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This is a continuation of our previous paper on settling the non-compact version of 
Calabi's conjecture on open manifold. In both these papers, open manifolds will 
mean quasiprojective manifolds M which can be written as M\D. We are con- 
structing complete K/ihler metrics on M with either zero Ricci curvature or 
non-negative Ricci curvature. As was explained in the program outlined by the 
second author in the Congress in Helsinki, D is related to the zeroes of a section of 
K~ 1 . In our previous paper [TY1], we dealt with the case when the multiplicity is 
equal to one. In this paper, we finish the case when the multiplicity is greater than 
one. We also allow orbifold type singularities in all these discussions. Our construc- 
tions include practically all known examples of complete K/ihler manifolds with 
zero Ricci curvature of finite topological type. (It should be noted that M. Ander- 
son, P. Kronheimer and Le Brun have recently constructed such examples with 
infinite topological type.) Besides constructing many new examples of such mani- 
folds which may serve as gravitational instantons, these matrices provide a bridge 
between metric geometry and algebraic geometry of M because we do have some 
understanding of complete manifolds with non-negative curvature. 

Acknowledgements. We would like to express our gratitude to the referee for the time and effort 
spent reviewing our manuscript. His excellent suggestions have resulted in a paper which is much 
more readable. When we obtained these results in 1986, Peter Li has shown great interest in their 
applications. We wish to thank his moral support. 

1 Statements of main theorems 

In [TY1], the authors constructed a complete K/ihler metric on a quasi-projective 
manifold M = M\D with prescribed Ricci form representing CI( -K~ . -  LD). 
Here M is a compact K/ihler manifold, D is a neat and almost ample smooth 
divisor in M (cf. Definition 1.1) and LD is its associated line bundle. In fact, the 
whole argument in [TY1] can be generalized to the case tha t /~  is a normal K/ihler 
orbifold and D is an admissible divisor (cf. Definition 1.1). In this paper, we will 
construct complete K/ihler metrics on M = M \ D  with prescribed Ricci form in 
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Cj (-Kgt - flLD) for fl > 1 under some suitable assumptions on A4 and D. Let 
M be a compact K~ihler orbifold with dimc(Sing(M)) < n - 2,where n = dimc 31 
and Sing(M) denotes the set of singular points. Note that Sing (M) is a subvariety of 
M. We assume that each point of M admits a neighborhood which is the quotient 
of a euclidean ball in C" by a finite group. Natural patching conditions are imposed 
on the overlaps of these neighborhoods. These two properties characterize complex 
orbifolds. A K/ihler orbifold is just a complex orbifold with a K/ihler orbifold 
metric. We refer readers to [Ba] for definition of K/ihler orbifolds in detail. On 
a K/ihler orbifold, one can also define line bundles, divisors, etc. 

Definition 1.1 Let D be a divisor in the Kfihler orbifold M. Then 
(i) D is neat, if no compact holomorphic curve in A4\D is homologous to an 

element in NI(D), where NI(D) denotes the abelian group generated by 
holomorphic curves supported in D. 

(ii) D is almost ample if there exists an integer m > 0 such that a basis of 
H~ mLD) gives a morphism from M into some projective space CP N which 
is biholomorphic in a neighborhood of D. 

(iii) D is admissible if S i n g ( M ) c  D, D is smooth in M\Sing(A4)~and for any 
x = Sing(A4), let z~x: Ux ~ Ux be its local uniformization with Ux c C 2, then 
71~-1(D) is smooth in U~. 

Now we are ready to state our main theorem of this paper. The proof of this 
theorem will be given in Sects. 2, 4, and 5. 

Theorem 1.1 Let ~I be a compact Ktihler orbifold of complex dimension n. Let D be 
a neat, almost ample and admissible divisor in M, and LD be the associated line bundle 
of D. Let 12 be any (1.1)-form representing the first Chern class C 1 ( -  K ;t -- flLD) with 
fl > 1. Assuming that D admits a Kgihler metric with Kdhler form oD such that 

Ric(~0D) = (fl - -  1)~0D + f2 (1.1) 

then there is a complete Kdhler metric go over MI\D whose Ricci curvature form is f2. 
Moreover, if we denote by R(go) the curvature tensor of  go and by p(')  the distance 
function on M from some fixed point with respect to go, then R(go) decays at the 
order of at least p-3  with respect to go-norm whenever D is biholomorphic to CP"-1 

n 
and Lolo is the ~ - m u l t i p l e  of the hyperplane line bundle on CP"-1; otherwise, 

R(go) decays at the order of exactly p -2  with respect to go-norm. Furthermore the 
metric go has euclidean volume growth. 

Corollary 1.1 Let 3/I, D be as in Theorem 1.1. Suppose that - K g t  = flLD_and 
D admits a Ktihler-Einstein metric with positive scalar curvature. Then M = M \D 
has a complete Ricci-flat Kiihler metric such that its curvature tensor decays as 
described in Theorem 1.1. 

Remarks. (1) In case that M is a smooth K~hler manifold, D is ample and 
1 </3 < n + 1, the existence part in the above corollary is also recently redis- 
covered by S. Bando and R. Kobayashi [BK] who made extra technical assump- 
tions and draw less precise conclusion. 

(2) It is still open whether or not D admits a K/ihler-Einstein metric with 
positive scalar curvature. Note that CI(D) = C1(2~)[D - Ct(L~)[~ = 
(/3 - 1)CI(Lo)ID > 0. In case that D is the Fermat hypersurface in CP" of degree 
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n - 1 or n, the first au thor  proved the existence of K~ihler-Einstein metrics on D in 
IT1].  When  D is a complex surface other  than CP 2 ~ CP 2 and C P  2 ~ 2 C P  2, by 
the results in [TY2, T2]. D admits  a K/ihler-Einstein metric. Therefore, M admits  
a complete  Ricci-flat metric if M = CP" and either D is a smooth  hypersurface of 
degree n - 1 or n, or n = d i m c  ~ t  = 3. 

