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This is a continuation of our previous paper on settling the non-compact version of
Calabi’s conjecture on open manifold. In both these papers, open manifolds will
mean quasiprojective manifolds M which can be written as M\D. We are con-
structing complete Kédhler metrics on M with either zero Ricci curvature or
non-negative Ricci curvature. As was explained in the program outlined by the
second author in the Congress in Helsinki, D is related to the zeroes of a section of
K3'. In our previous paper [TY1], we dealt with the case when the muitiplicity is
equal to one. In this paper, we finish the case when the multiplicity is greater than
one. We also allow orbifold type singularities in all these discussions. Our construc-
tions include practically all known examples of complete Kdhler manifolds with
zero Ricci curvature of finite topological type. (It should be noted that M. Ander-
son, P. Kronheimer and Le Brun have recently constructed such examples with
infinite topological type.) Besides constructing many new examples of such mani-
folds which may serve as gravitational instantons, these matrices provide a bridge
between metric geometry and algebraic geometry of M because we do have some
understanding of complete manifolds with non-negative curvature.

Acknowledgements. We would like to express our gratitude to the referee for the time and effort
spent reviewing our manuscript. His excellent suggestions have resulted in a paper which is much
more readable. When we obtained these results in 1986, Peter Li has shown great interest in their
applications. We wish to thank his moral support.

1 Statements of main theorems

In [TY1], the authors constructed a complete Kéhler metric on a quasi-projective
manifold M = M\D with prescribed Ricci form representing C,(—Ky — Lp).
Here M is a compact Kihler manifold, D is a neat and almost ample smooth
divisor in M (cf. Definition 1.1) and Lj is its associated line bundle. In fact, the
whole argument in [TY 1] can be generalized to the case that M is a normal Kéhler
orbifold and D is an admissible divisor (cf. Definition 1.1). In this paper, we will
construct complete Kéhler metrics on M = M\D with prescribed Ricci form in



28 G. Tian and S.T. Yau

Ci(— Ky — BLp) for > 1 under some suitable assumptions on M and D. Let
M be a compact Kéhler orbifold with dim¢(Sing(M)) < n — 2, where n = dim¢ M
and Sing(M ) denotes the set of singular points. Note that Sing(M ) is a subvariety of
M. We assume that each point of M admits a neighborhood which is the quotient
of a euclidean ball in C" by a finite group. Natural patching conditions are imposed
on the overlaps of these neighborhoods. These two properties characterize complex
orbifolds. A Kihler orbifold is just a complex orbifold with a Kéhler orbifold
metric. We refer readers to [Ba] for definition of Kéhler orbifolds in detail. On
a Kahler orbifold, one can also define line bundles, divisors, etc.

Definition 1.1 Let D be a divisor in the Kéhler orbifold M. Then

(i) D is neat, if no compact holomorphic curve in M\D is homologous to an
element in N(D), where N,(D) denotes the abelian group generated by
holomorphic curves supported in D.

(ii) D is almost ample if there exists an integer m > 0 such that a basis of
H°(M, mLp) gives a morphism from M into some projective space CPY which
is b1holom0rph1c in a neighborhood of D.

(iti) D is admissible if Sing(M) < D, D is smooth in M\Sing(M )_and for any
x = Sing(M), let n,: U — U, be its local uniformization with U, = C?, then
n; Y(D) is smooth in U,.

Now we are ready to state our main theorem of this paper. The proof of this
theorem will be given in Sects. 2, 4, and 5.

Theorem 1.1 Let M be a compact Kdhler orbifold of complex dimension n. Let D be
a neat, almost ample and admissible divisor in M, and Ly, be the associated line bundle
of D. Let Q be any (1.1)-form representing the first Chern class C(— K — BLp) with
B > 1. Assuming that D admits a Kdhler metric with Kdhler form wp such that

Ric(wp) = (B — Dawp + (1.1)

then there is a complete Kihler metric g over M\D whose Ricci curvature form is Q.
Moreover, if we denote by R(gg) the curvature tensor of go and by p(-) the distance
function on M from some fixed point with respect to gq, then R(gq) decays at the
order of at least p~3 with respect to gg-norm whenever D is biholomorphic to CP"™*

and Lp|p is the

! l-multiple of the hyperplane line bundle on CP"~; otherwise,

R(gq) decays at the order of exactly p~2 with respect to gg-norm. Furthermore the
metric gq has euclidean volume growth.

Corollary 1.1 Let M, D be as in Theorem 1.1. Suppose that —Ky = BL, and
D admits a Kdhler-Einstein metric with positive scalar curvature. Then M = M\D
has a complete Ricci-flat Kdhler metric such that its curvature tensor decays as
described in Theorem 1.1.

Remarks. (1) In case that M is a smooth Kahler manifold, D is ample and
1 < f<n+ 1, the existence part in the above corollary is also recently redis-
covered by S. Bando and R. Kobayashi [BK] who made extra technical assump-
tions and draw less precise conclusion.

(2) It is still open whether or not D admits a Kéhler-Einstein metric with
positive  scalar curvature. Note that Cy(D)=C{(M)|p— Ci(Lp)lp =
(B — 1)Cy(Lp)lp > 0. In case that D is the Fermat hypersurface in CP" of degree



Complete Kihler manifolds with zero Ricci curvature 11 29

n — 1 or n, the first author proved the existence of Kéhler-Einstein metrics on D in
[T1]. When D is a complex surface other than CP? & CP? and CP? + 2CP?, by
the results in [TY2, T2]. D admits a Kéhler-Einstein metric. Therefore, M admits
a complete Ricci-flat metric if M = CP” and either D is a smooth hypersurface of
degree n — 1 or n, or n = dimc¢ M = 3.

Corollary 1.2 Let M, D be as in Theorem 1.2. Suppose that there is a semi-positive
(1, 1)-form in C{(— Ky — BLp) for some B > 1. Then there is a complete Kdhler
metric with nonnegative Ricci curvature and the curvature decay as described in
Theorem 1.1. Also such a metric has euclidean volume growth.

Proof. Define a holomorphic invariant a(D) > 0 as follows. Take a G-invariant
Kihler metric @ in C{(Lp)lp, where G is a maximal compact subgroup in Aut(D),
define

/1 _
Pgs(D, w) = {(peCZ(M, R)lw + o 00p 20, ¢ is G —inv., sup g = 0} (1.2)
T D

(D) = sup {alHC >0, s.t. je‘““"w"‘1 < C for all pe Ps(D, w)} )]
b

Then one can easily prove that «(D) is independent of choices of w and G, so it is
a holomorphic invariant. In [T1], it is proved that «(D) > 0. Now choose
a p’ <1+ aD) and ' £ B. Then our assumptions imply that there is a semi-
positive (1.1)-form Q. in C,(—Ky — B’'Lp). The method of [T1] can be applied
here to conclude the existence of a Kdhler metric with Kéihler form wj and Ricci
form being (f" — Hwp + Q4.

To see it, we first choose a metric h with its Kdhler form w, in C{(Lp). Then
(F — Doy + Qp represents the first Chern class C(D). Therefore, there is a func-
tion f such that

Ric(h) — (B’ — Dy — Qp = —V?; oof
and

feloi™t =fapt.
D D

/1 _
The required wp will be of the form w, + Ere 00¢@g and @, satisfies the foliowing

complex Monge-Amperé equation for t = ' — 1,

/_1 _ n—1
(wh+———86<p> = el Togr!
2n

—V_laé<p>o.

2n

(1.4),

G)h+

By the second author’s higher-order estimates in the solution of Calabi conjecture
[Y2], in order to solve (1.4),, it suffices to give an apriori C°-estimate for the
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solutions. If ¢, is a solution of (1.4), and h, is the metric with Kihler form

-1 _
oy + —2—7[—‘ 66(/),, then

Ric(h) = (B — 1 — t)o, + t(w,, + —-V2;1 65(,0,) + Q5

Ztop fort< g —1.

Therefore, the equations in (1.4), for t < ' — 1 are exactly those treated in [T1]. In
particular, there is an apriori CC-estimate for the solutions of (1.4), with

0stsf—tland f' - 1< ! a(D) (cf. §2 in [T1]). It implies the existence of

n—1
n

wpfor ' <1+ o(D). Then this corollary follows from Theorem 1.1.

n—1

Remark. If there is a positive (1.1)-form in C,;(—K,; — fLp) for some f > 1, then
the complete metric constructed in Coroliary 1.2 has positive Ricci curvature.

Examples. For any n > O and d < n + 1, the complement CP"\D of a hypersurface
D of degree d admits a complete Kihler metric with euclidean volume growth,
positive Ricci curvature and quadratic decay of the curvature tensor.

Finally, we state an application of Theorem 1.1 on the topology of projective
manifolds with some ampleness conditions on its anticanonical line bundle.

Theorem 1.2 Let M be a projective normal orbifold. If there is an admissible, neat and
almost ample divisor D in M such that C,(—Kj; — Lp) admits a semi-positive
(1.1)-form. Then M is simply-connected.

The proof of it will be given in Sect. 6. One should also be able to draw some
results on the simple-connectedness of the resolutions of M. In case C,(M) is
positive, this result follows from a result of S. Kobayashi [Ko] and the solution of
Calabi conjecture by the second author.

We believe that the assumption on the neatness of D is superfluous.

