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1 Introduction

Let k be a field. In a previous paper [ATV] (see also [OF]) some graded
k-algebras A, regular algebras of dimension 3, were constructed from certain
automorphisms ¢ of elliptic curves or of more general one-dimensional schemes
E with arithmetic genus 1, which are embedded as cubics in IP? or as divisors of
bidegree (2, 2) in IP* x P, In this correspondence, the points of the scheme E were
shown to parametrize certain A-modules called point modules. A point module N is
a graded right A-module with these properties:

(1.1) () No=k,
(ii) N, generates N, and
(iii) dim; N; =1 for all n = 0.

The structure of these point modules is related in a nice way to the geometry of the
scheme E and its automorphism o. For example, if N = N, is the module corres-
ponding to a point p of E, then the normalized shift N *, defined by

Nipq 020
+ i+1 =
(1.2) N “{0 ifi<0,
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is the point module which corresponds to the point op. The object of this paper is
to study point modules and their relation to the geometry of E. The main results
were announced in [ VdB].

To fix ideas, let us consider the case that our algebra A corresponds to a cubic
curve E in the plane. In this case, 4 is a non-commutative analogue of a polynomial
ring in 3 variables. There is a normalizing element g of degree 3 in A which is
unique up to constant factor. It is the analogue of the cubic equation defining the
curve, and the ring B = 4/g A is the analogue of the homogeneous coordinate ring
of E, defined explicitly by B=@®H%E, Y®%°®...® %), where
L = 0g(1) (see [ATV]).

If R is a graded k-algebra, then by analogy with the commutative case, we
imagine Proj R to be defined and to have a geometric meaning, and we think of it as
the non-commutative analogue of a projective scheme. Thus Proj 4 is a non-
commutative (or “quantum™) analogue of the projective plane P2, We call two
A-modules equivalent if they are isomorphic modulo m-torsion, i.e., if they corres-
pond to the same imagined sheaf on Proj A (see (6.5)).

Again by analogy, if B= A/gA as above, then ProjA4 contains ProjB as
a “closed subscheme”. And though the structure of Proj 4 is somewhat obscure,
that of Proj B is well understood. The category of graded left (or of right) B-
modules modulo torsion is equivalent to the category of quasi-coherent sheaves on
the cubic curve E, just as in the commutative case when o is the identity (see [AV]).
The new feature comes into the shift operation on graded B-modules. In the
commutative case, the corresponding operation on sheaves is F % ® (%,
where % = 0g(1). Here this operation is replaced by the operation
FD L RF°.

In addition to 4 and B, we will consider the Z-graded ring A = A[g~']
obtained by adjoining the inverse of the normalizing element g, and its subring A,
of elements of degree zero. Intuitively, the non-commutative affine scheme Spec A4,
plays the role of the “open complement” of Proj B in Proj A. It is clear that the
structures of 4 and of A, are closely related. For the ring A, we have the following
rather strong dichotomy (see (7.3)).

Theorem 1 Let s denote the order of the o-orbit of the class [ L] of & = Og(1) in the
Picard group of E. Then if s< o0, Ag is an Azumaya algebra of rank s* over its center,
while if s=o00, Ay is a simple ring.

We are also able to show (7.18) in the elliptic case that if ¢ itself is of finite order,
then some power of the normalizing element g is in the center of 4. Using this fact,
we derive the result which is one of our main goals (see (7.1)):

Theorem II A regular algebra of dimension 3 is a finite module over its center if and
only if the automorphism ¢ has finite order.

It is quite easy to exhibit the center of the associated algebra B explicitly, so
Theorem I1 is easy to prove in the linear case [ATV, 8.5]. But since we don’t have
a conceptual description of the algebra A in terms of its triple (E,0,.#) in the
elliptic case, we aren’t able to exhibit the center of an elliptic algebra A4 explicitly.
Instead, we construct a family of graded A-modules of gk-dimension 1 and fixed
multiplicity, such that the intersection of their annihilators is zero. This is the main
step, because it proves that A is a polynomial identity ring [SSW].
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The space A; of elements of degree 1 in 4 has dimension 3, and there is an
interplay between the geometry of Proj 4 and of the ordinary projective space
P2 = IP(A,). (We use Grothendieck’s notation: IP(V) denotes Proj(S(V)), where
S(V) is the symmetric algebra on a vector space V. Thus points of P(A4,) are in
bijective correspondence with one-dimensional subspaces of A;.) For example,
right modules of the form M = A/aA, where a is a non-zero element of 4,, are in
canonical bijective correspondence with lines £ in the projective space P2, We call
these modules line modules.

Let M be the line module corresponding to a line /. The point modules which
are quotients of M correspond to points of intersection of E with ¢ (6.23). This is
not very surprising. A less intuitive fact is that any critical module N of gk-
dimension 1 (such a module may be thought of as corresponding to a closed point
of Proj A) is equivalent to a quotient of some line module M, which we interpret
intuitively as saying that N is supported on the line corresponding to M (6.7). This
gives us a start towards the construction of the modules of dimension 1 which we
use for the proofs of Theorems I and I1. These considerations are carried out in
Sects. 5, 6, and 7.

Section 2 reviews standard material about Hilbert series, and it contains an
important characterization of line modules (2.43). In Sect. 3 we prove that noether-
ian regular graded algebras of dimension at most 4 are domains. The duality
relating left and right A-modules is described in Sect. 4.

In Sect. 8, we describe a process of twisting a graded algebra A by an
automorphism 7 to obtain a new algebra A,. This twisted algebra can be quite
different from A, but it should be considered as having the same Proj. We then
determine explicitly those regular algebras which correspond to non-reduced
divisors E, by showing that they are all twists of a few special types. The corres-
ponding algebras A, are unchanged by twisting, and can be determined com-
pletely. They are closely related to the Weyl algebra.

Acknowledgement. We thank the referee for suggesting an improvement of our original version of
Proposition (3.4).

2 Modules over regular algebras

This section reviews well-known properties of graded modules over regular
noetherian graded algebras. The only results which may be new are at the end of
the section, beginning with Proposition 2.41. Except when the contrary is stated
explicitly, our algebras will be assumed to be finitely generated graded k-algebras of
the form A =k + A, + A, + ... . Such an algebra is called regular if it has the
following properties:

(2.1) (i) A has finite global dimension d,
(i) polynomial growth, and
(iii) is Gorenstein.

{See [ArSch, ATV].) When not otherwise specified, the symbol 4 will denote
aregular algebra, which in addition is left and right noetherian. These properties of
A are equivalent to the following:
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(2.2) (i) The left module 4k has a minimal graded resolution
0-Pls. .. 5P 5P k>0

of length d by projectives of finite type.
(i) (the Gorenstein condition) The transpose of this resolution is a resolution of
a right module isomorphic to k,(c), the shift of k, to some degree c:

Oekylc) = P™ - «P* 0,

(i) There are positive constants a, b such that dim, 4, < bn® for all n > 0.
(iv) Every finite graded A-module M has a graded resolution (which will be of
length at most d) by projectives of finite type.

Remarks. We conjecture that all regular algebras are noetherian domains. Also, in
all examples which we know, the integer d is equal to the gk-dimension 6 of 4. By
definition, é is 1 more than the minimal a in (iii) (see below).

In later sections, we will be concerned mainly with the regular algebras of
dimension 3 which are generated in degree 1. These are the algebras which were
studied in [ArSch] and [ATV], and they are noetherian [ATYV, 8.1]. We recall that
there are two basic possibilities for such an algebra A: It will have r generators and
r defining relations of degree 5 — r, where

(2.3) r=2or3.

This number will be denoted by r throughout. In order to shorten the phrase, let us
agree that by regular algebra of dimension 3 we will mean one which is generated in
degree 1, unless we mention the contrary.

By A-module, we will mean a graded left or right module over 4. We often use
the term finite A-module to mean finitely generated graded A-module. The symbol
Hom, (M, N) will denote the graded group whose component of degree v consists
of the degree-preserving homomorphisms M — N(v), where N(v) denotes the
shifted module defined by N(v), = N,.,. The notation Ext% (M, N} is to be inter-
preted as the derived functor of the graded Hom , (M, N) in the category of graded
modules. There are enough projectives and injectives in that category [ NV, Ch. A].
Note that Hom (A4, N) = N is true in the graded category. It follows that if M is
a finite module, then Ext} (M, N) agrees with the ungraded Ext.

The projective dimension of a module M will be denoted by pd(M). Considera-
tion of a minimal projective resolution for M shows that for M + 0, pd M is the
largest integer i such that Ext} (M, k) + 0, and hence also the largest integer such
that Ext!,(M, 4) % 0.

We begin by reviewing standard material about the growth properties of finite
(graded) modules over noetherian regular algebras. A good general reference for
this material is [Stan]. The Hilbert series of a module or a graded k-vector space
M is, by definition, the series

(2.4) hy (2) =Y (dimy M) t".
This is an additive function on the Grothendieck group of finite 4-modules M. The

resolution (2.2i) provides a recursion relation which allows us to compute the
Hilbert series

(2.5) ha(t) =Y ant" .
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of A. A finitely generated projective module P is a sum of shifts of 4. (To see this,
choose a minimal surjection @iA(vi) — P. Mimimality means that ¢ ® k is bijec-
tive. Since P is projective this map splits, and the Nakayama lemma [ATVI,
Proposition 2.2] shows that it is bijective.) So we may write

(2.6) Pi= @ A(=23),
ji=1

for suitable non-negative integers r; and ¢;;. Of course, P° = A.
The characteristic polynomial of A is defined to be

(=Y i =14...+ (=%,

i=0

@7 pa(t) =

IR

1

with ¢ and d as in (2.2).
For a regular algebra of dimension 3, the resolution (2.2i) has the form

0-A(—s—1)—= A(—s) > A(—-1)" > A—> k-0,
where s = 5 — r. Hence the characteristic polynomial of such an algebra is

1=3t+32—-1t3=(1-1)3 ifr=3,
palt) =

2.8
@8) =242 —¢*=(1-021—-tY) ifr=2.

Proposition 2.9 With the above notation,

ha(t)pa(t) =1.
Proof. The coefficient of ¢* in this product is

Ma

(2.10) (—1) Z Gu-z,y = Y (=) dim (PY), .

i=0
This coefficient is O if n & 0 and 1 if n = 0 because the sequence (2.2i} is exact. O

We factor p, in €[], writing
(2.11) pa(t) =1 — 1),

v

and calling «, the characteristic roots of A. Then

(212 () =T =) ' =]+t + it +...).

v

This product expansion implies the following proposition:

Proposition 2.13 Let A be a graded algebra satisfying (2.21). With the above nota-
tion, the following are equivalent:
(i) A has polynomial growth,
(ii) h4(t) converges for t < 1,
(ili) the characteristic roots o, have absolute value < 1.

Next, we note that the Gorenstein condition (2.2ii) yields a functional equation
for the Hilbert function:



340 M. Artin et al.

Proposition 2.14 Let A be a graded algebra satisfying (2.21) and (ii). Then
(i) Pa(t)=(=1)%tpa(t™),

where c is as in (2.2i1), and is also the degree of p,.

(i) The product of the characteristic roots of A is (—1)°7<.

(iii) If A has polynomial growth, then the characteristic roots of A are roots of
unity.

Proof. The integers ¢;; appearing in (2.6) are determined by the formula
(215) Tor kA,Ak @k( /U)

so they are unchanged if the sequence (2.2i) is replaced by a resolution of the right
module k,. Moreover,

Pi* = HOmA(Pi,A) = ZA(/U) .
j

The functional equation (i) follows immediately from this equation, and the fact
that c is the degree of p, is clear from its shape. Since the constant term of p, is 1,
the functional equation shows that its leading coefficient is (— 1)%. Finally, if 4 has
polynomial growth, then the characteristic roots have absolute value <1 (2.13),
and their product is +1. Thus ja| = 1 for each characteristic root a. Since p, is
a polynomial with integer coefficients and leading coefficient + 1, it follows that a is
an algebraic integer all of whose conjugates have absolute value 1. Therefore o is
a root of unity [BS, Ch. 2, Thm. 2.]. |

We now turn to Hilbert series of arbitrary finite modules. It will be convenient
to work in the derived category D?(A) of bounded complexes of finite left A4-
modules. It follows from (2.2iv) that every such complex is isomorphic in D} (A4) to
a finite complex of projectives. Since every projective is a sum of modules 4 (v), we
can compute the Hilbert series of an arbitrary module M or of an element of D2 (A)
in terms of that of A. Given a resolution

(2.16) 0P 5 5P 'SP S M0
of a module M, we have
(2.17) by =Y (—=1) hp: .

The Hilbert series of A(—v)is t*/p4(t). So if we write Pi = Z,-A (—vi;), we obtain
the formula

(2.18) hy = qu(t)/pa(t), or hye/hy = qu(t),
where
(2.19) qM(t)=Z(*1)it“fel[t,t'1].

Similarly, the Hilbert series of an arbitrary bounded complex M of modules is
defined by the same formula. It satisfies the rule

(2.20) hy =3, (= 1) hyiany 5
H'(M) denoting the cohomology of the complex M.
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Proposition 2.21 Let hy = Y m,t" be the Hilbert series of a finite A-module M.
Then

(i) The order p of pole of h at t = 1 is the maximum order of pole at points t + 0.

(ii) The order of growth of the coefficients m, is as a polynomial of degree p — 1 in
n. More precisely, if p =0, then m, =0 for sufficiently large n. If p >0, then
m, = 0(n?" 1) as n—»oo, but m, = 0(n?~* =% if § > 0.

(i) The leading coefficient e(M) of the series expansion of hy in powers of 1 — t,
called the multiplicity of M, is positive, and it is an integer multiple of the multiplicity
e(A) of A.

For convenience, we set
2.22) 1i=e(A) L.
Part (iii) of the proposition asserts that, for a module over one of these algebras,
(2.23) e(M)=1e(M)=e(M)/e(A)

is an integer. It is often convenient to work with ¢(M) rather than with e(M).
If we expand ¢,,(t) in powers of 1 — ¢

(224) au()=go+ (1 =)+ (1 —-1)* +.. .,
where qo = gu(1), g1 = —qp(1)/ 1}, etc., then formula (2.18) tells us that e(M) is the

first non-vanishing coefficient g;.
For a regular algebra of dimension 3 we have

L afr=3 _JeM) ifr=3
(2.25) l-—{z fre2’ ands(M)—{ze(M) P

Proof of Proposition 2.2]1 We have seen that the characteristic roots of A are roots
of unity; say they are powers of a primitive N-th root of unity {. Let p be the highest

order of pole of iy at the characteristic roots of 4. Then hy, has a partial fraction
expansion

(2.26) hM(t)=Zci,-/(1 =)+ f(1),

where i=0,...,N—1,j=1,...,p, and f(t)eZ[t, ¢t ']. The binomial expan-
sion of 1/(1 — t)’ shows that, for large n,

n+j—1> .
m,,=Zci~< . é'm
ij ! ji=1

<Z ci("")ﬂ“l/(p — 1)! 4 (terms of lower degree in n),

i

]

where ¢; = ¢;,. This function cycles through N polynomials, according to the
congruence class (modulo N) [Stan]. If p = 0, i.e., if Ay (t) = f(¢), then (i) and (ii)
are obvious. Suppose p > 0. Then by assumption the ¢; are not all zero. So the
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leading coefficients Y ¢;{™ are not all zero (Vandermonde). This proves (ii). Also,
since m, 2 0, Y ¢;{™ 2 0 for all n. Summing n from 0 to N — 1, we find
N-1 .
0< Y ¢l"=Nc.
n,i=0
Therefore ¢ > 0. This proves (i), and also shows that
(2.27) co=e(M),ifp>0.

If p = 0, then hy, (t)e Z [t, t 1] has coefficients =0, and ey = hy (1), 50 €3 > 0 for
all M #+ 0. Since hy hg! is a polynomial with integer coefficients in all cases,
e(M)elZ. 0

This proposition allows us to define the gk-dimension gk(M) of a non-zero
module M to be the order of pole of h(t) at t = 1. Equivalently, the gk-dimension
measures the order of growth of dim, M,. One can define the gk-dimension of
a module more generally [ KL], but in our case, the dimensions which arise are
non-negative integers.

Note that, by its definition, gk( M) depends only on M as a graded k-module,
and does not depend on the A-module structure, although if M is a finite left or
right A-module, then gk(M) < gk(A).

We obtain an additive function e, on the Grothendieck group of modules of
gk-dimension < p, by putting e,(M)=e(M) if gk(M)=p and e,(M)=0 if
gk(M) < p. We can also define the order of pole and multiplicity of an arbitrary
bounded complex formally, but the alternating sign may cause cancellation. There-
fore the order of pole need not reflect the growth of the cohomology modules,
though we do have the following trivial fact:

Corollary 2.28 Let M be a bounded complex of A-modules. Assume that the order of
pole of hy(t) at t = 1 is p, and that there is an integer i such that gk (H*(M)) < p if
v = i. Then gk(H(M)) = p, and e(H'(M)) = (—1)'e(M) = (—1)' e, (M).

The following proposition is standard [ KL].

Proposition 2.29 Let A be a noetherian regular algebra, and let M be a finite left or
right A-module of gk-dimension m.

(1) The sum M, of all submodules of M of gk-dimension < v is a characteristic
submodule of M, gk(M,) £ v, and if m = gk(M), then

M=M,oM,_.,>...oM;>M,.

(ii) The quotient module M,/M,_, is pure v-dimensional. That is, all of its
non-zero submodules have gk-dimension v.

(ii) If M is a bimodule which is finite as left and as right module, then M, is
a two-sided submodule, independent of choice of left or right in the definition.

(iv) For dall finite right modules N, and all q, the graded vector space
Tor (N, M) has gk-dimension < m.

We also need to recall the definition of critical module. An A-module M is
critical if it is not zero and if every proper quotient has lower gk-dimension. Note
that a critical module is pure. Some other key facts about critical modules are as
follows:
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Proposition 2.30 (i) Every non-zero finite module contains a critical submodule. In
fact, every finite module M contains an essential submodule which is a direct sum of
critical modules. (A submodule is called essential if it is not a direct summand of
a strictly larger submodule.)

(i) A finite module has a finite filtration whose successive quotients are critical.

(i) If M is a module of gk-dimension v, the successive quotients in such a filtra-
tion are of gk-dimension < v, and the number whose gk-dimension is equal to v is
independent of the filtration. It will be called the v-length of M.

(iv) If M is pure v-dimensional then it has a filtration such that the successive
quotients are critical and of gk-dimension v.