Corollary 1.2 Let ~I, D be as in Theorem 1.2. Suppose that there is a semi-positive 
(1, 1)-form in CI ( -K~q - flLD) for some fl > 1. Then there is a complete Kdhler 
metric with nonnegative Ricci curvature and the curvature decay as described in 
Theorem 1.1. Also such a metric has euclidean volume growth. 

Proof Define a ho lomorph ic  invariant  e(D) > 0 as follows. Take  a G-invariant  
K/ihler metric co in C1 ( L , ) [ , ,  where G is a maximal  compac t  subgroup  in Aut(D), 
define 

PG(D'og)={ ~ p ~ C 2 ( M ' R ) l ~  (1.2) 

~(D) = s u p t e [ 3 C  > 0, s.t. S e-'Oco "-1 _-< C for all ~pePG(D, co)l .  (1.3) 
D ) 

Then one can easily prove  that  e(D) is independent  of choices of co and G, so it is 
a ho lomorph ic  invariant.  In [T1],  it is proved that  e ( D ) >  0. N o w  choose 
a /~' < 1 + ~(D) and /~' =</L Then our assumptions  imply that  there is a semi- 
positive (1.1)-form f2#, in C I ( - K f t  - fl'LD). The method  of IT1]  can be applied 
here to conclude the existence of a KS.hler metric with K/ihler form ~OD and Ricci 
form being (/~' - 1)co D + ~#,. 

To  see it, we first choose a metric h with its K/ihler form (oh in CI(LD). Then 
(/3' - 1)~oh + ~2p, represents the first Chern class C~(D). Therefore,  there is a func- 
tion f such that  

and 

R i c ( h ) - ( f l ' - l ) C O h - Q O , - ~ /  " a ~ f  
2n 

D D 

The required e)D will be of  the form cob + &?q~, and ~o~, satisfies the following 

complex Monge-Amper~  equat ion for t = fl' - 1, 

(1.4), 

By the second author ' s  higher-order  est imates in the solution of Calabi  conjecture 
[Y2],  in order to solve (1.4), it suffices to give an apriori  C~ for the 
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solutions. If tpr is a solution of (1.4)t and ht is the metric with Kfihler form / - - - -  

ogh + x/-10-~ot ,  then 
2n 

Ric(h,) = ( f f -  1- - t )OOh+t(coh+~lo-~q~t )+t2p .  

> tcOh, for t < i f - -  1 . 

Therefore, the equations in (1.4), for t < fl' - 1 are exactly those treated in [T1]. In 
particular, there is an apriori C~ for the solutions of (1.4), with 

n 
0 < t < ff - 1 and fl' - 1 < e(D) (cf. w in [T1]). It implies the existence of 

n - - 1  

n 
~0D for ff < 1 + e(D). Then this corollary follows from Theorem 1.1. 

n - 1  

Remark. If there is a positive (1.1)-form in C I ( - - K t ~  - -  flLD) for s o m e / / >  1, then 
the complete metric constructed in Corollary 1.2 has positive Ricci curvature. 

Examples. For  any n > 0 and d < n + 1, the complement CP"\D of a hypersurface 
D of degree d admits a complete K/ihler metric with euclidean volume growth, 
positive Ricci curvature and quadratic decay of the curvature tensor. 

Finally, we state an application of Theorem 1.1 on the topology of projective 
manifolds with some ampleness conditions on its anticanonical line bundle. 

Theorem 1.2 Let ffl be a projective normal orbifold. I f  there is an admissible, neat and 
almost ample divisor D in M such that C l ( - K g t -  LD) admits a semi-positive 
(1.1)-form. Then 371 is simply-connected. 

The proof of it will be given in Sect. 6. One should also be able to draw some 
results on the simple-connectedness of the resolutions of M. In case CI (-M) is 
positive, this result follows from a result of S. Kobayashi I-Ko] and the solution of 
Calabi conjecture by the second author. 

We believe that the assumption on the neatness of D is superfluous. 

2 K~ihler metrics with approximating properties 

Let M be a Kfihler orbifold of complex dimension n, D be an admissible divisor in 
M as defined in the last section. Then in particular,the divisor D is a Cartier divisor 
and induces a line bundle Lo on the orbifold M. We further assume that the 
restriction of Lo to D is ample. Therefore, there is an orbifold hermitian metric on 
Lo such that its curvature form is positive definite along D. Let f2 to be a closed 
(1.1)-form in the Chern class C I ( - K ~  - flLD), where fl is a real number and fl > 1. 
The goal of this section is to construct a complete K/ihler metric g such that 

Rio(g) - Q = 2 ~  t3~f on M (2.1) 
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for some functions f with sufficiently fast decay, where Ric(g) is the Ricci form of 
the metric g. In local coordinates,  if g is represented by the tensor (giT)l <= ~, j<=,, then 

Ric(g) = ~ O01og(det(o6)l <i,j=<.) �9 
2~z = 

We fix an orbifold hermit ian metric I1.11 on Lo such that  its curvature  form is 
a given Kfihler form ~o9 on D when restricted to the infinity D. This latter form coo 
on D will be specified in the following discussion. Denote  by II ~ Ii~, the new 
hermit ian metric I I ' l l ' e - ~ / 2  on Zo for any  smooth  function q9 defined on ]~t. Let  
S be the defining section of D and define 

2(#-  1) 
~ - -  1 O~ ([I S I 1 ~ ) .  (2.2) o~ = 2~ 

Then a simple compu ta t ion  shows 

2 2(fl-~) Dr A D~oS 1 2~a- 1) ~ - 1  (/~ - 1) 2 II S {l~o " (2.3) coco =-(/~n - 1)llS[I; " c % +  2z ISI 2 

where 05e is the curvature  form of the hermit ian metric II" [l~ of Lo and D o is the 
covar iant  derivative with respect to II �9 I1~. It  follows that  c% is positive definite near  
D as long as the closed (1.1) form 05~ is positive definite along D. In fact, we shall 
only be interested in those functions ~o which are constant  a long D. Therefore,  the 
(1.1)-form 05~ is always positive definite along D. N o w  we determine COD on D. Put  

/ ~ - 1  
- , then 

n 

~o~ = e"[IS[[g tn~o ^ _05'P + 2n iSiZ ] .  (2.4) 

Fo r  a given K/ihler metric g' with K/ihler form m' on ]~, there is a function 
unique up to constant  such tha t  

f2 = Ric(g ')  - fl05 + ~ O~0 (2.5) 
Z T ~  

where 05 is the curvature  form of  [l" 1t on Lo,  i.e., 05 = 050. Note  that  051o = c~o. We 
define a smooth  function f ,  near  D by 

f~,(x) = - f l log( l l s I IZ)(x)  - l o g  (x) - 0(x)  (2.6) 

for x in the set where ~o, is positive definite. 