2 Kahler metrics with approximating properties

Let M be a Kihler orbifold of complex dimension n, D be an admissible divisor in
M as defined in the last section. Then in particular, the divisor D is a Cartier divisor
and induces a line bundle L, on the orbifold M. We further assume that the
restriction of Ly to D is ample. Therefore, there is an orbifold hermitian metric on
Ly such that its curvature form is positive definite along D. Let Q to be a closed
(1.1)-form in the Chern class C;(— K7 — BLp), where f is a real number and § > 1.
The goal of this section is to construct a complete Kahler metric g such that

Ric(g) — 2 = ——VZ;I 9f onM @.1)
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for some functions f with sufficiently fast decay, where Ric(g) is the Ricci form of
the metric g. In local coordinates, if g is represented by the tensor (¢;7)1 <i, j<a> then

) S I
Ric(g) = — o oolog(det(gij)1<i, j<n) -

We fix an orbifold hermitian metric ||+ || on Ly such that its curvature form is
a given Kahler form w; on D when restricted to the infinity D. This latter form wy
on D will be specified in the following discussion. Denote by ||, the new
hermitian metric ||| *e~%? on L, for any smooth function ¢ defined on M. Let
S be the defining section of D and define

/_165 S 201
=5 (ISHy ).

W

2.2)

Then a simple computation shows

=1 D,S A D,S
ISP

—-(ﬂ - 1)l|Sl|¢ " Nl ped U 1)? ||SH¢ (23)

where @,, is the curvature form of the hermitian metric |- ||, of Lp and D, is the
covariant derivative with respect to |- |,. It follows that w, is positive definite near
D as long as the closed (1.1) form @, is positive definite along D. In fact, we shall
only be interested in those functions ¢ which are constant along D. Therefore, the
(1.1)-form &, is always positive definite along D. Now we determine wp on D. Put

o = ——, then
n

~1D,5 A D,S
o, = a"|S|| 5 2 1A<a3,,,+°‘" 2> 2 *")

- 57 (2.4)

For a given Kihler metric ¢ with Kihler form o on M, there is a function
Y unique up to constant such that

Q = Ric(g) — pd + ——Vz;l ooy (2.5)

where @ is the curvature form of | * | on Ly, ie., @ = @,. Note that @&|p, = wp. We
define a smooth function f, near D by

fox) = —Blog(IIS1*)(x) — 10g< >(X) ¥ (x) (2.6)

(@)

for x in the set where w,, is positive definite.

Lemma 2.1 The following two statements are equivalent.
(1) fo(x) converges to a constant uniformly as x tends to D.
(2) The induced metric gp satisfies the equation

Ric(gp) = (8 — Dwp + Rlpon D . X))
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Proof. Choose local coordinates (z4, . . ., z,) at a point in D such that z, =S = 0
defines D locally, and z' = (z4, . . ., z,— 1) defines a coordinate system along D. Let
@, g, || - || be locally represented by (#:5)1 <i, j<n» (4i7)1 =i, j<» and a positive function
a, respectively. Then by (2.6),

Jo(x) = —log(a det(hi7)1 <i, j<n—1/det(gip1 <1, j<n) (X) — Y(x) + O S )

where x is near D. Note that a™* det(gi;); <i j<alp is @ well-defined volume form on
D. Write x = (7, z,), then

adet(hij)i<ijsn-1€”
det(gin1<i j<n

Jo(x) = '—108< >(Z’, 0) + O(IIS()1) -
adet(hi;)l §i,7§n—1ew

det(gi7)1 <i,j<n
in the local coordinates (z4, . . ., z,—1) = 2’ of D. By (2.5), (2.7), this latter statement
is exactly the one in (2). The lemma is proved.

Therefore lim, ., 5, fy(x) = const. if and only if

(z', 0)is constant

Remark. Equation (2.7) is equivalent to the following complex Monge-Ampére
equation

/__1 - n—1
((u +——-—-——66(p> =et"¥-Vegy~t on D

2n

w+——‘—165¢>0

2n

(2.8)

where c is a given Kdhler form on D representing C(Lp) and h is a given function
on D determined by Q and w. In case — K = D and Q = 0, it is the equation
involved in constructing Kéahler-Einstein metric with positive scalar curvature.
While the general existence is not known yet, we have some positive results (cf. [T1,
TY2, T2]). Let a(D) be the invariant defined in (1.3). Then the method in [T1] can
be applied to conclude the existence of wp for f <1 4+ a(D) (cf. the proof of
Corollary 1.2).

From now on, we assume that wj is a Kihler form on D such that (2.7) holds.
Then by choosing ¥ in (2.5) properly, f(x) converges to zero uniformly as x tends
to the infinity D. On the other hand, we remark that

ISt A (cu‘, Lo/ =1 D,S A D¢S>

2n NE

is a smooth 2n-form on M, so that f, can be smoothly extended to M by defining
fo(x) =0 for xeD. Therefore, there is a dy > 0 such that in the neighborhood
Vo= {xeM||S(x)|| <o} of D, we have

Jo=Suy +S-u, 2.9

where u, is a C*-local section in I'(V,, Lp!).

We would like to choose @, of the form §+ 0, + S+ 0, with 8, e I'(V,, Lp!) such
that f; = f,, vanishes along D at the order of two. The obstruction to the existence
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of such a ¢, lies in the kernel ker((] — 2) on D, where (3 = tr,(DD) is the
laplacian of Ly ! on D. To overcome this difficulty, one must introduce the term
(—log |S]?) in ¢,. It resembles the case of constructing approximated Kihler-
Einstein metrics on strongly pseudoconvex domains in C" considered by C.
Feflferman (cf. [Fef, CY2]). In the following, we will construct by induction
a sequence of hermitian metrics { || * |l }m> o of Lp defined on M such that for any
m = 0, there is a J,, > 0 satisfying:

(i) The associated Kahler metric w,, of |« |, defined in (2.2} or (2.3} is positive

definite in the neighborhood V,, = {{|S(x}|| < 6,} of D.
(i1) The function f,, defined by (2.6) has an expansion

> Z i (—log | S|I3) in ¥, (2.10)
kzm+1 f =
where u,, are smooth C>-functions defined on the closure ¥, and
ue = O(||S|™*1Y), £, are nonnegative integers.

Let || - lo = || - |I. Then by (2.9} and the definition of || * }], both (i) and (ii) hold for
this hermitian metric. Suppose now that we have found | - {,,. We then go on to
construct || *l|lm+1-

Lemma 2.2 Let ¢ be a_smooth function defined on V,, which can be written
Yivj= ,,,+1(SiSj9 +SiSj9,,)( log | S|IZ), and let f, be defined by (2.5) with
-1

w¢=2—68(e"’|[S}|m2) . Then

Jo =t — (=loglSIn) ¥ [(Si§j9ij+§isj(9_ij)-

i+j=m+1
J ; __ ke (m+1
(&_(mu) jn— 1)+ (750, 91,+SSD‘%>)} logusnfn< x 2>
k(k — 1
*(Tf)gﬁ‘%+ z /Z u(—log || S ) .
k'zm+2 /(=

where O3, is the laplacian ter(D,,,Dm) of the bundle L' ® L7 on D with respect to
the hermitian metric | * ||,, and wp, and D,, is the covariant derivative with respect to

I -

Proof. First we remark that ¢;; = 6’_,7, sinice ¢ is real valued. By the definition (2.6},
we have

fo = —Blog | S|2 — log ((‘")n) —y

=fu+ Po —log <Z£’> . (2.12)

n

W}
Therefore, it suffices to compute the ratio —-. Note that the covariant derivatives
wn,
D, and D,, are related to each other by the equation
D,S=D,S—Sd¢p .
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Moreover, if we denote by @,, the curvature form of the hermitian metric || * ||,
then

Using (2.4), we obtain

w:;,=an8n,;2“"@:::w( o+ T2 D 4 D S>

SP?
= oIS 2(IS |7 + alleSmltz)cbfn

~-1D,SAD,S
a)Z:a"”SH;&mﬂl—l /\(CZ)(P-I-OCn L4 A (4 )

Yo 2 IS|?

/ _ n—1 /_1 _
= o"|| S| 2*"e™ <a~),,, + vl 66(p> A {(J)m + ~— 90¢ +

2n 2n

+cxn«/—1(DmS/\B,—,,§) D,S = D,.S —>}

o e S A@(p—@(p/\—s———+6q)/\6(p

From the definition of ¢ one can compute

do= Y {(D,,,sfs°f0,-,- + 8'D,S76,; + S'S'D,,0,;

i+j=m+1

o o [ D.S
+ 8°S'D,,0;5)(—log | S|I7) + k(—log || S||,) ' (8870, + S‘S’Bu)<—- T)} ,

hence,
D.S o .
dpn—2= Y (iS'S70;; + jS'S'0;;)(—log S )" -
N i+j=m+1
D,S A DS s
—TSA?—H (g S I2)(S' S"Do; + S'S'Dpfy) 1 }
ko D.S/\D D,S A D,,S
00 A 3 + O(@2m + 2) —m> [ Dm>
g |SIZ ISP ¢ +00@m+ )=
DS D,S
+ Y (Dnby A= 0Qm+2) + 22 A D,0,002m +2)
i+j=m+1 S S

_ S S _
+ D0y A 9;"_— 00Qm +2) + &S”— A D,0,;,002m +2)

+ D,,0;; A D,,0;;0(2m + 2) + D,,0;; A D, 0,;002m +2) +

+ D,,0,; A D,,0,;02m +2) + D,,0;; A D,,0,;0(2m + 2)) .
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Here we use O(Zm + 2) to denote those functions of form

124 4s N
{4
Z Z vst(_log ” [% ”m)
s=£1=0
where ps, q;, . . ., q,, are positive integers, v, are smooth functions in a neighbor-

hood of D and v, = O(]|S||®") near D. We further compute the complex Hessian
of .