(v) If A is a prime ring of gk-dimension 6 with left ring of fractions K, then A is
a pure A-module, and a left module M has gk-dimension <6 if and only if
K®4M =0.If A is a domain, then A is a critical A-module.

(vi}) Let M be a finite critical A-module. The annihilator P of M is a prime ideal,
and P is also the annihilator of each non-zero submodule of M.

(vii) Suppose that k is algebraically closed. Then the only degree-zero endomor-
phisms of a critical module are scalars.

Since these results are standard, we will content ourselves with a proof of (vi). Let
M’ be a non-zero submodule, and let P’ be its annihilator. Tensoring the exact
sequence

0O-M->-M->M/M -0

by A/P’ yields an exact sequence Tor{!(4/P’,M/M')—» M’ — M/P’'M. Since
gk(Tor{{(A/P', M/M’)) < gk(M) = gk(M') by the previous proposition, we have
gk(M')=gk(M/P'M). Since M is critical, P'M = 0. This shows that P' = P. To
show that P is a prime ideal, suppose that P = IJ but that JM £+ 0. We set
M’ = JM and apply what has been shown. O

If M is a finite module or an element of D?(A4), we denote by MP its dual
RHom, (M, 4), which is an element of the derived category D! (A) of bounded
complexes of finite right modules. When M is represented by a finite complex of
projectives

(2.31) 0->Ps---5P'5P°>0,

for example by means of projective resolution if M is a module, then M? is
represented by the transpose sequence of right modules

(2.32) 0 P¥* ... Pl*  POx 0,

where P* = Hom, (P, A). The g-th cohomology of this complex is Ext} (M, A).
Clearly, there is a “biduality” isomorphism M — M P2, which expresses itself on
Ext by a spectral sequence

EP% = Ext3 (Bxt;9(M, A), A)= M.

In order to put this spectral sequence into the standard first quadrant form, we
reindex, writing it as

(233) Eg’q = EXtﬁ(EXti—q(M,A), A)$M[d] .
where M|, denotes the shift of position by d in the complex M.
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The Hilbert series of the dual M P can be computed directly in terms of that of
M. Write hy, = qu(t)/pa(t) as before. Then

(234 quo(t) = qu (™).
Combining this with (2.14), we obtain the formula
(2.35) hao(8) = (= 1) e hy(t71),

which gives us the following corollary:

Proposition 2.36 Let M be a bounded complex of A-modules. Then

(i) The order m of pole of hy at t = 1 is equal to the order of pole of h(M?)
att=1.

(i) e(MP?)=(—1)""e(M).

The last general property of Hilbert series which we will review is their behavior
with respect to tensor products. Ig‘ M, N are bounded complexes of finite right and

left A-modules, we denote by M ® N the tensor product in the derived category. It
is represented by the tensor product complex, provided that one of the complexes is

replaced by a bounded complex of prOJectlves Thus M ® N is a complex of graded
vector spaces, and as such it has a Hilbert series, which we denote by hy & v (t). We
have

(2.37) hygn(t) = Z(‘" D) Bror, (v, m) (2) -

Direct computation of this Hilbert series yields the following

Proposition 238 Let M, N be bounded fomplexes of right and left A-modules
respectively. Then the Hilbert series of M ® N has the form

hy n(t) = qu(t)qn(t)/palt),

where gy and qy are the “numerators” of the Hilbert series’ for M and N which
appear in (2.18), and p 4 is the characteristic polynomial of A. O

Copying the definition from commutative algebra, we will say that a finite
module M is a k-th syzygy if there is an exact sequence of the form

(239) 0——-)M_—)P1_.)P2__)...__)Pk,
where P! are finitely generated projective modules.

Proposition 2.40 (i) If A has global dimension d and M is a k-th syzygy, then the
projective dimension pd(M) is at most max{0,d — k}.

(il) A module M is a first syzygy if and only if the map M — M** from M to its
bidual is injective, and M is a second syzygy if and only if this map is bijective, i.e., if
and only if M is reflexive.

The first assertion is trivial, and the second results from the consideration of
a projective resolution of M* (see [EG, Thm. 3.6]).
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Proposition 2.41 Let A be a regular noetherian algebra of gk-dimension n. Let M be
a non-zero A-module such that pd(M) £ 1, and let

(2.42) 05> A= DY A(—)™ > M -0

be a minimal resolution of M. Then gk(M) = n — 1,and gk(M) = n — 1 ifand only if
Y., a4 =, by, in which case we have

zbi§zi(bi—ai)=8(M)-

Corollary 2.43 The following properties of a graded A-module M with pd(M) = 1
are equivalent:

(i) gk(M)=n— 1, and (M) =1,

(i) M is isomorphic to a shift of a module of the form A/aA, where a is a left
regular element of A,.

Proof of the corollary, assuming the proposition. Suppose that (i) holds. Then
Y.,a; = y,.b; < 1. Hence ; = 1for a single index i, say i = i;, and is zero otherwise.

Slmllarly, b=1 for some i=i, and b;=0 otherwise. The equation
— i = Zi i(b; — a;) = 1 shows that the minimal resolution of M is

@M) 0 A(—iy —1)> A(— i) > M >0,

ie., that M is isomorphic to (4/aAd) (—i;), where a is a left regular element of
degree 1. Thus (ii) holds.

Conversely, assume (ii). Then the minimal resolution is of the form (2.44) for
some integer i;. Hence hy(t)=1"h,(t)(1 —1), from which we find
gk(M) = gk(A) and e(M) = e(A), i.e., that (i} holds. d

Proof of Proposition 2.41 The difference n — gk(M) is the order of zero att = 1 of
the function

(2.49) an(0) h“‘”

Z(l— ti:qu(l_t)va

where

qo = Z(ai -b), q= Z ithy — a;), q»= Z (;) (a; — by), etc . ..

(see (2.24)). Thus gk(M) < nif and only if go = 0,1.e, Y a; = Y. b;. Suppose that this
is the case. To finish the proof we must prove the inequality  b; < Y i(b; — a;)
(= q,). Then, since M # 0 implies ) b; > 0, it will follow that g, + 0, hence that
gk(M)=n — 1, and e(M) = g, e(A), as required (see (2.21iii}).

Since (2.42) is minimal, the matrix entries of the map f all have positive degree.
It follows from this fact that for each integer j the image by f of the module
Zi§jA(—i)"" is contained in ZKJ_A(—i)“".

Let X be the quotient module and let A, be its Hilbert function. Since f is
injective,

hy(t)
i)~ 2 T Lt

i<j igj
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Letting ¢t approach 1 from below shows that
a;—Y bz0.
i<j i)
We write this inequality in the form
bi< ). (ai—by)
i<j

and sum over j for j <m, where m is a fixed integer large enough so that
a, = b, = 0 for all u = m. Since qo = 0, we find

ij: Z bi< Y Y(a—b)= 3} (m—i)(a—b)=mgo+4q:1=4q,
J JjEm jSmi<j i<m

as was to be shown. O

Proposition 2.46 Let A be a noetherian regular algebra of global dimension d, and let
M be a finite A-module. Let m = A, + A, + . . . be the augmentation ideal of A.

(i) If pd(M) < d then the socle Hom 4 (k, M) of M is zero. The converse is true if
d>0.

(i) Let T denote the wm-torsion submodule of M. Then Ext%4(M, A)=
Ext4 (T, A). In particular, Ext4 (M, A) is a finite-dimensional k-vector space of the
same dimension as T. _

(iii) Let M = M/T. Then Ext?(M, A) ~ Ext4(M, A) for all g < d.

Proof. Note that T # 0 if and only if Hom, (k, M) & 0. Moreover, since T has
finite length, the fact that A is Gorenstein shows that Ext’, (T, 4) = 0 if i < d, and
that Ext? (T, A) is dual to T. Since A4 has global dimension d, we obtain an exact
sequence

Ext4 (M, A) —» Ext4 (M, A) - Ext4 (T, A) -0 .

Thus pd(M) = d if the socle of M is non-zero. Since_the socle of M is zero, this
sequence shows that (ii) follows from (i), applied to M. Also, (iii) follows from (ii)
and from the Ext sequence associated to the exact sequence

0->T-M->M-0.
To complete the proof of (i), we may assume that pd M = d > 0. Let
0P 5P 1 - 5P S M0

be a minimal resolution. The boundary maps in this complex carry P/ to m P/~ ! for
each j, and it follows that the maps Ext? (k, P') — Ext4 (k, P*~') vanish for all i, in
particular for i = d. Set M’ = M and M!=im(P'—> PI"!) = ker(P'"! - P'"?),
so that there are exact sequences

O0->M P 1o M™150
fori=1,...,d— 1. These sequences induce isomorphisms
Hom, (k, M%) =~ Exti(k, M) =~ - - ~ BExtdy 1(k, M9 1) .
We also have an exact sequence

0-PiospPi~t ML 50,
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which gives rise to an exact sequence
0 — Ext4 ! (k, M~ 1) - Ext4(k, P*) — Exté (k, P47 1) .

As we remarked, the right hand map in this sequence is zero. This shows that
Hom, (k, M) = 0 if and only if P? = 0, as required. 0

3 Proof that regular algebras of dimension at most 4 are domains

Throughout this section, the term module will mean finite graded A-module, and
bimodule will mean graded A-bimodule which is finite as left and as right module.
As we have noted, the characteristic filtration (2.29) is the same, whether we view
M as a left or as a right module, and it consists of two-sided submodules. In
particular, if M is pure v-dimensional as a left module, it is so as a right module as
well, and vice versa.

Our goal in this section is to prove that regular noetherian algebras are
domains if their dimension is at most 4. This is an old result of Ramras [R] for rings
of dimension 2 and it has also been proved by Snider [Sn] for rings of dimension 3.
Before proving the theorem, we will collect some elementary facts about bimodules
over regular noetherian algebras, which will then be applied to study the character-
istic filtration (2.29) of 4.

Proposition 3.1 Let A be a regular noetherian algebra, and let M be an A-bimodule.
Let I be the right {or left) annihilator of M. Then gk (A/I) = gk(M).

Proof. The inequality gk(A4/I) = gk(M) holds because M is a finite right A/I-
module. To prove the other inequality, choose generators x,, . . ., x; for M as left
module, and let I, be the right annihilator of x,, so that x,4 ~ A/I,,and I=n1,.
Then gk(A/I) < max {gk(A/I,)} = max {gk(x,4)} < gk(M). O

Proposition 3.2 Let B be a quotient of gk-dimension k of a regular noetherian
algebra A, and let N be a pure k-dimensional B-bimodule. Then every regular element
of B is left N-regular.

Proof. Let u be a left regular element of B, and let N’ = ker 4, where 1 = 4, denotes
left multiplication by u on N. This is a right B-module. To show that N" = 0, it
suffices to show gk(N') < gk(B). The sequence 0 - B — B — B/uB — 0 shows that
gk(B/uB) < gk(B) and also that N’ = Torf(B/uB, N). Therefore gk(N') <
gk(B/uB) < gk(B) (2.29iv). O

Proposition 3.3 Let M be critical as an A-bimodule, and let P be the left annihilator
of M. Then P is a prime ideal, and gk (A/P) = gk(M).

Proof. Let Q denote the annihilator of M in 4 ® A°. This is a prime ideal (2.30vi).
Since A ® A is centrally generated over A, the intersection of Q with A4, which is P,
is prime too. The last assertion is a special case of (3.1). O

Proposition 3.4 Let A =k + A, + A, + ... be a noetherian graded k-algebra, and
let Py, ..., P,beafinite set of graded prime ideals of A, not including the augmenta-
tion ideal m = A, + A, + . ... There is a homogeneous element x€ A of positive
degree whose residue in B; = A/P; is a regular element for each i.



348 M. Artin et al.

Proof. The proof is similar to the one given in the ungraded case by Stafford [Staf,
Prop. 2.4]. We order the prime ideals P; in such a way that P, does not contain P;
for all j < r. By induction, we may assume that there exists a homogeneous element
b which is regular in B;for allj < r. Weset I = P; n...n P,_;. It suffices to find
a homogeneous element d eI such that, for some k, b* + d is homogeneous and has
a regular image in B,. From our chosen ordering of the prime ideals, it follows that
the image of I is a nonzero two-sided ideal of B,. Reducing modulo P,, we see that
it suffices to prove the following lemma.

Lemma 3.5 Let B be a graded noetherian prime ring, let I be a nonzero two-sided
ideal of B, and let b an arbitrary homogeneous element of B. There exists an element
d eI such that, for some k, b* + d is homogeneous and regular.

Proof. Since I % 0 and B is prime, [ is an essential ideal. We set b = b,y. Replacing
by by a power as necessary, we may assume that ann(b,) = ann(bg) for every
n > 0, where ann denotes the left annihilator.

We follow the proof of the graded Goldie theorem [NV, Theorem C.I.1.6].
(When r = 2, the lemma follows directly from this theorem.) If ann (by) # 0, then
since I is essential, there exists an element b, in I ~ ann(b,) which is not nilpotent
[NV, Lemma C.I.14]. (Note: The word “semisimple” in the statement of this
lemma should read “semiprime”.) Replacing by by a power, we may assume that
ann(b,) = ann(b}) for every n > 0. If ann(by) m ann(b,) + 0, we choose a non-
nilpotent element b, el nann(by)nann(b;), and we replace it by a power as
necessary, so that ann(b,) = ann(b3) for every n > 0. This procedure can be
repeated so long as ann(by)...nann(b;) =0, and it yields a sequence of
nonzero elements by, by, b,, . . .

From the choice of b;, it follows that the sum of right ideals
boA+biA+b,4+ ...+ b,A is a direct sum. So since B is noetherian, the
procedure must stop, at which time ann(bg)}n...nann(b,) = 0.

Choose k; so that x = bf + b¥ + ... + b¥s is homogeneous. Then from the
above direct sum decomposition, we find ann(x) < ann(by) n. .. ann(b;) = 0.
Hence x is regular. Furthermore, by construction, d = b%¥' + ... + b¥ is an ele-
ment of I. O

We now return to our regular noetherian algebra A. Let M be an A-bimodule,
and consider the characteristic filtration (2.29)

(3.6) M=M,o...oM,,

in which M, has gk-dimension v, and where M,/M,_; = N, is pure v-dimensional.
We may choose a filtration of each of the modules N,, whose successive quotients
are critical v-dimensional bimodules. Each of these quotients will have a left
annihilator P which, by Proposition 3.3, is a prime ideal. Let P,, . . ., P, be the set
of these prime ideals. It is natural to call them (the) associated primes of M.

Corollary 3.7 Let M be an A-bimodule whose socle is trivial. There exists a homo-
geneous element x € A of positive degree which is M-regular.

This is clear from the preceeding remarks and from Propositions 3.2 and 3.4. [J

Proposition 3.8 Let A be aregular noetherian algebra of global dimension d. For any
bimodule M, the gk-dimension of Ext4™*(M, A) is at most 1.
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Proof. We may also assume that the socle of M is zero (cf. Proposition 2.46 (iii)).
Then Corollary 3.7 tells us that there is a homogeneous element xe A of positive
degree v which is not a right zero-divisor in M. Let N = M/Mx, and let
E = Ext4 ' (M, A). Right multiplication by x on M induces an exact sequence

Ax
E-" E > Ext4(N, 4),

where A, is left multiplication on the left module E. Since Ext?(N, 4) has finite
length over k (2.46), it follows that A, is surjective in large degree. Thus
dimE, =z dimE, ., if n>0, which shows that gk(E) £ 1, as required. |

We are now ready to prove the main resuit of the section:

Theorem 3.9 A regular noetherian algebra of global dimension and gk-dimension
d £ 4 is a domain.

Our proof is arranged as a sequence of lemmas, some of which are true in
arbitrary dimension. We denote the global dimension of our regular noetherian
algebra A by d, and its gk-dimension by d’.

Lemma 3.10 The d'-length of A is 1.

Proof. Every finite A-module has a finite resolution by finite sums of modules A(v).
Since d'-length is an additive function on the Grothendieck group of finite modules,
the d’-length of any module is an integer multiple of the d’-length of 4. On the other
hand, every critical module of gk-dimension d’ has d’-length 1. O

For the rest of this section, we denote by N the largest ideal of 4 of gk-
dimension < d’. The next lemma shows that it suffices to prove N = 0.

Lemma 3.11 A/N is a domain.

Proof. By the definition of N, the module _/I = A/N is pure d’-dimensional. Let
K be the left annihilator of an element be A4, so that 4b ~ A/K. By the previous
lemma, one of the two left ideals K or Ab has gk-dimension < d’, and is therefore
Zero. O

Lemma 3.12 Let I be the right annihilator of the ideal N. Then gk(I} = gk(A),
hence there is an element be I which is not in N.

This follows from Proposition 3.1 and the definition of N. |
Lemma 3.13 N is a reflexive A-module, and pd(N) £ max {0,d — 2} .

Proof. Lemma 3.12 tells us that there is an element b in the annihilator of N, but
not in N. Therefore the kernel of right multiplication p, = p by b on 4 contains N,
while right multiplication by b on the domain 4 = A/N is injective. It follows that
ker p = N, and that the sequence

(3.14) 0> N->A—sA4— A/Ab—0

is exact. So N is a second syzygy, and hence is reflexive and of projective
dimension £ max (0, d — 2) by (2.40). O

Lemma 3.15 Theorem (3.9) is true if the global dimension d is < 2.
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Proof. If the global dimension d of A is at most 2, then N is projective, by the
previous lemma, hence it is a sum of shifts of A. Since gk(N) < gk(A), it follows
that N = 0, and by Lemma 3.11 that 4 is a domain. O

Note that we did not use the hypothesis d = d’ here. In fact, the structure of
regular graded algebras of global dimension < 2 is known (see [ATV, 3.14] for the
case of algebras of dimension 2 generated in degree 1) and from the structure
theorem it is easy to see that they are noetherian domains with d = d’.

We assume from now on that d = d’' = 3.

Lemma 3.16 N contains no non-zero submodule of gk-dimension < 1.

Proof. Since N is reflexive, pd (N) < d — 2. Also, the Gorenstein condition implies
that the socle of N is trivial (2.46). Let N, be the characteristic submodule of N of
gk-dimension £ 1. We want to show that N, =0. Now the bimodule
M = N; @ N ® (N/N,) has trivial socle, and so Corollary 3.7 tells us that there is
an element x in A of positive degree which is M-regular. Note that N, has gk-
dimension £ 1. If N, + 0, it follows that N;/xN, is a non-zero module of finite
length. Since x is (N/N)-regular, multiplication by x in the exact sequence

O0>N;,>N->(N/N;)-0

shows that N/xN has a non-zero socle, which implies that pd (N/xN) = d (2.46).
This contradicts the facts that x is N-regular and that pd(N) £d — 2. O

We now proceed with the proof of Theorem 3.9. To simplify notation, we will
write

E9(M):=Ext4y (M, A) .

