA. Since A is a domain,  7 is not  a zero divisor, so the Hilbert  
series of  A/TA can be computed  from that of  A. It is the same as the Hilbert  series 
of Bc. Thus 7A = Ic. Similarly, if C is a- invariant ,  then A7 = Ic, which proves 
(iv). [] 

Corollary 5.16 I f  C < E is a reduced divisor whose irreducible components form 
a single a-orbit, then Bc is a prime ring. I fC  is irreducible and a-invariant, then Bc is 
a domain. 

Proof. Suppose that  C is reduced and that  its irreducible componen t s  form a single 
a-orbit ,  say of order  s. Let a, a ' ~  Bc be non-zero sections of  degrees n, n'  respect- 
ively. Then there is a componen t  Z of C on which ~ does not  vanish identically, and 
similarly ~ '  does not  vanish identically on some component ,  say a~Z. Fo r  suffi- 
ciently large k, there exists a section fl of degree ks + i - n which does not  vanish 
identically on any c o m p o n e n t  of C. Then ctfl~' = a | fl~" | ~,~ks., does not  vanish 
on aiZ, hence it is not  zero. This shows that  Bc is a prime ring. If  C is irreducible, 
then ~fl does not vanish identically, hence it is not  zero, which shows that  Bc is 
a domain  in that  case. [] 

Let  us write 

(5.17) E =  ~ niCi, 
i = 1  

where each Ci is a reduced divisor whose componen t s  form a single a-orbit ,  and let 
ci be the total  degree of Ci. For  each i, the above Propos i t ion  5.13(iv) provides us 
with a normal iz ing element gi of degree c~ which generates the kernel of the 
h o m o m o r p h i s m  A --* Bi := Bc,. 

Proposition 5.18 Let (t' denote the product of hi copies of gi,for i = 1 . . . . .  m, taken 
in an arbitrary order. Then g' = cg for some c ~ k*. 

Proof. Certainly g '  is a homogeneous  element of A, of the required degree tr, and 
since A is a domain,  g '  4= 0. The image 0'  o f g '  in B,r is a section of H ~  ~,,).  Since 
gi = 0 on C~, it is immediate ly  seen that  0 '  = 0 on E. By [ATV, 6.8], g '  = cg for 
some c ~ k*, as required. [] 

6 Line modules and their relation to modules of gk-dimension I 

Throughou t  this section, A will denote an elliptic regular algebra of dimension 
3 corresponding to a triple (E, a, ~ ) ,  and X will denote  IP 2 or  IP 1 • IP 1, according as 
r = 3 or 2. As before, the term module  will mean  finite left or  right graded 
A-module.  Recall that  e (M)  = ze(M) (2.23). 

We first describe some special right modules  of  gk-dimension 2. When  r = 3, 
modules  of  the form M = A/aA, where a is a non-zero element of A~, are in 
canonical  bijective correspondence  with lines f in the projective space 
X = IP z = F(A~). We  will refer to such a module  as a line module, and will denote 
the module  corresponding to the line f :  {a = 0} by Me: = A/aA. In order  to extend 
this terminology to the case r = 2, we adop t  the convent ion that  a line in 
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X = IP 1 • ~'1 will mean a set of the form p • ~ ,  where p: {a = 0) is a point of IP 1. 
Then modules of the above form are in bijective correspondence with lines ~ in X. 
We refer to them as line modules too, and we use the notat ion Mt  as before. 

Proposition 6.1 Let a be a non-zero element of A1, and let M = A/aA be the 
associated line module. 

(i) The Hilbert series of M is (1 - t)/pa(t), and e(m) = 1. 
(ii) The only automorphisms of M are scalars: Auta(M) ~ k*. 

(iii) M is a critical module of 9k-dimension 2. 

Proof Since A is a domain,  the only non-trivial assertion is that M is critical. To 
see this, let M '  be a non-zero submodule of M such that M/M'  has trivial socle. 
Then pd(M) = 1 and pd(M/M')  < 2, hence pd(M') = 1. Therefore the 9k-dimen- 
sion of M '  is 2 (2.41). Also, 0 < e(M') < ~(M) = 1, hence e(M) = e(M'), and this 
shows that gk(M/M')  < 1, as required. []  

Proposition 6.2 A module M is isomorphic to a shifted line module if and only if it is 
a Cohen-Macaulay module ofgk-dimension 2, and e(M) = 1. 

Proof This is the case n = 3 of  Corol lary (2.43). [] 

We now consider modules of gk-dimension 1. As in Sect. 4, we denote 
Ext , (N,  A) by Eq(N). We note the following corollary of Proposi t ion 2.46 and 
Corol lary 4.2: 

Proposition 6.3 (i) A module N of gk-dimension 1 is Cohen-Macaulay if and only if 
its socle is zero. 

(ii) The map N-~,N v = EE(N) is a duality between left and right Cohen-Macau- 
lay modules of 9k-dimension 1. 

Proposition 6.4 Let N be a module of gk-dimension 1. The Hilbert series of N has the 
form 

e/(1 - t) + f(t) if r = 3 

hu= ( e o + e l t ) / ( 1 - t  2 ) + f ( t )  if r = 2  

for some f(t) E Z It, t -  1 ], where e(N) = eo + el if r = 2, and e(N) = e(N) = e if r = 3. 

Proof The Hilbert series has a pole of  order 1 at t = 1, and it has the form 
qN(t)/pA(t), where pa(t) = (1 -- t) 3 or (1 -- t)2(1 - t 2 )  according to the case (2.8). 
Therefore qN has a zero of order 2 at t = 1, which implies that hN has the form 
indicated. [] 

By the tail N>=p of a module  N we mean the module defined by 

0 if n < p  
(6.5) (N~-p)n  = N,  if n > p . 

We will call two modules N and N' equivalent if their tails are isomorphic,  for 
sufficiently large p. More  precisely, we will call an equivalence from N to N '  a class 
of isomorphisms N>=p~N'>=p, where two such isomorphisms define the same 
equivalence if they agree on some tail N~q. 

A module  N of  gk-dimension 1 will be called normalized if it is Cohen-Macaulay  
and if its Hilbert series has the form (6.4), with f(t)  = 0. So, the Hilbert function of 



362 M. Artin et al. 

a normal ized module  is zero in negative degree. If  r = 3, then it is the constant  
function dimkNn = e for n > 0, while if r = 2, then it has the form dimkN,  = eo if 
n is even, and d imkN,  = el if n is odd. 

Proposition 6.6 Let N, N' be modules of gk-dimension 1. 
(i) An equivalence from N to N' induces an equivalence from N '~ to N ~ 
(ii) I f  N is Cohen-Macaulay, then N is contained in an equivalent module N" 

which is a negative shift of a normalized module. 
(iii) Every module N of gk-dimension 1 is equivalent to a normalized module, and 

this normalized module is unique up to unique isomorphism. 
(iv) Suppose that N' is normalized. An equivalence from N to N' extends uniquely 

to a homomorphism qg: N>=o ~ N'. 
(v) Suppose that k is algebraically closed, that N is critical, and that N'  is its 

normalization. The only maps N>=o -~ N' are constant multiples of the map q~ of(iv). 

Proof. (i) Let  T = N/N>=p, which is a module  of  finite length. Tak ing  Ext, we 
obta in  an exact sequence 

0 ,N v , (N=>p) v , E 3 ( T ) .  

Since E3(T) has finite length, this provides the required i somorphism between the 
tails of the dual modules.  

(ii) It  is clear that  N__> p is a positive shift of a normal ized module,  if p >> 0. Hence 
(N>__p) v is a negative shift of  a normal ized module.  (This follows from (2.35).) Since 
(N_~p) v ~ N v, this shows that  N v is contained in a negative shift of a normal ized 
module.  By duality, the same is true of N. 

(iii) We  may  assume that  the socle of  N is trivial, hence that  N is Cohen-  
Macaulay.  Let N "  be as in (ii). The required normal ized module  is N"__>o. Its 
uniqueness will follow from (iv). 

(iv) By (i), an equivalence f rom N to N '  gives us an equivalence f rom N 'v to 
N ~ . Let N " : =  ((N TM )~_p)V. Dualizing the maps  (N TM )_~p---~N v and (N TM )>p-'--~N TM 

yields m a p s  a : N  ~ N", and fl: N ' ~  N" which are uniquely determined by the 
original equivalence. Since N '  is equivalent  to N" and since N '  is normal ized while 
N "  is a negative shift of a normal ized module,  N '  is i somorphic  to N"__> o. The m a p  
Qt required m a p  is f l ~  ct__> o : N_>__o ~ N'.  

(v) This  follows f rom (iv) and (2.30vi). [] 

Note  that  there is a normalized shift operat ion on normal ized modules  of 
9k-dimension 1, defined by N-~,N +, where N~ + = N , + I  i fn  > 0, i.e., N + = N(1)>__o 
is the normal iza t ion  of N(1). The  previous proposi t ion  allows us to define a nega- 
tive normal ized shift as well: N -  is the normal ized  module  associated to N(  - 1). 

Proposition 6.7 (i) Let qg: M ~ N be a surjective map from a line module to a Cohen- 
Macaulay module of gk-dimension 1. Let e = e(N). Then ker tp is isomorphic to the 
shift by - e of a line module, so we have an exact sequence 

(*) O ~  M ' ( - e ) ~  M ~ N ~ O ,  
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where M, M'  are line modules. In this case, the minimal projective resolution o f  N has 
the form 

(**) 0 --+ A( - e - 1) A( -- 1)•A( - e) (a,t,) A --+ N ~ 0 ,  

where deg a = deg a' = 1 and deg b = deg b' = 5. Thus N ~ A/(a, b)A. 
(ii) Conversely, suppose given a complex o f  the form (**), such that N 

coker (a, b). Assume that a 4= O, that b r aA, and that (b', - a') 4= (0,0). Then N is 
a Cohen-Macaulay module ofgk-dimension i, the complex is a minimal resolution of  
N, and e(N) = ~. 

(iii) Suppose that k is algebraically closed. Let  N be a critical module o f  gk- 
dimension 1, and if r = 2 suppose that eo > e l .  There is a module equivalent to 
N which fits into exact sequences o f  the form (*), (**). 

(iv) Let N be as in (i), and assume that r = 2. Then eo = el = m if ~ = 2m, while if 
e = 2m + l, then eo = m + l and el = m. Hence O < eo - el < 1. 

(v) Assume that r = 2. I f  N is any critical module o f  gk-dimension 1, then eo = e~ 
if e is even, and leo - ell = 1 /fe is odd. 

Proof  (i) Say that M = A/aA,  and let K = ker ~0. Then pd M = 1 and pd N = 2, 
hence p d K  = 1. Also, the Hilbert series of K is hK = hM-- hN, so K has gk- 
dimension 2 and multiplicity e ( K ) =  e(A). Proposi t ion 6.2 tells us that K is 
isomorphic to a shift of a line module M'.  Direct computa t ion  shows that  the 
appropriate  shift is - ~. This shows that  there is an exact sequence of the form (*). 

To construct the minimal resolution (**), we note that M ,~ A /aA for some 
a ~ A 1, and the generator of M '  is in degree e. So N ,,~ M / M '  ,~ A/(a, b) A for some 
b e A,. This shows that  the first three terms from the right in the minimal resolution 
of N are as indicated in (**). Since p d N  = 2, there is only one more step. 
Computa t ion  of the Hilbert series using (*) predicts the second syzygy in degree 
e + 1. Hence the resolution has the required form. 