_ D,.S A D, D,.S
309 =(~log|SIZF ¥ {a(s $i6,, + Sisig) —> 2o
itj=m+1 IS
L. _ i D,
+ iS'S/ DmS A D,,,H,-j +jSlS]Dm9ij A DS—S + lSlSJD 9” A TS

. DnS - o o
+jSi18I =2 A DuBi; + S'DpDS6,; + DD, S'SI6;;

k(m +1) D,SAD,S
ogiS2? " |sp?

+ Sis_jD,,,D—mQ,-j + S—iSijD_mgij} +

D,S . o
2N Y (S5SiD,8; + S'SID,0)
N i+j=m+1

—k(—log HSH?,.)"”{

. _ . __ D
+ Y (58D, + 5'SD,0;) A g}‘f‘

itj=m+1

k(k — 1)¢ D,S A D,S
(log (IS Ix)? NE

On the other hand,

D,.D,S’ = DS/ +jSi®,, = jSIG,

—D,,
D,D,S'= —D,D, 8+ iS'®,, = iS'®,,
= —Dm

Dy 0 — (i = j)0:j0p -

=l

mDmoij
In particular, these imply that
(1S1200p) A &L= =an02m+2) for £=2.

Now using the fact that || D,,S|l,, is nonvanishing along D and the above identities,
we can compute the ratio of the two volume forms as follows,

n 2 ane / __ _ n—1 / _
Do _ S lme (wm + vl 66(/)) A {((I)m + vl 66<p>

b (ISTZ + 2 DuSI2) 2 2n

ozn‘/ (DS/\DS D,S < m —)}

- — + 0
™ ISP S AOdp —0p A 3 + 0o A dp
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2 jang / _
IRIED {cb',',,‘l A [(d)m + ! 65(p>

" (IS1Z+ a| DS I2) 2n

-1 DS
+<xn~/ <1—<m+1+ 2k )(p)DmS/\D,,,S]

2n log IS N

J—=1 ~1D,S AD,S
+(n— D% A > 66(/)A<cbm+an2n |~;\|2 >}+0(”’+2)

S|z e J=1 .
= ™ + 1S me {(ncb:‘,,_l A 66(;)) -

(IS17 + o1 DuS |12) 2n

~n+ 1 \/_IDMS/\D—mS}

- +1+ "
ocn<m P A Kk

2k >
log ||S I

+an(n — D&Y 2 A <v —1DnS A DmS)} +O0m+2)

2n IS|?

—1+an<p—<m+1+ 2% > + ISl
1og [S12) % T (ISIZ + al DS |12) i

L _1 iQj 2Y SICiP A
{an(n R ) 19N ( ~2n >  §$D,D,b; + S'S'DDO;;

itj=m+1

+ SiDmD_mS—jHij + Dmﬁms—isjg—ij>

—1D,SAD,S
2 7m 4 n(—log ||S|12)"

2n [S|?
'§99,; + 5S4, /=1 D,S A D,S
x Y (S0, + S'S0,)ant A e )
i+j=m+1 27'[ lSl

ko ( k-1 )}
+ 2 s+ —— Vb rom+2
Tog [ ST2 logspz) oM+

2k - _
=1 _ 1 4—=r Y (S'§I0,.0, + §iSIT,.6,
+ oang <m+ +10g NS”,Z,,>(P+ (S's’0,.0;; + §'S’0,.0;5)

itj=m+1

-y (sfs'fei,.+s‘fsff7i,~)<(n—1)1—%)(—logusufn)"

i+j=m+1
ko < k—1 >
b (mt 1+ ——— ) + Om+2).
#log |ST2 ogspz) Tom*

Then the lemma follows.

Now we apply this lemma to the construction of || *|/,+;, that is, finding
a function ¢ such that ||+ |2, = e~ ?| - |2 satisfies (i), (ii) given above. The
condition (i) will be automatically true as long as ¢ is constant along D which is
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always fulfilled in our choice of ¢ through Lemma 1.2. Therefore, it suffices to
eliminate the terms Zi"‘;‘oum+ w(—=log | SYZY from f, in (2.10). It can be done
successively as foliows.

Let f,, be given by (2.10). Write

Ut Lmer = 0 SiS_j(vij + vi;) + S—iSj(ﬁij + i) (2.13)
i+j=m+1
where v;;]p are perpendicular to ker((n — 1), + g —m—2—j(n—1))and vj;lp
are in the above kernel.
If there are some i, j with i + j = m + 1 such that v};|p % 0, applying Lemma 2.2
-1
Withk:/m+1+land 0,J=k_1<r’n‘—2> U:'j, we have
o
f= Y  S8'Si;+ S'S7i; + lower order terms .

itj=m+1

Now one can solve the equations for 6;;e I'(D, Ly’ ® Lp).
Dm9ij+<g-—m—2—j(n— 1))9ij=uij|,) onD. (2.14)

Extend 6;; to M, then we apply Lemma 2.2 with k = 7,,.. ; and 6;; given above and
conclude f, is of order | S|m*!(—log|/S||2) 1. Replace f, in (2.10) by this f, and
repeat the above process. After finite steps, we eventually eliminate
o Ums1,(—log||S|aY from f,. Let @, be the sum of those ¢ in Lemma 2.2 in
the above finite steps. Define ||+ |2+, = e ®~| - ||2. Then the hermitian metric
|| * llm+1 satisfies (i), (i) as we want.
Let w,, be the (1.1)-form on M defined by (2.2) with | ' ||, replaced by || - |,n.
Then for 8, > 0 small, w,, is positive definite in V,, = {||S(x)|| < J,} and defines
a Kihler metric g,, on the manifold V,, with the associated Kéahler form w,,.

Lemma 2.3 The Kdhler manifolds with boundary (V,,, 0V, gm) are all complete,
equivalent to each other near D and have euclidean volume growth. Furthermore, for
each m, the function || S| ,.* is equivalent to any distance function from a fixed point in
Vx near D.

Proof. Fix m > 0. Put = ||S|,®. Then

—10y AdY Aot
Vapiz, =L 2 VA

where V,, denotes the gradient with respect to g,. By (2.3) and (2.4) with o,
replaced by w,,, we have

V=1 DuSADS A" _, i
|le//|;m= ' (”S”2+a”D S”Z)Cbzlna +2]|S||rzn( b

_ o1 DuSADS Ayt _ 2| DS |2
2 (ISI2 + o DnSlIZ)@h  n(IS|Z + ol DuSlI7)
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. . . 1
Since || D,,S | is nonvanishing near D. |V, |?(x) converge to — as x approaches to
n

D. Therefore, ¥ is equivalent to the distance function from the boundary dV,, near
D. In particular, it implies that each (V,,, 0V,,, g.) is complete, since i goes to
infinity near D. To estimate volume growth of (V,,, 0V,,, ¢..), we first remark that
" is equivalent to || S|, 2*" 2@, is the same as:

NSl 22 a,
ISlm(x) < 1%

and is of order I ?". Therefore, (V,,, V,,, g,,) has the euclidean volume growth.
The equivalence of these metrics ¢,, near D follows from (2.3).
Next, we compute the curvature tensors of these metrics g,, near D.

Lemma 2.4 Let (V,,, 0V, g.) be a complete Kihler manifold with boundary defined
as above. Denote by R(g,,) the curvature tensor of the metric g,,. Then the norm of
R(g,,) with respect to g,, decays at the order at least || S||** near D, moreover, the
integral {y.,.|R(gm )3, @h is finite if and only if D is biholomorphic to CP" " and gp is

1
the —-multiple of the standard Fubini-Study metric on CP"~*, where gy, is the Kdhler
o

metric with Kdhler form wp, and the Kdhler form of the Fubini-Study metric is given

by\/—

Y gdlog (z -0 |w, %) in homogeneous coordinates.

In fact, we have the following expansion of R(g,,) along D. There is a finite
covering {U,} of D in M satisfying: for each ¢, there is a local _uniformization (U,, m,)
of M, with =,: U — U, such that 7, '(D) is smooth in U,, and for some local
coordinate system (z,, .. ., z,) in U, with z, = Sand 2/ = (24, ..., z,-) tangent
to D along D, one has

Z R(n;k gm)i}'k?(z/’ Zn)éizjész

i,j k(=1
n—1

=af| S| 7**(m (2, 2) Y, (R(u¥gple: )iz
i, k¢=1

— alhghz + hzhg)) (2, 0)- EEEL" + OIS 17 (m(2, z)) (2.15)

for any g,.-unit tangent vector (&%, . . ., &"), where (h;5) is the curvature tensor of
the hermitian metric | * ||,, in local coordinates (zy, . . ., z,).