Lemma 2.1 The followin9 two statements are equivalent. 
(1) fo(x) converoes to a constant uniformly as x tends to D. 
(2) The induced metric go satisfies the equation 

Ric(go) = (fl - 1)~OD + K2]D on D .  (2.7) 
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Proof Choose local coordinates (zl . . . . .  z,) at a point  in D such that z. = S = 0 
defines D locally, and z' = (zl, �9 �9 z,_ 1) defines a coordinate  system along D. Let 
05, g', [I'll be locally represented by (h6)1 <_i,j<=,, (91i)1 <=i,j<=, and a positive function 
a, respectively. Then by (2.6), 

fo(x) = - l o g ( a  det(h6)l <= i,j<__.- 1/det(g'ff)l <__ i,~<=,)(x) - ~k(x) + O([1S(x) II) 

where x is near D. No te  that a -1  det(9~7)l <=~,2<__,1o is a well-defined volume form on 
D. Write x = (z', z.), then 

fo(x) = -- log (a det(h6)l __<i,)__<,-1 e ~'] (z', 0) + O( II S(x)II). 
\ det(g~7)l<=i,j<-_, J 

Therefore limx ~ o fo (x) = const, if and only if a det (hi7) l < i ~ < , -  1 e q' (z', 0) is = ' J = constant  
det (g'ff)l =</,j~, 

in the local coordinates (zl . . . . .  z,_ 1 ) = z' of  D. By (2.5), (2.7), this latter statement 
is exactly the one in (2). The lemma is proved. 

Remark. Equat ion  (2.7) is equivalent to the following complex Monge-Ampdre 
equat ion 

f n--1 (co + - ~  00q~) = eh-(a-1)%J "-1 on D 

(2.8) 

co + ~ 0 0 q ~  > 0  

where co is a given K/ihler form on D representing Cl(Lo) and h is a given function 
on D determined by O and co. In case - K ~  = ~D and f2 = 0, it is the equation 
involved in constructing K/ihler-Einstein metric with positive scalar curvature. 
While the general existence is not  known yet, we have some positive results (cf. [T1, 
TY2, T2]).  Let  e(D) be the invariant defined in (1.3). Then the method  in [T1]  can 
be applied to conclude the existence of COD for fl < 1 + ~(D) (cf. the p roof  of 
Corol lary 1.2). 

F rom now on, we assume that coo is a K/ihler form on D such that (2.7) holds. 
Then  by choosing ~ in (2.5) properly, fo(x) converges to zero uniformly as x tends 
to the infinity D. On the other  hand, we remark that  

,-1 ( r I D~,S A D~S'] 
flSl[ ~ co~ A -co~' + 2n [Sl 2 J 

is a smooth 2n-form on M, so tha t fo  can be smoothly  extended t o / ~  by defining 
fo(x) = 0 for xeD.  Therefore,  there is a 6o > 0 such that in the ne ighborhood 
Vo = {x~mll}S(x)ll < 0o} of D, we have 

fo = S 'u l  + S 'u l  (2.9) 

where ul is a C~-local  section in F(Vo, L~I). 
We would like to choose qh of the form S" 01 + S" 01 with 0~ e F(Vo, L~ 1) such 

that  f l  = f ~  vanishes along D at the order  of two. The obstruct ion to the existence 
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of such a q91 lies in the kernel ker (D - 2) on D, where [] = tr~,o(D/) ) is the 
laplacian of LB 1 on D. To  overcome this difficulty, one must introduce the term 
( - l o g  II S II 2) in ~Pl. It resembles the case of constructing approximated Kfihler- 
Einstein metrics on strongly pseudoconvex domains in C" considered by C. 
Fefferman (cf. [Fef, CY2]). In the following, we will construct  by induction 
a sequence of hermitian metrics { II " II,,}m_->0 of Lo defined on h4 such that for any 
m > 0, there is a 6,. > 0 satisfying: 
(i) The associated Kfihler metric o "  of LI �9 lira defined in (2.2) or (2,3) is positive 

definite in the ne ighborhood V,, = { I1S(x)II < 6,.} of D. 
(ii) The function f~ defined by (2.6) has an expansion 

Ek 

~ Ukf(--1og l} S I1~) e in Vm (2.10) 
k>m+ l E = 0  

where Uke are smooth  C~ defined on the closure I7., and 
Uke = O( I} S II "+ 1), Ek are nonnegative integers. 

Let ll" tlo = 11" I]- Then by (2.9) and the definition of ll" II, both (i) and (ii) hold for 
this hermitian metric. Suppose now that we have found It . l l , , .  We then go on to 
construct  II .t1~+1. 

Lemma 2.2 Let r be a smooth function defined on V,, which can be written 
~i+j=, ,+l(SiSJOij- t -giSJf f i j ) (- logl lSII2)  k, and let f~ be defined by (2.5) with 

- x / - ~ ]  0~(e~~ ~ .  Then coy - 2n 

L =fro -- I--log II SlI~) k Y" ~(S'gJO,j + g'sJ~j) . 
i+j=m+ 1 1_ 

)1 2) �9 -- (m + 2) -- j (n -- 1) + (SiSJ[]mOij + g i s J ~ J m O i j  ) log ]1S 112 

k ( k -  1)q~ t~' 
~(logllSll2)2 + ~ y '  Uk,t(-- logl lSl l2f  (2.11) 

k ' > , . + 2  f = 0  

where E3r~ is the laplacian tro,o(D,,/),,) of the bundle LB i | f ~ J  on D with respect to 
the hermitian metric H" lira and coo, and Dm is the covariant derivative with respect to 
I1" I1... 