(ii) The complex provides an exact commutat ive diagram 

(6.8) 

A( e - 1) "' - --+ A ( - e )  -+ A/a 'A 

a 

A( 1) A ~ A / a a  

A /b 'A  A /bA --* N .  

By hypothesis, the two elements a', b' are not  both zero. If b' 4= 0, then since A is 
a domain,  ab' 4= O, which implies that a' 4= 0. So a' 4= 0 in any case. Thus by (6.1), 
A/aA and A/a'A are critical modules of gk-dimension 2. Since b r aA, gk(N) < 1. 
Since A/a'A is critical, the map fl is injective. This being so, one sees that  the 
diagram remains exact when zeros are placed around the periphery, which implies 
that the complex (**) is a resolution of  N. 

To prove (6.7iii), we use the following lemma. 

Lemma 6.9 Assume that k is algebraically closed. Let  N be a normalized module o f  
gk-dimension 1, and i f  r = 2, assume that eo ~ el. For a cA1 let pa: No ~ N1 denote 
right multiplication by a. There exists a non-zero element a e A1 such that ker Pa 4: O. 
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Proof If  r = 2 and eo > el, then dim No > dim N 1, so the assertion is trivial. In the 
other cases, dim No = dim N1, and by choice of bases for Ni, we can represent p, by 
a square matrix. Since p depends linearly on a, the matrix entries are linear 
functions of a ~ A1. So det p~ is a non-constant function of > 2 variables, which, 
since k is algebraically closed, has non-trivial zeros. [] 

Now to prove (iii), let a critical module N of gk-dimension 1 be given. If r = 2, 
assume that eo > el. We may replace N by the equivalent normalized module (6.6). 
Applying the Lemma, we find an element a ~ A1, such that kerpa # 0. Let u ~ ker pa. 
The map ~: A ~ N defined by q~(x) = ux has aA in its kernel, hence it defines a map 
qg: A/aA ~ N. Since N is critical, the cokernel of ~p is of finite length, and so N is 
equivalent to N '  = im q~. 

Part  (iv) is proved by computing the Hilbert series of N, using the exact 
sequence (*). Part  (v) follows from (iv) by applying (iii) to N or N +. [] 

The previous proposition allows us to parametrize the quotients N of A which 
have a resolution of the form (**). Assume first that e > 1 (which is automatic if 
r = 2). Let N be defined by (**). Let L = (a, b)A be the right ideal of relations in N. 
Then L is determined by the two subspaces L1 ~ A1 and L~ ~ A~, which have 
dimensions 1 and 1 + dim A~_ 1 respectively. We can parametrize such a pair of 
subspaces by a point in the product G x G' of two Grassmannians. The pair will 
define an ideal L generated by two elements a, b of the required degrees provided 
that L1A~_ 1 c L~. This is a Zariski closed condition on G • G'. Also, the existence 
of the second syzygy is equivalent with the condition dim L~+l < dim A~ + 
dim A~, which is also a closed condition in G x G'. Proposition 6.8(ii) tells us that 
then N = AlL has a resolution of the form (**). 

Ife  = 1, then r = 3, and the corresponding modules are point modules. There is 
a similar description in this case: Point modules are parametrized by the scheme of 
2-dimensional subspaces L1 of A1 such that dim LaAa < 6. Of  course, we already 
know that the point modules are parametrized by the scheme E [ATV, Sect. 3]. 

Let ~ denote the functor defined by: ~ (S)= isomorphism classes of flat 
families of graded A | N, which are quotients of A and which have 
resolutions of the form (**) for a given value of e. An analysis of the above 
description yields the part (i) of the following Proposition: 

Proposition 6.10 (i) The functor ~ defined above is represented by a closed sub- 
scheme F of a product of Grassmannians. Hence it is a proper scheme over k. 
(ii) Assume e > 1. The subfunctor of ~ of those families which have resolutions of the 
form (*), with 9iven line modules M, M', is represented by a closed subscheme Y ofF, 
and Y is isomorphic to the projective space P(V*),  where 

(6.11) V = (aA~ n A~a')/(aA~_ la') �9 

Proof of (ii). A module N determines the element a appearing in (**) up to scalar 
factor, namely a generates L1. Similarly, N determines a' as the corresponding 
element for the dual module N v. Fixing M and M'  amounts to fixing these 
elements projectively. Once they are fixed, the module N is determined by the 
elements b, b', which must satisfy the relation ab' = ba' ~ aA, n A J .  We can change 
b to cb + ax, where c ~ k* and x ~ A~_ 1, without changing N. These are the only 
allowable changes. Thus Y ~ IP(V*). [] 
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Equivalence of modules (6.5) defines an equivalence relation on the scheme F of 
(6.10), which we describe here. We will need the description in the next section. It is 
convenient to introduce the following notation. Let N be a module of 9k-dimension 
1 whose socle is trivial, and let 

(6.12) N = N ~  . . .  ~ N m ~ O  

be a filtration whose successive quo t i en t s /q i=  N i / N  ~+~ are critical modules of 
9k-dimension 1. We will denote by gr(N) the associated graded module G N  ~. The 
equivalence class of gr(N) is uniquely determined by the class of N. 

Proposition 6.13 Let  N be a module with a resolution o f  the form (**). The locus o f  
9eometric points z ~ F such that gr(Nz) is equivalent to gr(N) is a Zariski  closed 
subset Z o f  F. 

Proof  We will verify this in two steps. First we show that the locus Z is a con- 
structible set, and then we use the valuative criterion to show that it is closed. To 
show constructibility, we show that if we are given a family M s  of modules of the 
type under consideration, parametrized by a scheme of finite type S = Spec R, then 
there is another scheme S' of finite type over S, such that for any geometric point 
s e S, Ms has the required property if and only if s e im(S'). To show this, we may 
choose an ordering of gr N, and we may assume that M s  = As / (a ,b)As ,  where 
As = A |  a e (As) l ,  and b ~ (As)~. We may also assume (see Proposition 6.7(i)) 
that the graded modules _M~ will have the same form (**) as Ms,  with different 
values of e. So to describe a filtration, it suffices to give homogeneous elements 
b = b~ 1 . . . .  , b m of suitable degrees, these elements being required to satisfy the 
relations described by (**) and by bi~ (a, b ~§ 1)As. This data is parametrized by 
a scheme S' of finite type over S, and we replace S by S'. 

Next, the condition that M~s is equivalent to ~ i  is described by Proposition 
6.6(iv). Let N~ be the normalized module associated to/q~. Then the equivalence 
defines a unique map 

(6.14) q~s: M~ ~ N ' .  

Since ~7 i is critical and e(_/~) = e(N i) = e(~Ti), any non-zeromap is an equivalence. 
So gr M s  and gr N are equivalent if and only if Hom(M~, N')o 4:0 for all i. This is 
a constructible condition. 

It remains to prove that the locus Z is closed, and to do this we let S -- Spec R, 
where R = k[[ t]] .  We denote the generic point of S by r /=  Spec K, the associated 
geometric point by ~/, and the closed geometric point by go. The valuative criterion 
translates as follows: Let M s  be a family parametrized by S, such that gr(Mq) is 
equivalent to gr(N) |  Then gr(M~o) is equivalent to gr(N). It is permissible to 
make a finite extension of the field K, so we may assume that gr(M,) is equivalent 
to g r (N) |  The filtration which exhibits this equivalence extends uniquely to 
a flat filtration of Ms. So we obtain quotients M~, and we have to show that - i  Mso is 
equivalent to lq i. Proposition 6.7(i) reduces us to the case that N is critical. As 
before, let N denote the associated normalized module. Then the equivalence of M~ 
and N Q K  defines a map 

qgn: M~ --* Iq | K , 
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which is unique up to multiplication by an element of K. The isomorphism 
Hom (M r, N | K) ~ Hom (Ms, N | R) | K, and the exact sequence 

Hom(Ms,  N Q R )  -~ Hom(Ms,/~7 | R) ~ Hom(M~o , N) 

show that q~, can be adjusted by an element of K so that it extends to a map 
q~s ~ Hom(Ms,  N |  with the property that ~0~ o 4: 0. This yields the required 
equivalence of M~ o with N. [] 

The critical modules of 0k-dimension one for which eo 4: el are somewhat 
anomalous, though they exist. We will see examples in (8.43). Luckily, there are not 
too many. Suppose that over some finite extension k' of the ground field, the 
algebra A' = A | k' has a module N of 0k-dimension 1, such that eo 4: e~. Let ~mi, 
denote the minimum value attained by e(N) for such modules. 

Lemma 6.15 Let N be a Cohen-Macaulay module of ok-dimension 1. Assume that 
eo 4: el and e(N) = emin. Then N is critical. 

Proof If N is not critical, there is an exact sequence 0 ~ N'  --. N ~ N" ~ 0 such 
that N', N" have ok-dimension 1. If eo 4= el for the module N, then the same is true 
for at least one of the modules N', N". And since e(N) = e(N') + e(N"), e(N) can 
not be equal to emi n. [] 

Proposition 6.16 Suppose that k is aloebraically closed. There are only finitely many 
equivalence classes of modules of ok-dimension 1 with eo 4= el and with e(N) = emi.. 

Proof Assume that there are infinitely many equivalence classes, and that eo > el. 
It is clear that the last hypothesis is not a restriction. Let ~ be the functor of 
isomorphism classes of fiat families of modules of 0k-dimension 1 which are 
generated in degree zero and which have a presentation of the form (**). We know 
by (6.7iii) that every equivalence class has a representative of this form. By 
Proposition 6.10, ~ is represented by a proper scheme F. Denote the universal 
family of modules over F by .hr. Thus Y is a quotient of the sheaf of algebras 
A | (9 e. We have JV'o = d~F, and for each n, ./V, is a locally free 0r-module, whose 
rank is e if n is sufficiently large. 

Let q~ denote the composed map A ~H~ A| H~ JV), and let 
a = ker r For  every point x e F, the given map A ~ Nx = H~ ~Vx) factors 
through q~. By hypothesis, there are infinitely many such quotients which are 
non-equivalent, from which it follows that ok(A/a)> 1. On the other hand, 
(A/a), ~ H~ .Am), hence H~ JV,) increases with n. Thus there is an integer 
n such that rk JV, = rk.# ' ,+4 = e but that JV', is not isomorphic to X , + 4 .  This 
implies that right multiplication by the normalizing element O of A of degree 
4 [ATV, 6.8] does not define not an isomorphism Y ,  ~ X,+4 ,  hence this map 
does not have maximal rank everywhere on F. So there exists a point x ~ F such 
that N~ contains elements annihilated by g. Since N~ is critical by the previous 
lemma, 0 annihilates N~, and hence N~ is a B-module, where B = A/oA. On the 
other hand, the equivalence classes of B-modules of 0k-dimension one are in 
bijective correspondence with (_9g-modules which are finite over k, and since the 
simple ~E-modules correspond to points of E, the critical B-modules of 0k-dimension 
1 are equivalent to point modules [ATV, 1.3]. This is a contradiction. [] 
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From now on we assume that k is algebraically closed, and we specialize to the 
case that N is a point module, as defined in (1.1). A point module can be described 
as a normalized right module of 9k-dimension 1 whose Hilbert series is 1/(1 - t), or 
equivalently, whose Hilbert function dimkN, is the constant function 1, for n > 0. 

Proposition 6.17 A module N is a shifted point module if and only if it is Cohen- 
Macaulay, of gk-dimension and multiplicity 1. Such a module is critical. 