Suppose d=d' =3 and N 0. Then by Lemma 3.13, pd(N) < 1, hence by
Proposition 2.41, gk(N) = 2. By the definition of N, gk(N) < 2, hence gk(N) = 2.
Proposition 2.36 tells us that e(N?)= —e(N). On the other hand, the only homol-
ogy modules of the complex N? are N* = E°(N)and E*(N). Moreover, since N is
a second syzygy, E!(N)= E3(M) for some M, hence E'(N) is a finite length
module. Therefore N* has gk-dimension 2, and e(N*) = e(N?)= —e¢(N). This
contradicts the fact that e(N*) = 0, and completes the proof in the case of global
dimension 3.

From now on we assume that d = d’ = 4. The proof is harder in this case, when
we know only that pd(N) < 2.

Lemma 3.17 Let M be a reflexive A-bimodule. Then gk(E*(M)) £ 1.

Proof. The dual module M* = E°(M) is also a reflexive bimodule, so replacing
M by M* shows that it suffices to prove gk(E'(E°(M))) < 1. We consider the
spectral sequence (2.33) E§* = E?(E*~%(M))= M|,;. Denoting E‘(E‘(M)) by
E‘E‘,we have E' E® = E3*. Since the abutment of the spectral sequence is M4, we
know that E!*=0. The non-zero coboundary maps involving E'¢ are
dy: E}* 5 E3® = E3E' and dy: E}* - E$?, where E%? is a quotient of
E3? = E*E? Proposition 3.8 tells us that gk(E*E') < 1, and E*(L) has finite
length for every finite module L. It follows that gk(E'E®) < 1, as required. O
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Lemma 3.18 N is pure 2-dimensional.

Proof. By definition, gk(N) = 3, and by Lemma 3.16, N contains no submodule of
gk-dimension =<1. On the other hand, if gk(N) = 3, then we can argue as above:
Proposition 2.36 tells us that e(N?)= —e(N). On the other hand, E4(N) =0
except for ¢ = 0,1,2. Moreover, E*(N) = E*(M) for some M, and so EZ(N) is
a finite length module, while E'(N) has gk-dimension <1 by the preceeding
proposition. Therefore N* has gk-dimension 3 by Proposition 2.36, and e(N*)=
e(NP), by Corollary 2.28. This contradicts e(N?)= —e(N). O

Lemma 3.19 Let M be a right module such that pd(M) < 2. Then Tor;(M,N)=0
ifi>0.

Proof. Since N is a second syzygy, there is a module N’ such that
Tor; (M, N) = Tor;;,(M, N’). Since pd(M) £ 2, Tor;, ,(M,N)=0ifi>0. O

Lemma 3.20 Suppose that N = 0 and that M is a non-zero module of projective
dimension £ 2. Then gk(M) = 2.

Proof. Suppose gk(M) £ 1, and that M is a right module. Let g, (t) denote the
numerator of the Hilbert series hy(¢), defined as in (2.18). Since gk(A) = 4, the
order of zero of g, (t) at t = 1 is at least 3. Also, since gk(N) = 2, the numerator
qn(t) has a zero of order at least 2. By the previous lemma and by Proposition 2.38,
the Hilbert series of the tensor product module M ® N has the form
hu o n(t) = que(t) gn(t)/p4(t). The numerator of this series has a zero of order at
least 5 at ¢t = 1. Therefore hy o v vanishes at t = 1. This happens only for the zero
module. But since M, N are not zero, neither is M ® N. (]

Lemma 3.21 Assume that N % 0. Let M be a module of gk-dimension < 1. Then
pd(E'(M)) £ 2.

Proof. We examine the spectral sequence (2.33) E3? = EP(E*™9(M)) = M4, again.
The assertion of the lemma is that E5> = EP(E'(M)) = 0 when p > 2. Since N is
pure 2-dimensional and gk(M) £ 1, M* = E°(M) = 0, and so E{* = E{(M*) = 0.
And, since the abutment of the spectral sequence is M4, the terms E2* and
EZX3 vanish. This implies that E33 = E3® = 0 too, as required. O

Lemma 322 N =0.

Proof. Assume N = 0. There is an N-regular element x, (3.7). Dualizing the exact
sequence

0>N—>N->N/xN-0

gives an exact sequence
0> N*——N*-E— EYN),

where E = EY(N/xN). Since gk(N) = 2, it follows that gk(N/xN) = 1, hence
pd(E) £ 2 by the last lemma. Therefore gk(E) = 2, by Lemma 3.20. On the other
hand, gk(E*(N)) £ 1 by Lemma 3.17. Therefore gk(N*) = 3. Since N is reflexive,
the left annihilator of N is the right annihilator of N *, and so Proposition 3.1 shows
that gk(N) = gk(N*). This is a contradiction, which completes the proof of the
Lemma and of Theorem 3.9. O
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4 Dimensions of the dual modules

In this section we estimate the gk-dimensions of the modules E4(M):=Ext{(M, 4)
when A is a noetherian regular ring of global dimension 3. As in Sect. 3, we will use
the facts that gk(A) = 3 and that A4 is noetherian, but will make no other use of our
assumption that A4 is generated in degree 1. The results are summed up in the
following theorem.

Theorem 4.1 Let A be a regular algebra of dimension 3, and let M =+ 0 be a finite left
A-module of gk-dimension m. Let E/(M) = Ext} (M, A), and denote E3~™(M) by
M. Then
(i) E(M)=0ifj<3 —m.
(i) gk(MY)=m, and e(M ") = e(M).
(iii) gk(E/(M)) £ 3 —j for all j. Moreover, the following assertions are equivalent:
(a) gk(E/(M)) =3~ ,
(b) EY(E‘(M)) +0,
(c) M contains a non-zero submodule of gk-dimension 3 — j.

The next corollary describes the duality between left and right modules given by
M-~»MY., A module M is called Cohen-Macaulay if EY(M)=0 for all
q * 3 — gk(M), or equivalently if pd(M) = 3 — gk(M).

Corollary 4.2 With the notations of the previous theorem,
(i) There is a canonical map p = py: M — MY, which is an isomorphism if M is
Cohen-Macaulay.
(i) If m <3, MV is Cohen-Macaulay.
(iii) M"Y is pure m-dimensional.
@iv) ker u is the maximal submodule of M which has gk-dimension < m, and
gk(cokeru) <m — 2.

Needless to say, (4.1) and (4.2) are true for right modules as well.

Note. The referee remarks that (4.1, iii) implies that 4 is Auslander regular in the
sense of Bjork [Bj]. Moreover, (4.2iii) implies that the filtration defined by the
spectral sequence (2.33) is the same as the filtration (2.29i) by gk-dimension.

We note the following corollary to Theorem 3.9:

Lemma 4.3 Let A be a regular algebra of dimension 3 and let M be a finite
A-module. Then
(i) 4 is a critical A-module, and for every non-zero ac A of positive degree,
gk(A/Aa) = 2.
(i) E°(M)= M* =0 if and only if gk(M) < 3.
(iii) For every q > 0, gk(E4(M)) < 3.

The proof of this lemma is routine, part (iii) being a consequence of the fact that 4 is
a Goldie domain whose field of fractions is semi-simple. Alternatively, it suffices to
prove (iii) for M = A/L, where L is a non-zero left ideal of A. Let a be a non-zero
element of L. Since gk(L/Aa) < 2 by (i), we have (L/Aa)* = 0 by (ii). Hence E!(M)
injects into E'(A/Aa) = A/aA, which has gk-dimension equal to 2 unless it is
Zero. O

Note that this lemma holds for a graded regular noetherian domain of arbitrary
dimension d’, if we replace 3 and 2 by d’ and d' — 1.



Modules over regular algebras of dimension 3 353

The proofs of Theorem 4.1 and Corollary 4.2 are based on an analysis of the
spectral sequence (2.33). Taking into account the previous lemma, the fact that A is
Gorenstein, and the fact that the abutment of the spectral sequence is in degree 3,
produces zeros in the E£? terms of this spectral sequence as indicated below:

E°E® E'E° 0 0
0 E'E' E?E' E3’E!
0 E'E* E?*E* E*E?¥’
0 0 0 E’E?

4.4)

where E'EJ stands for E{(E/(M)). Lemma 4.7 below tells us that EE? = 0 too.

Lemma 4.5 Let M be a finite module of gk-dimension < 3. If E*(M) % 0, then
pd(EY(M)) = 1 and gk(E}(M)) = 2.

Proof. Since gk(M) < 3, the previous lemma tells us that E°(M) = 0. This pro-
duces some more zeros in the spectral sequence (4.4), as is indicated below:

0 0 0 0
0 E'E! 0 0
4.6
(46) 0 E'E* E?E* E’E¥’
0 0 0 E3E?

The second row from the top shows that pd(E!(M)) < 1. By Proposition 2.41,
gk(E'(M))=z2 On the other hand, gk(E!(M))<3 by (43). Thus
gk(EX{(M)) = 2. O

Lemma 4.7 For any finite module M, E*E?(M) = 0.

Proof. The fact that the abutment of the spectral sequence (4.4) is concentrated in
degree 3 shows that the coboundary map E'E?— E*E? is injective. Since
gk(E%(M)) < 3, the previous lemma applies, to show that either E* E2 = 0, or else
gk(E'E?) = 2. On the other hand, E? has finite length for every finite module. So
E'E? =0. O

Lemma 4.8 Let M be a finite module of gk-dimension < 1. Then E{(M) =0 for
j=01

Proof. We already know that E°(M) = 0, so the spectral sequence (4.6) gives us an
exact sequence M — E'E! - E3E? Since E3 has finite length, it follows that
gk(E'E') < 1. Lemma 4.5 shows that E* E*! = 0, so by (4.6), that E'E' = 0 for all
i. This implies that (E!)? = 0, hence that E! = 0. O

We now proceed with the proof of Theorem 4.1. As we have noted before (2.46),
the theorem follows in the case that gk(M) = 0 from the fact that A is Gorenstein.
So we assume from now on that gk(M) =m > 0.

Proof of Theorem 4.1(i) The case m = 1 was treated in Lemma (4.8). Also, if
m < 3, then E°(M) = 0 because 4 is a domain. This settles the case m = 2, and the
case m = 3 is trivial. O
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Proof of Theorem 4.1(ii)

Casem =1 Here M¥ = E%(M). Lemma 4.8 shows that E/(M) = O unless j = 2,3.
Also, E3(M) has finite length. Thus Corollary 2.28 applies. It shows that M and
M"Y have the same gk-dimension and the same multiplicity.

Casem = 2 Here M ¥ = E'(M). In this case formula (2.36) reads e(M?)= —e(M).
Since gk(E’(M)) < 2 for all j, we have e(MP?) = Y (—1)’e;, where ¢; = e( E/(M)) if
gk(E(M)) = 2 and is zero otherwise. Since E®(M) is zero and E3(M) has finite
length, we find —e(M) = e(M?)= —e; + ¢,. This shows that e; > 0, hence that
gk(M )= 2. To show that e(M ") = e(M), we must show that e, =0, i.e., that
gk(E?(M)) < 2. Suppose that gk(E%(M)) = 2. We substitute E?>(M) for M into
wlllatzwas just shown, to conclude that gk(E'E2?(M)) = 2. But by Lemma 4.7,
E*E*=0.

Case m = 3 This case follows in the same way, from (2.28) and (4.3). |

Proof of Theorem 4.1(iii) We have seen (4.4),(4.7) that E'E’ = 0if i < j. Part (i) of
the theorem shows that gk(E/(M)) <3 —j and that assertions (a) and (b) are
equivalent. Moreover, it shows that gk(E/E’) = 3 —j if and only if E/E7 % 0.
To prove that assertion (b) implies (c), we examine the gk-dimensions of the
non-zero terms EE/ of the spectral sequence (4.4), using the fact just proved, that
gk(E'E¥y <3 —i.If gk(E’E’) = 3 — j, we conclude that the corresponding term in
E, which is EJ37J, has the same gk-dimension. Then the filtration of M whose
associated graded module is @ EJ?~/ supplies a non-zero submodule having
gk-dimension 3 — j, whenever gk(E/E/) = 3 — j, i.e., whenever E/E/ % 0.
Finally, let us show that (c) implies (a). We assume that M contains a sub-
module of gk-dimension 3 — j, and we let N denote the largest such submodule. We
denote the module M/N by M. Since E/~*(N) = 0 by (i), the exact sequence

0>N->M->M-0
gives us an exact sequence
0~ E{(M)— E/(M)— E/(N)- E/*1(M).

We know that gk(E/(N)) = 3 —j, and that gk(E'+*1(M)) £3 —j — 1. Thus the
image D of E/(M) in E/(N) has gk-dimension 3 — j. Taking Ext once more, we
obtain a sequence

E"'Ei(M) - E¥D)—> E‘E{(M).

The left hand term is zero and E’(D) = 0. Therefore E/E/(M) # 0, as required.
This completes the proof of Theorem 4.1. 0

Proof of Corollary 4.2 We examine the spectral sequence (4.4) once more. Let
p =3 —m. Using the previous theorem, we find that E/E/ =0 for j < p. The
spectral sequence now provides the canonical map up:M — EPEP(M)=M"".
Part (ii) follows by inspection of the spectral sequence (4.6), and it shows that py, is
bijective if M is Cohen-Macaulay. Part (iii) is true if m = 3, because in that case
MY = M*and A is a domain. If m < 3, it follows from part (i) and (4.1iii). To prove
(iv), we note that the cokernel of the map u is controlled by the images of the
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coboundary maps of the spectral sequence (4.4), which are maps
EPEP  EPTH+1EPTk Agsertion (i) of the corollary and Theorem 4.1(iii) tell us
that gk(EP***1EP*k) <m — 2, hence gk(coker u) < m — 2. Since (4.1il) M, M ",
and M"Y have the same multiplicity, gk(ker ) < m, and since M " ¥ is pure, ker
is the maximal submodule of gk-dimension <m. O

5 Some meore preliminary considerations

For the rest of the paper, we restrict our attention to regular algebras of dimension
3 generated in degree 1, and we will review some notation before going on. Recall
[ATV] that such an algebra A4 defines a regular triple 7 = (E, g, &), where ¢ is an
automorphism of the scheme E and % is an invertible sheaf on E, and that
A, = HY(E, &). There are four possibilities for the triple:

(5.1) the elliptic case:

(a) r =3, E is a cubic divisor in IP?, and & = (1),
(b) r =2, E is a divisor of bidegree (2,2) in IP! x IP*, and % = prOp:(1),

the linear case:

(a r=3 E= ]PZ, and ¥ = Op(1),
(b) r=2,E=P' xP}, and & = pr¥ Op:(1).

The elliptic case is the more interesting one.
If r = 2, the automorphism ¢ has the form [ATV, 4.5]

(5.2) o(p1, p2) = (p2,f(p1,p2)) .

In order to be regular, i.e., to define a regular algebra, the automorphism ¢ must
be related to the invertible sheaf .# in the following way [ATYV, 4.8]:

(5.3) Pln@-H 5 g,

where 1 = 4 — r as in (2.25). When (5.3) holds the triple 7 determines the algebra
A = A(J). (n.b. The statement that 7 is a regular triple does not imply that the
divisor E is smooth!).

Let us denote by [.#] the class of the invertible sheaf .# in Pic E. The covariant
operation of ¢ on PicE is defined by: 6 [¥] =[¥ ¢~'1, and (5.3) amounts to
(6 — 1) (¢' — 1) [£] = 0. We will often denote by 2 the invertible sheaf £~ so
that [2] = (1 — ¢')[Z]. Then our condition (5.3) says that [ 2] is ¢-invariant:

(5.4) 2~ 9.

Moreover, the triple is linear if and only if [2] =0, i.e., if and only if [#] is
g'-invariant [ATV, 4.8'].

Let S be a scheme, and let 7: Eg — S be a family of divisors of degree 3 in IP? or
of bidegree (2,2) in P* x P!, parametrized by S. Let Pic®Es/S be the subscheme of
the relative Picard scheme Pic Es/S of classes of invertible sheaves whose restric-
tion to each irreducible component of each geometric fibre of Eg/S has degree zero.
Corollary (5.7) below describes an operation of the algebraic group scheme
Pic®Eg/S on the scheme Eg, which in the case that Eg is smooth is the usual action
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by translation on an elliptic curve. If p: S — Eg is a section, we denote by p also its
image, by .#, = Og_ the ideal sheaf of the image, and by @, its structure sheaf.

Proposition 5.5 Let 2 be an invertible sheaf on Eg whose restriction to each irredu-
cible component of each geometric fibre of Es/S has degree zero, and let p be a section
of Eg over S.

(i) R'1,(2® .5,) is a locally free Og-module of rank 1, and R'n, (2 ® #,) =0 if
q+ L

(i) m,(Hom(2®5,,05)) is a locally free Os-module of rank 1, and
Rin,(Hom(2® £, 0g)) =0if q + 0.

(iii) There is a unique section p':S — Es whose ideal sheaf %, is, locally over S,
isomorphic to 2 @ %,

Proof. (i) We note that 2 ® .#, is Os-flat. In view of this, standard considerations
show that it suffices to prove the assertion in the case that S is the spectrum of
a field K. Then what must be proved is that H'(Eg, 2 ® .#,) has dimension 1 and
that H?(Es, 2 ® #,) = 0if ¢ + 1. A consideration of Euler characteristics reduces
us to showing that H°(Eg, 2® 4,) = 0. By [ATV, 7.12], 2 is tame. If 2 is not
isomorphic to O, then H®(Eg, 2) =0 [ATV, 7.10], hence H°(Es, 2® %,) =0
too. If 2 ~ 0, then since H® (Eg, O) = k, H°(Es, 2 ® #,) = H°(Es, #,) = O as well.
(i)} This follows from (i) and the Grothendieck duality isomorphism

(5.6) Rrn,(RHom(2 ® 4,, wg,s)) ¥ RHom(Rn, (2 ® 4,), Us).

Using (i), the right side reduces to Hom(R*n,(2 ® #,), Os), and this sheaf is locally
free of rank one. Also, the sheaf wg ;s is, locally over S, isomorphic to Og . The Ext
sequence associated to the exact sequence

0-204-2-20,-0

shows that Ext%(2® J,, wgs) = 0 for g > 0. Therefore the left side of (5.6) is
locally isomorphic to Rn, (Hom(2 ® 4, O )), and assertion (ii) follows.