Proof First  we remark that  0,~ = ~ ,  since ~0 is real valued. By the definition (2.6), 
we have 

f~ = - f l l o g  II S II 2 - log \ t  c9 ) /' - 0 

1 (co~) (2.12) = f . + / ~ -  og ~ . 

n 

Therefore,  it suffices to compute  the ratio o__~ Note  that the covariant  derivatives 
n ' 

O)  m 

D~, and D,. are related to each other  by the equat ion 

D,~S = D m S  - Sc~q~ . 
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Moreover, if we denote by oh,, the curvature form of the hermitian metric [I " I[,., 
then 

r~,~ = ~,~ + ~ 1  c~c~ . 

Using (2.4), we obtain 

( ~znx/~-I DmS ^ D,,.S~ 

= ~"llSll~2~"-2(lla[I 2 + ~ IlO~S.,lf2)o3",. 

-- ~"llSllT.2"e ""~ ~3. + 

+ 2 ~  L I SI2 ; S A ~(p -- dfp A T -'~ (~0 A ~(p . 

From the definition of ~p one can compute 

O(p = E {(DrnSisJoii qt_ SiDmSJOi j _[_ SiffJDmOij 
i+j=m+l 

+ SiSJOmOij)(-log ,,S,,2)k + k(--log ,,Sl,m)k-l "(SiSJOij + sisJoij)(-- ~ ) }  , 

hence, 

DmS &p ^ _ 

S 
~', {(iS'S~O,j + J g ' S J ~ j ) ( - l o g  [I S [[~)k. 

i+j=m+ 1 

�9 D,.S ^ D,,,S 
ISI 2 

os} 
+ ( - l o g  ]1S II~)k(siSJDmOij + siSJOmOij) A 

kq~ DmS ^ DmS 
+ log I[S[IZ~ [SI 2 OqgA-Oqg+O(2rn+2) D' 'S^DmS ISI2 

+ ~ (DmOij ̂  ~- O(2rn + 2 ) + - ~ - A  DmOijO(2m + 2) 
i+j=ra+ l 

+ ^ 0(2,,  + 2) + D i s  - -  ^ DmOijO(2rn + 2) 

+ D,.Oij ^ D,.OijO(2m + 2) + D,.Oij ̂  DmOijO(2m + 2) + 

+ Dm ~j  ^ Dm Ou O(2m + 2) + D,. ff~j ̂  Dm 0,j O (2m + 2) ~ .  
/ 
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Here we use O(2m + 2) to denote those functions of form 

Pt qs 
~ v~d- log  II vH2) ' 

S ~ d  / = O  

where pe, ql . . . . .  qpt are positive integers, vst are smooth functions in a neighbor- 
hood of D and vst = O( II S II s't) near  D. We further compute  the complex Hessian 
of q. 

. . . .  D.,S ^ D,.S 
0~(0 = ( - - log  [IS llz~) k ~ ij(SiSJOi3 + S'S'Oij) i~[~ 

i + j = m +  l 

D.,S D.,S 
+ iS@ iDmS A DmOij +jSiSiD,,,Oij A ~f f -  + iSiSSDmOij A 

S S 

+ j~iS j DInS 
h DmOi j  "+ SiDmDmffSOiS + D,,,DmSiSJOu 

S 

+ SiSJD.,D,nOij + SiSSDmDmOij} + - -  
k(m + 1) DmS A DmS 
log 1IS[12q [St 2 

- k ( - l o g  ]l S 112) k-~ {DsS - -  ^ Z ( s ' ~ G , o ,  + g'S~fimff,) 
i + j = m + l  

_D~S_} k(k - 1)q D,.S ^ D m  S 
+ E (siSJDmOij + SiSJDm61S) ^ + (log 11S I1~) 2 1512 

i + j = m +  t 

On the other hand, 

DmDmS s = --DmDm Sj + jSJ~m = jSJ~,. 

O m D m  S i  = -DmDmS i + iS i f~m = i s l a m  

l~mDmOi j  = - -  D m O m O i j  - ( i  - -  j ) O i j C o . ,  . 

In particular, these imply that 

[ISll~(O~q/^ ~",.-~ = Co~.O(2m + 2) for E > 2 .  

Now using the fact that }1 D,.S lit. is nonvanishing along D and the above identities, 
we can compute  the ratio of the two volume forms as follows, 

" ~ D~S[Im)oSm 2~ ,/ 

~n.,/C l f D~S L pmS D~S D~S ) t  
+ 2 ~  \ ISl ~ s ^ ~e - c~o ^ - -g -  + o~o ^ ?~o 
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= (llSII2m + allDmSll,.)~Om2 ~.  " - ^ ~m + a ~ o  

2k a~----~--l(l_(m_l_ , ,og_~_S,,~)Q))DmSApmSI 
+ 2---7-  + ISI 2 ] 

@ ( + (n - 1 ) ~  -2 h a3rp h c3,. + 2re ISI 2 JJ + O(m + 2) 

---e~"~~ + (llSllm II m)O)m2 A - -  

-- an ( m  + 1 + 
2k "~ ~.+1 

log ii S ~ )  ~P~~ A - -  
D,,,S A DInS 1 

2,~ Tfft ~ I 

ores ̂  OmSh 
+ an(n - 1)05~, -2 A [~2- j j  + O ( m  + 2) 

= 1 + a n q ~ - - ( m + l  + 2k [~m ~) , , , , 2 , , [ I  S [12 
l o g  IIS q~ -1 [ii S Hm -t- a ii 2 ~n O,,,Sll,,,)~m 

{ an(n-  1)(5 n-a A 
i+ j=m+ l 

"-}- SiOml~mSJOij -t.- Oml~mSiSJffij ) 