Proof The fact that a shifted point module is critical and has multiplicity 1 follows 
directly from the definition. Conversely, let N be a module of gk-dimension 1, 
multiplicity 1, and socle zero. Then Proposition 6.4 shows that the Hilbert function 
dim N,  is the constant function 1 for large n, provided that r = 3 or that r -- 2 and 
eo = el = 1. In any case, if r = 2 then the invariants eo and el of N satisfy the 
relations eo + el = 2, and el > 0. So the only other possibility is that one ei is zero 
and the other one is 2. This would imply that infinitely many N,  are zero and 
infinitely many are not zero, which is impossible because A is generated in degree 1. 
If N,  = 0 for some n, then N,, = 0 for all m __> n. So the Hilbert function is the 
constant 1 for large n in every case. By Proposition 6.6(ii), N is contained in 
a negative shift of an equivalent normalized module N',  and N '  is a shifted point 
module. This implies that N is a shifted point module too. [] 

As we remarked above, point modules are parametrized by the scheme E. We 
will now describe the universal family Jff of point modules over E. Recall that the 
canonical quotient ring B = AlgA is defined in terms of the triple (E, ~r, i f )  asso- 
ciated to A as follows: For  n __> 0, set ~ ,  = ~q~ | ~ ~ | . . .  | s as in (5.11), and 
set 

(6.18) ~ _ ,  = 5 ~ 1 7 4  . . .  |163 

Then B = (~),~o B,, where B. = H~ ~,). There is a functor 

F, :  (quasi-coherent (gE-modules) ~ (graded right B-modules) 

defined by r,(M)=O~_~r.(m), where F , ( M ) = H ~ 1 7 4  Thus 
B = (F,((-gE))~o. The right action of B on F,(M) is obtained from the canonical 
isomorphisms (M @ ~, , )  | ~.~" ~- M | ~ , ,  +.. These isomorphisms allow us to 
define maps 

r , ( M  | ~,,) | r , ( ~ , )  -~ r , ( M  | ~,,+,) 

analogous to/~,,,. .  In [AV] this functor is discussed more generally. It is shown 
there that if o- is an automorphism of a projective scheme E and if ~ is ~-ample in 
the sense defined below, then F ,  defines an equivalence from the category of 
quasi-coherent (9~-modules to the category of graded right B-modules, modulo the 
full subcategory of direct limits of right bounded modules. 

Definition 6.19 An invertible sheaf ~ on E is called ~-ample if for every coherent 
(gE-module M there exists an integer no such that Hq(E, M | ~ . )  = 0 if q > 0 and 
n > no, where ~ .  is defined as above. 

Proposition 6.20 Let r be an automorphism of a projective scheme E, and let ~ be 
a tT-ample invertible sheaf on E which is 9enerated by its sections. For any quasi- 
coherent (gF-module M, the socle of the B-module F,(M) is zero. 
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Proof The multiplication map F ,  (M | ~r | F ,  (~1) ~ / ' ,  (M | ~m + 1 ) does not 
annihilate any section of M | ~ , ,  because ~1 is generated by its sections. [] 

Proposition 1.5 of [AV] shows that 

Corollary 6.21 Let (E, a, ~ )  be the triple associated to a regular algebra A of 
dimension 3. Then ~ is a-ample. [] 

Proposition 6.22 The universal family of point modules over E is Jff = (~n>=o ~ , .  

Proof. Since B = H~ JV), there is a natural structure of right B-module on JV, 
and X is made into an A-module using the canonical homomorphism A ~ B. In 
this way, JV becomes an (9~ @ A-module. Since ~ ,  is an invertible sheaf on E for 
each n, this (95 | A-module structure makes X into a flat family of point modules. 
The equivalence of categories [ATV, 1.4] shows that M is the universal family. 

[] 

We now specialize to zero-dimensional families of point modules. Let 
Z = Spec R be an arbitrary zero-dimensional subscheme of E, where R is a finite 
k-algebra. We view (gz as an Ok-module, and we put 

Nz:= (r,(ez))~o. 

This is a graded B-module which we make into an A-module by means of the 
canonical map A -~ B. I fZ  is a closed point p of E with residue field k, then Nz is the 
corresponding point module. For  arbitrary Z, (Nz)m is a free R-module of rank 
1 for each m => 0, and (Nz)o = R. It follows from Proposition 6.20 that Nz is 
a normalized A-module of gk-dimension 1 and multiplicity ]-R : k]. 

Proposition 6.23 Let Z = Spec R be a zero-dimensional subscheme of E. 
(i) Let q~: A ~ Nz be an A-homomorphism of degree O. Then coker ~o has flnite 

length if and only / f  (o(1) is a unit in (Nz)o = R. 
(ii) Let ~ be the line {a = 0}, where a ~A1, and let Kz be the annihilator in A of 

the element 1 ~ R ~ (Nz)o . The following are equivalent: 
(a) Z ~ {, 
(b) a ~Kz,  
(c) Nz is equivalent to a quotient of the line module M := A/aA. 

When these conditions hold, M'  = K/aA is the unique submodule of M such that 
M / M '  is equivalent to Nz and has trivial socle. 

Proof. (ii) Applying the functor F .  to the surjective map (95 ~ (gz, we obtain a map 
B = F.((9r) ~ F.(Oz) = Nz which is surjective in high degree [AV, 3.7ii]. Let ~o: 
A ~ Nz denote the map obtained from this one by composition with the canonical 
map A ~ B. So ker ~0 = Kz, and hence Nz is equivalent to ~o(A) = A/Kz .  Then via 
the identification R ~ (Nz)o, ~0(la) = 1R. 

Now Z a ~ if and only if l g |  = 0 in H~ (gzQZe), i.e., if and only if 
lga = 0 in Nz, and this is true if and only if a ~ Kz,  in which case ~o factors through 
the canonical surjection A ~ M .  When this is so, Nz is equivalent to 
M/(Kz /aA)  ,,~ A/Kz.  

Conversely, suppose that Nz is equivalent to M / M '  for some M' such that 
M/M'  has socle zero. By (6.6iv), M/M'  is isomorphic to a submodule of Nz, so there 
is a homomorphism t~: A -+ Nz factoring through A ~ M and surjective in high 



Modules over regular algebras of dimension 3 369 

degree. Let ~b(1) = u ~ R. Then ~b = uq~. Since ~ is surjective in some degree, u ~ R*. 
This implies that ~b and ~0 have the same kernel K z ,  which shows that M'  = K z / a A  
as claimed. 

(i) This follows directly by applying the functor ~ of[-AV] to the correspond- 
ing map 0: B ~ N z .  [] 

Now let { be a line which is not  a component  of E. Let S be the scheme-theoretic 
intersection E n #, so that by definition of ~(5.1),  we have ~e ~ (gE(~). If  p is 
a k-rational point  of  S, we denote by S - p = Z the scheme obtained by deleting 
p from S. The scheme structure on Z is uniquely determined by the condit ion 
Z = (. Conversely, a subscheme Z of S = E ~ E of length r - 1 determines a unique 
point  p such that, as division on l, S = Z + p. 

Proposition 6.24 Let  p ~ ( n E, and let ~p: M l  -~ Np denote a surjective map whose 
existence is 9uaranteed by Proposition 6.23(ii). Then ker q0 is isomorphic to the shift 
by - t o f  a line module. The line ( '  which corresponds to this module is determined as 
follows: 

(i) I rE  is a component orE ,  then {'  = ~ ~. 
(ii) I f  ~ is not a component of  E, and if  S, Z are as above, then ( '  is the unique line 

containin 9 atZ. 

Proof  (ii) Write M '  = (ker tp)(0. Proposi t ion 6.7 tells us that M '  -- Me, for some 
line f ' .  To determine f ' ,  recall first that  the shifts of N are given by the rule 
N + = N ~ .  Let S, Z be as above, and say that S = Spec R, Z = Spec/~. Since S is 
contained in a line,/~ is A-isomorphic as R-module to the kernel I of the projection 
R ~ k(p), and therefore Nz  and F , ( I )  are A-isomorphic. So we obtain a diagram of 
A-modules 

0 -~ M ' ( - O  ~ M~ ~ Np ~ 0 
(6.25) ~,~ J '  II 

0 ~ N z  --* Ns  ~ Np ~ O. 

The cokernel of 6 has finite length because it is isomorphic to coker ~k. Shifting 6, 
we obtain a map M'  ~ N~,z with finite cokernel. Hence ~' contains a'Z.  The line ~' 
is unique because a ' Z  has length 2 if r = 3 and 1 if r = 2. To prove (i), we choose 
a suitable subscheme S of f of finite length, and argue as before. [] 

Given a regular triple (E, a, 5e), we will set 

(6.26) q = r/~, 

where ~ = ~ 1 - , - ~  as before. 

Lemma 6.27 I f  (E, tr,=LP) is a regular triple and .~ = 5fl ~1-~-~), then ~q~'~)  ~ ~LP. 

Proof  We use (5.10iii) and the fact (5.4) that .~" ~ .~ to write 

5O~'r~) ~ ~ " |  ~ ~ . . . .  ,+,~-~.  

I t  follows from (5.3) that this sheaf is isomorphic to La. []  

The next proposi t ion describes the action of conjugat ion by the normalizing 
element 9 on lines. 



370 M. Artin et al. 

Proposition 6.28 Let f be the line {a = 0}, suppose that ~ is not a component of  E, 
and set S = E n E. Let M = A/aA be the line module corresponding to f . 

(i) The scheme S:= a'~qS is contained in the line E defined by the equation 
{g-  1 ag = 0). 

(ii) The kernel of  the canonical map q~: M ~ Ns is the module Mg, which is 
isomorphic to the shift by - t r  of the line module M?. 

Proof. Since s ~ (_gE(s), we have ~e (' '"")- t ~ (.oE(S). Hence (6.27) implies that S is 
contained in a line. Since Ns is a B-module, g annihilates Ns,  and so Mg e ker q,. 
A consideration of the Hilbert functions shows that Mg = ker q,. Writing 
M = A/aA, we find 

(6.29) M9 = (A/aA)9 = Ao/aA9 = gA/agA ~ ( A / o - ~ a g A ) ( - l r ) .  

This identifies M9 as the shift of the line module M,r. It  remains to show that 7 is 
the line which contains S, and it suffices to show this for a generic line ~. Suppose 
for example that r = 3. Then if E is reduced, we may assume that S consists of 
3 distinct points: S = Pl + P2 + P3. Setting p = pl,  the diagram (6.25) and Proposi- 
tion 5.9(i) identify M '  as the line through the points rlapl apz, ap3. We map M'  to 
N,p2, obtaining a kernel M"( - 1), where M" = Me,,, and where ~" is the line 
through the points o'r]apl r/a2p2, aZp3 . Then mapping M" to N,2. 3, we obtain 
a kernel Me,,,( - 1), where f" '  is the line through a2qapl, arlaZP2, rla~p3. This line 
module is the shift of the kernel of q~, and since art = rla, the three points form the 
scheme a3rlS, as required. If E is a triple line, then S contains a single point  p. Let 
Z -- S - p. Then qZ = Z, by (5.9). Computing as above, one finds that f is the 
unique line through a3Z = a 3 rIZ, as required. The remaining cases are treated in 
a similar way. [] 

7 Characterization of  the algebras which are finite modules over their centers 

In this section we consider a regular algebra A Of dimension 3 which corresponds 
to a triple (E, a, 5e). We are going to prove that, when the automorphism a is of 
finite order n, such an algebra is a finite module over its center: 

Theorem 7.1 Let A be an algebra corresponding to a regular triple ~'- = (E, a, s 
Then A is a finite module over its center if and only if the automorphism a has finite 
order. 