Proof. 1t suffices to prove (2.15). Without losing generality, we may assume that
U, n M is smooth. Given any point x in U, n M, choose coordinates (z¢, . . ., 2,)
such that z, is the local representation of Sin U, and (z4, . . ., z,-,) = 2z’ is tangent
to D along D satisfying:

hifzi(x), ..., 2,—1(x),0)=8;; fori,jSn—1

gh”_(zl(x) L) Zn—l(x)a 0) =0 fOI' i’j’ k é n—1 (216)

where x = (z,(x), . . . , z,(x)).
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We may also assume that || * {,, is represented by a positive function a in U, such
62
that a(x) = 1, da(x) =0, 52—%&) =0 for i,j £ n. Then one obtains by com-
j0Zj
putations
"z, P51+ O(lz,))) i j=n
a3z, P21 4+ O(lz,])) Hfi=j=n
O(lz,|***") ifi,j<n i%j
0(|z,***?) ifiorj=ni%j
O mis . [Oh; 1 0i Okc O
T 3) = sz 2 - 2 Gy + by — D0 ) 1
k

aZk Zn |Zntzzn
azgmif 2 azhif
= T A% —— h_h 7 h'- 7
azkaz-/ (X) O(|Z,,l ﬁzkﬁz} + O(( ijites + l(hkj)

- OCZ_;I(én( Ohiy +9 6h,7> az, ! (5 g + O 6h,~;>

ga(x) = (2.17)

oz, Mo "oz, ™ 0z,
+ “zlz Gridnihiz + SuBuihiz + Sudurhis + Suiburhi)
+ (e + 1) %—/} (2.19)
Given any g,,-unit tangent vector (&', ..., &") at x, one derives
€S Clz, P (x), i=1,2,...,n—1
Y 2.20)

where C is a uniform constant independent of (¢!, ..., é") and x near D. Now
using (2.16)—(2.20), one has

iz Y mij miv a mujT iz 7t
R(gm)i;k/(x)éléf«:kf%( ga_ 0+ % g0 L g L (x))é‘éfé"éf
Zy wo=1 Zk Zy
= 0(1z,)* "1 (%)) — tlz,) ™ 2(x)
o L i) ) ()& EIERE
azka— ij! it Tk j
— 4 |z, " 2 2 ()| EM R () EET — P (a + 1)?|z,] 724
I R Iy g:f(x)<2é"hi;(x)

u,v=1
(1 + e,
HPREE) )

. (ZEjhu;(x) +

(1 + a)é_"ém,>
I, 12 (x)
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= 0(|z,|*** 1(x)) — ol zs| 7 **(x)

%h;y R
¢ - Sh, < iEJgkEl
X <6zk62{ + alhhz + hlzhk,)>(X)§ 44

n—1
—4o®|z,| 72 (0)IE" Z |EH 2 =0 (a4 1)) 2, 72274 €* +

- 2a
bt a 4200 ( b (‘Z"' 12076 | s 12)

L4 +a)2|€"|2>

o |z,

= 0(z,|** "1 (x)) — ol za] " **(x)

*h;

(az 2 /(X) + alhghz + h;zh,))(X)é‘é‘ eree,
k

Then (2.15) follows easily from it.

Corollary 2.1 The norm of the curvature tensor R(g,) with respect to g, decays
exactly at the order p,,> near D unless D is biholomorphic to CP"~* and g, is the

1
&-multiple of the Fubini-Study metric on CP"~ 1, where p,, is the distance function

from a fixed point in V,, with respect to g,,. In the later case, || R(g) .. decays at the
order at least p,;3.

Proof. 1t follows from Lemma 2.3 and 2.4.

Next, we study the asymptotic behavior of the covariant derivatives of R(g,,)
near D.

Lemma 2.5 Let (V,,, 0V, gm) be the complete Kdhler manifold as in Lemma 2.4.
Then

VX R(gm) lgm(X) = O(pm(x)~**2) (2.21)
or equivalently

1V R(gm) g, (6) = O S[**2%(x)) (2.22)
where V,, denotes the covariant derivative with respect to g,,.

Proof. We will sketch a proof of this lemma in the different spirit from that of
Lemma 2.4. This proof will be simpler, but less informative than (2.15).

Fix an m. Choose & > 0 such that ¥; = {x|||S|(x) < é} is contained in V,,.
Clearly, it suffices to show (2.21) for those x in V. Since the hermitian metric || « || of
Lp is smoothly defined on M, the admissibility of D implies that the total space of
the unit sphere bundle of Ly}, with respect to | - || is a smooth manifold of real
dimension 2n + 1. We denote it by M,. Furthermore, since Lj is just the normal
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bundle of D in M, there is a diffeomorphism ¥ from M, x (0, 6) induced by the
exponential map of (M, h) along D with respect to a fixed orbifold metric h.
The Kédhler metric g,, is given by its associated form

/1 _
e 00(e* || S| =) . (2.23)

m

Wy, =

Here ¢, is a function of formz f ug(—log || S1|2Y with u, being smooth in
M and of order O(||S||%) near Tﬁerefore the pull-back metric ¥*g, on
M, x (0, d) is of the form

P*gm = [SI72*h(IS 1, IS log IS1) + US| ~*d | SI~=U(ISH, [S]log Sl
+ U(ISI, ISllogISH@IS|~)?

where H(tq, t5), v(ty, ty), u(t,, t;) are C*-smooth families of metrics, 1-tensors,
functions on M, respectively. They also satisfy: for any integer £ > 0O, there is
a uniform constant C, such that all up to order ¢ covariant derivatives of h, v,
u with respect to a fixed metric h in M, are bounded by C, for 0 <t; < 4,
0<t, <dlogd.
Writing I' for || S|} 7%, we have
1
Y*g, = th(l" a I~ alogI’ o) + I'dl'v(I" "=, F alogF a)
1

+ (%, I ~3log I ~#)dI"? (2.24)

where 6 *< T <+ o0. So we may regard ¥*g, as a metric defined on
x (67% o).
For any fixed x in V;, ¥ ~*(x) is in M, x(67% o0). Put I', = ['(¥ "1 (x)) =
| S|l ~*(x). By Lemma 2.3, this I', is just the distance p,,(x) of x from a fixed point in
V.. with respect to g,,. Therefore, (2.21) is equivalent to the following

[VER(IS 2 P * o) | rsowgnn (%) = Ok(1) (2.25)

where O,(1) denotes a quantity bounded by a constant depending only on k, and
V is the covariant derivative of I'; 2 ¥*g,,.
On the other hand, (2.25) follows easily from the expression (2.24) of ¥*¢,, and
the boundedness on the derivatives of h, v, u in (2.24). Hence, the lemma is proved.
To obtain the approximated Kédhler metric on M, we first assume for simplicity
that the divisor D is ample in M. Then there is a hermitian orbifold metric || * | on
L, with curvature form @' > 0 on M. Define

w, =w; + C, —————”znl a0(—(IS)I')*),e>0,C,>0 (2.26)
then by some direct computations, one can easily prove that w, is positive definite
on M. So w, gives a Kéhler metric g. In general, we assume that D is neat and
almost ample in M. There is a hermitian metric || * || on L with its curvature from
@' = 0. By the same arguments as in the proof of Theorem 5.1 in [TY1], one can
find a (1.1)-form wg with wg|p =0, ¢ > 0, C, > 0 such that

w, = w3 + C, ———Vz;l 88(—(IS1")*) + wg > 0. 2.27)
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Note that wg = 0 in case that D is ample.The metric g with Kéhler form w, is our
approximated metric. For the reader’s convenience, we summarize the above
discussions by the following proposition.

Proposition 2.1 Let M, D be given as in the beginning of this section,

-1
QeC(—Ky — BLp). Put o = —ﬁ—n—— Then there are sequences of neighborhoods
{Vn}mz1 0of D, complete Kdhler metrics w,, on (V,\D, 6(V,,\D)) defined by (2.4) such
that

Ric(w,,) — Q = —Vz;l 3f, on V,\D (2.28)

where f, are smooth functions on M satisfying: f,= O(|S|™*?), and
IV¥ly,. = OCI SI™*¥**) for k = 1. The symbol V denotes the covariant derivative
with respect to g,. If we further assume that D is neat and almost ample in M, then
(2.27) defines a complete Kdhler metric g with Kdhler form w, such that

o
:Iﬁ
—

Ric(w,) — 2 = éof ,

where f is smooth on M, f = O(||S|1****%) and sup, <x<2|V* |, < 00. Moreover, the
curvature tensors R(g,,) and R(g) decay at the order O(||S||**) and at the order
O(|S|12**%) for e <4 or O(|S|I?**?Y) for e 2 4iff D= CP"" ! and Ly is the

1

—hyperplane line bundle on CP"~ 1. Also, the covariant derivatives of the scalar
o

curvatures of g, g are bounded.

Proof. We adopt the notations in the proof of Lemma 2.5. The estimate
[V¥oul,,. () = O(J| S ™" 2% (x)) is the same as

|VEE* 22 W5 gm( ¥ 71 () = O 7D (2.29)

This latter one (2.29) follows from (2.1) and (2.25). The estimates on R(yg,,) come
from Lemma 2.4 and 2.5.
By choosing é smaller if necessary, we may assume that wy vanishes in V. Then

/1 -
w, = w3 + C,X—00(— || SI')* in V;
27

and w, 1s uniformly equivalent to w; in Vj, i.e., there is a constant C; such that

Cilws 20, £ Csos . (2.30)
Also
f=r — log(wy/w3) . (2.31)
Therefore, in order to have the required estimates on f, |V¥ |, (k = 1,2), | R(g) |,
and ||V,R(g){,, we only need to showfor £=0,1,..., 5,
IVA(ISI) lgs (x) = O([ISIIP***(x)),  x€eVs (2.32)

where V, is the covariant derivative of g.
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1
Denote by 6 the function ¥*(]|S||')?** defined on M, x (63, c0). Then (2.32) is
equivalent to

2

V70112, (P "1 (x)) = O(T 7). (2.33)

1
On }he ozther hand, on M, x(d" 2, o), the function 8 is \;Jritten of form

ea(', ' =)~ 2 where 0~(-, *)is a C®-smooth function in M x{S "2, oo) with all its
derivatives bounded in terms of a fixed product metric. As in the proof of Lemma

~ ol L e 2
25, put I' = I'/T, then § = &80 I3 21" «, 50 (2.33) follows from the boun-
dedness of the curvature tensor of y; 2 ¥*g,, near ¥~ *(x).