^ ,/7-1 Drag ̂  DinS + n ( - l o g  IISIl~) k 
2n [S[ 2 

SiSJDml~mOij A- siSJDDOij 

x E (ij(SiSJOiJ q- sisJfflJ) ~nm-1 A ~ - - 1  DinS A DInS ~ 
, +~=~+~  2~ I~ ~- / 

+ log II S I]~ m + 1 + log ~S~l~ + O(m + 2) 

= 1 +anq~ - m +  1 + log l lSH~ q~+ ~ (sisJ[]"OiJ+'f~SJD"OIJ) 
i+ j=m+ 1 

- ~ (sisJoij + SiS~Oii ) (n - 1)j - ( - l o g  [I S I[~) k 
i+ j=m+ l 

k - 1  ) 
kcp 2 lo~ ~S~I 2 + (m + 1 + + O(m + 2).  

a log  II S Jim \ 

Then the lemma follows. 
N o w  we apply this lemma to the construction of IL'llm+l, that is, finding 

a function (p such that If "}12+1 = e-~'ll "11~ satisfies (i), (ii) given above. The 
condition (i) will be automatically true as long as q~ is constant  along D which is 
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always fulfilled in our  choice of ~p through Lemma 1.2. Therefore, it suffices to 
eliminate the terms ~ = 0 U m +  l t ( - l o g  [ISf[2~f from f,, in (2.10). It can be done 
successively as follows. 

Let fro be given by (2.10). Write 

Um+l,tm+l = E sisJ(1)ij Jr vtij ) --~ SiSJ(vij  + vitj) (2.13) 
i+j=m+ l 

ij 
where %1o are perpendicular to ker((n - 1)�89 + - - m - 2 - j ( n  - 1)) and v~ilo 

are in the above kernel. 
If  there are some i,j with i + j = m + 1 such that v~jL D 4= O, applying Lemma 2.2 

with k = Em + t + 1 and 0~ = k -  1 - 2 v}j, we have 

f~ = ~ siSJvij + giSJglj + lower order  t e rms .  
i+j=m+l 

N o w  one can solve the equations for O~jeF(D, LB ~ | f ,  BJ). 

(: ) ES,.Oii+ - - m - - 2 - - j ( n - -  1) Oij=vij]o o n D .  (2.14) 

Extend 0~j to M, then we apply Lemma 2.2 with k = E,,+ 1 and 0~j given above and 
conclude f~ is of order I[ S II ~ + 1 ( _ log II S II 2m)e~ - 1. Replace fm in (2.10) by this f~ and 
repeat the above process. After finite steps, we eventually eliminate 
~ ' ~ o  ~ u,,+ 1 ,~( - log  II s 112) ~ fromf,, .  Let q~m be the sum of those ~o in Lemma 2.2 in 
the above finite steps. Define II �9 I1~+1 = e-~"ll " 112m, Then the hermitian metric 
I1" II.,+a satisfies (i), (ii) as we want. 

Let ~o,, be the (1.1)-form on M defined by (2.2) with II " I1~, replaced by I1" [I,.. 
Then for 6. > 0 small, ~o,, is positive definite in Vr, = { II S(x)II < ~.} and defines 
a K~hler metric g,, on the manifold Vr, with the associated K~ihler form e~,,. 

L e m m a  2.3 The Kdhler manifolds with boundary (V~, OV,,,gm) are all complete, 
equivalent to each other near D and have euclidean volume growth. Furthermore, for 
each m, the function II S I1~ ~ is equivalent to any distance function from a fixed point in 
Vm near D. 

Proof. Fix m > 0. Put  ~, = IISIl~ | Then 

v ~ ~ ~6 ^ ~ ^~~  

where V,, denotes the gradient with respect to g,,. By (2.3) and (2.4) with w~ 
replaced by ~Om, we have 

V 2 ~ - 1  DinS ̂  D~S A o~. -1 ct_,+211Sii2~n_l) 
I ~qJ[o~ - 2rt (118112 + ~l lO.S  2 - ,  I1,,)~,, 

DInS ^ D~S ^ ~ , -  ~ ~ II D,,S I1~ 

2~t (115112 + ~ II DinS 11~)o3",. = n(llSIl~ + ~IID,.SII~) " 
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1 
Since IID,. S IIm is nonvanishing near  D. [ Vm ~, 12 (x) converge to - as x approaches  to 

n 

D. Therefore, ~O is equivalent to the distance function from the boundary  ~ Vm near 
D. In particular,  it implies that  each (Vm, t3V,,, gin) is complete,  since ~O goes to 
infinity near  D. To  est imate volume growth of (V,,, c3 V,,, gin), we first remark  that 

" is equivalent  to IISll,?, 2~"-2 -" is the same as: (D m 0 )  m 

IlSll~(x) _-< rn 

and is of order  F 2". Therefore,  (V,,, 0V,,, g.,) has the euclidean volume growth. 
The equivalence of these metrics g,. near  D follows from (2.3). 
Next,  we compute  the curvature  tensors of  these metrics g., near  D. 

L e m m a  2.4 Let (Vm, OV,,, 9.,) be a complete K(ihler manifold with boundary defined 
as above. Denote by R(9,.) the curvature tensor of the metric g,,. Then the norm of 
R(g,,) with respect to 9m decays at the order at least ]1S [[2ct n e a r  D, moreover, the 
integral ~v., [R(g,,)[~, ~o,". is finite if and only if  D is biholomorphic to CP"-  1 and 90 is 

1 
the --multiple of  the standard Fubini-Study metric on CP"-  1, where go is the K~ihler 

o( 
metric with Kgihler form coo, and the K(ihler form of the Fubini-Study metric is given 

/ 

. , / - 1  . -  i 
by O~ log (~,i= o I wjl 2) in homogeneous coordinates. 