(iii) Let feHom (2 ® .%,, U5, ) be a local generator for n,(Hom(2 ® .%,, O )),
and let J be its image, an ideal in O = (5 . We claim that f is injective, and that 0/J
is the structure sheaf of a section of Eg/S. Then J will be the ideal sheaf of the
required section p’. To show this, it is enough to treat the case that S = SpecR,
where R is an artinian ring. In that case, induction on the nilradical reduces us to
the case that R is a field again. Moreover, it suffices to show that f is injective. The
fact that coker f has dimension one will follow from a consideration of degrees.
Tensoring with 2*, we interpret f as a map .#, - 2*. Suppose that ker f = J is not
zero. Since £, has no embedded component, f must vanish on some component of
E. Let A be the largest divisor < E on which f restricts to zero, and let 4 + B = E.
Then f defines a map £,05 — 2*, which we denote by the same symbol. Since
Pic B is discrete and since 2* has degree 0 on each component, 2* ® Oy = wg.
Thus Homg, (£,05, 2*) & Hom,, (.#,05, wg). By Serre duality, Hom (.#,0y, 2%) is
dual to H'(E, #,05) = 0. This shows that f= 0, contrary to assumption.

The uniqueness of the section p’ follows easily. If p” is another section, an
isomorphism 4, & 2 ®.7, defines a map 2 ®.#, — 0. By what has been proved,
this map is a multiple of f, hence p” > f(S) = p’, which implies that p’ = p". [
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The existence of the operation of the algebraic group scheme Pic® Eg/S on the
scheme Es follows immediately from the previous proposition.

Corollary 5.7 With the above notation, there is an operation of Pic®Eg/S on Es,
which is compatible with base change and which has the following property: Let
p:S — Eg be a section, and let 2 denote an invertible sheaf on Eg whose class q is
a section of Pic®Eg/S. Then qp = p’ is the point determined as in Proposition 5.5(iii).

We return to the case that the base scheme S is the spectrum of an algebraically
closed field k. Given an invertible sheaf 2 whose class g is in Pic®E, we often use the
notation

(5.8) n="s

for the automorphism of translation of E given by the action of —¢q described in
Corollary 5.7.

Proposition 5.9 Let n = n, be as above.
(i) If p is a smooth point of E, then np is the unique smooth point with the property
that Og(np) = 2(p). If p is a singular point of E, then np = p.
(i) The irreducible components of E are stabilized by 1.
(iii) If E = 3C is a triple line in P2, then n restricts to the identity on 2C.

Proof. (i) If p is a simple point of E, then .#, = Ox(—p) is an invertible sheaf, and
Hom (O (—p), 2) ~ Hom (O, 2(p)) ~ H°(E, 2(p)). A non-zero section of 2(p)
vanishes at the point indicated. If p is a singular point, then p is the unique point at
which 4, fails to be locally free. Since 2 is locally free everywhere, no map
2* ® #,— O can be an isomorphism at p. Hence p = n(p).

(ii) This follows by continuity from the fact that Pic°E is connected and that
n is the identity when 2 ~ 0.

{iii) To show this, it suffices to show that 5 acts trivially on points with values in
k[€]/(&?) which are transversal to C. We do this by a local calculation, choosing
local coordinates so that the relevant completion becomes ¢ ~ k[[x, y]11/(y?),
and that the point p, in question is x = 0, y = &. We denote by p, the underlying
point with values in k. We also choose a local isomorphism O ~ 9. The ideal of p.is
I = (x,y —¢) O[¢]. Then the generator for Hom(2* ® I, ) can be viewed as an
injective map f: I — O[¢]. Since x is not a zero divisor in @[ ¢], f is determined by
the image f(x). We have f(y —¢) = x "' (y — ¢) f(x), and this element must lie in
O[e]. We write f(x)= Yai;y'el, where 0<i<2, 0<j<1, and where
a;;ek[[x]]. Since p, is a singular point of E, it is fixed by n. Therefore f(x) = ux
(modulo (y, €)), where u is a unit in k[[x]]. In other words, ayo = ux. We may
adjust f(x) by a unit factor in O[e] to make ago = x, and a;;€k, if i, j & 0,0. When
this is done, we have

x Ny —e)f(x)=y—e+x " (a10y? + (do1 — a10)ye + (a1 — az0) y?e) .
Hence a;q = aoy =0, and a,, = a,¢. Thus f has the form
fx)y=x+a(y*+ye)+a'y’e f(y—e)=y—s.

The ideals (x, y — ¢) and (f(x), f(y — ¢€)) are equal, as required. O
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Lemma 510 Let E be as in the previous proposition.

(i) For any automorphism ¢ of E and any invertible sheaf 2 whose class is in Pic®E,
we have 1,7 = ¢~ 15,0.

(i) If (E, 0, %) is a regular triple and 2 is the sheaf (5.4), then 615 = n,40.
(iii) Let n =1y, and let & be an invertible sheaf on E of total degree d. Then
LT PRI

Proof. The first assertion is routine, and the second follows from it because 27 ~ 2.
To prove the third, we recall our assumption that the ground field k is algebraically
closed. Consider first the case that E is a reduced divisor. In that case, we may write
L ~0(p,+...+p,), where p; are distinct smooth points of E. Then
L'=0n"'py+...+17'ps). By (590), 0@ 'p)=0(p)®2L* so
P P ® 2*, as required.

The case that E is not reduced will be treated by a specialization argument. We
choose a one-parameter family of divisors Eg whose generic fibre is reduced, and we
extend 2 and £ to the family. This is possible locally for the étale topology
because, since Eg/S has relative dimension 1, Pic°Eg/S is smooth. Having done
this, we consider the invertible sheaf 4/ = (£") '@ £ ® 27 It follows from
(5.8ii) that the class of .4 in Pic Eg/S defines a section of Pic®Eg/S. By what has
been shown, this section is zero above the generic point of S. Since Pic®Eg/S is
separated, it follows that the section is zero. Therefore " ~ £ ® 2 ~¢, as required.

Unfortunately, we do not have a reference for the fact that Pic® is separated. So
we will sketch the verification here for the case that Eg is the linear pencil which is
spanned by our divisor E and a generic divisor E’. This suffices for our purposes.
The total space of such a family Eg will be smooth except at the points of the fibre
E which correspond to intersection points E N E’. At such a point p, Eg has
arational double point of type 4, _,, where r is the multiplicity of the component of
E containing p. Let n: Zs — Eg denote the minimal resolution of singularities of Eg.
Then one verifies that Zg is a minimal model, and that the fibre Z over E has
a component of multiplicity one. Moreover, Pic® Eg/S ~ Pic®Z/S. By [BLR, 9.5,
Thm. 4] this group scheme is the connected component of the Néron model of
Pic Z/S, which is separated. O

Recall that 4 = A(7) has a canonical quotient ring B = B(Z ), which is
defined in terms of the triple 7 as follows: Let #, = O, and for n > 0, set

(5.11) B, =LRL ®  @L".

Then B = @ B,, where B, = H®(E, #,). The multiplication B,, x B, = By,+, is
given by bc = b ® ¢, where the tensor product symbol is interpreted using the
natural isomorphisms #,, ® B7" = B+, If the triple is linear, then A = B, and if
it is elliptic, then B = A/gA, where g is a normalizing element of degree 1r, which is
unique up to scalar factor. One of the important properties of the ring B is that the
A-modules which are point modules are annihilated by g, i.e., they are B-modules
(see [ATYV, Sect. 3]).

Suppose that we are in the elliptic case. If E is reduced and irreducible, the ring
B is a domain. However, B will not be a domain, and it needn’t even be a prime
ring, if E is reducible. To see this, suppose that E = C + D, where C, D are positive
divisors. For suitable mi, n there exist a non-zero section ye H°(E, #,,) which
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vanishes on C, and a non-zero section e H°(E, 4,) which vanishes on ¢ ~™D.
Then y ® 4°™ vanishes on E, hence it is the zero section of %, ,. Thus yé = 0in B.

Let us investigate this situation a little more closely. Let n: A — B be the
canonical homomorphism, and let us write n(a) = a. We will say that an element
o€ A vanishes on a divisor C £ E if « = 0 on C. Denote by I the subset of 4 of
such elements. The asymmetry of multiplication makes I into a right, but not a left
ideal: If ye 4,, vanishes on C and ae A4,, then ya =y ® a°" also vanishes on C,
whereas 47 = & ® 7°" vanishes on ¢"C. On the other hand, if C is o-invariant, then
this computation shows that I is a two-sided ideal. In this case ¢ restricts to an
automorphism of C, and we may use the triple (C, a¢, £¢) to define a ring
B¢ = B(C, 0¢, Z¢) by

(5.12) Bc=@H(C,%:Q® QL& ) =@HC,0c® B,)

analogous to B. There is a canonical homomorphism A4 — B whose kernel is I.
Whether or not C is invariant, (5.12) defines a right 4-module B, and the canonical
map A — B¢ is a homomorphism of right A-modules, with kernel I.

We denote the total degree of the divisor C by ¢. So ¢ = degC if r = 3, and
c¢c=c" + ¢”ifr = 2 and C has bidegree (¢’, ¢”). The form (5.2) of the automorphism
o shows that if C < E is g-invariant and r = 2, then the bidegree of C is (1, 1).

Proposition 5.13 Let E = C + D, where C, D are positive divisors. Suppose that
r=3orthatr=2and (c',c")=(1,1).

(1) The map A — B¢ is surjective.

(ii) The Hilbert series of B¢ is

{(1 — /(1 — )3 if r=3

. = (1=t =03 +0)if r=2.

c

(ili) The space I of elements of A which vanish on C is a principal right ideal,
generated by an element ye A.. The element vy is unique up to constant factor.

(iv) If C is o-invariant, then vy is normalizing, and I is the kernel of the canonical
surjective homomorphism A — Bc.

Proof. The divisors C and D are numerically connected [ATV, 7.5], and have
arithmetic genus 0. We restrict the tensor products Op(—D*C) ® %, to an irredu-
cible component Z of D, and compute the degree of this invertible sheaf on Z, using
the facts that % ©' is numerically equivalent to & [ATYV, 7.9] and that if r = 2, then
L = pr¥ Op:(1). The result is

Lemma 5.14 With the above notation, deg, Op(—D-C) ® %, = — 1 for all n > 0.
To prove (i), we tensor the exact sequence
(5.15) 0-0p,(—DC)y>0g— Oc—0.

on the right with 4,. The lemma implies that h*(D, Op(—D-C) ® 4,) = 0 for all
n > 0, which shows that the map B, = H%(E, #,) > H°(C, Oc ® #,) = (%¢)n is
surjective for n > 0. This proves (i), the surjectivity for n = 0 following from the fact
[ATV, 7.9] that H%(C, Oc) = k. Part (ii) of the proposition is just a calculation,
using the Riemann-Roch theorem on C.
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To prove (iii), we note that the form of the Hilbert series for A and for B¢
predicts that there is a non-zero element y € I of degree ¢. Then B¢ is a quotient of
the right A-module A/y 4. Since A is a domain, y is not a zero divisor, so the Hilbert
series of A/y A can be computed from that of A. It is the same as the Hilbert series
of Bc. Thus yA = I¢. Similarly, if C is g-invariant, then Ay = I, which proves
(iv). O

Corollary 5.16 If C < E is a reduced divisor whose irreducible components form
a single g-orbit, then B is a prime ring. If C is irreducible and o-invariant, then B is
a domain.

Proof. Suppose that C is reduced and that its irreducible components form a single
o-orbit, say of order s. Let o, &’ € B¢ be non-zero sections of degrees n, n’ respect-
ively. Then there is a component Z of C on which a does not vanish identically, and
similarly o’ does not vanish identically on some component, say ¢'Z. For suffi-
ciently large k, there exists a section f§ of degree ks + i — n which does not vanish
identically on any component of C. Then afa’ = o ® 7" ® a’*"* does not vanish
on ¢'Z, hence it is not zero. This shows that B is a prime ring. If C is irreducible,
then aff does not vanish identically, hence it is not zero, which shows that B is
a domain in that case. O

Let us write

M=

(5.17) E=

i

nCi,

1

where each C; is a reduced divisor whose components form a single g-orbit, and let
¢; be the total degree of C;. For each i, the above Proposition 5.13(iv) provides us
with a normalizing element g; of degree ¢; which generates the kernel of the
homomorphism 4 — B;:= Bc,.

Proposition 5.18 Let g’ denote the product of n; copies of g;, fori= 1, ..., m, taken
in an arbitrary order. Then g’ = cg for some cek*.

Proof. Certainly g’ is a homogeneous element of A4, of the required degree i, and
since 4 is a domain, g’ & 0. The image ' of g’ in B,, is a section of H °(E, 4,,). Since
g; = 0 on C;, it is immediately seen that g’ = 0 on E. By [ATV, 6.8], g’ = cg for
some cek*, as required. |

6 Line modules and their relation to modules of gk-dimension 1

Throughout this section, A will denote an elliptic regular algebra of dimension
3 corresponding to a triple (E, g, %), and X will denote P? or P* x P!, according as
r=3 or 2. As before, the term module will mean finite left or right graded
A-module. Recall that e(M) = 1e(M) (2.23).

We first describe some special right modules of gk-dimension 2. When r = 3,
modules of the form M = A/aA, where a is a non-zero element of A4,, are in
canonical bijective correspondence with lines # in the projective space
X = P2 = IP(4,). We will refer to such a module as a line module, and will denote
the module corresponding to the line /: {a = 0} by M,:= A/aA.In order to extend
this terminology to the case r =2, we adopt the convention that a line in
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X = P! x P! will mean a set of the form p x P*, where p: {a = 0} is a point of IP*.
Then modules of the above form are in bijective correspondence with lines ¢ in X.
We refer to them as line modules too, and we use the notation M, as before.

Proposition 6.1 Let a be a non-zero element of Ay, and let M = A/aA be the
associated line module.
(i) The Hilbert series of M is (1 — t)/p4(t), and (M) = 1.
(ii) The only automorphisms of M are scalars: Aut (M) ~ k*.
(i) M is a critical module of gk-dimension 2.

Proof. Since A is a domain, the only non-trivial assertion is that M is critical. To
see this, let M’ be a non-zero submodule of M such that M/M’ has trivial socle.
Then pd(M) =1 and pd(M/M’) £ 2, hence pd(M’) = 1. Therefore the gk-dimen-
sion of M’ is 2 (2.41). Also, 0 < ¢(M’) < ¢(M) = 1, hence (M) = &(M’), and this
shows that gk(M/M’) < 1, as required. 0

Proposition 6.2 A module M is isomorphic to a shifted line module if and only if it is
a Cohen-Macaulay module of gk-dimension 2, and e(M) = 1.

Proof. This is the case n = 3 of Corollary (2.43). |

We now consider modules of gk-dimension 1. As in Sect. 4, we denote
Ext4(N, A) by E%(N). We note the following corollary of Proposition 2.46 and
Corollary 4.2:

Proposition 6.3 (i) 4 module N of gk-dimension 1 is Cohen-Macaulay if and only if
its socle is zero.

(i) The map N~»N" = E%(N) is a duality between left and right Cohen-Macau-
lay modules of gk-dimension 1.

Proposition 6.4 Let N be a module of gk-dimension 1. The Hilbert series of N has the

form
B = e/(1 —t) + f() if r=3
N {eo +e)/ 1 =)+ f(1) ifr=2

forsome f()e Z[t,t™ 1], wheree(N) = eq + e, if r = 2, and &(N) = e(N) = eifr = 3.

Proof. The Hilbert series has a pole of order 1 at t =1, and it has the form
gn(t)/p4(t), where po(t) = (1 — 1) or (1 — ¢)*(1 — t?) according to the case (2.8).
Therefore gy has a zero of order 2 at ¢t = 1, which implies that hy has the form
indicated. O

By the tail N, of a module N we mean the module defined by

0 fn<p

We will call two modules N and N’ equivalent if their tails are isomorphic, for
sufficiently large p. More precisely, we will call an equivalence from N to N’ a class
of isomorphisms N,— N%, where two such isomorphisms define the same
equivalence if they agree on some tail N,.

A module N of gk-dimension 1 will be called normalized if it is Cohen-Macaulay
and if its Hilbert series has the form (6.4), with f(t) = 0. So, the Hilbert function of
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a normalized module is zero in negative degree. If r = 3, then it is the constant
function dim; N, = e for n = 0, while if r = 2, then it has the form dim, N, = ¢, if
nis even, and dim N, = e, if n is odd.

Proposition 6.6 Let N, N’ be modules of gk-dimension 1.

(i) An equivalence from N to N’ induces an equivalence from N'¥ to N V.

(i) If N is Cohen-Macaulay, then N is contained in an equivalent module N”
which is a negative shift of a normalized module.

(iii) Every module N of gk-dimension 1 is equivalent to a normalized module, and
this normalized module is unique up to unique isomorphism.

(iv) Suppose that N’ is normalized. An equivalence from N to N’ extends uniquely
to a homomorphism ¢: N, — N'.

(v) Suppose that k is algebraically closed, that N is critical, and that N’ is its
normalization. The only maps N ;o — N’ are constant multiples of the map ¢ of (iv).

Proof. (i) Let T= N/N;,, which is a module of finite length. Taking Ext, we
obtain an exact sequence

0——N"—(N,,) — EX(T).

Since E3(T) has finite length, this provides the required isomorphism between the
tails of the dual modules.

(i) It is clear that N ,is a positive shift of a normalized module, if p>»>0. Hence
(N3 ,)Y is a negative shift of a normalized module. (This follows from (2.35).) Since
(N3p)Y o NV, this shows that NV is contained in a negative shift of a normalized
module. By duality, the same is true of N.

(i) We may assume that the socle of N is trivial, hence that N is Cohen-
Macaulay. Let N” be as in (ii). The required normalized module is N%,. Its
uniqueness will follow from (iv).

(iv) By (i), an equivalence from N to N’ gives us an equivalence from N'" to
NY.Let N":=((N'V)3,)". Dualizing the maps (N'V), ,—»N" and (N'V) ,—N""
yields maps a: N — N”, and B: N’ - N” which are uniquely determined by the
original equivalence. Since N’ is equivalent to N” and since N’ is normalized while
N is a negative shift of a normalized module, N’ is isomorphic to N%,. The map
a required map is f35050: N0 — N'.