Remark. By formula (2.6) which defines f,,, f, one can derive the following equa-
tions on V,\D for m = 1.

erof, =elwl . (2.34)

3 Sobolev inequalities

In this section, we derive Sobolev inequalities on complete Kédhler manifolds (M, g)
described in previous sections. Precisely, we prove

Proposition 3.1 Let M = M\D, where M is a Kdhler orbifold of complex dimension
n = 2 and D is a neat, almost ample, admissible divisor in M (cf. Sect. 1). Let g be the
Kdhler metric on M given by Proposition 2.1. Then there is a constant C > 0 such
that for any smooth function h in C*(M, R) with compact support, one has

n—1

2n n
(j |h1ﬁdVg) < C [ |Vh*dV, (.1)
M M

where Vh denotes the gradient of h with respect to g.

We would like to point out that the Sobolev inequality (3.1) seems to be
unknown in general for complete Riemannian manifolds with bounded curvature
and euclidean volume growth. Our proof here for Proposition 3.1 strongly uses the
asymptotic cone structure of (M, g) and cannot be applied to the general case. Such
a Sobolev inequality is one of crucial difficult parts in the proof of the existence of
gqin Theorem 1.1. By the way, in [BK], the authors neither showed the validity of
Sobolev inequality nor studied the asymptotic decay of the curvature tensors for
those Kéhler manifolds they required. They took the Sobolev inequality for
granted in the process of their proof of the main theorem.

The rest of this section is devoted to the proof of Proposition 3.1.

First we study the asymptotic properties of the complete Kéhler manifold
(M, g). Let S be the defining section of D and || * || be the hermitian orbifold metric
on Ly as in (2.5) and (2.6). Define for 0 > 0,

Vs={xeM|lIS](x) £ 0} (3.2)
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then (V;, 0V5, gly,) is a complete Kéhler manifold with boundary dV;. By the
assumption that D is admissible, one can easily show that d¥; is smooth for
¢ sufficiently small. The following lemma is elementary.

Lemma 3.1 The above manifold (V;, 0V;) is diffeomorphic to (]\71 1x(0, 47, M, x ),
where M, is an orientable riemannian manifold of real dimension 2n — 1 and is a finite
unramified covering of a minimal submanifold M | in some unit sphere S***'. More-
over, under the diffeomorphism, the metric g is equivalent to the one of form

ds? = r=2%(ds? + r~2dr?) (3.3)

where ds? is the pull-back of the standard metric on S**** under the covering map
M, —» M, =S¥ and r is the euclidean distance from the origin in R.

Proof. The restriction Ly|p is just the normal bundle of D in M. By the admissibil-

ity of D, one can easily check that for any hermitian metric ||« || on Lp, the unit
sphere bundle S} of Lp|p with respect to || * ||’ is a smooth manifold. Note that
Sp={xeLplpllix|'=1}. (3.4)

We choose the metric ||+|' as follows. Since D is almost ample, there is
a holomorphic map ¥: M — CP*¥*! for some large k, such that i is one-to-one in
a neighborhood of D in M and Hy = mLj, for the hyperplane line bundle H on

. - 1 .
CP**! We take the metric | * ||' to be the restriction of —multiple of the standard
m

metric on H. Now we define M, to be S} with the chosen metric -

Now S™is a global section of mL,,. Let CP* = CP**! be the hyperplane defined
by this section. It is a well-known fact that the unit sphere bundle
SH#(CP*) = {xeH|cp«||| x|’ = 1} is just S**! and the natural bundle projection
p: S#**1 - CP*is the Hopf map, so M; = p~!(D) = §?**! is a minimal submani-
fold. It is easy to see that M, is a finitely unramified covering of M, of degree m.

The diffeomorphism from (V;, 8V;) onto M, x [0, 6] is induced by the exponen-
tial map of (M, h) along D with respect to some fixed Kéhler orbifold metric k on
M. The equivalence between g and the metric ds? in (3.4) follows from the definition
of g and the standard expansion formula for the exponentiai map. The lemma is
proved. .

Let R; = {teR|t = 6~ =}, we see that the manifold (M, % (0, 8), ds?) is equival-
ent to (M, x R, p?ds? + dp?).

Proposition 3.1 will follow from Lemma 3.1 and the following Proposition 3.2.
To see it, we first extend the metric ds® on M, x R; = V; to the whole manifold M,
still denoted by ds®. Then g and ds? are uniformly equivalent. %lovlv) (M, ds?) satisfies

the assumptions in Proposition 3.2 below, so by taking f = h»-2 in (3.5), we have
n—1

2n “n _ n
(jwn—de) <2 I)thm[VhI,,sde.
M n—2 M

Applying Schwarz inequality to the integral on the right, we obtain

n—1

2n “n _ 2n 1/2 1/2
<5 |h|n‘——de) <2 ”c(j |h|n—2dV) (j |Vh|3sde) :
M n M M
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It yields
n-2

2 N 4n—1)?
<j |h|n‘2dV) <= gngaar
M n M

Since both g and ds? are uniformly equivalent in M, the inequality (3.1) follows
from the above. Note that C in (3.1) may be different from that in (3.5).

Proposition 3.2 Let (X, ds*) be a complete riemannian manifold of real dimension n,
U < X be compact subset such that (X\U, ds®) is equal to (Y x Ry, p*ds? + dp?),
where Y is a finite covering of a compact minimal submanifold Y in S* and p is the
euclidean distance on R, and ds} is_any riemannian metric on Y. Then there is
a constant C depending only on U, Y, Y and ds? on Y such that for any smooth
function f with compact support, we have

n—1

(y |f|n31dV> "< C [ VflandV . (3.5)

M

The rest of this section is devoted to the proof of this section. Without losing
generality, we may assume that ds? is the pull-back metric of the standard one on
S* under the covering map m: ¥ - ¥ < S% The map n extends to a map, still
denoted by 7, from the cone Y x R onto the minimal cone ¥ x R, in R** ! such that
Ttlyxr, is a finite covering. Moreover, by the previous choice of ds?, we have

p2ds? + dp? = n*(ds?) (3.6)
where ds? is the euclidean metric on R**!, Thus, the following lemma is essentially

due to L. Simon, etc. (cf. [Si]).

Lemma 3.2 There is a constant C; = C,(n, m) depending only on the dimension n and
the degree m = deg(r), such that for any smooth function f on Y x R with compact
support in Y x R, we have

n—1

(j [f|nfldv>" <c | Ivflav (3.)

YXR+ YXR4

where dV, V are the volume form and the gradient of the metric p?ds* + dp?.

Proof. We may assume that f is nonnegative. Define , fon Y x R, by
)= Y f(y). (3.8)
yen~ (x)

Then 7, fis a smooth function on Y x R, . Since ¥ x R, is a minimal cone in R**,
we have, by [Si], the following

n-1

( f |n*f|n’3—1n*(dV))" SC [ |VflndV (39)

YxXR+ YxXR4

where C’ is a constant depending only on n. Now (3.7) follows from (3.8) with
C1 = mC/.
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It is now well known (cf. [Y2, Si], etc.) that the Sobolev inequality in Proposi-
tion 3.2 is equivalent to the following Isoperimetric inequality: for any compact
smooth hypersurface 6Q in X bounding a domain Q,

(Voluz(R)) 7 < C Vol (69Q) (3.10)

where the constant C is the same as that in (3.5).