In fact, we have the following expansion of R(gm) along D. There is a finite 
covering { Ut} of D in A,1 satisfying: for each t, there is a loca luni formiza t ion  (Ut, nt) 
of  Mt with ~t: (~t ~ Ut such that  y [ I ( D )  is smooth  in Ut, and for some local 
coordinate  system (Zl . . . . .  z.) in Ut with z. = S and z' -- (zl . . . . .  z , - 1 )  tangent  
to D along D, one has 

R(~* gm)~S~7(z', z.)~'~ J~ ~ ~ 
i , j , k , ~ = l  

n - 1  

= ~ ~zt(Z', Zn)) E (R(~z*gDI"o(D))iJk? 
i , j , k ,  ff = l 

-- ct(hishkz + hi~hkj) )(z', 0)" ~i~ j ~ r  § O( [t S 112~+l(~,(z ', z.)) (2.15) 

for any 9~-unit tangent  vector  (~1 . . . . .  ~"), where (h~) is the curvature  tensor  of 
the hermit ian metric II �9 ll~ in local coordinates  (zl . . . . .  z.). 

Proof . I t  suffices to prove  (2.15). Wi thout  losing generality, we may  assume that 
Ut c~ M is smooth.  Given  any point  x in Ut c~ M, choose coordinates  (zl, �9 �9 �9 z.) 
such that  z. is the local representat ion of S in Ut and (zt . . . . .  z._ 1 ) -- z' is tangent  
to D along D satisfying: 

h i j - ( Z l ( X ) ,  . . . , Zn_l(X) ,0  ) = (~q for i , j  < n - 1 

O0~ki(Zl (X) . . . .  , Z,_ l(X), O) = i, j, < n -- 0 for k 1 (2. 16) 

where x = (zl(x) . . . . .  z.(x)). 
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We may also assume that II " II,, is represented by a positive function a in Ut such 
~2a 

that a(x)= 1, da(x)= 0, ~ ( x ) =  0 for i,j < n. Then one obtains by com- 

putat ions ( 0~-llznl2~(1 + O(IZn[)) if i,j = n 

c~-2[z.12~+2(1 + O(Iz.[)) if i = j  = n (2.17) 
9~-(x) = 0([z.[2~+1 ) if i,j < n, i + j  

O(]z.[ 2~+2) if i or  j = n, i =~j 

C3gmi~ (Oh6 _ ~ (6.ihk7 + 6.kh,y) -- ~(1 O0 (~ ni (} nk (~ n j " ~ + 
t?z~(X)=Ct[z"l-Z'\OZk z. ]z.-~. ] (2.18) 

" [~ [ c~2h6 1 c32g"i~ (x) = o~lz, I - 2~ + o~(hijhk~ + hi~hkj 

1 t/ 0h6 Oh,7"] / ~hk7 ~?hif] 

c( 2 
-}- ~ (t~nifnjhk? q- (}nkt~njhi? + t~nk(~n(hif + t~niOndhk-f) 

6.~6.j6.kf.r ] 
+ Ct(~ + 1) 2 [Z.I 4 ] .  (2.19) 

Given any 9z-unit  tangent vector (~', . . . .  {") at x, one derives 

[{il < C[z.[=(x), i=  1, 2 . . . . .  n -  1 

1 
ICI _-< - Iz . I  =+*(x), (2.20) 

where C is a uniform constant  independent  of (r . . . . .  {") and x near D. Now 
using (2.16)-(2.20), one has 

dZkOie . . . .  1 
= O(Iz.[2=+l(x)) - ~lz.[-2=(x) 

x ( o2hiy ) 
\OZk~VSj + ~(h~hke + h~ehaj ( x ) ~ ( ~ (  ~ 

-4o~3lz.[-2~-2(x)l~"12hi~x)~i( -i - -  0~2(0r -~ 1)2lz.l-2~-*l~.l  ~ 

+~"z.[-'=-2(x)l~"l = i 9:~(x)(2{ihi~ x) 
I t ,V= 1 

(1 + ~ ) ~ . ~ ' ~  
+ y" 

�9 (2 Jh. x) + (1 + 
\ / 
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= O ( [ z .  l Z ~ + l ( x ) )  - -  ~lz.[-z"(x) 

( aEh6 ) 
\8ZkSgt + e(h~Thk? + h~lhkj)_ (X)~Jr e X 

n-1 
--4C~31Zn[- 2~- 2(X)I~"I 2 ~ 1~112--~2(~+1)21z.l-2~-41~"14 + 

i=1 

+~41z.l-4~-Z(x,l~"lz(41~_i([z"l;~(x)l~ilz ) 

(1 + ~)21~"12) 
+ ~21z.12 

= O([z.[2~+l(x)) -- ct[znl-Z~(x) 

( 632hi~ 
x \~zk O~t (x) 

Then (2.15) follows easily from it. 

+ e(h,Thkz + h,z-hki)) (X)~'(J~k( ~ �9 

Corollary 2.1 The norm of  the curvature tensor R(gm) with respect to gm decays 
exactly at the order p~, 2 near D unless D is biholomorphic to CP"-1 and go is the 
1 
--multiple of the Fubini-Study metric on CP ~- 1, where p,. is the distance function 

from a fixed point in Vm with respect to gin. In the later case, I1R(gm)IIg,, decays at the 
order at least PT, 3. 

Proof It follows from Lemma 2.3 and 2.4. 

Next, we study the asymptotic behavior of the covariant derivatives of R(g,,) 
near D. 

Lemma 2.5 Let (V,., 8V,.,g,.) be the complete Kgihler manifold as in Lemma 2.4. 
Then 

II Vk R(9.,) t[o,,,(x) = O( pm(x) -(k + 2)) (2.21) 

or equivalently 

[1VkmR(gm) IIo,,(x) = O( II S l[ (k+ 2)'(x)) (2.22) 

where Vm denotes the covariant derivative with respect to 9,.. 

Proof We will sketch a proof of this lemma in the different spirit from that of 
Lemma 2.4. This proof will be simpler, but less informative than (2.15). 