(v) This follows from (iv) and (2.30vi). |

Note that there is a normalized shift operation on normalized modules of
gk-dimension 1, defined by N~»N* where N, = N,;,ifn20,ie, N* = N(1)z,
is the normalization of N(1). The previous proposition allows us to define a nega-
tive normalized shift as well: N ~ is the normalized module associated to N( - 1).

Proposition 6.7 (i) Let ¢: M — N be a surjective map from a line module to a Cohen-
Macaulay module of gk-dimension 1. Let ¢ = ¢(N). Then ker ¢ is isomorphic to the
shift by — ¢ of a line module, so we have an exact sequence

*) 0O-M(—¢g->M->N-0,
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where M, M’ are line modules. In this case, the minimal projective resolution of N has
the form

(-5
—_

(*+) 0o A(—e— 1)"BA(— N@A(— 2B AN -0,

where deg a = deg a' = 1 and deg b =deg b’ = ¢. Thus N ~ A/(a, b) A.

(i) Conversely, suppose given a complex of the form (**), such that N ~
coker (a, b). Assume that a + 0, that b¢ aA, and that (b, — a') = (0,0). Then N is
a Cohen-Macaulay module of gk-dimension 1, the complex is a minimal resolution of
N, and ¢(N) = ¢.

(i) Suppose that k is algebraically closed. Let N be a critical module of gk-
dimension 1, and if r = 2 suppose that ey = e, . There is a module equivalent to
N which fits into exact sequences of the form (*), (¥*).

(iv) Let N be as in (i), and assume thatr = 2. Then eq = e, = mif ¢ = 2m, while if
e=2m+ 1, theneg=m+ 1and e, =m. Hence 0 < ey —e; £ 1.

(v) Assume that r = 2. If N is any critical module of gk-dimension 1, then e, = e,
if ¢ is even, and |eq — e,} = 1 if ¢ is odd.

Proof. (i) Say that M = A/aA, and let K = ker¢. Then pd M =1 and pd N = 2,
hence pd K = 1. Also, the Hilbert series of K is hg = hy — hy, so K has gk-
dimension 2 and multiplicity e(K) = e(4). Proposition 6.2 tells us that K is
isomorphic to a shift of a line module M'. Direct computation shows that the
appropriate shift is — & This shows that there is an exact sequence of the form (*).

To construct the minimal resolution (**), we note that M ~ A/aA for some
ae Ay, and the generator of M’ is in degree &. So N ~ M/M' ~ A/(a, b) A for some
be A,. This shows that the first three terms from the right in the minimal resolution
of N are as indicated in (**). Since pd N =2, there is only one more step.
Computation of the Hilbert series using (*) predicts the second syzygy in degree
¢ + 1. Hence the resolution has the required form.

(1)) The complex provides an exact commutative diagram

A(—e—1) S A(—28) - AldA

i 1® i’
(6.8) A(=1) 5 A - A4
! 1 1

a

AA 5 A4 - N.

By hypothesis, the two elements a’, b’ are not both zero. If b" = 0, then since 4 is
a domain, ab’ # 0, which implies that @’ + 0. So a’ & 0 in any case. Thus by (6.1),
AjaA and A/d' A are critical modules of gk-dimension 2. Since b¢aA, gk(N) £ 1.
Since A/a’A is critical, the map B is injective. This being so, one sees that the
diagram remains exact when zeros are placed around the periphery, which implies
that the complex (**) is a resolution of N.

To prove (6.7iii), we use the following lemma.

Lemma 6.9 Assume that k is algebraically closed. Let N be a normalized module of
gk-dimension 1, and if r = 2, assume that eq = ey. For ac Ay let p,: No — N denote
right multiplication by a. There exists a non-zero element a€ A, such that ker p, + 0.
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Proof. Ifr = 2 and eq > ey, then dim N, > dim N, so the assertion is trivial. In the
other cases, dim Ny = dim N, and by choice of bases for N;, we can represent p, by
a square matrix. Since p depends linearly on a, the matrix entries are linear
functions of ae A,. So det p, is a non-constant function of = 2 variables, which,
since k is algebraically closed, has non-trivial zeros. O

Now to prove (iii), let a critical module N of gk-dimension 1 be given. If r = 2,
assume that e, = ¢,. We may replace N by the equivalent normalized module (6.6).
Applying the Lemma, we find an element ae A, such that kerp, & 0. Let ueker p,.
The map @: A — N defined by @(x) = ux has aA in its kernel, hence it defines a map
@: Ajlad — N. Since N is critical, the cokernel of ¢ is of finite length, and so N is
equivalent to N’ = im ¢.

Part (iv) is proved by computing the Hilbert series of N, using the exact
sequence (*). Part (v) follows from (iv) by applying (iii) to N or N*. 0

The previous proposition allows us to parametrize the quotients N of 4 which
have a resolution of the form (**). Assume first that ¢ > 1 (which is automatic if
r = 2). Let N be defined by (**). Let L = (g, b) A be the right ideal of relations in N.
Then L is determined by the two subspaces L; < A, and L, e A,, which have
dimensions 1 and 1 4+ dim A, ., respectively. We can parametrize such a pair of
subspaces by a point in the product G x G’ of two Grassmannians. The pair will
define an ideal L generated by two elements a, b of the required degrees provided
that L, A,_, < L,. This is a Zariski closed condition on G x G'. Also, the existence
of the second syzygy is equivalent with the condition dimL,,; < dim 4, +
dim A,, which is also a closed condition in G x G'. Proposition 6.8(ii) tells us that
then N = A/L has a resolution of the form (**).

If ¢ = 1, then r = 3, and the corresponding modules are point modules. There is
a similar description in this case: Point modules are parametrized by the scheme of
2-dimensional subspaces L, of 4, such that dim L, A4, < 6. Of course, we already
know that the point modules are parametrized by the scheme E [ATV, Sect. 3].

Let & denote the functor defined by: & (S) = isomorphism classes of flat
families of graded A ® Os-modules N, which are quotients of A and which have
resolutions of the form (**) for a given value of &. An analysis of the above
description yields the part (i) of the following Proposition:

Proposition 6.10 (i) The functor F defined above is represented by a closed sub-
scheme F of a product of Grassmannians. Hence it is a proper scheme over k.
(i) Assume ¢ > 1. The subfunctor of F of those families which have resolutions of the
Sform (*), with given line modules M, M', is represented by a closed subscheme Y of F,
and Y is isomorphic to the projective space P(V*), where

6.11) - V=(ad.nAa)/(aA.-a) .

Proof of (ii). A module N determines the element a appearing in (**) up to scalar
factor, namely a generates L. Similarly, N determines a’ as the corresponding
element for the dual module NV. Fixing M and M’ amounts to fixing these
elements projectively. Once they are fixed, the module N is determined by the
elements b, b’, which must satisfy the relation ab’ = ba’ € ad, N 4.a’. We can change
b to ¢b + ax, where c € k* and x € 4,_, without changing N. These are the only
allowable changes. Thus ¥ ~ P(V*). O
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Equivalence of modules (6.5) defines an equivalence relation on the scheme F of
(6.10), which we describe here. We will need the description in the next section. It is
convenient to introduce the following notation. Let N be a module of gk-dimension
1 whose socle is trivial, and let

6.12) N=N°>SN'o...oN">0

be a filtration whose successive quotients N' = N'/N'*! are critical modules of
gk-dimension 1. We will denote by gr(N) the associated graded module @ N*. The
equivalence class of gr(N) is uniquely determined by the class of N.

Proposition 6.13 Let N be a module with a resolution of the form (**). The locus of
geometric points ze€ F such that gr(N,) is equivalent to gr(N) is a Zariski closed
subset Z of F.

Proof. We will verify this in two steps. First we show that the locus Z is a con-
structible set, and then we use the valuative criterion to show that it is closed. To
show constructibility, we show that if we are given a family My of modules of the
type under consideration, parametrized by a scheme of finite type S = Spec R, then
there is another scheme S’ of finite type over S, such that for any geometric point
se S, M, has the required property if and only if s €im(S’). To show this, we may
choose an ordering of gr N, and we may assume that Mg = Ag/(a, b)As, where
As = A®R, ae(A4s);, and b € (Ag),. We may also assume (see Proposition 6.7(i))
that the graded modules M% will have the same form (**) as M, with different
values of ¢. So to describe a filtration, it suffices to give homogeneous elements
b= b%b%,. .., b™ of suitable degrees, these elements being required to satisfy the
relations described by (**) and by b e (a,b'*!)As. This data is parametrized by
a scheme §’ of finite type over S, and we replace S by A

Next, the condition that M§ is equivalent to N' is described by Proposition
6.6(iv). Let N* be the normalized module associated to N°. Then the equivalence
defines a unique map

(6.14) 05 Mi - N .

Since N'is critical and e(M%) = e(N?) = ¢(N?), any non-zero 0 map is an equivalence.
So gr Mg and gr N are equivalent if and only if Hom (M3}, N%)o % 0 for all i. This is
a constructible condition.

It remains to prove that the locus Z is closed, and to do this we let S = Spec R,
where R = k[[t]]. We denote the generic point of S by # = Spec K, the associated
geometric point by #, and the closed geometric point by 3. The valuative criterion
translates as follows: Let M be a family parametrized by S, such that gr(Mj) is
equivalent to gr(N)®K. Then gr(Mj,) is equivalent to gr(N). It is permissible to
make a finite extension of the field K, so we may assume that gr(M,) is equivalent
to gr(N)®K. The filtration which exhibits this equivalence extends uniquely to
a flat filtration of M. So we obtain quotients MZ, and we have to show that M:_is
equivalent to N'. Proposition 6.7(i) reduces us to the case that N is critical. As
before, let N denote the associated normalized module. Then the equivalence of M v
and N ®K defines a map

oM, > N®K,
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which is unique up to multiplication by an element of K. The isomorphism
Hom(M,, N®K) ~ Hom(Msg, N®R)®K and the exact sequence

Hom(Ms, N® R) > Hom(Ms, N ® R) - Hom(M,,, N)

show that ¢, can be adjusted by an element of K so that it extends to a map
¢s € Hom(Ms, N® R) with the property that ¢, + 0. This yields the required
equivalence of M, with N. |

The critical modules of gk-dimension one for which ¢, + ¢; are somewhat
anomalous, though they exist. We will see examples in (8.43). Luckily, there are not
too many. Suppose that over some finite extension k’ of the ground field, the
algebra A’ = A®k’ has a module N of gk-dimension 1, such that e, + e;. Let g,
denote the minimum value attained by &(N) for such modules.

Lemma 6.15 Let N be a Cohen-Macaulay module of gk-dimension 1. Assume that
eo + e; and e(N) = gnn. Then N is critical.

Proof. If N is not critical, there is an exact sequence 0 > N’ -+ N —» N” — 0 such
that N’, N” have gk-dimension 1. If e, + e, for the module N, then the same is true
for at least one of the modules N’, N”. And since ¢(N) = &(N’} + &(N"), &(N) can
not be equal to &, . O

Proposition 6.16 Suppose that k is algebraically closed. There are only finitely many
equivalence classes of modules of gk-dimension 1 with ey + e, and with ¢(N) = &, .

Proof. Assume that there are infinitely many equivalence classes, and that ey > e, .
It is clear that the last hypothesis is not a restriction. Let # be the functor of
isomorphism classes of flat families of modules of gk-dimension 1 which are
generated in degree zero and which have a presentation of the form (**). We know
by (6.7iii) that every equivalence class has a representative of this form. By
Proposition 6.10, & is represented by a proper scheme F. Denote the universal
family of modules over F by A". Thus 4" is a quotient of the sheaf of algebras
A®0Op. We have Ay = O, and for each n, A4, is a locally free Op-module, whose
rank is ¢ if » is sufficiently large.

Let ¢ denote the composed map 4 - H°(F, AQ OF) > H°(F, #), and let
a = ker . For every point xe F, the given map 4 —» N, = H°(F, .#,) factors
through ¢. By hypothesis, there are infinitely many such quotients which are
non-equivalent, from which it follows that gk{4/a) > 1. On the other hand,
(A/a), = H°(F, A,), hence H°(F, /") increases with n. Thus there is an integer
n such that rk 4, = rk A, .4 = ¢ but that A, is not isomorphic to A4, 4. This
implies that right multiplication by the normalizing element g of 4 of degree
4 [ATYV, 6.8] does not define not an isomorphism A", - A4, .4, hence this map
does not have maximal rank everywhere on F. So there exists a point x& F such
that N, contains elements annihilated by g. Since N, is critical by the previous
lemma, g annihilates N,, and hence N, is a B-module, where B = 4/gA. On the
other hand, the equivalence classes of B-modules of gk-dimension one are in
bijective correspondence with ¢z-modules which are finite over k, and since the
simple Og-modules correspond to points of E, the critical B-modules of gk-dimension
1 are equivalent to point modules [ATYV, 1.3]. This is a contradiction. C
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From now on we assume that k is algebraically closed, and we specialize to the
case that N is a point module, as defined in (1.1). A point module can be described
as a normalized right module of gk-dimension 1 whose Hilbert series is 1/(1 — t), or
equivalently, whose Hilbert function dim, N, is the constant function 1, for n = 0.

Proposition 6.17 A module N is a shifted point module if and only if it is Cohen-
Macaulay, of gk-dimension and multiplicity 1. Such a module is critical.

Proof. The fact that a shifted point module is critical and has multiplicity 1 follows
directly from the definition. Conversely, let N be a module of gk-dimension 1,
multiplicity 1, and socle zero. Then Proposition 6.4 shows that the Hilbert function
dim N, is the constant function 1 for large n, provided that r = 3 or that r = 2 and
eo =e; = 1. In any case, if r = 2 then the invariants e, and e; of N satisfy the
relations e, + e¢; = 2, and ¢; = 0. So the only other possibility is that one e; is zero
and the other one is 2. This would imply that infinitely many N, are zero and
infinitely many are not zero, which is impossible because A4 is generated in degree 1.
If N, =0 for some n, then N,, =0 for all m = n. So the Hilbert function is the
constant 1 for large n in every case. By Proposition 6.6(ii), N is contained in
a negative shift of an equivalent normalized module N’, and N’ is a shifted point
module. This implies that N is a shifted point module too. O

As we remarked above, point modules are parametrized by the scheme E. We
will now describe the universal family 4" of point modules over E. Recall that the
canonical quotient ring B = A/gA is defined in terms of the triple (E, g, &) asso-
ciated to A4 as follows: Forn > 0,set 8, = Y@ ¥£°® ... ® £°" 'asin(5.11), and
set

(6.18) B_,=F* Q... F* "
Then B = @,@0 B,, where B, = H°(E, #,). There is a functor
I',: (quasi-coherent @g-modules) — (graded right B-modules)

defined by I, (M)= P, (M), where I,(M)=H°E M®A,). Thus
B = (I'4(0g))z0. The right action of B on I',(M) is obtained from the canonical
isomorphisms (M ® %,,)® #5" ~ M ® #,,+,. These isomorphisms allow us to
define maps

I'y(M @ B.)® I'o(Bn) = Te(M & Bv)

analogous to f,, ,. In [AV] this functor is discussed more generally. It is shown
there that if o is an automorphism of a projective scheme E and if % is g-ample in
the sense defined below, then I, defines an equivalence from the category of
quasi-coherent ()z-modules to the category of graded right B-modules, modulo the
full subcategory of direct limits of right bounded modules.

Definition 6.19 An invertible sheaf .# on E is called s-ample if for every coherent
Og-module M there exists an integer ng such that H{(E,M ® #,) =0if ¢ > 0 and
n = n,, where 4, is defined as above.

Proposition 6.20 Let ¢ be an automorphism of a projective scheme E, and let & be
a o-ample invertible sheaf on E which is generated by its sections. For any quasi-
coherent Og-module M, the socle of the B-module I',(M) is zero.
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Proof. The multiplication map I,(M QR %,)R I (%)~ [, (M ® B, ) does not
annihilate any section of M ® #,, because 4, is generated by its sections. O

Proposition 1.5 of [AV] shows that

Corollary 6.21 Let (E, 0, ¥) be the triple associated to a reqgular algebra A of
dimension 3. Then & is a-ample. |

Proposition 6.22 The universal family of point modules over E is /" = Ppx0 By-

Proof. Since B = H°(E, &), there is a natural structure of right B-module on .4,
and /" is made into an A-module using the canonical homomorphism 4 - B. In
this way, 4" becomes an 00y ® A-module. Since %, is an invertible sheaf on E for
each n, this Oz ® A-module structure makes ./ into a flat family of point modules.
The equivalence of categories [ATV, 1.4] shows that # is the universal family.
O

We now specialize to zero-dimensional families of point modules. Let
Z = Spec R be an arbitrary zero-dimensional subscheme of E, where R is a finite
k-algebra. We view (0, as an Og-module, and we put

Ny:= (F*((Oz));o-

This is a graded B-module which we make into an A-module by means of the
canonical map A — B. If Z is a closed point p of E with residue field k, then N is the
corresponding point module. For arbitrary Z, (N),, is a free R-module of rank
1 for each m 2 0, and (Nz), = R. It follows from Proposition 6.20 that N, is
a normalized A-module of gk-dimension 1 and multiplicity [R:k].

Propeosition 6.23 Let Z = Spec R be a zero-dimensional subscheme of E.

(i) Let ¢: A — N, be an A-homomorphism of degree 0. Then coker ¢ has finite
length if and only if ¢(1) is a unit in (Nz)o = R.

(ii) Let ¢ be the line {a = 0}, where a€ A,, and let K be the annihilator in A of
the element 1 € R = (Ng)o. The following are equivalent:

Q) Zct,

(b) aeKz,

(c) N is equivalent to a quotient of the line module M := A/aA.

When these conditions hold, M’ = K/aA is the unique submodule of M such that
M/M’ is equivalent to N, and has trivial socle.

Proof. (ii) Applying the functor I, to the surjective map O — @z, we obtain a map
B =TI, (0g) — I',(0z) = N, which is surjective in high degree [AV, 3.7ii]. Let o:
A — N denote the map obtained from this one by composition with the canonical
map A — B. So ker ¢ = K3, and hence N is equivalent to ¢(A4) = A/ K . Then via
the identification R & (Nz)o, @(1,4) = 1.

Now Z </ if and only if 1 ®a =0 in HYE, 0,® &), ie., if and only if
1za = 0in N, and this is true if and only if a € K, in which case ¢ factors through
the canonical surjection A —> M. When this is so, N, is equivalent to
M/(Kz/aA) =~ A/K;.