As may be expected, the ease that the algebra is elliptic is the difficult one. We 
have not determined the rank of A over its center Z(A) in all cases. 

In addition to A, we will study its localization A = A [g-1 ], where g is the 
canonical normalizing element. This is a Z-graded algebra, and we denote its 
degree zero part  by Ao. As we have remarked in the introduction, Spec Ao plays the 
role of the open complement of Proj B in Proj A. The structure of the ring Ao is 
described by Theorem (7.3) below. 

We denote by So the smallest positive integer such that a s~ fixes the class [Se] in 
Pie E, if such an integer exists, and we set So = ~ otherwise. If So is finite, then the 
automorphism a s~ of E is compatible with an automorphism of F = ~(A1). Some 
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confusing factors of 2 will enter when r = 2. In order to handle them conveniently, 
we define 

~�89 if r = 2 and So is even 
(7.2) s = ~ So otherwise 

Thus So = s if r = 3. Note that s is the smallest positive integer such that So divides 
IS .  

We call our algebra Ao almost Azumaya of rank p2 over its center if Ao/m is 
a central simple algebra of rank pZ over its center for all but finitely many two-sided 
maximal ideals m. 

Theorem 7.3 Let A be the regular algebra determined by an elliptic triple (E, a, 5#) 
and let A = A[g-1 ] .  Let So,S be defined as above. 

(i) If So = 0% then Ao is a simple ring. 
(ii) Assume that So is finite. 
(a) I f  r = 3 or if r = 2 and So is even, then Ao is an Azumaya algebra of rank s 2 

over its center. 
(b) I f  r = 2 and So is odd, then Ao is almost Azumaya algebra of rank s 2 over its 

center. 

Proposition 7.4 Let A be a graded algebra generated in degree I, and let g be 
a homogeneous normalizing element of A of positive degree d. The Z-graded ring 
A:--- A [g-1]  is strongly graded, i.e., AiAj = Ai+j for every pair of integers i, j. 

Proof This is a consequence of the fact that A is generated in degree 1. For any i, 
Ai is the direct limit of the k-vector spaces g-"Ai+,n. Thus A~A~= 
~,g-2"Ai+,dAj+,a. Since A is generated in degree 1, AiAj = Ai+i for any i,j > O. 
Hence 

AiAj = [.J g-a~Ai+s+ 2,a = Ai+ s. [] 
t l  

Let (A-gr) and (Ao-mod) denote the categories of finite graded A-modules and 
of finite Ao-modules respectively. Since Spec Ao is an "open subscheme of Proj A", 
these two categories are related. In one direction, we have the localization functor 
(A-gr) ~ (Ao-mod) given by M ~ , M [ g - 1 ] o .  On the other hand, the Ao-module 
V = M [g-  1 ]o does not contain enough information to describe M. To recover M, 
we also need to know its formal completion along the "closed subscheme" 
Proj (AlgA). But this formal completion will be zero if M has gk-dimension 1 and is 
g-torsion free, and this leads us to the following proposition. Let us call an 
A-module/q normalized if it is generated by finitely many elements of degree 0, and 
if its Hilbert function is periodic. This extends the definition given above for regular 
algebras. 

Proposition 7.5 Let g be a homogeneous normalizing element of positive degree in 
a noetherian graded k-algebra A which is generated in degree 1, and let A = A [g-  1 ]. 
The following categories are equivalent: 

(i) finite-dimensional Ao-modules V, 
(ii) graded A-modules M with dim M, < go for all n, 
(iii) normalized A-modules I{ which are g-torsion free, 
(iv) finitely generated graded A-modules N such that dim N,  is bounded, modulo 

g-torsion modules. 
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Proof The equivalence of the categories (i) and (ii) is a consequence of the fact that 
A is strongly graded (see [NV, Ch. A, Thm. 1.3.4]). Let M be a graded A-module. 
Then multiplication by g is a bijective map M , ~ , M ,  +d, where d is the degree of 9. 
So the Hilbert function of M is periodic of period d, provided that it is defined, i.e., 
that dim M,  < ~ for all n. If so, then since multiplication by g is bijective, the 
A-module M>__o is finitely generated by Mo + �9 �9 �9 + M~_ 1. Then the fact that A is 
generated in degree 1 shows that Md generates M__> 4. Shifting shows that M > o is 
generated in degree 0, hence that it is a normalized module. Clearly 
N ,~ N [g-  1 ]_~ o if N is normalized and 9-torsion free. Thus the categories (ii) and 
(iii) are equivalent. The equivalence of (ii) and (iv) is a standard localization 
argument. [] 

The rest of this section is devoted to the proofs of Theorems 7.1 and 7.3. 

Proposition 7.6 Theorem (7.1) is true in the case that A is linear. 

Proof This is the easy case. Assume that A is linear. Suppose first that r = 3, so 
that E = IP 2. From the description [ATV (6.8)] of A as B(E, a, 5Y), it follows that 
the graded ring of fractions of A is an Ore extension of the form K It, t -  1; a], where 
K is the function field of IP 2. If a has infinite order then K[t, t - l ;  a] is not finite 
over its center. This proves one half of (7.1). The other half is [-ATV, 8.5]. If r = 2, 
then So = 2 and s = 1. In this case, the description of the ring A shows that its 
Veronese subring A ( 2 } : =  ~A2n  ~ B(E, a 2, 5 Y |  ~) has a graded ring of frac- 
tions of the form K It, t-1; a2], where K is the function field of IP 1 x p1. The proof 
is completed as before. [] 

Some of the statements in the sequel remain true in the linear cases, and others 
have to be modified only slightly. However, since the proofs of Theorems 7.1 and 
7.3 are fairly complicated, we will assume for the rest of the section that the algebras 
A under consideration are elliptic. We will also assume that the ground field is 
algebraically closed. It is clear that this is permissible. 

By extension of point modules we mean a module having a finite filtration whose 
successive quotients are shifted point modules, i.e., are Cohen-Macaulay modules 
of gk-dimension and multiplicity 1. 

Proposition 7.7 (i) The critical B-modules of  9k-dimension 1, where B = AlgA, are 
the shifted point modules. 

(ii) Let N be an A-module of gk-dimension 1 with trivial socle. Then N is an 
extension of  point modules if and only if it is annihilated by a power of g. 

Proof The first assertion follows from Theorem (1.3) of [AV]. To prove the second 
one, we note that since the A-modules which are point modules are B-modules and 
B = A/(g), they are annihilated by g. So an extension of point modules is annihi- 
lated by a power of g. Conversely, suppose that a power of g annihilates N, and 
consider a filtration (6.12) whose successive quotients bT~= N~/N i+1 are critical 
modules of gk-dimension 1. Then g annihilates each ]q~, and so ~i  is a B-module. 
Part  (ii) now follows from (i). [] 

Proposition 7.8 Let N be a critical module of gk-dimension 1 which is not a shifted 
point module, and let e = e(N). Then tr ~ fixes the class of s in Pic E. 
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Proof  By Proposition 6.7, we may replace N by a shift of an equivalent module for 
which there exist lines E, t ~' and an exact sequence 

O - - - r M ' ( - e ) ~ M ~ N ~ O ,  

where M = Me, M'  = Me,. Let S = E c~ f, and let N s  be the corresponding family 
of point modules (6.23). Note that Y is not contained in E. If it were, then M would 
be a B-module. This would contradict the fact that N is not a B-module. By 
Proposition 6.23, there is a map ~p: M --.,. Ns  whose cokernel has finite length. Since 
Ns  has a filtration whose successive quotients are shifted point modules, there is no 
non-trivial map from N to Ns,  and it follows from this that the induced map 
M ' (  - e) ~ Ns  has a cokernel of finite length. The shift of this map by e is a map ~0': 
M '  --,. Ns, ,  where S' = o-~S, and the cokernel of q~' has finite length too. Therefore 
S' c Y', by (6.23). So (gE(S) ~ 50 ~ (_gE(S'), and on the other hand, since S' = a~S, 
(~E(S') ~ 50~-~. [] 

Corollary 7.9 I f  So = oo, Ao has no non-zero f inite dimensional representations. 

Proof  This follows from Propositions 7.8 and 7.5. [] 

Proof  o f  Theorem 7.3 The simplicity of the ring Ao when So = ~ follows from two 
facts: It has no finite dimensional representations, and its dimension is 2. 

Assume that So -- ~ .  The g-adic filtration on A induces a filtration on A and 
hence on A0. One easily verifies for this filtration that gr Ao is isomorphic to the 
subring @ ,  B,~, of B. Hence gk(Ao) = 2 [KL, Prop. 6.6]. Assume that Ao is not 
simple and let J be a nonzero prime ideal in Ao. Then g k ( A o / J ) <  
g k ( A o ) -  1 = 1 [KL, Prop. 3.15]. Hence A o / J  is a polynomial identity ring 
[-SSW], and so it has finite dimensional representations. This is a contradiction. 

[] 

We now turn to the proof of Theorem 7.3(ii). Since we have assumed that k is 
algebraically closed, we can apply Proposition 6.16. Assuming that So is finite, we 
will show that there is a faithful family of irreducible representations of Ao of 
dimension s 2 over k. Because of the equivalence of categories (7.5), it suffices to find 
a faithful family of critical A-modules N of 9k-dimension 1 whose Hilbert series has 
the required property. In this equivalence, a normalized A-module N corresponds 
to the Ao-module No. With this in mind, it becomes clear that the requirement is 
e(N) = s if r = 3, and co(N) = s if r = 2 (see (6.4)). Proposition 6.7(v) shows that 
e(N) = ts implies this condition in either case. Also, we know by Proposition 6.7(iii) 
that every equivalence class of critical modules of 9k-dimension 1 contains a quo- 
tient of a line module. So we look for such quotients. We will show if ~ is not 
a component of E, then the line module Me has infinitely many inequivalent critical 
quotients N with ~(N) = ts. 

By definition of s, 50~'s is isomorphic to 5 ~ We fix an isomorphism u, thus 
obtaining a linear operator p on H~ 50) defined by 

(7.10) a ~ = u(a'~") . 

We denote by the same letter p the automorphism induced on IP = F(A1), the one 
which is compatible with the automorphism a 's of E. With this notation, if ( is the 
line {a = 0}, then pg is the line {a' = 0}, where a' = a p- '. 
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Let us fix a line / which is not  a componen t  of E, and l e t / '  = p~. We fix this 
notat ion:  

(7.11) a ~  Ax, a' = a p - I ,  

= 0 } ,  = 0 } ,  

M = Mr,  M '  = Mr, .  

L e m m a  7.12 (i) M contains a submodule Q such that M/Q is an extension of  point 
modules, and such that Q is isomorphic to M'(  - is). 

(ii) Let n be a positive integer. There are only finitely many submodules Q of 
M which are isomorphic to M'(  - re)for some line module M',  and such that M / Q  is 
an extension of  point modules. 

Proof (i) Let  S = E n f.  Choose  a point,  say p, in the suppor t  of S. Set Z = S - p, 
f l  = line passing through tr'Z, $1 = E n f l ,  and pa = the unique point  S~ - a'Z. 
Also, let Np be the point  module  corresponding to p and let Ma be the line module  
corresponding to f~.  As we know (6.24), there is a surjective map  M ~ Np whose 
kernel is i somorphic  to M1 ( - 0. We repeat  the construction,  replacing (f, M,  p) by 
(~1, M1, Pl), and in this way we obta in  a sequence of points  p, pl . . . . .  p~ and of 
shifted line modules  M ~ M I (  - t) ~ . . . ~ Ms( - ts). We define Q1 = M~( - ts). 
At each step, f j  is the line containing a'JZ, and Mj is the corresponding line 
module.  Since p is the extension of a 's to an au tomorph i sm of P(A1), pE is the line 
~s, which is the one containing a'~Z. 