Fix an m. Choose 6 > 0 such that Vn = {xl IlSIl(x)< 6} is contained in V,,. 
Clearly, it suffices to show (2.21) for those x in Vo. Since the hermitian metric II" I1 of 
Lo is smoothly defined on M, the admissibility of D implies that the total space of 
the unit sphere bundle of Lolo with respect to II'll is a smooth manifold of real 
dimension 2n + 1. We denote it by M1. Furthermore, since Lo is just the normal 
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bundle of D in M, there is a diffeomorphism T from M1 x (0, 6) induced by the 
exponential map of (M, h) along D with respect to a fixed orbifold metric h. 

The K/ihler metric g,, is given by its associated form 

o9,, = ~ ~0(e ~ IISl1-2~). (2.23) 
27t 

�9 Nm ~'k 2 ~ ' Here (0,1 is a function of form ~ k- 1 ~ t--Uke (--log t l S [I ) with Uke being smooth in 
)~r and of order O(][S [I k) near  D. Therefore, the pull-back metric T 'g , ,  on 
Mx x (0, 6) is of the form 

~e*0m -- II s II - 2~h( t[ s II, II s II log I[ s I[) + II s II -~d II S [I -~ U( 1I S II, II s I[ log II s II) 

+ U(llSII, IIS[I log IISII)(dltall-~)3 

where H(tl, t2), v(tl, t2), u(tl, t2) are C~ families of metrics, 1-tensors, 
functions on M1, respectively. They also satisfy: for any integer f > 0, there is 
a uniform constant Ce such that a~ up to order ~ covariant derivatives of h, v, 
u with respect to a fixed metric h in M1 are bounded by Ce for 0 < tl < 6, 
0 < t2 < 61ogr. 

Writ ing/" for I[ S II-~, we have 
1 1 1 1 1 1 

T*gm = F2h(F -~, F-~log F -~) + FdFv(F-z,  F-~ logF-~)  
1 1 1 

+ u(F-~, F-~log F-~)dF 2 (2.24) 

where 5 - ~ <  F < + oo. So we may regard T*9,, as a metric defined on 
M 1 x ( ~ - ~ ,  00) .  

For any fixed x in V~, T - l ( x )  is in M1 x(6 -~, oo). Put /~ = F ( T - I ( x ) ) =  
[[ S [[ -~(x). By Lemma 2.3, th i s /~  is just the distance pro(x) of x from a fixed point in 
V,, with respect to g~. Therefore, (2.21) is equivalent to the following 

11VkR(F~-z ~.g,.)[[r)~,.0,,,(x ) = Ok(l) (2.25) 

where O,(1) denotes a quantity bounded by a constant depending only on k, and 
is the covariant derivative of F~-z T*9,,. 

On the other hand, (2.25) follows easily from the expression (2.24) of T*g,~ and 
the boundedness on the derivatives of h, v, u in (2.24). Hence, the lemma is proved. 

To obtain the approximated K~ihler metric on M, we first assume for simplicity 
that the divisor D is ample in )(t. Then there is a hermitian orbifold metric 1[ ' [1' on 
LD with curvature form 05' > 0 on )~. Define 

o90 = o93 + C~-~Io~(-(IIS[I')Z~), ~ > 0, C~ > 0 (2.26) 

o 

then by some direct computations, one can easily prove that ogo is positive definite 
on M. So ogg gives a K/ihler metric g. In general, we assume that D is neat and 
almost ample in M. There is a hermitian metric II" I1' on LD with its curvature from 
05' > 0. By the same arguments as in the proof of Theorem 5.1 in [TY1], one can 
find a (1.1)-form ogE with OgEID = 0, e > 0, C~ > 0 such that 

o9o = o93 + C~ - ~ _  l o-~(-( ll S [l') z~) + o9~ > 0 .  (2.27) 
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Note  that  me = 0 in case that  D is ample.The metric g with K/ihler form cog is our 
approximated metric. For  the reader's convenience, we summarize the above 
discussions by the following proposition. 

Proposition 2.1 Let M, D be given as in the beginning of this section, 
9 - 1  

(2~ C I ( - K ~ t -  flLD). Put c~- Then there are sequences of neighborhoods 
n 

{ V,,}">=I of D, complete Kdhler metrics co,. on (V,.\D, O(Vm\D)) defined by (2.4) such 
that 

Ric(co,.) - f2 = ~ a~f,. on V,.\D (2.28) 
2n 

where f,, are smooth functions on M satisfying: f,,=O(llSl[,.+*=), and 
IVkf,.lom = O( ]l S l[m+4*~'k)f or k > 1. The symbol V denotes the covariant derivative 
with respect to 91. I f  we further assume that D is neat and almost ample in M, then 
(2.27) defines a complete Kdhler metric g with Kdhler form coo such that 

Ric(cog) - f2 = ~ a~f ,  
2re 

where f is smooth on M, f = 0 ( [I S I12~ + 2,) and sup 1 _< k-< 2 IVY Ig < (30. Moreover, the 
curvature tensors R(9,.) and R(9) decay at the order O(IISH 2~) and at the order 
O(IISH 2"+2~) for e<�89  or O(HS[I 2"+1) for e>�89 D ~ - C P  "-1 and Lo is the 

l--hyperplane line bundle on CP "-1. Also, the covariant derivatives of the scalar 
o~ 

curvatures of g,., g are bounded. 

Proof We adopt  the notat ions in the proof  of Lemma 2.5. The estimate 
Wkf,.lom(x) = O(11S II,.+~+=R(x))is the same as 

I VkT'*fmlr-= 7/'0,,( g* - ~(x)) = O d l ) r 2  ~ "  + =*) . (2.29) 

This latter one (2.29) follows from (2.1) and (2.25). The estimates on R(g") come 
from Lemma 2.4 and 2.5. 