Conversely, suppose that N, is equivalent to M/M’ for some M’ such that
M/M’ has socle zero. By (6.6iv), M/M' is isomorphic to a submodule of N, so there
is a homomorphism y: 4 - N, factoring through 4 — M and surjective in high
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degree. Let Y/(1) = u € R. Then y = ueg. Since ¥ is surjective in some degree, ue R*.
This implies that i and ¢ have the same kernel K, which shows that M’ = K;/aA
as claimed.

(i) This follows directly by applying the functor ~ of [AV] to the correspond-
ing map @:B— N . O

Now let # be a line which is not a component of E. Let S be the scheme-theoretic
intersection E N ¢, so that by definition of £ (5.1), we have &£ ~ Og(S). If p is
a k-rational point of S, we denote by S — p = Z the scheme obtained by deleting
p from S. The scheme structure on Z is uniquely determined by the condition
Z < ¢.Conversely, a subscheme Z of S = E n £ of length r — 1 determines a unique
point p such that, as divisionon [, S = Z + p.

Proposition 6.24 Let pe/ N E, and let ¢: M, — N, denote a surjective map whose
existence is guaranteed by Proposition 6.23(ii). Then ker ¢ is isomorphic to the shift
by — 10f aline module. The line ¢’ which corresponds to this module is determined as
follows:

(i) If ¢ is a component of E, then ¢' = o'/(.
(ii) If ¢ is not a component of E, and if S, Z are as above, then ¢’ is the unique line
containing ¢'Z.

Proof. (ii) Write M’ = (ker ¢)(1). Proposition 6.7 tells us that M’ = M, for some
line /’. To determine ¢, recall first that the shifts of N are given by the rule
NS =N, Let S, Z be as above, and say that § = Spec R, Z = Spec R. Since S is
contained in a line, R is A-isomorphic as R-module to the kernel I of the projection
R — k(p), and therefore N and I',(I) are A-isomorphic. So we obtain a diagram of
A-modules

0O - M(-y) > M, - N, - 0
(6.25) v A I
0 - N, - Ng - N, » 0.

The cokernel of § has finite length because it is isomorphic to coker ¥. Shifting J,
we obtain a map M’ — N, with finite cokernel. Hence ¢’ contains ¢'Z. The line £’
is unique because ¢'Z has length 2 if r = 3 and 1 if r = 2. To prove (i), we choose
a suitable subscheme S of ¢ of finite length, and argue as before. O

Given a regular triple (E, g, £), we will set
(6.26) N =",
where 2 = #' 7' as before.
Lemma 6.27 If (E, 0, %) is a regular triple and 2 = L1771, then L'V~ &.
Proof. We use (5.10iii) and the fact (5.4) that 2° ~ 2 to write
PO PRI R PO,
It follows from (5.3) that this sheaf is isomorphic to Z. 0

The next proposition describes the action of conjugation by the normalizing
element g on lines.
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Proposition 6.28 Let ¢ be the line {a = 0}, suppose that ¢ is not a component of E,
and set S = En{. Let M = A/aA be the line module corresponding to ¢.

(i) The scheme S:= ¢"nS is contained in the line ¢ defined by the equation
{g™'ag =0}.

(ii) The kernel of the canonical map @: M — Ny is the module Mg, which is
isomorphic to the shift by —uw of the line module M;.

Proof. Since & ~ O(S), we have £ "1 x 0(S). Hence (6.27) implies that S is
contained in a line. Since N is a B-module, g annihilates Ng, and so Mg € ker o.
A consideration of the Hilbert functions shows that Mg = ker ¢. Writing
M = A/aA, we find

(6.29) Mg = (A/ad)g = Ag/adAg = gA/agA =~ (A/g tagA)( —ir).

This identifies Mg as the shift of the line module M7. It remains to show that 7 is
the line which contains S, and it suffices to show this for a generic line £. Suppose
for example that r = 3. Then if E is reduced, we may assume that S consists of
3 distinct points: S = p; + p, + ps. Setting p = py, the diagram (6.25) and Proposi-
tion 5.9(i) identify M’ as the line through the points #op, op,, op;. We map M’ to
Ngp,, obtaining a kernel M”( — 1), where M" = M,.., and where ¢” is the line
through the points onop; no?p,, c*ps. Then mapping M” to N,z,,, we obtain
a kernel M,...( — 1), where £” is the line through o?nop;, ono2p,,no°p; . This line
module is the shift of the kernel of ¢, and since n = 5o, the three points form the
scheme ¢3#8S, as required. If E is a triple line, then S contains a single point p. Let
Z =S — p. Then nZ = Z, by (5.9). Computing as above, one finds that ¢ is the
unique line through ¢3Z = 03#Z, as required. The remaining cases are treated in
a similar way. O

7 Characterization of the algebras which are finite modules over their centers

In this section we consider a regular algebra 4 of dimension 3 which corresponds
to a triple (E, 0, #). We are going to prove that, when the automorphism ¢ is of
finite order n, such an algebra is a finite module over its center:

Theorem 7.1 Let A be an algebra corresponding to a regular triple 7 = (E,0, %).
Then A is a finite module over its center if and only if the automorphism o has finite
order.

As may be expected, the case that the algebra is elliptic is the difficult one. We
have not determined the rank of A over its center Z(A) in all cases.

In addition to A, we will study its localization A = A[g~!], where g is the
canonical normalizing element. This is a Z-graded algebra, and we denote its
degree zero part by 4. As we have remarked in the introduction, Spec A, plays the
role of the open complement of Proj B in Proj A. The structure of the ring A, is
described by Theorem (7.3) below.

We denote by s, the smallest positive integer such that o*° fixes the class [ .#] in
Pic E, if such an integer exists, and we set s, = o0 otherwise. If s, is finite, then the
automorphism ¢* of E is compatible with an automorphism of P = IP(4,). Some
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confusing factors of 2 will enter when r = 2. In order to handle them conveniently,
we define

(12) oo 1so if r=2 and s, is even
' " ] s otherwise

Thus s, = sif r = 3. Note that s is the smallest positive integer such that s, divides
1s.

We call our algebra A, almost Azumaya of rank p? over its center if A,/m is
a central simple algebra of rank p? over its center for all but finitely many two-sided
maximal ideals m.

Theorem 7.3 Let A be the regular algebra determined by an elliptic triple (E, o, %)
and let A = A[g™']. Let so,s be defined as above.

(i) If s = o0, then Ay is a simple ring.

(i) Assume that s, is finite.

(@) If r =3 orif r =2 and s, is even, then A, is an Azumaya algebra of rank s>
over its center.

(b) If r = 2 and s, is odd, then Ag is almost Azumaya algebra of rank s over its
center.

Proposition 7.4 Let A be a graded algebra generated in degree 1, and let g be
a homogeneous normalizing element of A of positive degree d. The Z-graded ring
A= A[g™'] is strongly graded, i.e., A;A; = A,y for every pair of integers i, j.

Proof This is a consequence of the fact that A is generated in degree 1. For any i,

A; is the direct limit of the k-vector spaces ¢~ "A;.n. Thus A;A4;=
(Ung ®"Aisnadjsna- Since A is generated in degree 1, A;A4; = A;,; for any i,j = 0.
Hence

Ay = Ug-znAi+j+2nd=Ai+j- tl

Let (A-gr) and (A,-mod) denote the categories of finite graded A-modules and
of finite 4y-modules respectively. Since Spec A, is an “open subscheme of Proj 47,
these two categories are related. In one direction, we have the localization functor
(A4-gr) - (Ag-mod) given by M~»M[g~'],. On the other hand, the A,-module
V = Mg~ '], does not contain enough information to describe M. To recover M,
we also need to know its formal completion along the “closed subscheme”
Proj(A4/gA). But this formal completion will be zero if M has gk-dimension 1 and is
g-torsion free, and this leads us to the following proposition. Let us call an
A-module N normalized if it is generated by finitely many elements of degree 0, and
ifits Hilbert function is periodic. This extends the definition given above for regular
algebras.

Proposition 7.5 Let g be a homogeneous normalizing element of positive degree in
a noetherian graded k-algebra A which is generated in degree 1, and let A = A[g~'].
The following categories are equivalent:

() finite-dimensional Ay-modules V,

(i) graded A-modules M with dim M, < oo for all n,

(i) normalized A-modules N which are g-torsion free,

(iv) finitely generated graded A-modules N such that dim N, is bounded, modulo
g-torsion modules.
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Proof. The equivalence of the categories (i) and (ii) is a consequence of the fact that
A is strongly graded (see [NV, Ch. A, Thm. 1.3.4]). Let M be a graded A-module.
Then multiplication by g is a bijective map M,~sM, , ,, where d is the degree of g.
So the Hilbert function of M is periodic of period d, provided that it is defined, i.e.,
that dim M, < oo for all n. If so, then since multiplication by g is bijective, the
A-module M, is finitely generated by Mo + ... + M,_,. Then the fact that 4 is
generated in degree 1 shows that M, generates M 4. Shifting shows that M, is
generated in degree 0, hence that it is a normalized module. Clearly
N~N[g~ 50 if N is normalized and g-torsion free. Thus the categories (ii) and
(iii) are equivalent. The equivalence of (ii) and (iv) is a standard localization
argument. O

The rest of this section is devoted to the proofs of Theorems 7.1 and 7.3.
Proposition 7.6 Theorem (7.1) is true in the case that A is linear.

Proof. This is the easy case. Assume that A is linear. Suppose first that r = 3, so
that E = IP2, From the description [ATV (6.8)] of 4 as B(E, g, &), it follows that
the graded ring of fractions of A4 is an Ore extension of the form K[, ¢t 1; 6], where
K is the function field of IP2. If ¢ has infinite order then K[t, ¢t~ !; ¢] is not finite
over its center. This proves one half of (7.1). The other half is [ATV, 8.5]. If r = 2,
then s = 2 and s = 1. In this case, the description of the ring 4 shows that its
Veronese subring A{2>:= @A,, ~ B(E, 062, £ ® £°) has a graded ring of frac-
tions of the form K[t,t™1; 627, where K is the function field of P! x P!, The proof
is completed as before. |

Some of the statements in the sequel remain true in the linear cases, and others
have to be modified only slightly. However, since the proofs of Theorems 7.1 and
7.3 are fairly complicated, we will assume for the rest of the section that the algebras
A under consideration are elliptic. We will also assume that the ground field is
algebraically closed. It is clear that this is permissible.

By extension of point modules we mean a module having a finite filtration whose
successive quotients are shifted point modules, i.c., are Cohen-Macaulay modules
of gk-dimension and multiplicity 1.

Proposition 7.7 (i) The critical B-modules of gk-dimension 1, where B = A/gA, are
the shifted point modules.

(ii) Let N be an A-module of gk-dimension 1 with trivial socle. Then N is an
extension of point modules if and only if it is annihilated by a power of g.

Proof. The first assertion follows from Theorem (1.3) of [AV]. To prove the second
one, we note that since the 4-modules which are point modules are B-modules and
B = A/(g), they are annihilated by g. So an extension of point modules is annihi-
lated by a power of g. Conversely, suppose that a power of g annihilates N, and
consider a filtration (6.12) whose successive quotients N* = N'/N'*! are critical
modules of gk-dimension 1. Then g annihilates each N, and so N’ is a B-module.
Part (ii) now follows from (i). |

Proposition 7.8 Let N be a critical module of gk-dimension 1 which is not a shifted
point module, and let ¢ = &(N). Then o* fixes the class of & in PicE.
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Proof. By Proposition 6.7, we may replace N by a shift of an equivalent module for
which there exist lines /,/’ and an exact sequence

0-M(—eg->M->N-0,

where M = M;,, M’ = M,.. Let S = En/, and let N be the corresponding family
of point modules (6.23). Note that £ is not contained in E. If it were, then M would
be a B-module. This would contradict the fact that N is not a B-module. By
Proposition 6.23, there is a map ¢: M — N whose cokernel has finite length. Since
N has a filtration whose successive quotients are shifted point modules, there is no
non-trivial map from N to Ny, and it follows from this that the induced map
M’( — &) = N has a cokernel of finite length. The shift of this map by ¢is a map ¢':
M’ — Ny, where §' = ¢°S, and the cokernel of ¢’ has finite length too. Therefore
§ < ¢, by (6.23). So Og(S) % £ = (0x(S’), and on the other hand, since S’ = ¢*S,
Op(S)~ L°". O

Corollary 7.9 If s, = 0, Ay has no non-zero finite dimensional representations.
Proof. This follows from Propositions 7.8 and 7.5. |

Proof of Theorem 7.3 The simplicity of the ring A, when s, = o follows from two

facts: It has no finite dimensional representations, and its dimension is 2.
Assume that s, = c0. The g-adic filtration on A induces a filtration on A and
hence on A,. One easily verifies for this filtration that gr A, is isomorphic to the
subring @,, B,,, of B. Hence gk(A,) = 2[KL, Prop. 6.6]. Assume that A, is not
simple and let J be a nonzero prime ideal in Ag. Then gk(Aq/J) =<
gk(4y) —1 =1 [KL, Prop. 3.15]. Hence A,/J is a polynomial identity ring
[SSW], and so it has finite dimensional representations. This is a contradiction.
|

We now turn to the proof of Theorem 7.3(ii). Since we have assumed that k is
algebraically closed, we can apply Proposition 6.16. Assuming that s, is finite, we
will show that there is a faithful family of irreducible representations of A, of
dimension s2 over k. Because of the equivalence of categories (7.5), it suffices to find
a faithful family of critical A-modules N of gk-dimension 1 whose Hilbert series has
the required property. In this equivalence, a normalized A-module N corresponds
to the Ag-module Ny. With this in mind, it becomes clear that the requirement is
e(NY=sif r =3, and e¢o(N) = s if r = 2 (see (6.4)). Proposition 6.7(v) shows that
&(N) = 1s implies this condition in either case. Also, we know by Proposition 6.7(iii)
that every equivalence class of critical modules of gk-dimension 1 contains a quo-
tient of a line module. So we look for such quotients. We will show if £ is not
a component of E, then the line module M, has infinitely many inequivalent critical
quotients N with ¢(N) = 1s.

By definition of s, #°" is isomorphic to &. We fix an isomorphism u, thus
obtaining a linear operator p on H°(E, #) defined by

(7.10) a® = u(a”) .

We denote by the same letter p the automorphism induced on IP = IP(4,), the one
which is compatible with the automorphism ¢* of E. With this notation, if £ is the
line {a = 0}, then p¢ is the line {a’ = 0}, where @’ = a*"".
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Let us fix a line £ which is not a component of E, and let /' = p/. We fix this
notation:

(7.11) acA;,ad =a""",
£:{a=0},¢ =pl:{ad =0},
M=M, M =M,.

Lemma 7.12 (i) M contains a submodule Q such that M/Q is an extension of point
modules, and such that Q is isomorphic to M'( — 1s).

(ii) Let n be a positive integer. There are only finitely many submodules Q of
M which are isomorphic to M'( — ) for some line module M’, and such that M/Q is
an extension of point modules.

Proof. (i) Let S = E n¢. Choose a point, say p, in the support of S.Set Z = S — p,
¢, = line passing through ¢'Z, §; = En ¢, and p, = the unique point S; — ¢'Z.
Also, let N, be the point module corresponding to p and let M be the line module
corresponding to £;. As we know (6.24), there is a surjective map M — N, whose
kernel is isomorphic to M ( — 1). We repeat the construction, replacing (¢, M, p) by
(¢1, My, py), and in this way we obtain a sequence of points p,p,, ..., ps and of
shifted line modules M > M,( —1) > ... o M — 15). We define Q, = M ( — 1s).
At each step, ¢; is the line containing ¢”Z, and M; is the corresponding line
module. Since p is the extension of ¢* to an automorphism of P(A4,), p¢ is the line
¢s, which is the one containing ¢*Z.

(ii) Let Q =~ M’'( — n) be such a submodule. Then N = M/Q is a module of
gk-dimension 1 and multiplicity n, with trivial socle. Since it is generated in degree
0 and is an extension of point modules, N has a quotient N, which is a point
module. The kernel Q, of the map M — N has the form M( — 1) and is uniquely
determined by N, (6.23ii). Since ¢ is not a component of E, there are only finitely
many choices for the modules Ny, and M;. We replace M by M, = Q,(1) and
proceed by induction. O

To simplify notation, we denote 1s by ¢ in the next two lemmas.
Lemma 7.13 With B = A/gA as before, we have aB, = B,d'.

Proof. Let u be defined as above, so that x? = u(x® ). Then for any x, y € B; and
zeB,_;,we have x’zy = yzx in B, . This is because by definition of multiplica-
tion in B,

xPzy = u(x"e)®z"®y"e =uR1l® 1)(x”e®z"®y"e) .

The right side is symmetric in x and y. Since B, is generated by B, B, 4, it follows
that x?B, < B,x for any x, hence that aB, < B,a'. Since the two spaces have the
same dimension, aB, = B,da'. ]

Remark. Let us define a morphism of triples (E’, ¢/, ') > (E, 0, &) to be a pair
(f, u) consisting of a morphism of schemes f:E’— E such that ¢f = fo’, and
a morphism of Og-modules u:f* ¥ — &¥’. Then the B-construction is made into
a contravariant functor from the category of triples to the category of graded
algebras in an obvious way. If we take (E', o/, ¥’) = (E, 0, &), [ = 0°, where ¢ = 15,
and u is as in (7.10), we see that the linear operator p extends to an automorphism
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of B. And, since A is obtained as a quotient of the tensor algebra on B, = H%(E, %)
using the defining relations of B of minimal degree p extends to an automorphism
of A as well. This situation also gives rise to _an automorphism t of
B{¢) = B(E, ¢*, &,), where B=LRLQD.. .® 2L as before. We note that
B,= B, Q(Bo-1) =B,_, QF, .The map 1 is induced by the automorphism of
triples (o, v), where v: 0* B, = (B.- 1)’ B, — B, (%, 1)’ = A, is defined by
a®b~v>u(b)®a for local sections a of #,_, and b of %9. Puttmg a=1z°
and b = y7, and interpreting the tensor products as multiplication in the algebra
B, we havc 1(zy) = p(y)z for all ye B, and all zeB,_,. Also, putting
z=y1®y,® ... ®y.,-1 and y=y, in the above computation gives
(Y1 ®y:® ... Q) =p(y:)®y1®y,® ... ®y,-; and iterating this cyclic
permutation ¢ times, we find that the restriction of p to B{¢) is equal to t°.

Lemma 7.14 The vector space V = (aA, N A,d'}/(aA, -, a') has dimension at least 2.