(ii) Let  Q ,.~ M ' (  - m) be such a submodule.  Then N = M/Q is a module  of 
9k-dimension I and multiplicity n, with trivial socle. Since it is generated in degree 
0 and is an extension of point  modules,  N has a quot ient  No which is a point  
module.  The kernel Q1 of the m a p  M ~ No has the form M I (  - t) and is uniquely 
determined by No (6.23ii). Since f is not  a componen t  of  E, there are only finitely 
m a n y  choices for the modules  No and M1. We replace M by Ma = Ql(t) and 
proceed by induction. [] 

To  simplify notat ion,  we denote zs by ~ in the next two lemmas.  

L e m m a  7.13 With B = A/gA as before, we have aB~ = Bea'. 

Proof Let u be defined as above,  so that  x p = u(x"'). Then  for any x, y ~ B1 and 
z e Be-1,  we have xPzy = yPzx in B~ + 1. This is because by definition of multiplica- 
t ion in B, 

xPzy = u ( x ~ ) | 1 7 4  ~ = (u|  1 | 1 ) ( x ~ | 1 7 4  ~) . 

The right side is symmetr ic  in x and y. Since Be is generated by B1B~_ 1, it follows 
that  xPBe c Bex for any x, hence that  aBe c B j .  Since the two spaces have the 
same dimension, aBe = Bea'. [] 

Remark. Let us define a morph i sm  of triples (E', a ' ,  5r --. (E, a, s to be a pair  
(f,  u) consisting of a morph i sm  of schemes f :  E ' ~  E such that  a f =  fir ' ,  and 
a morph i sm  of Oe,-modules u:f* Za ~ 5r Then the B-construct ion is made  into 
a cont ravar ian t  functor  f rom the category of triples to the category of graded 
algebras in an obvious  way. If  we take (E', tr', s = (E, tr, s f =  tr e, where e = zs, 
and  u is as in (7.10), we see that  the linear opera to r  p extends to an au tomorph i sm 
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of B. And, since A is obtained as a quotient of the tensor algebra on B1 = H ~ (E, &o) 
using the defining relations of  B of minimal degree, p extends to an au tomorphism 
of A as well. This situation also gives rise to an au tomorphism z of  
B(e )  = B(E, a ~, ~ ) ,  where ~ ,  = ~ | 1 7 4  |  ~*-' as before. We note that 
~ = ~1 | ( ~ -  a )~ - N~- a | ~ -  '. The map z is induced by the au tomorphism of 
triples (a, v), where v: a*  ~ ,  = ( ~ _  1 )a | ~E  "-~ ~ 1 | (~e- 1 )a ~ ~e is defined by 
a|174 for local sections a of ~ ,_~  and b of ~ .  Putt ing a = z" 
and b = y~, and interpreting the tensor products  as multiplication in the algebra 
B, we have z ( z y )=p(y ) z  for all y s B a  and all zsB~_a.  Also, putting 
z = y ~ | 1 7 4  |  and y = y ,  in the above computa t ion gives 
z ( Y a N Y 2 |  | 1 7 4 1 7 4 1 7 4  |  and iterating this cyclic 
permutat ion e times, we find that the restriction of p to B ( e )  is equal to r ~. 

Lemma 7.14 The vector space V = (aA~ c~ A~a')/(aA~_ 1 a') has dimension at least 2. 

Proof Let a~ = dim A~ denote the Hilbert function of A. By the previous lemma, 
A~a'c  aA~ + 9A~_,r+~. Also, since O is a normalizing element of  degree tr, 
aA~ c~ gA~_,~+ 1 ~ aA~_,~g. Thus 

dim(aA~ + A~a') < dim(aA~ + gA~-,~+I) < a~ + a~-,~+l - a~_,,, 

dim(aA~ n A~a') = 2a~ - dim(aA~ + A~a') >= a~ - a~-,r+l + a~_,,, 

and 

(7.15) dim V > a~ - a~-i  - a~-,r+l + a~-,r �9 

If r = 3, then z = 1 and a,  - a ,_  1 - a ,_  2 + a ,_ 3 = 2 for all n > 1. So dim V > 2 as 
required. If  r = 2, then z = 2. In that case 

f l if n is odd 
a , - a , _ l - a , _ 3 + a , _ 4 =  2 if n is even. 

Since ~ = 2s is even, dim V > 2 in this case as well. [] 

Lemma 7.16 Let N = M/Q, where Q is isomorphic to M ' ( -  is), with M ,M'  as 
above. Then one of the followin9 possibilities occurs: 

(i) N is critical. 
(ii) N is an extension of point modules. 

(iii) N is an extension of two critical modules havin9 eo ~ el.  
The third possibility can arise only if r = 2 and So is odd. 

Proof We recall (6.7) that  e(N) = ts. Assume that N is not  of the first two types, and 
consider a filtration as in (6.12), whose successive quot ients /q i  are critical and of  
gk-dimension 1. Let lq i be one of these quotients, e = e(/ql), and e = e(/ql). Then 
e < ts, and by Proposi t ion 7.8, s divides e. The only possibility is that r = 2, So is 
odd, and So = s = e, because if So is even, then So = is. Hence (6.7v) eo(iq i) 4: el(lqi). 
This being so, we must  have Co(IV j) :t: el(iq j) for s o m e j  4: i as well, from which we 
deduce that  e(/qJ) = s too. Since e(N) = e(gr(N)) = 2s,/q~ and /qJ  are the only two 
terms in gr(N), and we are in case (iii). [] 

Lemma 7.17 With the notation of (7.11), there exist infinitely many equivalence 
classes (see (6.5)) of critical quotients N of M of gk-dimension 1 and with e(N) = is. 
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Proof. We will show that there are infinitely many equivalence classes of critical 
quotients N = M/Q in which Q is isomorphic to M'(  - is). To do so, we go back to 
Corollary (6.10). The quotients M/Q such that Q ~ M ' (  - zs) are parametrized by 
the projective space Y = F(V*), where V is as in Lemma 7.14. By the previous 
lemma, Yhas dimension at least 1. By Proposition 6.13, the quotients N with gr(N) 
in a given equivalence class are parametrized by a closed subset Z c F, and those 
for which Q ~ M' (  - zs) form the locus Z n Y, which is a closed subset of Y. Thus 
Y is decomposed into closed subsets Z. According to Lemma 7.12(ii), at least one, 
and at most finitely many points of Y correspond to quotients which are extensions 
of point modules. Thus Y is not covered by a single subset Z c~ Y. Since Y is 
irreducible, it follows that there are infinitely many of these subsets. On the other 
hand, Propositions 6.16 and 7.12(ii), combined with Lemma 7.16, show that only 
finitely many subsets correspond to classes of modules which are not critical. 
Hence there are infinitely many classes of critical quotients. [] 

Proof of Theorem 7.3(ii) Propositions 6.16, 7.16 and 7.5 show that Ao has only 
a finite number of representations of dimension < s, and that it has none unless 
r = 2 and So is odd. So it suffices to prove that Ao satisfies the identities of s x s 
matrices I-Ro, 1.8.32]. Let I = n annAN be the intersection of the annihilators of 
the critical A-modules N of gk-dimension 1 and multiplicity s. Since line modules 
are critical and since a generic line module M has infinitely many equivalence 
classes of such modules N as quotients, I is contained in the intersection of the 
annihilators of the generic line modules, which is clearly zero. Thus I = 0. It follows 
from Proposit ion 7.5 that using a critical A-module N of gk-dimension 1, one 
obtains a family of irreducible representations Vi = (N(i)o)o = (N0)i of Ao. Then 
one finds 

(~ ~ anna~ V~ = N ( ( a n n a  N )  [ g - ~ ] ) o  = ( ( ( ' ]  a n n A N ) [ g - 1 ] ) o  = O, 
N i N N 

as required. [] 

Proposition 7.18 Let A be a regular algebra corresponding to an elliptic triple 
(E, a, ~ )  such that a has finite order. Conjugation by the normalizing element g is an 
automorphism of finite order of A. In other words, gm is in the center of A for some 
positive integer m. 

Proof Let n be the order of a, and let r denote conjugation by g on Al:ag = g~o(a). 
It  suffices to show that r acts trivially on the space F(A*) of lines, i.e., that 
q~"(a) = can for some ca e k*. For, the rule a~,ca defines a map P(A*) - k*. Since 
IP(A*) is proper, this map  is constant. So there is a non-zero element c ~ k* such 
that ag" = cg"a for all a e Ax. Then ug" = ekgnu for all u ~ Ak tOO. Putting u = g, we 
find that  c" = 1, hence that g,r, e Z(A), as required. 

To show that  r acts trivially on lines in IP(A]'), we apply Proposition 6.28, 
which identifies the action of q~ on lines as a'rrt. Since a has finite order and since 
art = rta, it remains to verify that rt has finite order, or that ~ has finite order in 
Pic E. This is done using the relations a" = 1 and (5.3). We write 

a " - -  1 = ( a " - ' +  . . . + a'  + 1 ) a ' ( 1  - a - * ) .  

Operat ion by this element annihilates the class of s hence (tr'"-' + . . .  + tr' + 1) 
annihilates the class of .~. Since .~" ~ 2, this shows that 2" ~ (gE, as required. [] 
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Since Theorem 7.3 has been proved, the next Proposition will complete the 
proof of Theorem 7.1. 

Proposition 7.19 Theorem 7.3 implies Theorem 7.1. 

Proof. It is clear from (7.3i) that A is not finite over its center if ~r has infinite order. 
The point is to show that if tr has finite order and if Ao is known to be almost 
Azumaya, then A is finite over its center. It follows from Theorem 7.3 and 
Proposition 7.18 that A = A[g -1 ] is a polynomial identity ring, and since A is 
a subring of A, it is a polynomial identity ring too. 

Let T(A) denote the trace ring of A [AmSm]. Since A is noetherian, T(A) is 
a finite A-module which is finite over its center R. So it suffices to prove that 
A = T(A). We introduce an auxiliary ring A', the reflexive hull of T(A), considered 
as R-module. If Ro is a polynomial subring of R over which R is finite, then A' is the 
bidual of T(A) as Ro-module. It is characterized by these properties: T(A) c A', A' 
satisfies the condition $2 of Serre, and the support of A'/T(A) in Spec R has 
dimension < 1. Thus A' is an R-algebra, finite over its center R, and it is a finite left 
and right A-module as well. Note that T(A) and A' are graded compatibly with the 
grading of A. 

As R-module, A' has no non-trivial extension whose cokernel has dimension 1. 
Therefore Corollary 4.2(iv) shows that A' is a reflexive A-module too. It suffices to 
show that A = A'. 

Lemma 7.20 A'/A is annihilated by a power of the normalizing element g. 