Lemma 3.2 says that if @ < X\U, then (3.10) holds for C = C, independent of
Q. Let B, be the domain bounded by the compact hypersurface ¥ x {r} = YxR,
for r = 2. Then U = < B,. By the choice of ds?, the function p is a convex on in
X\U. The boundary 4B, is defined by P = I', so is convex for r = 2. Put

a= max {Vol,2(B,)}, b= max {Voly(éB,)} . (3.11)

2=srs3 2=r=3

By Sard’s theorem, for almost all r > 2, the intersection @ N B, is a union of
smooth connected domains. In particular, 3(Q n éB,) is homologous to zero in 0B,.
Let r be any one of those values. Then there exists an area minimizing two-sided
hypersurface Z, in B, with boundary 8(Q n dB,) (cf. [Fed]). Note that the convexity
of 0B, gives a barrier such that Z, lies inside B,. This £, may not be smooth
everywhere if n = 7, but Sing(Z,) has Hausdorff codimension = 6. By area-
minimality of Z,, we have

Voly(Z,) < Volge(0Q2 N B,) . (3.12)

Now we can finish the proof of Proposition 3.2. First we assume that

Voly2(2) = 3a + (3C; b)n—1, where C, is given in Lemma 3.2. Choose r between
2 and 3 such that Q n B, is smooth. Let Q, be the domain enclosed by 2 n dB, and
02~ (X\B,). Then 2, « =« X\U, and

Vol (2) 2

Wl N

Vol(Q)

Voly2(02,) £ Vol (0Q2) + b .
By Lemma 3.2, we have

-1 n—1

2 n
EVOIdsz(Q) n S Volye(Qy) » £ Cy Volye(02)

< C,Voly2(8Q) + C1b (3.13)

n—1

1 n—1
< € Volya(0Q) + 3 Volus(@) 7

Hence Proposition 3.2 is proved under the assumption Volg:(Q)=
n
3a + (3C,b)*-1. From now on, we assume the reverse inequality. By scaling, we

assume also 3a+ (3C,b)p»-T=1. Choose r; >0 with Vole(B, )= 1. Fix
arg > ry > 0, which will be determined later. The hypersurface dB,, cuts Q into two
domains ©, and 2, where we still denote @ N B, by Q. The distance function p on
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R, is also defined on X and has the property |Vp| = 1 with respect to the metric
ds?. By the Co-area formula (cf. [Si, Fed]), there is an r between r, and ro + 2 such
that 0B, N Q is a smooth domain and

Vol;2(0B, N Q2) < Voly2(R2,) . (3.14)

Let Q) be the domain bounded by B, n dQ and 0B, N Q, then Q, = Q,. Let C, be
the isoperimetric constant for domains which are subsets of B, ., (note that C,
depends on ry). Then by (3.14)

n—1

= (Volg(€22))

n—1
Volsa(Q1) < Volga(,) < €3 Voly2(0£23)

< C,Voly2(092) + C, Volye(2,) . (3.15)

1
I 2 S T 2
f Vol (2,) < 333G, Vol (2), then

-1

(Volue(Q)) 7

< 4C, Vol (09) . (3.16)

Thus we may assume that Vol (Q,) gz—_l_l?Voldsz(Q) and Vol,:(0Q2) =
2

n—1
Vol (Q2) » £ 1.
Let Q' be the domain enclosed by Z, and 0Q n (X \B,).

Lemma 3.3 X, N B, = ¢ if ro is sufficiently large.

Proof. By (3.12) and the fact that Vol;2(0Q) < 1, Vol (2,) S L T 2, N B, , + ¢,
then there is an xo€ Z, N 0B,,,. Let B(xo, ds?) be the geodesic ball with center at
xo and radius ¢ > 0, assume ¢ < r,. Note that the curvature tensor of ds? is

Cs . .

bounded by —23 in By(xy,ds?). Then by the same arguments as in those for
rp

monotonicity formula [Si], one can prove the Monotonicity formula,

VOlds2(2r N B((XOs dSZ))
/n—l

Voldsz (Zr M B((xO, dsz))
({/)n— 1

et:(ro)f2 _Z ee(m)(’2

(3.17)

for /' < ¢, where lim,, - , &(ro) = 0. In particular, by taking ¢’ to be zero, we get
Voly(Z, N By(xo, ds?)) = Cae 202 pn-1 (3.18)

where C, is a constant depending only on the dimension n. Choose ¢ and r, such
that ro > ¢ and C,e™*"9*¢"~2 > 2 Then we get a contradiction if xo€ Z, N 0B
exists. The lemma is proved.

Now we choose r such that ro > 2r; and B, ,n 2, = ¢. f Q" B,, + ¢, then
by Lemma 3.3, B,, @', s0 Vol;2(€') = 1. It follows from (3.13) that

Tos2

n—1 n—1

Vol2(Q) * £ 12 Vole(2') 7 = 3C; Volys2(092)

< 3C, Vol,2(0Q) . (3.19)
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Therefore, we may assume that Q@' n B,, = ¢, 1ie., @' < < X\U. By Lemma 3.2, we
have

n—1

1
Voly (@) 7

n—1 n—

Vol Q) n <2 +3C,)

1

< Ci(2 + 3C,) 7 Volg(6Q) .

n—1
Put C = max{3C,,4C,, C;(2 + 3C,) " + 1}, then the above discussions imply
that (3.10) holds for any compact domain  in X. Proposition 3.2 is proved.

4 Existence of complete Kihler metrics with prescribed Ricci curvature

In this section, we prove the part of existence of complete Ricci-flat Kéhler metrics
in our main theorem stated in section one. Let M be a Kahler orbifold of complex
dimension n, D be a neat, almost ample and admissible divisor on M, and
M = M\D. Let g be the complete Kahler metric on M constructed in Proposition
2.1. Then there is a smooth function of satisfying

Ric(g) — Q = vl o0f (4.1
2n

f=0(|S|?**%), sup |V¥|, <0 (4.2)
15k52

-1
where Q is a (1.1)-form in C;(— Kz — BLp) with > 1, a = ﬂT’ and § is the

defining section of D in M, L; is the line bundle induced by D and |-| is
a hermitian metric on L;.

Proposition 4.1 With M, D, M, Q, g, etc. as above. Then there is a unique solution
¢ of the following complex Monge-Ampére equation

(wg + ———Vz;l 85(/))" =elwf on M
-

1 -
a)g+76a<p>0

4.3)

/1 -
such that ¢(x) converges uniformly to zero as x goes to infinity and &, + -y 00 is

bounded from below by a positive constant multiple of w. In particular, it follows that

-1 -
there is a complete Kdhler metric with Kdhler form w, + o 00¢ and its Ricci

curvature form being Q.
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We will prove this proposition in the rest of this section. First we note that for
any ¢ > 0, the following perturbed equation is always solvable.

/21 _\
<wg+—66(p> = el TPl

2n
/1 _
<wg+—2;—-66(p) >0 on M

(cf. [CY2], or Lemma 3.2 in [TY1]). Here we have already used the boundedness of
the curvature tensor R{g) and covariant derivatives of the scalar curvature of g. Let
@ be the unique solution of (4.4);. We want to prove that ¢; converge to the
required solution ¢ of (4.3) as é goes to zero.

((4.4)5)

Lemma 4.1 For any constants > 0, p = n, we have

[ loslPw) < oo 4.5)
M

where p(x) is the distance function from some fixed point x, in M with respect to the
metric g.

Proof. Let 1 be a cut-off function defined on R, 5(t) =1 for t < 1; 5(t) = 0 for
t=22, —1Z#{t)<0forallr

Multiplying 1> (?) (1 + p)ips| @5/~ 2 to (4.4); and then integrating, we obtain

/1 .
) ((wg + —En—aafpa) - w;>;12(1 + pYlos|psl? 2

M
= [ (%% — D)n2(1 + p)igs| sl >0} .

M

Before we proceed further, we remark that the solution ¢, is bounded and the

N2t TS . .
metric w, + e d0p; is equivalent to w, on M. The bound and equivalence may
'

depend on 6. Now we derive by integration by parts.
§ €407 — (1 + pYigsl sl *0)

M
—./ _ .
- § 005 A 3P(1 + p)ips| sl ~?)
T M
/_1 _ n-1
A<w;“1+"'+<wg+~—2—n—06q)5) )

—/ =1 2nnt qn? - = ~
=" faps A ([ZE + 2 BFpg,s ) + (p — 00, ) (1 + p)?
2 iy i 1+p

/_1 _ n—1
slPT% A (w;_l + 4+ <w9+785%) )

< Copi § (L + p)V 2 opslPe}
M
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where C; , ~ denotes a constant depending only on J, p, §
On the other hand, it is easy to check that

o _
€% - os; = 5¢ dsuploal| g, 12 on M ;
therefore,

. _ o _ i 7
J (@ — On’(L+ pYipalgal? @) 2 5 e TP BV [ (1 + pYl s
M M

— §1ef = 1in* (1 + pYin?| sl wyp .
M

2e
Since f + O(p~%"2) and p 2 n, we have

. N, 2 _
fn?le” — 1 + pYn?loslP twy £ C [ (1 + pf > "= s ')
M M

< C{f (1 + p)‘l—"|%‘Pa)g + f (1 + p)q *—2pw }

Lemma 2.3 states that the volume growth of (M, g) is like that of R?", therefore, for
p=n,4=0, we have

~ .28
§ n* (1 + p)YloslPef < Ca,p,;{f (1 + )" = |5l + 1}
M M

where C; , ; is still a constant depending only on 4, p, 4, but may be different from
the previous one. Let j go to infinity, we obtain for p = n, § <0,

~ ~ 2
[+ pYloslPal < Ca,p.;{f (L + p)™« | @slfey + 1} :
M M

Since @, is bounded, by Lemma 2.3, the integral [ (1 + o) ;7w will be finite if
q is sufficiently negative. Then our lemma follows from an iteration of using the
above inequality.

By the definition (2.19) or (2.20) of the metric g, we See that the distance function

p is equivalent to || S| 7% Thus by (4.2), f = O( p'2'7) Also one can prove that
Vol,(Bgr(xo)) £ CsR*" 4.6)

where Cs is a constant independent of R, Bg(x,) is the geodesic ball with center at
xo. Choose a py > n such that

1
B‘i—<2+z§>>2. @.7)
n+ po o

2e

Then by (4.6) and f= O(p~2"«), we have

n+po
npo+1) n{po + 1)
Co=|[lef =1 m o <+ .
M
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Let n be a cut-off function on R', n(t)=1 for t <1, #(t)=0 for t =2 and
|#'()] < 1. Rewrite (4.4); as

J=1 - ) - /1
—(—2n—66(p,;>/\<w; 1+(Dg 2/\<U)g+2—naa¢a>+"'
+<cug+ Y

_1 _ n—1
78640,;) >=(1 —el Tyt ((48),)

Multiplying #> (%) @5 with p = p, to both sides of the Eq. (4.8); and integrating
by parts, we obtain

[¥((R) )

2

"2
0y £ Cp{f l@slPle! — 1l + | n*@slP ™ gs(e2% — 1)e )
M M

1 J—1 -
12 p+1 a a
+_R21£|"‘ |9l ™1 X5—=0p A Op

A <w;—1 4+ 4 (wg _|___.___V_1 65¢6>"~1>} .
2n
((4.9)5)

By Lemma 4.1, the last term in the above inequality tends to zero as R — + oo.