Proof. Let a, = dim A4, denote the Hilbert function of 4. By the previous lemma,
A.d < ad, + gA.-,+1. Also, since g is a normalizing element of degree i,
aA, N gAs—y+1 > ad,_,.g. Thus

dim(ad, + A.,a') £ dim(ad, + gA;—p+1) S Gz + Ay s —

aﬁ—lr’
dim(ad, n A,d') = 2a, — dim({ad, + A,d) = a, — a,—\p+ 1 + Ay »

and

(715) dim V ; A — Ay — Qeppry + Aoy

Ifr=3,theni=1anda,—a,_y —a,-» + a,-3=2foralln > 1.Sodim V' = 2 as
required. If » = 2, then 1 = 2. In that case

1 1if n is odd

On = ot = oy s = {2 if nis even

Since ¢ = 2s is even, dim V = 2 in this case as well. (|

Lemma 7.16 Let N = M/Q, where Q is isomorphic to M'( — 1s), with M,M’ as
above. Then one of the following possibilities occurs:
(i) N is critical.
(ii) N is an extension of point modules.
(iii) N is an extension of two critical modules having e; * e, .
The third possibility can arise only if r = 2 and s, is odd.

Proof. We recall (6.7) that &(N) = 1s. Assume that N is not of the first two types, and
consider a filtration as in (6.12), whose successive quotients N* are critical and of
gk-dimension 1. Let N* be one of these quotients, e = e(N*), and & = g(N*). Then
¢ < 1s, and by Proposition 7.8, s divides &. The only possibility is that r = 2, s, is
odd, and s, = s = ¢, because if s, is even, then s = 15. Hence (6.7v) eo(N?) % e;(NY).
This being so, we must have eo(N7) # e, (NY) for some j =+ i as well, from which we
deduce that 6(1\7 J) = 5 too. Since &(N) = e(gr(N)) = 2s, N* and N’ are the only two
terms in gr(N), and we are in case (iii). ]

Lemma 7.17 With the notation of (7.11), there exist infinitely many equivalence
classes (see (6.5)) of critical quotients N of M of gk-dimension 1 and with &(N) =
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Proof. We will show that there are infinitely many equivalence classes of critical
quotients N = M/Q in which @ is isomorphic to M’'( — 1s). To do so, we go back to
Corollary (6.10). The quotients M/Q such that Q ~ M’( — is) are parametrized by
the projective space Y = IP(V'*), where V is as in Lemma 7.14. By the previous
lemma, ¥ has dimension at least 1. By Proposition 6.13, the quotients N with gr(N)
in a given equivalence class are parametrized by a closed subset Z = F, and those
for which Q =~ M'( — 1s) form the locus Z n ¥, which is a closed subset of Y. Thus
Y is decomposed into closed subsets Z. According to Lemma 7.12(ii), at least one,
and at most finitely many points of ¥ correspond to quotients which are extensions
of point modules. Thus Y is not covered by a single subset Z Y. Since Y is
irreducible, it follows that there are infinitely many of these subsets. On the other
hand, Propositions 6.16 and 7.12(ii), combined with Lemma 7.16, show that only
finitely many subsets correspond to classes of modules which are not critical.
Hence there are infinitely many classes of critical quotients. |

Proof of Theorem 7.3 (ii) Propositions 6.16, 7.16 and 7.5 show that A, has only
a finite number of representations of dimension < s, and that it has none unless
r =2 and 50 is odd. So it suffices to prove that A, satisfies the identities of s x s
matrices [Ro, 1.8.32]. Let I = n annyN be the intersection of the annihilators of
the critical A-modules N of gk-dimension 1 and multiplicity s. Since line modules
are critical and since a generic line module M has infinitely many equivalence
classes of such modules N as quotients, I is contained in the intersection of the
annihilators of the generic line modules, which is clearly zero. Thus I = 0. It follows
from Proposition 7.5 that using a critical A-module N of gk-dimension 1, one
obtains a family of irreducible representations ¥; = (N(i);)o = (N,); of A,. Then
one finds

N ﬂ ann, V;=()((annsN)[g~' 1o = ((()ann,N)[g~'])o =0,

as required. |

Proposition 7.18 Let A be a regular algebra corresponding to an elliptic triple
(E,0, %) such that ¢ has finite order. Conjugation by the normalizing element g is an
automorphism of finite order of A. In other words, g™ is in the center of A for some
positive integer m.

Proof. Let nbe the order of o, and let ¢ denote conjugation by g on 4;:ag = go(a).
It suffices to show that ¢" acts trivially on the space P(A¥) of lines, ie., that
@"(a) = cqa for some ¢, € k*. For, the rule a~» ¢, defines a map P(4A¥) - k*. Since
IP(A%) is proper, this map is constant. So there is a non-zero element ¢ € k* such
that ag” = cg"aforall a € A,. Then ug” = c*g"u for all u € 4, too. Putting u = g, we
find that ¢” = 1, hence that g™ € Z(A), as required.

To show that ¢" acts trivially on lines in P(4%), we apply Proposition 6.28,
which identifies the action of ¢ on lines as ¢”#. Since ¢ has finite order and since
on = no, it remains to verify that » has finite order, or that 2 has finite order in
Pic E. This is done using the relations ¢" = 1 and (5.3). We write

o"—1=(@""+ ...+ + )a'(1 —0c7").

Operation by this element annihilates the class of &, hence (6™ ™'+ ... + ¢' + 1)
annihilates the class of 2. Since 2° ~ 2, this shows that 2" ~ O, as required. [J
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Since Theorem 7.3 has been proved, the next Proposition will complete the
proof of Theorem 7.1.

Propeosition 7.19 Theorem 7.3 implies Theorem 7.1.

Proof. It is clear from (7.3i) that A4 is not finite over its center if ¢ has infinite order.
The point is to show that if ¢ has finite order and if A, is known to be almost
Azumaya, then A is finite over its center. It follows from Theorem 7.3 and
Proposition 7.18 that A = Afg~'] is a polynomial identity ring, and since A4 is
a subring of 4, it is a polynomial identity ring too.

Let T(A) denote the trace ring of A [AmSm]. Since A4 is noetherian, T(A4) is
a finite A-module which is finite over its center R. So it suffices to prove that
A = T(A4). We introduce an auxiliary ring A4’, the reflexive hull of 7(A4), considered
as R-module. If R, is a polynomial subring of R over which R is finite, then A’ is the
bidual of T(A) as Ry-module. It is characterized by these properties: T(4) < A', A’
satisfies the condition S, of Serre, and the support of A’/T(A) in Spec R has
dimension =< 1. Thus A’ is an R-algebra, finite over its center R, and it is a finite left
and right A-module as well. Note that T(A4) and A’ are graded compatibly with the
grading of 4.

As R-module, A’ has no non-trivial extension whose cokernel has dimension 1.
Therefore Corollary 4.2(iv) shows that A’ is a reflexive A-module too. It suffices to
show that A = A'.

Lemma 7.20 A’/ A is annihilated by a power of the normalizing element g.

Proof. We identify the graded ring A’ = A'[g~*] as the reflexive hull of the trace
ring T(A). The ring Aj is a finite A,-algebra, and wherever A, is Azumaya, Ay is
locally a central extension. Now since A4 has finite global dimension so does 4, and
it follows from (7.4) and [NV, Ch. A, Thm. 1.3.4] that A, has finite global dimension
too. So wherever A, is Azumaya, its center is also of finite global dimension, hence
is integrally closed. It follows that Ay is equal to A, at such points. We now use that
fact that A, is almost Azumaya to conclude that the quotient Ay/A4, has finite
length, hence by [NV, loccit] that A’/A has gk-dimension one, unless it is zero.
This in turn implies that g"(4’/A) has gk-dimension one if # is sufficiently large. On
the other hand, since A4’ is reflexive, pd(4’) < 1, hence pd(4'/A) < 1. By Theorem
4.1(iit), A’/A contains no submodule of gk-dimension < 1. Thus g"(4'/A4) = 0 for
large n, as required. O

To complete the proof of Proposition 7.19, we will use the factorization of the
normalizing element given in (5.13). Assume that A = A4'. Applying Lemma 7.20, we
may choose a bimodule Q with A = @ <= A4’, such that C = Q/A is non-zero, but is
annihilated on the left by one of the normalizing elements g;, say by g,. Since the
sequence

0-4-0-C-0

does not split, Theorem 4.1(i) implies that gk (C} is at least 2. Hence it is equal to 2.
By Lemma 3.1, the gk-dimension of 4/(ann C) is also equal to 2. Since P = g, A4 is
a prime ideal which annihilates C and gk(A/P) = 2, we conclude that P is the left
annihilator of C.

Consider the exact sequence of bimodules

0>C—ogitA/A—gi*A/Q—0.
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The ring A/P is a critical bimodule because it is prime, and therefore gr 1 A/Ais also
critical. It follows that gk(gy ' 4/Q) < 1. Hence g7 ' A is contained in the reflexive
hull @ of Q. But § = A’ because A’ is reflexive. Thus A’ contains A[g7 '], and since
A[g7 ']is not a finite A-module, this is a contradiction, which completes the proof
of Proposition 7.19. J

8 Twisting a graded algebra by an automorphism, and determination
of the algebras associated to non-reduced divisors

In this section we begin by describing a construction that twists a graded algebra
using a (graded) automorphism. This construction allows us to identify some of our
elliptic regular algebras as twists of a few standard ones. In particular, we will
identify as twists all algebras whose associated elliptic curve is not reduced. We will
see that in these cases, the ring A, is closely related to the Weyl algebra. Inciden-
tally, in this section the letter s is not used as in (7.2), but is defined locally wherever
it is used.

Let 7 be an automorphism of a Z-graded algebra A. We define a new graded
algebra A, which we call the twist of A by 7. As a graded abelian group, A, is an
isomorphic copy of A. The element of 4, corresponding to a € A will be denoted by
a.. The product of two homogeneous elements a,, b, of A, is defined to be

= (ab™),, where d = dega. So if x4, . . ., x, are clements of 4,, then

8.1) (X1 ... Xp)e = (Xx),(xrz_l . (xf,_'” 1)1:.

If f=2a;, . %, .., is a relation in A among elements of degree 1, then the
corresponding relation

(8.2) fi= Zail...i,.(xil)r(xgl)r <o Xf,:"H)z

holds in A4,. For example, if r = 3 and A is the algebra corresponding to the linear
triple (IP2, o, Up*(1)), then A is simply the twist by t~! of the polynomial ring
k[x,y,z] for a 1 € GL;(k) lifting 6 € PGL;(k) = Aut(IP?) (see[ATV, 7.4']).

Let M be a graded right 4A-module. Then an A,-module is defined in a similar
way using an isomorphic copy M. of the graded abelian group M, with the
multiplication rule m.b, = (mb*"),, d = degm. If ¢: M - N is an A-homomor-
phism, the corresponding map ¢,: M, — N, defined by ¢.(m;) = (p(m)), is an
A.-homomorphism. This gives us a functor

(83) Ft: (gr-A) - (gl‘-A,) .

Lemma 84 Let p,t be two commuting automorphisms of a graded ring A. Then
a.~~(pa), is an automorphism of A,, and (A,), is canonically isomorphic to A,,. In
particular, (A.),-1 ~ A. If u € k*, and if ¢, denotes the automorphism which acts on
A, as multiplication by ", then A,,, = 4,.

Corollary 8.5 The functor F: (gr-A) - (gr-A,) defined by M~»M_, is an equivalence
of categories.
This is true because F,F,-. = F,-1 F, = identity.

Corollary 8.6 Let © be an automorphism of a regular algebra A of arbitrary global
dimension. Then A, is a regular algebra of the same global dimension and the same
gk-dimension.
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Proof. This follows from the fact that F. is an equivalence of categories and
preserves Hilbert functions. O

Now let 4 be a regular algebra of dimension 3, determined by a regular triple
7 =(E,0,%). Then an automorphism of A restricts to an invertible linear oper-
ator on A,. Let us describe the conditions under which an invertible linear
operator t on A, extends to an automorphism of 4. Let IP be the space of
hyperplanesin A;. As in [ATV], we denote by I',, the subscheme of (IP)" defined by
the multilinearizations of the relations in 4 of degree m, and we recall that this
scheme can be identified as follows. For (py, ..., p,)e(P)", set
P,=(pi ..., Pi+s—1), Where r + s = 5, Then

Fm::{(pl,...,pm)e(IP)mlPiEEand U(Pi)=Pi+1 for all l}

We will write I for I5.

If 7 is an invertible linear operator on 4,, we will denote the corresponding
linear map P — P by the same symbol. Define ¢’ and t” by the rules

, _fr ifr=3 , _J @) ifr=3
8.7) r—{( and 1 —{(

,7)ifr=2 7,1,17) if r=2.

Proposition 8.8 With the above notation, let © be an invertible linear operator on A, .
Then 1 extends to an automorphism of A if T'(E) = E and o7 = v'o. Furthermore, if
J = F (A), then these conditions are also necessary.

Proof. The conditions are equivalent with the single condition t”I" = I'. Hence 7”
preserves the space of multilinear forms vanishing on I'. This implies that
7 preserves the defining relations of 4. If 7 = 7 (4), then the defining relations
determine I', and hence the conditions are also necessary. |

Proposition 8.9 Let 4 be a regular algebra of the form A(T ), where & = (E,0, L) is
a regular triple, and let © be an automorphism of A. As in Proposition 8.1, we also
denote by 1 the induced isomorphism on P. Let 7, = (E,t'a, &), where t' is defined by
8.7). Then 4, = A(T>).

Proof. We already know that A, is regular (8.6). Let ¢ = (1,7,...,t°~!), and let
I'" = @(I'), where I' = I'(4) is the locus of zeros of the multllmeanzed defining
relations { f;}. It follows that I"" is the locus of zeros of the set { fi} (see (8.2)). On the
other hand, the locus of zeros of these polynomials fiis I'(4,). Thus I'" = I'(4,).

Let E' = pry s—1 I". Themapy = (1, ..., ©° 2): E - E'is an isomorphism,

.....

the triple ' = (E',0’, ¥’), where ¥’ =y, ¥. We have a diagram of maps

(P1s- s Psm)  —— (P25
(8.10) v ) R
(P1aTP2,- --’Ts‘zps—l) B— (sz’-"’rs——lps) =T,(P2»--~,T ps)9

which identifies ¢’ as Y1'oy ~ L. So via the isomorphism , 7 is also isomorphic to
the triple 7, = (E, 7' 0, .%). a

s—2

Proposition 8.11 Let 7 be a regular elliptic triple and let A = A(T ). Let g be the
canonical normalizing element in A, which is determined up to a scalar factor. Then g,
is the canonical normalizing element in A, .
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Proof. The element g is characterized by the fact that § vanishes on I';,, but g is
notin I;®@A; + 4; ® I, where I is the defining ideal of A. Then §, will vanish on
(Ts+1)e=(, ..., 7" )l 4, and it will not be in (I,);® 4, + 4, ®(I,)s. ]

The following Proposition, applied in the case S = {cg"}, ce k*, neZ, n 20,
shows that the rings A, = A[g~!], are isomorphic for all of the twists A4,. Hence, i
(7.3) is true for an algebra A, it is true for every twist of A. We omit the proof.

Proposition 8.12 Let A be a Z-graded algebra with a graded automorphism 1. Let
S be a homogeneous Ore set in A which is stable under © and ™!, and define
S, = {s.|s € S}. Then t extends uniquely to AS™*, and (AS™'), = A,S]*. The map
as™'ws(as™), = a(t7%); ! defines a ring isomorphism (AS™ 1)y x~ (4,57 1) in
degree zero.

Remark 8.13 Let r = 2. Then the twist introduced in this section is not the same as
the half twist introduced in [ATV, 7.4] for the linear case. A twist by 7 as defined
here is the same as a half twist by 2. Since square roots of 2 x 2 matrices need not
exist in characteristic 2, the concept of a half twist is more general. However, we
don’t know how to extend the notion of a half twist to elliptic algebras.

Now, returning to our study of regular graded algebras of dimension 3, we first
consider the case that r = 3. In this case we will give an explicit description, as
a twist, of any elliptic algebra 4 = A(E, ¢, %) in which E contains a line stabilized
by 0. Call the line C, and say that, as a divisor in P2, E = C + D. Thus D is a conic,
which may be degenerate and which may contain C. We choose a basis {x, y, z} for
A, so that C is the locus {x = 0}, and we choose an element fe AP? whose image in
Symm?2(A,) has D as zero set.

In order to be explicit about defining equations, we will list natural choices for
the basis and for f when E has a triple point:

(8.14)

(a) E =3C is a triple line. We set f= x2.

(b) E =2C + C’, where C’' + C. We choose y so that C’ is the locus {y = 0},
and we set f= xy.

(c) E =C + 2C', where C' % C. We choose y so that C' is the locus {y = 0},
and we set f= y2.

(d) E=C+ C + C", where C,C',C" are distinct lines through a point. We
choose the basis so that C' = {y = 0}, C" = {x = y}, and we set f = y(x — y).

Also, we denote the Weyl algebra by W:
(8.15) W=klu,v]/(uo —ou—1).

Theorem 8.16 Let A be an elliptic regular algebra with associated triple (E, o, &) and
with r = 3. Assume that E = C + D, where C is a line stabilized by o. Let x,y,z be
a basis for A, such that the locus {x = 0} is the line C.

(i) x is a normalizing element of A. If © denotes the automorphism such that
xd® = ax, then to operates trivially on the scheme D.

(i) The element x. is central in the twist A,.

(iii) Suppose that x is central in A. Then A has defining relations of the form

xy—yx=0,xz2—2zx=0,yz—zy=f,
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where fe AP? is an element whose image in Symm?(A4,) defines the divisor D. In each
of the cases listed above (8.14), we may take for f the element indicated.

(iv) If x is central and if we are in one of the cases (8.14), then A is isomorphic to
a localization of the Weyl algebra W.

Proof. (i) The fact that x is a normalizing element is shown in Proposition 5.13. It
generates the kernel of the canonical homomorphism A4 - B(C,a¢, %¢).

Given a line £ which is not a component of E, let p= Cn/andlet Z = D/,
so that as divisorsonZ, En¢ = p + Z. To show that 7o operates trivially on D, we
will show that for every such line ¢, t16Z = Z, or equivalently, that ¢~ !/ contains
A

Let ¢’ be the line containing ¢Z, and let M, M’ be the line modules correspond-
ing to ¢, ¢’ respectively. According to Proposition 6.24, we have an exact sequence

M(~1)->M->N,-0,

where N, is the point module determined by p. On the other hand, if a = 0 is the
equation for ¢, then N,~ A/(ad + xA)= Af{aA + Ax) = M/Mx. Since
Mx ~ (A/aA)(— 1) = M,-1,( — 1) (see (6.29)), this shows that T~ !¢ = ¢’, hence
that ¢~ !¢ contains ¢Z, as required.