Proof. We identify the graded ring A' = A' [g-  1 ] as the reflexive hull of the trace 
ring T(A). The ring A~ is a finite A0-algebra, and wherever Ao is Azumaya, A~ is 
locally a central extension. Now since A has finite global dimension so does A, and 
it follows from (7.4) and [NV, Ch. A, Thm. 1.3.4] that Ao has finite global dimension 
too. So wherever Ao is Azumaya, its center is also of finite global dimension, hence 
is integrally closed. It follows that A~ is equal to Ao at such points. We now use that 
fact that Ao is almost Azumaya to conclude that the quotient A'o/Ao has finite 
length, hence by [NV, loc cit] that A'/A has gk-dimension one, unless it is zero. 
This in turn implies that gn(A'/A) has gk-dimension one if n is sufficiently large. On 
the other hand, since A' is reflexive, pd(A') < 1, hence pd(A'/A) < 1. By Theorem 
4.1(iii), A'/A contains no submodule of gk-dimension < 1. Thus gn(A'/A) = 0 for 
large n, as required. [] 

To complete the proof of Proposition 7.19, we will use the factorization of the 
normalizing element given in (5.13). Assume that A # A'. Applying Lemma 7.20, we 
may choose a bimodule Q with A c Q c A', such that C = Q/A is non-zero, but is 
annihilated on the left by one of the normalizing elements gl, say by gl. Since the 
sequence 

O - - - . A ~ Q ~ C ~ O  

does not split, Theorem 4.10) implies that gk (C) is at least 2. Hence it is equal to 2. 
By Lemma 3.1, the gk-dimension of A/(ann C) is also equal to 2. Since P = glA is 
a prime ideal which annihilates C and gk(A/P) = 2, we conclude that P is the left 
annihilator of C. 

Consider the exact sequence of bimodules 

0 --, C ~ g ? I A / A  --, g?IA/Q --, O. 
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The ring AlP is a critical bimodule because it is prime, and therefore g? 1A/A is also 
critical. It follows that gk(g~ ~ A/Q) < 1. Hence gi-~A is contained in the reflexive 
hull (~ of Q. But Q c A' because A' is reflexive. Thus A' contains A [gi- ~ ], and since 
A [gi-1] is not a finite A-module, this is a contradiction, which completes the proof 
of Proposition 7.19. [] 

8 Twisting a graded algebra by an automorphism, and determination 
of the algebras associated to non-reduced divisors 

In this section we begin by describing a construction that twists a graded algebra 
using a (graded) automorphism. This construction allows us to identify some of our 
elliptic regular algebras as twists of a few standard ones. In particular, we will 
identify as twists all algebras whose associated elliptic curve is not reduced. We will 
see that in these cases, the ring Ao is closely related to the Weyl algebra. Inciden- 
tally, in this section the letter s is not used as in (7.2), but is defined locally wherever 
it is used. 

Let z be an automorphism of a Z-graded algebra A. We define a new graded 
algebra A~ which we call the twist of A by z. As a graded abelian group, A~ is an 
isomorphic copy of A. The element of At corresponding to a ~ A will be denoted by 
a~. The product of two homogeneous elements at, be of At is defined to be 
a~b~ = (ab~")~, where d = dega. So if xl ,  �9 �9 �9 x, are elements of AI,  then 

(8.1) (xl .  x.)~ ~ - '  . .  = ( x , ) , ( x 2  ) ~ . . .  (x~ . . . .  )~. 

If f = Z ai . . . .  ~,xi,. �9 �9 xi, is a relation in A among elements of degree 1, then the 
corresponding relation 

(8.2) f,  = Eai  . . . .  i,(xl,),(xi~ )~ . . .  (xl, )~ 

holds in At. For  example, if r = 3 and A is the algebra corresponding to the linear 
triple (~'/,a,(gn,2(1)), then A is simply the twist by z -1 of the polynomial ring 
k[x,y ,z]  for a z ~ GL3(k) lifting a ~ PGL3(k) = Aut(lP z) (see[ATV, 7.4']). 

Let M be a graded right A-module. Then an Acmodule is defined in a similar 
way using an isomorphic copy Mr of the graded abelian group M, with the 
multiplication rule m~b, = (mb*d),, d = degm. If ~p: M - - * N  is an A-homomor-  
phism, the corresponding map q ~ : M , ~ N ~  defined by q~,(m,)= (q~(m)), is an 
A,-homomorphism. This gives us a functor 

(8.3) F,: (gr-A) ~ (gr-A0.  

Lemma 8.4 Let p,z be two commuting automorphisms of a graded ring A. Then 
a,-~,(pa), is an automorphism of A~, and (A,)p is canonically isomorphic to A w . In 
particular, (A,)~- , ~ A. I f  u ~ k*, and if ~ou denotes the automorphism which acts on 
A,  as multiplication by u", then A~,, = At. 

Corollary 8.5 The functor F,: (gr-A) ~ (gr-A,) defined by M-~oM, is an equivalence 
of categories. 

This is true because F,F,- ,  = F , - , F ,  = identity. 

Corollary 8.6 Let z be an automorphism of  a regular algebra A of  arbitrary global 
dimension. Then At is a regular algebra of  the same global dimension and the same 
gk-dimension. 
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Proof  This follows from the fact that F~ is an equivalence of categories and 
preserves Hilbert functions. [] 

Now let A be a regular algebra of dimension 3, determined by a regular triple 
5- = (E, tr, ~ ) .  Then an automorphism of A restricts to an invertible linear oper- 
ator on A1. Let us describe the conditions under which an invertible linear 
operator z on A~ extends to an automorphism of A. Let F be the space of 
hyperplanes in A1. As in [ATV], we denote by F ,  the subscheme of (~)  ~ defined by 
the multilinearizations of the relations in A of degree m, and we recall that this 
scheme can be identified as follows. For (p~ . . . . .  p , )~(IP)% set 
Pi = ( P i ,  �9 �9 - , P i + s - 1 ) ,  where r + s = 5. Then 

F ,  = {(p~ . . . . .  p , ) E ( ] P ) ~ [ P ~ e E  and a(P~) = P~+I for all i} .  

We will write F for Fs. 
If z is an invertible linear operator on A1, we will denote the corresponding 

linear map F ~ F by the same symbol. Define z' and z" by the rules 

(8.7) z , = { ( z  if r = 3  and z " = {  (z,z) if r = 3  
z,z) if r = 2  (z,z,z) if r = 2 .  

Proposition 8.8 With the above notation, let z be an invertible linear operator on A ~ . 
Then z extends to an automorphism o f  A if  z'(E) = E and az' = z' a. Furthermore, i f  
J -  = ~-(A ), then these conditions are also necessary. 

Proof  The conditions are equivalent with the single condition z"F  = F. Hence z" 
preserves the space of multilinear forms vanishing on F. This implies that 
z preserves the defining relations of A. If ~- = 5-(A), then the defining relations 
determine F, and hence the conditions are also necessary. [] 

Proposition 8.9 Let  A be a regular algebra of  the form A ( : - ) ,  where 3-  = ( E, tr, ~ ) is 
a regular triple, and let z be an automorphism of  A. As in Proposition 8.1, we also 
denote by z the induced isomorphism on IP. Let  f ~  = (E, z'tr, &,e), where z' is defined by 
(8.7). Then A, = A(3--,). 

Proof  We already know that A, is regular (8.6). Let ~0 = (1,z . . . . .  zs-1), and let 
F'  = q~(F), where F = F(A) is the locus of zeros of the multilinearized defining 
relations {~}. It follows that F is the locus of zeros of the set {~.} (see (8.2)). On the 
other hand, the locus of zeros of these polynomials ~, is F(A,). Thus F'  = F(A,). 

Let E' = prl . . . . . .  -1F ' .  The map ~b = (1 . . . . .  rs-z): E ~ E' is an isomorphism, 
and since A, is regular, F '  defines an automorphism a '  of E'. Thus A~ is defined by 
the triple 9 - '  = (E', a', Z,e'), where LP' = ~b,~. We have a diagram of maps 

(P, . . . .  , Ps-1) ~ ' (Pz . . . . .  P~) 
(8.10) + ~ + ~.~ = ~, 

(p l , zpz ,  �9 . zS-2ps_l)  "' = . . . ,  ~ ( z p 2 , . . . , z S - l p s )  z'(p2, . , Z S - 2 p s ) ,  

which identifies a '  as Oz'aO - 1. So via the isomorphism ~k, J - '  is also isomorphic to 
the triple ~ = (E,z 'a,  Ze). [] 

Proposition 8.11 Let  ~q- be a regular elliptic triple and let A = A(  ~J). Let  g be the 
canonical normalizing element in A, which is determined up to a scalar factor. Then 9~ 
is the canonical normalizing element in A~. 
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Proof  The  element g is characterized by the fact that  0 vanishes on Fs + 1 but  g is 
not  in ls | A1 + A1 | 1~, where I is the defining ideal of A. Then  0t will vanish on 
(Fs+ i)~ = (1 . . . . .  z~+i)F~+ 1, and it will not  be in (It)~ | A1 + A1 | (It)s. [] 

The following Proposi t ion,  applied in the case S = {co"}, c ~ k*, n e 71, n > O, 
shows tha t  the rings Ao = A [ 9 -  x ]o are i somorphic  for all of the twists At. Hence, if 
(7.3) is true for an algebra A, it is true for every twist of A. We omit  the proof. 

Proposit ion 8.12 Let  A be a Z-graded algebra with a graded automorphism z. Let  
S be a homogeneous Ore set in A which is stable under z and z - i ,  and define 
St = {stls e S}. Then z extends uniquely to AS  -1, and (AS-1)t  = AtS~ -1. The map 
as -  l~.~(as- i )t = at(z-ds)~ 1 defines a ring isomorphism (AS-1)o ~ (A~S~- I )o in 
degree zero. 

Remark  8.13 Let r = 2. Then the twist int roduced in this section is not  the same as 
the half twist in t roduced in [ATV, 7.4-1 for the linear case. A twist by z as defined 
here is the same as a half  twist by z 2. Since square roots  of 2 x 2 matrices need not 
exist in characterist ic 2, the concept  of  a half  twist is more  general. However ,  we 
don ' t  know how to extend the not ion of a half  twist to elliptic algebras. 

Now,  returning to our  study of regular graded algebras of dimension 3, we first 
consider the case that  r = 3. In  this case we will give an explicit description, as 
a twist, of  any elliptic a lgebra A = A(E, tr, L~) in which E contains a line stabilized 
by  a. Call  the line C, and say that,  as a divisor in IP 2, E = C + D. Thus D is a conic, 
which m a y  be degenerate  and which m a y  contain C. We choose a basis {x, y, z} for 
A~ so tha t  C is the locus {x = 0}, and we choose an element f e  At ~2 whose image in 
Symm2(A1) has D as zero set. 

In order  to be explicit abou t  defining equations,  we will list na tura l  choices for 
the basis and for f when E has a triple point: 

(8.14) 

(a) E = 3C is a triple line. We set f =  x 2. 
(b) E = 2C + C', where C' 4= C. We choose y so that  C'  is the locus { y = 0}, 

and we set f = xy. 
(c) E = C + 2C', where C' + C. We choose y so that  C'  is the locus { y = 0}, 

and we set f = y2. 
(d) E = C + C' + C", where C, C', C" are distinct lines through a point. We 

choose the basis so that  C ' =  {y = 0}, C" = {x = y}, and we set f =  y(x - y). 

Also, we denote the Weyl algebra by W: 

(8.15) W = k[u, v]/(uv - vu - 1). 

Theorem 8.16 Let  A be an elliptic regular algebra with associated triple (E, rr, 5e) and 
with r = 3. Assume that E = C + D, where C is a line stabilized by a. Let  x, y, z be 
a basis for  A1 such that the locus {x = 0} is the line C. 

(i) x is a normalizing element o f  A. I f  �9 denotes the automorphism such that 
xa t = ax, then ~ operates trivially on the scheme D. 