1
(Note that @ + .

Applying Sobolev inequality (3.1) to the right-handed side of (4.9); and then letting
R - oo, we have

00¢; is equivalent to w with the constants depending on §).

n—1

(f |%|“’+1’"':Tw;'> <G, [ loslPle! — 1laf . ((4.10))
M M

Note that @;(e®®» — 1) = 0 on M and C always denotes a constant independent of .
In particular, by Hoélder inequality, it follows from (4.8); that

(f Iwal‘m“’%%) =C. ((@.11),)

Put prsy = (pe + 1) J‘I — 1 for k 2 0. Then it follows from the inequalities in
n —
(4.10);

1 1
Prer1t1 1 Pt
<<j |(p|”"“‘+16z);>pk + 1> = (Cpk)m—ﬁ((f ](p,;[p"+la);>pk + 1) .
M M

Letting k go to infinity, we conclude from (4.11); and (4.12);,
sup|ps| = C, ((4.13);)
M

((4.12)s)
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i.e., @; are uniformly bounded. Note that C in (4.13), may be different from previous
ones.

Lemma 4.2 (cf. [Y2, TY3]) Let @; be the solution of (4.4)s. Then
(1) there are constants C,, Cg independent of & such that
0 S n+ 4,05 < C,eColos—inines) ((4.14),)

where A, denotes the laplacian of the metric g.
(ii) There is an a priori estimate of the derivatives V3@;(x) in terms of (M, g) and
SupM {|(p6L lAg¢&|} and SupB;(x,g) {f’ |Vf|5 Ivzfl’ IVSfl}

By (4.13); and Lemma 4.2 (i), (ii) and the standard elliptic theory (cf. [GT)),
there is a subsequence {J,} of {4} such that @, converge to a solution ¢ of (4.3) in
C**-norms. Moreover, by (4.11);, (4.13), and (4.14);, we have

f lrpl“’"“’"‘—"fco; <C<w (4.15)
M
suplp| = C (4.16)
M
0<n+d4,0<C. @.17)

Lemma 4.3 Let ¢ be as above. Then ¢(x) converges uniformly to zero as x goes to
infinity.
Proof. Since Sobolev inequality holds for smooth functions on M with compact
support, one can use the standard iteration (cf. [GT, Chap. 8]) to Eq. (4.17) and
conclude the mean value inequality

1 n—-1

|<p(x)|§c9<§ |¢|‘P°+1>ff“1w;)”°“ " .19)

Bi(x)

where C, is a uniform constant independent of x. Then the lemma follows from
(4.15) and (4.18).

Therefore, the solution ¢ we constructed above is what we want in Proposition
4.1. The uniqueness of such a ¢ follows directly from maximum principle.

/1 -
Now let g, be the Kéhler metric with Kéhler form w, + o 00¢, then by the

second order estimate in (4.17), gq is equivalent to g and so it is complete. By Eq.
(4.3) and the definition of f, we have

Ric(go) = Q
The proposition is proved.

5 Completion of the proof of main theorem

-1
We still adopt the notations used in Sects. 2 and 4. Given > 1, a = F—;l—- with

n=dimcM and a (1.1)-form Q in the cohomology class C,(— Kz — fLp), we
constructed in Proposition 4.1 a complete Kéhler metric with @ as its Ricci form.
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The goal of this section is to study the asymptotic behavior of this constructed
metric, and then the proof of Theorem 1.1 is finished. Without losing generality, we
assume that f<n+ 1,ie,a < 1.
Denote by gy and wy, the Kdhler metric constructed in Proposition 4.1 and its
Kéihler form, respectively. Then
~/

wg = w,; + vl 00¢p on M (5.1)
2n

where ¢ is a smooth function which converges uniformly to zero as x tends to

infinity D of M = M\D. We may assume that oy vanishes in a neighborhood of

D (cf. the proof of Theorem 5.1 in [TY1]). Therefore, by shrinking V3 if necessary,

we have, by (2.27),

w, = w; + C,00(—||S]')**  on V5\D (5.2)
where for m = 3, w,, are the Kéhler metrics on the truncated neighborhood V,\D
constructed in Proposition 2.1, S is the defining section of D and || + ||’ is a hermitian

metric on L. By the definition of w,, and the assumption a £ 1, one can easily see
that for m = 3,

O = w3 + ——~V2;1 a0y, on V,\D < Vs\D (5.3)

with ¥r,,(x) converging uniformly to zero as x goes to D. From (5.1), (5.2) and (5.3),
we can write the Kéhler form w,, in the truncated neighborhood V,,\D as follows,

/1 —
Wo = O, + Y 000, (5.4)
2n

where ¢, is a smooth function on V,\D and ¢,,(x) converges uniformly to zero as
x goes to D. On the other hand, if f,, is the smooth function given in (2.28), then
IV¥nlg,. = O(|| S Im*****) and by (2.24), (4.1), (5.4), we have

/-1 - n
<w,,, + 5 58(/),,,) =e/mw”,  on V,\D ((5.5),)
where | * ||, is the hermitian metric on L, in defining w,,. Recall that

VLIS ta™) (5.6)
7T

Lemma 5.1 Define a function p,, on V,\D by p.(x) = || S||,,*(x). Then for é > 0, we
have

Wy, =

@

2

VA USSR, ., K5(5 + 1) 207273
l1—tm—1—8K G+1) _

(“’m* 27 P0(Kem )> <1 (n = 1= 0)Kopn ISI2 5 oI D.STE

(n—Dn—-20-2)
* 2

2
+ 0(05“1““")‘?))&7’;- 5.7

K252p; 404
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1
(@) for o = —,
(wm + V=l 00(Kpy "2 (~log pm)")>"
2n
=1 —(n~ )Kdp,*"(—logpa)’ " (1 + o())wh)  (58)
where K is a constant, and D,, is the covariant derivative of || * || .

Proof. (i) By (2.4), we have

~—-1P,SAD,S
= oSl 2 A ( G+ md 2
2n N

= "I, 2" 2(IS |2 + all DnSIZ)@

where @& is the curvature form of the hermitian metric | - |,, on Lp. Because of the
logarithmic terms in the definition of || - ||, the (1, 1)-form &, may not be defined
on D. However, || D,.S|.. is well-defined on D and nonvanishing there. In fact,
| D,.S |, coincides with || DS| along D.

On the other hand, we compute

<w,,, v 65(KP,;25))n»= (co + Y Gk s e )
i 2n
(use) (2.3)

= o IISH,Z“"[(l — K8 S17 M) o,

o

—1
(L + K& §]34+2)
2n

DS A D,,,s]"
+ -

ISP
= |18 227201 — KO || SIZ )| S
+ ol + K& S|2 ) (1 - K2 || S|3 * 2y ~1+ | D, S|3] - o

_ (1=K [z (|| S7(1 = K3 S[|7** ") +a(l + Ko* || S| 77 *9) || D, S |1 2)
ISlz+alDaS|?

K3(5 + 1)) S| +0+2
=1 —(n—1— 5)K8|S[221+D —
{ ( JKo1S] IS+ o[ D512

(n—Dn—20-2)
+ 2

K252 S [0+ + O(IISII#‘“"’”)} .
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Now (5.7) follows from the above equation and P,, = ||S|,.*.

(11) It suffices to compute

<wm + ——-V; (K|S 122" D(—log S n,%,)"))"

S J
=[wm—K(a(n— 1)—W> (bm+

26a(n — 1) 62
+ K| o?(n — 1)2 — >
< " Toe szt e ST
. D,SADST
x || SI122"= D (log || S |12)° T]

n
wm

0 n-1
T ISIE+ o DuST {“ —K<<n— ”‘W) IS 17 log 1|sn.2,,)6} :

o
'{IlSlli - K((n -1 ——-—~—> IS 7" 2(og I SII7)

"~ alog|S)2
26(n — 1)
+ a|| DS + K(f*(" -1 - m>

. 1
x | S17" (log IS 1) | DmS 17 + O(W)}

{1 B s tog 1A + ot o

Then (5.8) follows.