(i) This is a direct calculation, using the relation x* = x.

(i) Suppose that x is in the center of A. Then two of the three defining relations
are xy — yx = 0 and xz — xz = 0. Also, the automorphism 7 is the identity, so (i)
shows that o operates trivially on D. As above, let fe 422 be an element whose
locus of zeros is D, and let falso denote its image in 4,. Then f'is in the kernel of
the canonical homomorphism #: 4 - By:= B{(D,id, ¥ p). By Proposition 5.13, f is
a normalizing element which generates kern. Since Bp is commutative,
yz —zyekern. Hence yz—zy=cf for some cek*, which means that
yz — zy — ¢f = 0 is our third defining relation. The constant ¢ is not zero because
we have assumed that A is elliptic, so it may be absorbed into f. In the cases (8.14),
the constant can be absorbed into one of the coordinates.

Note 8.17. If E is the union of the coordinate axes, then the third relation becomes
yz — zy = cyz, or iyz = zy. The constant ¢ can not be eliminated in these cases, so
there is 1-parameter family of algebras which are not related by twists.

(iv) This is a computation using the defining equations. We take u = yx~
each case, and

Yin

zx 1 in case (a)
zy~! in case (b)
v= _2 .
xzy in case (c)
xzy Y1 — )1 in case (d).
Then
W in case (a)
Wlu 1] in case (b)
®.18) Ao = Wlu '] in case (c)

Wl(u —u?)"1] in case (d).

To verify this, we note that the normalizing element is represented by g = xf (see
Proposition 5.13 again). A priori, 4, is generated by the set {mg ™"}, where m runs
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through the monomials of degree 3. However, ffactors into linear factors, and in
each of the cases one sees that A, is generated by the set {mb~'}, where m is linear
and b is a linear factor of g. Setting u = yx~! and w = zx~*, we have

uw —wu = fx" 2 = Lu,u®u(l —u),

respectively, in the four cases. Putting v = w,wu™!, wu™2%, or wu™'(1 — u)~?! ac-

cording to the case, we find indeed that uv — vu = 1 in each case, and one checks
that A, is presented as indicated. O

We now consider the case that r = 2. In this case we will describe as a twist any
elliptic algebra whose associated curve E is not reduced.

Lemma 8.19 Assume that r = 2, and (E, 0, %) be a regular triple such that E is not
reduced. Then E = 2C, where either C is an irreducible divisor of bidegree (1, 1), or
else C = (g x IP*) U (P! x q) for some point qe P* x P,

We omit the proof of this lemma. It follows from the fact that the auto-
morphism ¢ has the form (5.2). |

Theorem 8.20 Let A be an elliptic regular algebra with associated triple (E, 0, &),
such that r =2, and that E = 2C, where C is an irreducible curve in P! x Plof
bidegree (1, 1). Then

(i) A is a twist of the enveloping algebra of the Heisenberg Lie algebra, and is
defined by the relations

[x,[x y1] = x*y — 2xyx + yx* =0,
[y, [y, x1]=xy* = 2yxy + y*x=0.

(i) The characteristic of k is different from 2.
(iii) The ring Aq is the ring of invariants W< in the Weyl algebra W (8.15) under
the automorphism e(u) = — u, e(v) = — v.

Before proceeding with the proof of this theorem, we will compute the group of
automorphisms of the divisor E = 2C. We use the first projection to map C isomor-
phically to P!. Since C has bidegree (1, 1), it is the graph of an automorphism, say o,
of P'. So C is the locus {(x, ¢(x)}. If we apply the inverse automorphism to the
second factor, C is transformed into the diagonal 4 of P! x P!, and E to the double
diagonal. Thus E is canonically isomorphic to the double diagonal.

The inclusion of C as a closed subscheme of E is described by an exact sequence

(8.21) 01— 05— 00,

where I is a square-zero ideal which is canonically isomorphic to Q¢. This sequence
is split by the first projection: O = 0@ I. So we may write a section of O on an
open set U in the form f+ «, where fe I'(U,O¢) and a e (U, Q%)

Proposition 8.22 (i) The group Aut®E of automorphisms of E which induce the
identity on C is the canonical semi-direct product of G,, by G, isomorphic to the

b
group of invertible matrices of the form 6 = (g ) where the automorphism 6 oper-

ates on Og by f + o~ f + (bdf + ux).
(i) The group of all automorphisms of E is the direct product

AutE = (Aut®E) x (Aut C) = (Aut’E)x PGL, .
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Proof. (i) To determine the group of automorphisms of E, we note that Aut®E is
the group of sections of the sheaf Aut°E of local automorphisms. Its sections on an
open set U are the automorphisms of U which are the identity on the underlying
reduced scheme U,.q. Moreover, the sheal Aut’E can be described by another
short exact sequence. Denote by Aut'E the subsheaf of Aut®E of local automo-
rphisms which act as the identity on I. Then we have a split exact sequence

(8.23) 0 Aut’E > Aut°E —» Aut1 -0 .

Also, Autl ~ G,, and Aut'E = Der(0¢, I) ~ Hom(Q}, Q) ~ 0. Taking global
sections gives us a split exact sequence

(8.24) 0-G,— Aut’E > G, - 0.

A direct computation shows that the operation which describes the semi-direct
product structure on Aut°E is the canonical operation of G,, on G,, i.e., that Aut’E
is the required semi-direct product.

(ii) Since E is isomorphic to the double diagonal which is defined intrinsically
in terms of C, the map Aut E — Aut C is a split surjection. So we have a split exact
sequence

0- Aut®E > AutE - AutC > 0.

Since PGL, is a simple group, its operation on Aut®E is trivial, and AutE is
a direct product as asserted.

Proof of Theorem 8.20 We decompose the automorphism ¢ appearing in our triple
according to the product (8.22ii), say as ¢ = (,1), where 7 € PGL, and where 0,7
commute. The kernel of the map A — B defines a normalizing element of degree
2 in A, which we denote by f. Hence there is an automorphism p such that

(8.25) fa* = af .

This automorphism u defines a map A; — A, and hence a map IP(A¥) —» P(AF),
which in turn defines a map from C to itself. We denote these maps by u too.

Lemma 8.26 We have u =12 on C.

Proof. Let p e C and let £ be the line through p. We will show that p~'# contains
t2p. According to Proposition 6.24, there is an exact sequence

0> M, (-2)->M;—>N,-0,

where ¢’ contains t2p. On the other hand, we know that f? is the canonical
normalizing element in 4 (5.2), and hence f? annihilates N,. Since N, is critical,
this implies that f annihilates N,. A computation similar to (6.29) shows that
My(—2)= M,f = M,-1,(— 2). Hence t’pe ¢ = p~ 7. O

Lemma 8.27 An arbitrary lifting of the automorphism t© to GL, defines an auto-
morphism of the algebra A.

Proof. 1t is true that ¢ and T commute. So according to Proposition 8.8, it remains
to show that 7' = (z, 7) sends E to itself. This is a set-theoretic problem, so it suffices
to show that 7' sends C to C. Note that ¢|¢ = t|c- Since C is the locus of points
(x, @(x)) for some ¢ € PGL,, the action of 7 on C is 7'(x, @(x)) = (r(x), T9(x)). So
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we must show that ¢t = 1¢. In fact, ¢ = 1. To see this we use the fact that the
automorphism ¢ has the form (52) again. It shows that ¢ acts as
a(x, @(x)) = (p(x), u(x)), and hence that ¢ = o|c = 7|¢. ]

This lemma allows us to replace our algebra by the twist A,-:, which is
associated to the triple (E, 8, &), where ¢ = (6, 1) as above. This reduces us to the
case that the automorphism ¢ = 6 is purely infinitesimal, of the form described in
Proposition 8.22(i). Then E becomes the double diagonal.

Since f is in the kernel of the map 4 — B¢ and B¢ is now commutative,

yx —xy=¢df,

where, since 4 is three-dimensional, ¢ + 0. Also, according to Lemma (8.26), 4 = id,
and hence

(8.28) xf=fx y=f.

This leads to (8.20i). One now verifies easily that the triple corresponding to these
equations is linear if chark = 2 and is a double diagonal otherwise.

The final step is to compute the ring A, for the enveloping algebra A. The
canonical normalizing element is g = (yx — xy)%, and f= yx — xy is central. We
form the ring R = A[z], where z is a central variable whose square is f. The
defining equations for R are [x,z] = [ y,z] = 0, [x, y] = z2. After a cyclic permuta-
tion of the variables, we obtain the reguiar algebra (8.16iii) for which E is a triple
line. So R[z™ 1], is the Weyl algebra, and A, is the ring of invariants, as stated.

|

We now discuss the special case of elliptic algebras in which r =2 and
E = 2(P! x q) + 2(g x P'). We will show by an explicit computation that if k is
algebraically closed and of characteristic # 2, then there is a unique isomorphism
class of regular algebras of this form, while in characteristic 2 they form a one-
parameter family. This one-parameter family is the specialization to characteristic
2 of the algebras described in Theorem 8.20.

It will be convenient to introduce a local notation for the type of algebras
arising in the discussion. For a,c € k, let A(a, ¢) denote the algebra defined by the
relations

fi =xy* + y*x + ay?
fo = x%y + yx® + a(xy? + yxy + y*x) + (a® + o)y>.

In the notation of [ArSch, p.181], we have Q=1 a=f=1, and
w = w, + aw, + (a® + ¢)w,.) The matrix M (see [ATV]) is, dropping the tildas on
the coordinates,

M—( Y1¥2 (x1 + ay1) y2 )
yilxa +ay;) (xy +ay,)(x; + ayz) + ¢y y2

Since the four entries of M have no common zero ((xy, y1), (x2, y2)) in P! x P!, the
algebra is regular for all a, ¢ € k. Since det M = cy? y3, A(a, ¢)is linear if ¢ = 0, and if
¢ # 0, then A is elliptic and E = 2(IP* x {q} + {q} x P!), where ¢ is the point y = 0
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in IP*. In the latter case the changes of coordinates keeping E fixed are, up to
a scalar, of the form x~»ax + §, y~»y. This substitution gives an isomorphism

Ala,¢) ~ A(a + 2ﬂ,%> .
o o

Thus, if k has characteristic different from 2, every elliptic algebra of the type we are
considering is isomorphic to one of the form 4(0, ¢), and if ¢ & 0is a square in k, to
A(1,0). On the other hand, if char k = 2, then the isomorphism classes of elliptic
algebras A of this form are represented by the algebras 4(0, c), ¢ € k*/k*?, together
with the one-parameter family A(1, ¢}, ¢ € k*.

Theorem 8.29 Let A be an elliptic regular algebra with associated triple (E, o, %),
such that r = 2, and that E = 2C, where C = (IP x q) + (g x IP*). Then with the
above notation, A ~ A(a, c) for some a €k, c € k*, and A, is isomorphic to the Weyl
algebra.

Proof. We use the standard description of the algebras by means of the tensor

(8.30) w=(xy)M (;C) =xfi + Y =g1x + g2y

as in [ArSch, 2.31, so that (f;, f>) and (g4, g,) are two sets of defining equations for
A. The variables x, y are understood to correspond to a choice of homogeneous
coordinates (%, 7) in P!, and we choose them so that g is the point § = 0. Then the
defining equation for E in P* x IP! is 272 = 0. We will drop the tildas from the
coordinates from now on. As in [ATV, 5.4], we write

fi=a1x3 + ayx?y + azxyx + a,xy? + asyx? + agyxy + a;y*x + agy>,

fo=b1x3 + byx%y + byxyx + byxy? 4 bsyx? + bgyxy + b, y*x + bgy>.
Then

g1 =a;x> + asx®y + asxyx + a;xy* + by yx* + byyxy + bsy*x + by’

g2 = @3X° + agx?y + aexyx + agxy® + byyx* + bayxy + be y*x + bgy*.

Recall that f; and f;, vanish on I' « P* x P! x P!, Also, the form (5.2) of the
automorphism ¢ shows that I' contains q x P! xq. Therefore a; = a3 =b, =
bs = 0. Similarly, from §; and §, we obtain the relations a; = as = a, = a¢ = 0. So
the equations have the form

fi= asxy? asy*x + agy’
831) 5 = byx?y + baxy? + bsyx? + beyxy + b;y*x + bgy?,
' g1 = a;xy* bsy’x + byy®

g2 = agx?y + agxy® + byyx? + bayxy + bey?x + bgy>.
The matrix M is
(8.32)

~ aryi1yz AaX1y2+agy1y2
M(xx,h;xz,h):( )

bsyiXa+bsy1ys baxiXs + bax1y2+bey1 X2 +bsy1y2
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Its determinant is
(8.33) det M = (a1b;, — asbs)x;%2y1y; + (a7bs — asbs)x,y: v}
+ (a7bs — aghs)yix,y, + (a7bg — agh,) yiyi.

On the other hand, det M = 0 defines E, so det M = cy}y? with ¢ = a;bg — agh-,

and the first three coefficients in this expression vanish. Since I' is non-degenerate,

rank M = 1 everywhere. Applying this fact to the point (x;, y;) = (1,0) shows that
~ 00 .

M(1,0;1,0) + <0 0). It follows that b, = 0, which by (8.31) implies that a4 + 0 and

bs 0. We normalize a4 to 1. Then the vanishing of the coefficients in the

expansion of det M yields the relations

(834) a7b2 = b5,a7b4 = b7,a7b6 = asb5 .

Moreover, the form of the relations (8.31) shows that g, = a,f; and that a, + 0.
Hence

(835) b5 = a%, b7 = a7a8.
Substituting into the Eqs. (8.34) yields the relations
(8.36) b2 =45, b4 = dg, b6 = d-dg.

Next, the coefficients of x2y in (8.31) show that f, = b,g, + yg, for same y e k.
This implies that b, = b,bg + ybs and bg = b,bg + yb,. Using the above relations,
we rewrite these as

(8.37) ag(l — a;) = ya;, bg(l — a7) = yb;.

The algebra is linear if and only if a,bg = agh,. Assume that E is elliptic. Then it
follows that y = 0 and a, = 1. Setting a = ag and b = by, the defining equations for
A become

fi= xy? +y*x + ay®

8.38
(8-38) f2 = x%y + axy? + yx? + ayxy + ay*x + by>.
Putting ¢ = b — a?, we have ¢ + 0 and 4 ~ A4(a,c), as was to be shown.
The normalizing element g such that B = A/g4 is g = y* (see (5.13)). The
relation f; = 0 can be written as

(8.39) yixy 2= —x—ay,

which shows that y? is a normalizing element in A4, and that y* is central
Conjugation by y is an automorphism 8 of A whose order divides 4. (It is usually
equal to 4.) The ring A = ZAq)" is the Ore domain A,[y,y~';6,], where
90 = 0'/10 .

Letu = xy~!,v =y~ 'x. Formula (8.39) shows that fu = — v — g, and fv = u.
So k[u,v] is a O-stable subalgebra of A,. Since k[u,v,y,y~'] = A, we have
AO = k[us U} = k[u9vayay_1]0-
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So far, we have used only the relation f;(x,y) = 0. Working out things like
(»x?)y™% = (pxy™ )y~ N (xy™ 1)y ) = (Ou)(0*u) = (— v — a)( — u — a) = vu
+au + av + a*, one finds that in A the relation f,(x, y)y~2 = 0 boils down to

(8.40) m—uw=>b—-a’=c,

Thus in the elliptic case, A, is isomorphic to the Weyl algebra, as required. This
completes the proof of Theorem (8.29). a

It is interesting to interpret Theorems (7.1) and (7.3) for the rings we have
described here. In each case the ring A, is closely related to the Weyl algebra, which
is a simple ring if and only if k has characteristic zero. In fact, ¢ has infinite order in
characteristic zero and finite order in characteristic p, a fact which can be checked
directly, and which also follows from Theorem (7.3) and from the next proposition.

Proposition 8.41 Let k be a field of characteristic p + 0.

(i) The Weyl algebra W (8.15) is an Azumaya algebra of rank p* over its center
Z = k[s,t], where s = u?, t = v>.

(il) Assume that p = 2, and let ¢ be the automorphism defined by e(u) = — u and
e(v) = — v. The ring of invariants W<® is a finite module over Z<?, and it is an
Azumaya algebra of rank p? at all points of Spec Z<®> except at the image pq of the
origins =t =0.

(iii) Let my be the maximal ideal of Z<®> corresponding to py. There are two
maximal ideals P° P! of W<®> which contain mq, and suitably numbered, we have
W /P% ~ M ((p — 1)/2), and W /P* ~ M ((p + 1)/2), where #(n) denotes the
algebra of n x n matrices over k.

Proof. The first assertion is well known [Re]. Indeed, it is obvious that k[s, t] is in
the center of W and that W is a free k[s, t]-module of rank p2. On the other hand,
the usual trace argument shows that the equation xy — yx = 1 has no solution in
#(n) unless p divides n. Hence W has no representation of dimension < p. It
follows that W is an Azumaya algebra of pi degree p, and hence that Z = k[s, t] is
its center.

To show that W*® is almost Azumaya if the characteristic is not 2, we note that
the automorphism ¢ induces the automorphism s~ — s, t~ — t of Z. This auto-
morphism has the origin as its only fixed point. It follows by descent that W< is
locally an Azumaya algebra at all points of Spec Z except at p,.

Direct computation shows that the matrix representation of W corresponding
to the origin in Spec Z is

01 0
(842) U~ R I S ,

0 p—10

and ¢ is compatible with the automorphism & of .# (p) which acts on matrix units as
Eley;) = (— 1)i*/e;. Clearly

MPY© = Y key,

i+jeven
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and this ring decomposes as a sum of two subalgebras:

( > kei,~>®< > kei,-> ~MEp—-1))OAG(P+ ).
i, jeven i,jodd

By semi-simplicity, the map W<® — .#(p)® is surjective. This provides the re-
quired maximal ideals. Since the ranks add to p, ther¢ are no others. O

Note 8.43 The maximal ideals P' provide examples of critical A-modules of
gk-dimension 1 with ey % e, (see (6.15)). Let V denote the representation (8.42) on
k. The decomposition ¥ = V°@ V! which corresponds to the two maximal ideals
8V0 =3 cenki, V! =3 ioaaki- The normalized A-module N° which corresponds
to ¥° as in (7.8) is described as foliows: We set N; = V', reading the upper index
mgdulo 2, and we let x, y act as u,v: V* - V"1, The module N1 is the shift N°* of
N°, O
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