(ii) The element x, is central in the twist A~. 
(iii) Suppose that x is central in A. Then A has defining relations o f  the form 

x y - -  yx = 0, x z - -  zx  = O, y z - -  zy = f ,  
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where f e A ~ 2 is an element whose image in SymmZ(Aa) defines the divisor D. In each 
o f  the cases listed above (8.14), we may take for  f the element indicated. 

(iv) I f  x is central and i f  we are in one o f  the cases (8.14), then Ao is isomorphic to 
a localization o f  the W e f t  algebra W. 

Proof  (i) The  fact that  x is a normalizing element is shown in Proposi t ion 5.13. It  
generates the kernel of the canonical  h o m o m o r p h i s m  A --, B(C, ac, Lec). 

Given a line E which is not  a componen t  of  E, let p = C n f and let Z = D n E, 
so that  as divisors on E, E r~ E = p + Z. To  show that  "co- operates  trivially on D, we 
will show that  for every such line ~, z a Z  = Z, or equivalently, that  z - a E  contains 
aZ. 

Let  E' be the line containing aZ,  and let M, M '  be the line modules  correspond-  
ing to ~, E' respectively. According to Proposi t ion 6.24, we have an exact sequence 

~ M ' ( -  1 ) ~ M ~ N p ~ 0 ,  

where Np is the point  module  determined by p. On  the other hand, if a = 0 is the 
equat ion for (, then N p ~  A/(aA + xA)  = A/(aA + Ax)  = M / M x .  Since 
M x  ~ (A/a~A)( - 1) = M~ ,e( - 1) (see (6.29)), this shows that  z - l ~  = ~e,, hence 
that  ~-~E contains aZ,  as required. 

(ii) This is a direct calculation, using the relation x ~ = x. 
(iii) Suppose that  x is in the center of A. Then two of the three defining relations 

are x y  - y x  = 0 and x z  - x z  = 0. Also, the au tomorph i sm T is the identity, so (i) 
shows that  ~r operates  trivially on D. As above, let f e  A~ 2 be an element whose 
locus of  zeros is D, and  let f a l s o  denote its image in A2. Then f i s  in the kernel of 
the canonical  h o m o m o r p h i s m  re: A ~ Bo: = B(D, id, LED). By Proposi t ion 5.13, f is 
a normaliz ing element which generates kern.  Since BD is commutat ive ,  
y z - z y s k e r n .  Hence y z - z y = c f  for some c ek* ,  which means that 
yz - zy  - c f  = 0 is our  third defining relation. The constant  c is not zero because 
we have assumed that  A is elliptic, so it may  be absorbed into f In the cases (8.14), 
the constant  can be absorbed  into one of the coordinates. 

Note 8.17. If E is the union of the coordinate  axes, then the third relation becomes 
yz - zy  = cyz, or ,~yz = zy. The  constant  c can not be eliminated in these cases, so 
there is 1-parameter  family of algebras which are not related by twists. 

(iv) This is a computa t ion  using the defining equations. We take u = y x - i  in 
each case, and  

z x - 1  in case (a) 

v = z y - 1  in case (b) 
x z y  -2 in case (c) 
x z y -  ~ (1 - y) -  1 in case (d). 

Then 

(8.18) 
f W in case (a) 

W [ u  -1]  in case (b) 
Ao = W [ u - 1 ]  in case (c) 

W [ ( u -  u2) - 1 ]  in case (d). 

To verify this, we note that  the normalizing element is represented by g = x f  (see 
Proposi t ion 5.13 again). A priori, A o is generated by the set {rag-1 }, where m runs 
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through the monomials of degree 3. However, f fac to rs  into linear factors, and in 
each of the cases one sees that Ao is generated by the set {rob- 1 }, where m is linear 
and b is a linear factor of g. Setting u = y x -  1 and w = z x -  1, we have 

uw - wu = f x  - z = 1,u, u2,u(1 - u) , 

respectively, in the four cases. Putting v = w, wu -1, wu -2, or wu-~(1 - u) -1 ac- 
cording to the case, we find indeed that uv - vu = 1 in each case, and one checks 
that Ao is presented as indicated. [] 

We now consider the case that r = 2. In this case we will describe as a twist any 
elliptic algebra whose associated curve E is not reduced. 

Lemma 8.19 Assume that r = 2, and (E, o, 5e) be a regular triple such that E is not 
reduced. Then E = 2C, where either C is an irreducible divisor o f  bidegree (1, I), or 
else C = (q x ~1) w (1W x q) for  some point q ~ IP 1 x ~1. 

We omit the proof of this lemma. It follows from the fact that the auto- 
morphism ~ has the form (5.2). [] 

Theorem 8.20 Let  A be an elliptic regular algebra with associated triple (E, 0, 5f), 
such that r = 2, and that E = 2C, where C is an irreducible curve in gJl x lPl o f  
bidegree (1, 1). Then 

(i) A is a twist o f  the enveloping algebra o f  the Heisenberg Lie algebra, and is 
defined by the relations 

Ix, Ix, y ] ]  = xZy -- 2xyx  + yx  2 = O, 

[ y , [ y , x ] ]  = xy  2 - 2yxy  + y2x  = O. 

(ii) The characteristic o f  k is different from 2. 
(iii) The ring Ao is the ring o f  invariants W <~> in the We f t  algebra W(8.15) under 

the automorphism e(u) = - u, e(v) = - v. 

Before proceeding with the proof of this theorem, we will compute the group of 
automorphisms of the divisor E = 2C. We use the first projection to map C isomor- 
phically to IW. Since C has bidegree (1, 1), it is the graph of an automorphism, say ~0, 
of IW. So C is the locus {(x, ~o(x)}. If we apply the inverse automorphism to the 
second factor, C is transformed into the diagonal A of IW x ~71, and E to the double 
diagonal. Thus E is canonically isomorphic to the double diagonal. 

The inclusion of C as a closed subscheme of E is described by an exact sequence 

(8.21) 0 -o I ~ (gE ~ (-9c ~ 0 ,  

where I is a square-zero ideal which is canonically isomorphic to f2~. This sequence 
is split by the first projection: (gE = (9c @ I. So we may write a section of (gE on an 
open set U in the form f +  ~, where f ~  F(U, Cc) and ~ ~ F(U, f2~). 

Proposition 8.22 (i) The group Aut~ of  automorphisms o f  E which induce the 
identity on C is the canonical semi-direct product o f  G,, by G, ,  isomorphic to the 

 rou o'ema    eso, he,o mO (o l) Where  eou omo ph  oOo er 
ates on (gE by f + o~.,~ f + (bdf  + uo O. 

(ii) The group o f  all automorphisms of  E is the direct product 

Aut E = (Aut~ x (Aut C) ~ (Aut~ x P G L 2 .  
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Proof  O) To determine the group of automorphisms of E, we note that Aut~ is 
the group of sections of the sheaf Aut~  of local automorphisms. Its sections on an 
open set U are the automorphisms of U which are the identity on the underlying 
reduced scheme Ur,d. Moreover, the sheaf Aut~  can be described by another 
short exact sequence. Denote by A u t t E  the subsheaf of Aut~  of local automo- 
rphisms which act as the identity on I. Then we have a split exact sequence 

(8.23) 0 --* A u t l E  --* Aut~ -o Aut I --* 0 .  

Also, A u t l  ~ G,, and A u t l E  ,~ Der((pc, I) ~ Hom(O~, f2~) ~ (Pc. Taking global 
sections gives us a split exact sequence 

(8.24) 0 ~ Ga ~ Aut~ ~ Gm ---r 0. 

A direct computation shows that the operation which describes the semi-direct 
product structure on Aut~ is the canonical operation of G,, on Ga, i.e., that Aut~ 
is the required semi-direct product. 

(ii) Since E is isomorphic to the double diagonal which is defined intrinsically 
in terms of C, the map Aut E ~ Aut C is a split surjection. So we have a split exact 
sequence 

0 ~ Aut~ ~ AutE -o Aut C --* 0. 

Since PGLz is a simple group, its operation on Aut~ is trivial, and AutE  is 
a direct product as asserted. 

Proo f  o f  Theorem 8.20 We decompose the automorphism a appearing in our triple 
according to the product (8.22ii), say as o- = (0, ~), where r e PGL2 and where 0, z 
commute. The kernel of the map  A -o Bc defines a normalizing element of degree 
2 in A, which we denote by f Hence there is an automorphism # such that 

(8.25) fa  ~ = af  . 

This automorphism # defines a map A1 ~ At, and hence a map P(A*) --, IP(A*), 
which in turn defines a map from C to itself. We denote these maps by # too. 

Lemma 8.26 We have Iz = z - z  on C. 

Proof  Let p ~ C and let F be the line through p. We will show that # -  a F contains 
z2p. According to Proposition 6.24, there is an exact sequence 

0 ~ Mr,( - 2) ~ M t  -~ Np ~ 0 ,  

where F' contains r2p. On the other hand, we know that f2  is the canonical 
normalizing element in A (5.2), and hence f2 annihilates Np. Since Np is critical, 
this implies that f annihilates Np. A computation similar to (6.29) shows that 
Me,( - 2) = M t f  = M u - , t (  -- 2). Hence Z2p~ ('  = IA-1E. E] 

Lemma 8.27 An arbitrary liftin9 o f  the automorphism r to GL2 defines an auto- 
morphism of  the algebra A. 

Proof  It  is true that a and z commute. So according to Proposition 8.8, it remains 
to show that r '  = (z, z) sends E to itself. This is a set-theoretic problem, so it suffices 
to show that z' sends C to C. Note that O]c = Zlc. Since C is the locus of points 
(x, tO(x)) for some ~0 e PGL2,  the action of z' on C is z'(x, ~0(x)) = (z(x), z~0(x)). So 
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we must show that r = Top. In fact, r = z. To see this we use the fact that the 
automorphism tr has the form (5.2) again. It  shows that tr acts as 
a(x, r = (tp(x), u(x)), and hence that q~ = alc = Z[c. [] 

This lemma allows us to replace our algebra by the twist A~-l, which is 
associated to the triple (E, 0, ~ ) ,  where a = (0, z) as above. This reduces us to the 
case that the automorphism tr = 0 is purely infinitesimal, of the form described in 
Proposition 8.22(i). Then E becomes the double diagonal. 

Since f is in the kernel of the map A ~ Bc and Bc is now commutative, 

yx  - x y  = cf ,  

where, since A is three-dimensional, c + 0. Also, according to Lemma (8.26), p = id, 
and hence 

(8.28) x f  = fx,  y f  = f y .  

This leads to (8.20i). One now verifies easily that the triple corresponding to these 
equations is linear if char k = 2 and is a double diagonal otherwise. 

The final step is to compute the ring Ao for the enveloping algebra A. The 
canonical normalizing element is O = (YX - xy)  2, and f = yx  - x y  is central. We 
form the ring R = A [z], where z is a central variable whose square is f The 
defining equations for R are [x, z] = [ y, z] = 0, Ix, y] = z 2. After a cyclic permuta- 
tion of the variables, we obtain the regular algebra (8.16iii) for which E is a triple 
line. So R [ z - 1 ] o  is the Weyl algebra, and Ao is the ring of invariants, as stated. 

[] 

We now discuss the special case of elliptic algebras in which r = 2 and 
E = 2(IP 1 • q) + 2(q x F 1). We will show by an explicit computation that if k is 
algebraically closed and of characteristic 4= 2, then there is a unique isomorphism 
class of regular algebras of this form, while in characteristic 2 they form a one- 
parameter  family. This one-parameter family is the specialization to characteristic 
2 of the algebras described in Theorem 8.20. 