Lemma 5.2 Let m = 2n + 2, n = dim¢c M. Then
1
@ for B>2,ie., o> - there is a constant C(m), depending on m, such that

C(m)

W, xXe Vm\D . (59)

[om(X)|

1

(i) for B £2,i.e, 0 < — and any 0 > 0, there are constants C(m) and C;, where C;
n

may depend on 6, such that

—Co(1 + p2(x)) " Y (—10g pr)’ (X) £ @m(x) £ CM)(1 + pp(x)) ™" xeV,\D .
(5.10)
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Proof. Fix m 2 6n. It suffices to prove (5.9), (5.10) in a neighborhood of D. First we
assume that f > 2. Then by Lemma 5.1 (i) with § = n — 1, we have

2
Vs s N (o Knn— Dpa 51+ o(1)
(“’m*?a"’(’(”m )> ‘(1‘ ISTZ + «IDSI2 )“"“’“ 0
(5.11)

On the other hand,
2m+1
emolt = <1 + O(p,2e ))w',',, on V,\D . (5.12)
2m + 1 1 K’

> 2n + > Notethata £ 1. Lete > 0, K = - where

|K'| = supy,\p (19w + 1), then |K|p, 2" V(x) > |@n(x)| for pp?"**(x)=¢. By
taking ¢ sufficiently small, it follows from (5.11) and (5.12) that on
{xe P\D|p;"*?(x) S ¢},

( v _Zm))"{ <elof, fK>0

_1 -
NamLPr 1y
O+ =5 = 00K > efret i K <0 .

Sincem = 2n + 1,

(5.13)

That is, Kp,,*"*? can serve as upper or lower barriers of the complex Monge-
Ampére Eq. (5.5),, according to K > 0 or K < (. Then (5.9) follows from the fact
that ¢,(x) converges uniformly to zero as x — D and maximum principle with
barriers Kp,, 2"~ 2. The estimate (5.10) can be similarly proved by using Lemma 5.1

(1), (ii).

Remark. On the euclidean space R?", the positive minimal Green function decays
at the order » ‘2"~ 2 where r is the euclidean distance on R?". In our case here, the
function p,, is equivalent to the distance function on V,,\D from dV,,. Therefore, for
B > 2, the estimate (5.9) is optimal. For § <2, we don’t know whether the
logarithmic term in (5.10) is necessary.

From now on, we fix a m = 2n + 2. The second order estimate in [Y2] implies

ﬁ

-1 -
0o, + o 00p, < Cw,, on V,\D (5.14)

where C is a constant independent of m and x € V,\D.

Proposition 5.1 Let ¢, be the solution of (5.5),, with decay as in either (5.9) or (5.10).
Then for ¥ > 6 > 0, there are constants Cj ;, depending only on 8, such that

VA0, (X) £ Coxpm(x)7*2" 7272 xeV,\D. (5.15)
Proof. Fix 6 >0 and m = 4n. For simplicity, we will always use C to denote
a constant depending only on J, m. We remark (cf. (2.21) in Lemma 2.5) that for
k=0,

IVER(gm)lgm(X) = O(pm(x)7*72), x€V,\D, (5.16)
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where R(g,,) denotes the curvature tensor of the metric g,,. Define a new Kéhler
metric § = R ~?g,, on Bg(x, g,,) with 2R = p,(x). Then B,(x, §) = Bg(x, g,,) and
one reads from (5.16),

sup {|[VR(§);l0<k<4m}<C. (5.17)

Bi(x,9)

Put @ = R %@, then (5.5),, is equal to

/=1 __\*
<w5+765q)> = e/mw} on By(x, §) (5.18)
and for any 6 > 0, there is a C; > 0 such that
sup (1) < C,R ™23, (5.19)
B1(x,9)
2m+1
On the other hand, by Proposition 2.1, |V*,|, (y)=O(R~ %) for
y€Bg(x, gn), s0
2m+1
sup (IV¥l;) < CR™ "o . (5.20)
Bi(x,9)
Since | Vi@l {x) = R 757 2|V*$|;, it suffices to prove
[VE@lp(x) £ R720F2 (5.21)
to complete the proof of this proposition.
First we consider the case k = 1. Note that by (5.14),
/-1 -
0§w5+—2n—66q~)§Cw§ on B(x,§) . (5.22)

Multlplymg 2@ to both sides of (5.18) with proper cut-off function # and integrat-
ing by parts, we can get

[ IVplioh< CsR™4420. (5.23)
B*(X,g)

Here we need to use m = 4n.
Taking the derivative on (5.18) with respect to z,(1 </ < n)and using (5.22), we
have on By(x, §)

= 3¢

g (—“’) G 7%y, f'” "ol + 0(V79) (5.24)
(32( ij Z

where O(V2®) denotes a function bounded by |V297) |- Now using Moser’s iteration

to (5.24) with 2
0zy

for 1 £ ¢ = n, we can prove
[V@l3(x) £ Cpm(x)~2"2. (5.25)
Since x is an arbitrary point in V,,\D, the estimate (5.25) holds on V,,\D. On the

other hand, by multiplying # 27(/) to both sides of (5.24) with proper cut-off function,
¢



58 G. Tian and S.T. Yau

integrating by parts and summing over ¢, we obtain

[ IV2@Rw}< CR™ 420 (5.26)
By(x,§)

Inductively, suppose that we have proved
[ViG15(x) £ Copm(x) 722, xe¥,\D (5.27)

forj<k—1<m and

m—k
j‘ IV"(ﬁlé(x) < CéR—4n+25 + CR —~T3g —nte . (528)
Bi(xy g)
: . . . ak 2 .
By taking derivatives on (5.24), we have equations for a'l—(pé_‘T with
Zl v v zn'l
Y i=1(is + js) = k as follows,
. &,
77 | — —) =" /my QRIS 5.29
g (02'1‘ . az::),.; e T ) (529)
on By(x, §). Then an iteration implies
VA |5(x) < Copm(x) 72772 (5.30)

Moreover, we can deduce from (5.29) the integral estimate (5.28) with k replaced by
k + 1. Therefore, by induction, we have proved the estimate (5.30) and the proposi-
tion follows.

By Lemma 2.4 and the remark after its proof, one can easily derive the following
from the above proposition.

Proposition 5.2 Let M = M\D, Qe C,(— Ky — BLp) be given as in Proposition 4.1,
go be the complete Kdhler metric with Ricci curvature Q constructed in Proposition
4.1. We denote by p the distance function on M from some fixed point. Then the
curvature tensor R(gg) decays at the order of at least p ~3 if D is biholomorphic to

1
CP" ! and the induced line bundle Ly, by D restricts to the &-hyperplane line bundle

on D =~ CP"""; if either of these two conditions falls, then R(gg) decays at the order

of exactly p =2 Moreover, the covariant derivatives V¥R(gg) decay at the order
~k—2
p .

Now our main theorem (Theorem 1.1) follows from Proposition 4.1 and
Proposition 5.2.

6 The proof of Theorem 1.2

In this section, let M be a projective normal orbifold and D be a neat, admissible,
and almost ample divisor. As in Theorem 12, we further assume that
C(—Kjz — Lp) admits a semi-positive (1.1) from Q. Then it implies the following
simple lemma.

Lemma 6.1 With M, D as given above. Then there is a semi-positive (1,1)-form in
C, (M) which is actually positive near D.
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Proof. Since D is almost ample, by Definition 1.1, (ii), there is a semi-positive
(1,1)-form wyp representing C.(Lp). Moreover, this wp is positive near D. The
required (1,1)-form is just Q + wyp,.

As usual, we call a projective orbifold M algebrarcally simply-connected if
M does not admit any finitely unramified covering.

Lemma 6.2 The orbifold M is algebraically simply-connected.

Proof. 1t follows from the Kodaira-Nakano vanishing theorem and an argument
due to J. Serre (cf. [Ko]). In fact, if M admits a finite covering M, then

1M, Ofz) = dy(M, Og7) (6.1)

where d is the degree of the covering and y(M, Oj) = Y i_,(— 1)k (M, Oy) is the
euler genus of structure sheaf ¢3; on M. On the other hand, by Lemma 6.1, there is
a semi-positive (1,1)-form in C,(M) which is positive in an open subset. Thus the
Kodaira-Nakano vanishing theorem (cf. Theorem 2.37 in [Sh]) implies that

(M, Ogz) =h""(M,Kg)=0 fori=>1 (6.2)
KM, Og)=h"" (M, Kg)=0 fori=1. (6.3)

Note that the vanishing Theorem 2.37 was originally stated for smooth manifolds
in [Sh]. However, there is no additional difficulty to generalize it to normal
orbifolds. Now h°(M, O) = h°(M Og) = 0. It follows d = 1 and the Lemma is
proved.

Lemma 6.3 The fundamental group mi(M) of M is almost nilpotent, that is, a sub-
group in (M) of finite index is nilpotent.

Proof. Since D is almost ample in M, the anticanonical line bundle — K}, is ample,
so D is simply connected (Kobayashi [Ko] proved such a manifold to be algebraic-
ally simply connected and the second author in [ Y2] proved simple connectivity by
constructing a metric with positive Ricci curvature). Thus by Van-Kampe theorem,
the group =,;(M) is a quotient of m,(M\D) by a normal subgroup. By the
assumptions on M, D, there is a complete Kéihler metric on M\D with nonnegative
Ricci curvature (cf. [TY1]). In partlcular it implies that 7, (M \D) is of polynomial
growth. Then a result of Gromov in [Gr] implies the almost nilpotency of
7y (M\D). This implies that 7,(M) is almost nilpotent.

In case there is a nonnegative form in C,(— Ky — SLp) for some § > 1, M\D
admits a complete Kéhler metric g with nonnegative Ricci curvature and euclidean
volume growth. Then the well known Volume Comparison Theorem implies that
any unramified covering of (M \D, g) has its volume growth less than that of R?". In
particular, the fundamental group (M \D), so n;(M), is finite. So Lemma 6.2
implies that 7,(M) = {0}. In general, we only need to remark that any nilpotent
group admits a subgroup of finite index. So Theorem 1.2 follows from Lemma 6.2.
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