It will be convenient to introduce a local notation for the type of algebras 
arising in the discussion. For  a, c �9 k, let A(a, c) denote the algebra defined by the 
relations 

f l  = xy 2 + yZx + ay  3 

f2 -- x2y + Y X2 -b a ( x y  2 + y x y  + y2x) + (a 2 § c)y 3 . 

In the notation of [ArSch, p. 181] ,  we have Q = I ,  e = f l =  1, and 
w = w2 + awl + (a 2 + C)Wo.) The matrix M (see [ATV])  is, dropping the tildas on 
the coordinates, 

Yl Y2 (Xi + ayl)Y2 ) 
) ~ =  yl(x2 +ay2)  (xi +ay i ) (x2  + a y 2 ) + c y l Y 2  " 

Since the four entries o f / ~  have no common zero ((xl, Yl), (x2, Y2)) in F i x ~ l ,  the 
algebra is regular for all a, c e k. Since det )~ = cy~y~, A(a, c) is linear ife - 0, and if 
c + 0, then A is elliptic and E = 2(IP 1 x {q} + {q} x lP1), where q is the point y = 0 
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in p1. In the latter case the changes of coordinates keeping E fixed are, up to 
a scalar, of the form x~*ctx + fl, y ~ y .  This substitution gives an isomorphism 

A ( a , c ) ~ A ( a + 2 f l ,  c )  

Thus, if k has characteristic different from 2, every elliptic algebra of the type we are 
considering is isomorphic to one of the form A(0, c), and if c ~ 0 is a square in k, to 
A(1, 0). On the other hand, if char k = 2, then the isomorphism classes of elliptic 
algebras A of this form are represented by the algebras A(O, c), c ~ k*/k  *a, together 
with the one-parameter family A(1, c), c ~ k*. 

Theorem 8.29 Let A be an elliptic regular algebra with associated triple (E, a, ~ ), 
such that r = 2, and that E = 2C, where C = ( p i x  q ) +  (q x lp1). Then with the 
above notation, A ~ A(a, c) for some a e k, c e k*, and Ao is isomorphic to the Weft 
algebra. 

Proof. We use the standard description of the algebras by means of the tensor 

(8.30) w =  ( x y ) M ( ~ ) =  x f t +  y f 2 = g l x + g 2 y  

as in [ArSch, 2.3], so that ( f l ,  f2) and (gl, g2) are two sets of defining equations for 
A. The variables x ,y  are understood to correspond to a choice of homogeneous 
coordinates (~, 37) in p1, and we choose them so that q is the point 37 = 0. Then the 
defining equation for E in P t  x p1 is 372372 = 0. We will drop the tildas from the 
coordinates from now on. As in [ATV, 5.4], we write 

f l  = alx  3 + azxZY + a3xyx + a4xy 2 + asyx 2 + a6yxy + aTy2x + a8y 3, 

f2 = bi x3 + bzx2y + b3xyx + b4xy 2 + bsyx 2 + b6yxy + bvyZx + bay 3. 

Then 

91 = al X3 q- aaX2y + asxy x + a7xy 2 q- blY x2 + b3yxy + bsy2x + b 7 y  3, 

g2 = a2 X3 q- a4x2y -F a6xyx -F a8xy 2 + bzyx 2 + b4yxy + b6 yZx + bay 3. 

Recall that J~ and f2 vanish on F c P a x  P ~ x  p1. Also, the form (5.2) of the 
automorphism tr shows that F contains q x P t x  q. Therefore al = a3 = bl = 
b3 = 0. Similarly, from 01 and g2 we obtain the relations al = a5 = a2 = a 6  = 0. So 
the equations have the form 

f l  = a4xy 2 a7y 2x + asy 3 

f2 = bzx2y + b4xy 2 + bsy x2 + b6yxy + bTy2x + bay 3, 
(8.31) 

gi = a7xy 2 bsY 2x + bvy 3 

g2 = a4x2y + asxy 2 + b2y x2 + b4yxy + b6y2x + bsy 3 . 

The matrix M is 

(8.32) 
aTylY2 

)~(x1, Yl; X2, Y2) -- \bsyiXE+bTYiY2 
a4xiy2 +a8YlY2 

b2x1x2 + b4x lY2+b6ylx2+baYiY2J"  
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Its de terminant  is 

(8.33) d e t e r  = (avb 2 - a 4 b s ) x l x 2 y l y  2 + (avb 4 - a 4 b T ) X l y l y  z 

+ (a7b6 - a8bs )y~xzy2  + (aTb8 - asbT)yly2.2 2 

O n  the other  hand,  det ~ t  = 0 defines E, so det )~t = cy2y 2 with c = aTb8 - asbT,  
and the first three coefficients in this expression vanish. Since F is non-degenerate,  
r ank  )~t > 1 everywhere. Applying this fact to the point  (xi, Yi) = (1, 0) shows that  

~t(1, 0; 1,0) 4:(00 ~) .  It follows that  b2 ~ 0, which by (8.31) implies that  a ,  ~ 0 and 

b5 + 0. We normalize  a4 to 1. Then  the vanishing of the coefficients in the 
expansion of det )~t yields the relations 

(8.34) avb2 = bs, aTb4 = bT,a7b6 = a s b s .  

Moreover ,  the form of the relations (8.31) shows that  91 = aT f l  and that  a7 4= 0. 
Hence  

(8.35) b5 = a 2, b7 = araB. 

Substi tut ing into the Eqs. (8.34) yields the relations 

(8.36) b2 = aT, b4 = as,  b 6 = a T a 8  �9 

Next,  the coefficients o f x 2 y  in (8.31) show that  f2 = b2g2 + Ygl for same ~ ~ k. 
This  implies that  b7 = b2b6 + 7bs and b8 = b2b8 + ),bT. Using the above relations, 
we rewrite these as 

(8.37) as(1 - a7) = 7a7, bs(1 - a7) = 7b7. 

The  algebra is linear if and  only if aTb8 = aabT. Assume that  E is elliptic. Then  it 
follows that  ~ = 0 and a7 = 1. Setting a = as and b = b8, the defining equat ions for 
A become 

(8.38) 
f2 = x 2 y  + 

x y  2 + y2x + ay 3 

a xy  2 + y x  2 + a y x y  + ay2x + by 3. 

Put t ing  c = b - a 2, we have  c + 0 and A ~ A(a,c) ,  as was to be shown. 
The normal iz ing element g such that  B = A / g A  is g = y4 (see (5.13)). The 

relation f l  = 0 can be writ ten as 

(8.39) y 2 x y - 2  = --  x - ay  , 

which shows tha t  y2 is a normalizing element in A, and that  y4 is central. 
Conjuga t ion  by y is an a u t o m o r p h i s m  0 of A whose order  divides 4. (It is usually 
equal  to 4.) The  ring A = Z A o y "  is the Ore domain  A o [ y , y - 1 ; O o ] ,  where 
Oo = OIAo. 

Let u = x y -  1, v = y -  ix .  F o r m u l a  (8.39) shows that  Ou = - v - a, and Ov = u. 
So k[u,v-I is a 0-stable subalgebra  of Ao. Since k [ u , v , y , y  - 1 ]  = A, we have 
Ao = k [ u , v ]  = k [ u , v , y , y - 1 ] o .  
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So far, we have used only the relation f l ( x ,  y) = 0. Working out things like 
( yx2)  y -3  = ( y ( x y - 1 ) y - 1 ) (  y Z ( x y - 1 )  y -  2) = (Ou)(O2u) = ( -  v -  a)( - u -  a) = vu 

+ a u  --bav -k a 2, o n e  finds that in A the relation f z ( x ,  y ) y - 3  = 0 boils down to 

(8.4o) vu -- uv = b -- a 2 -= c , 

Thus in the elliptic case, Ao is isomorphic to the Weyl algebra, as required. This 
completes the proof of Theorem (8.29). [] 

It  is interesting to interpret Theorems (7.1) and (7.3) for the rings we have 
described here. In each case the ring Ao is closely related to the Weyl algebra, which 
is a simple ring if and only if k has characteristic zero. In fact, a has infinite order in 
characteristic zero and finite order in characteristic p, a fact which can be checked 
directly, and which also follows from Theorem (7.3) and from the next proposition. 

Proposition 8.41 Let  k be a f ield o f  characteristic p ~ O. 
(i) The Weyl  algebra W (8.15) is an Az u ma ya  algebra o f  rank p2 over its center 

Z = k[s , t ] ,  where s = u p , t = v p. 
(ii) Assume that p :g 2, and let e be the automorphism defined by e(u) = - u and 

e(v) = - v. The rin 9 o f  invariants W <~> is a f ini te  module over Z <~>, and it is an 
A z u m a y a  algebra o f  rank p2 at  all points o f  Spec Z <~> except  at the image Po o f  the 
origin s = t = O. 

(iii) Le t  mo be the maximal  ideal o f  Z <~> correspondin9 to Po. There are two 
maximal  ideals pO, pX o f  W <~> which contain too, and suitably numbered, we have 
W<~>/P ~ ~ ~ ( ( p  - 1)/2), and 14A~>/p1 ~ dg( (p  + 1)/2), where J t (n )  denotes the 
algebra o f  n x n matrices over k. 

P r o o f  The first assertion is well known [Re]. Indeed, it is obvious that k Is, t] is in 
the center of W and that W is a free k [s, t]-module of rank p2. On the other hand, 
the usual trace argument shows that the equation x y  - yx  = 1 has no solution in 
~[(n) unless p divides n. Hence W has no representation of dimension < p. It  
follows that W is an Azumaya algebra of pi degree p, and hence that Z = k Is, t] is 
its center. 

To show that W <~> is almost Azumaya if the characteristic is not 2, we note that 
the automorphism e induces the automorphism s~ ,  - s, t~ ,  - t of Z. This auto- 
morphism has the origin as its only fixed point. It follows by descent that W <~> is 
locally an Azumaya algebra at all points of Spec Z except at Po. 

Direct computation shows that the matrix representation of W corresponding 
to the origin in Spec Z is 

(8.42) [o, i i j .  o u ~ ,  " 1 ' v-~, 2 . ' 
0 " p - 1 0  

and e is compatible with the automorphism ~ of Jg(p) which acts on matrix units as 
~:(egj) = ( - 1)i+ i eij. Clearly 

Jt'(p)<~>= ~ keij,  
i + j even 
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and this ring decomposes as a sum of two subalgebras: 

( ~, ke,jt~) ( ~ ke,jl,~ J[(�89189 1)). 
i, j e v e n  / \ i ,  j o d d  / 

By semi-simplici ty,  the m a p  W <~> --, J/(p)<~> is surjective. This provides  the re- 
qui red  max ima l  ideals. Since the ranks  add  to p, there are no others. [] 

Note 8.43 The max imal  ideals pi  provide  examples  of crit ical A-modules  of 
gk-d imens ion  1 with eo 4: el (see (6.15)). Let  V denote  the representa t ion  (8.42) on 
k p. The decompos i t ion  V = V ~ ~) V 1 which cor responds  to the two maximal  ideals 
is V ~ = ~,i . . . .  ki, V 1 = ~i odd ki. The  normal ized  A-module  N O which cor responds  
to  V ~ as in (7.8) is descr ibed as follows: We set N~ -- V i, reading the upper  index 
m o d u l o  2, and  we let x,y act as u,v: V ~ ~ V ~+~. The module  N 1 is the shift N o+ of 
N O . [] 
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