By choosing 6 smaller if necessary, we may assume that  roe vanishes in V~. Then 

coo = coa + C~ ~ d R ( -  11S I[') 2~ in Va 

and coo is uniformly equivalent to co~ in Vo, i.e., there is a constant  C~ such that 

c ; l f D 3  ~ coo ~ C6co3 �9 (2.30) 

Also 

f = f 3  - log(cog/co~). (2.31) 

Therefore, in order  to have the required estimates on f, I V~fI~ (k = 1, 2), II R(a)IIg 
and I1V~R(g) I1~, we only need to show for ~ = 0, 1 . . . . .  5, 

[V~(llSll')Z'lg~(x) = o([ISII2"+~e(x)), xE V6 (2.32) 

where V 0 is the covariant  derivative of g. 
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1 

Denote by 0 the function 7J*(l[ S [l') 2e defined on M1 x (~-~, o0). Then (2.32) is 
equivalent to 

2~ 

[~tOlr;2v,.o3(~ - 1 (x)) = O ( F ; u  . (2.33) 

1 

On the other hand, on M~ x (6-7, oe), the function 0 is written of form 
1 2E 1 

e~'( ", F -7 )F  - u  where 0"(., .) is a C W-smooth function in M1 x (S -~, oe) with all its 
derivatives bounded in terms of a fixed product metric. As in the proof of Lemma 

1 ~ 1 t; ~ 2 e  

2.5, put /~ = F/Fx, then 0 = e ~ r;;)r  ; ) r ; ~ F - ~ ,  so (2.33) follows from the boun- 

dedness of the curvature tensor of 72 2 ~*gm near ~ - 1 (x). 

Remark. By formula (2.6) which defines fro, f, one can derive the following equa- 
tions on V,, \D for m > 1. 

eZmo~ = eZog~ . (2.34) 

3 Sobolev inequalities 

In this section, we derive Sobolev inequalities on complete K~ihler manifolds (M, g) 
described in previous sections. Precisely, we prove 

Proposition 3.1 Let M = M \ D ,  where M is a Kdhler orbif_old o f  complex dimension 
n > 2 and D is a neat, almost ample, admissible divisor in M (cf Sect. 1). Let  g be the 
Kdhler metric on M given by Proposition 2.1. Then there is a constant C > 0 such 
that for any smooth function h in C ~  R) with compact support, one has 

n - 1  

Ihl~-~d < C IVhl2dV0 
M 

(3.1) 

where Vh denotes the gradient o f  h with respect to g. 

We would like to point out that the Sobolev inequality (3.1) seems to be 
unknown in general for complete Riemannian manifolds with bounded curvature 
and euclidean volume growth. Our proof here for Proposition 3.1 strongly uses the 
asymptotic cone structure of (M, g) and cannot be applied to the general case. Such 
a Sobolev inequality is one of crucial difficult parts in the proof of the existence of 
g~ in Theorem 1.1. By the way, in [BK], the authors neither showed the validity of 
Sobolev inequality nor studied the asymptotic decay of the curvature tensors for 
those Kfihler manifolds they required. They took the Sobolev inequality for 
granted in the process of their proof of the main theorem. 

The rest of this section is devoted to the proof of Proposition 3.1. 
First we study the asymptotic properties of the complete K/ihler manifold 

(M, g). Let S be the defining section of D and II " II be the hermitian orbifold metric 
on Lo as in (2.5) and (2.6). Define for 6 > 0, 

V~ = { x ~ M I  IlSIl(x) ~ ~} (3.2) 
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then (V~, OVa, g [v )  is a complete Kfihler manifold with boundary OVa. By the 
assumption that D is admissible, one can easily show that C Vo is smooth for 
6 sufficiently small. The following lemma is elementary. 

Lemma3.1 The above manifold (V~, t~V~) is diffeomorphic to ()~1 x (0, 6], M1 x 6), 
where Mz  is an orientable riemannian manifold o f  real dimension 2n - 1 and is a finite 
unramified covering o f  a minimal submanifold M1 in some unit sphere S 2k+ 1. More-  
over, under the diffeomorphism, the metric g is equivalent to the one o f  form 

ds  2 = r -  Z~(ds 2 + r -  2dr 2) (3.3) 

where ds 2 is the pull-back o f  the standard metric on S 2k+ 1 under the covering map 
n: M1 ~ M z  = S 2k+ 1 and r is the euclidean distance from the origin in R. 

Proof. The restriction LD [9 is just the normal bundle of D in ,~t. By the admissibil- 
ity of D, one can easily check that for any hermitian metric ]l " II' on LD, the unit 
sphere bundle S~ of Lolo with respect to ]l " []' is a smooth manifold. Note that 

S t  = {x~Lolo[l lxHl '  = 1}. (3.4) 

We choose the metric I1" II' as follows. Since D is almost ample, there is 
a holomorphic map ~,: M ~ CP k+l for some large k, such that ~, is one-to-one in 
a neighborhood of D in )~t and H a  = toLD for the hyperplane line bundle H on 

Cpk+ 1. We take the metric I1"11' to be the restriction of ~-multiple of the standard 
m 

metric on H. Now we define M1 to be S t  with the chosen metric I['1['. 
Now S"  is a global section o f m L o .  Let CP k = CP k+ 1 be the hyperplane defined 

by this section. It is a well-known fact that the unit sphere bundle 
Sh(CP k) = {x~HlcPkl  Ilxll ' =  1} is just S 2k+l and the natural bundle projection 
p: S 2k + z ~ C P k is the Hopfmap,  so M1 = p - I ( D ) c S 2k +1 is a minimal submani- 
fold. It is easy to see that M1 is a finitely unramified covering of Mz of degree m. 

The diffeomorphism from (V~, ~Va) onto Mz x [0, 6] is induced by the exponen- 
tial map of (M, h) along D with respect to some fixed K/ihler orbifold metric h on 
M. The equivalence between g and the metric ds 2 in (3.4) follows from the definition 
of g and the standard expansion formula for the exponential map. The lemma is 
proved. 

1 

Let R~ = { t e R [  t > 6 -~} ,  we see that the manifold (M1 x (0, 6), ds 2) is equival- 
ent to (Mx x R6, p2ds2 + alp2). 

Proposition 3.1 will follow from Lemma 3.1 and the following Proposition 3.2. 
To see it, we first extend the metric ds 2 on M1 x R~ - Va to the whole manifold M, 
still denoted by ds 2. Then g and ds 2 are uniformly equivalent. Now (M, ds 2) satisfies 

2 ( n -  1) 

the assumptions in Proposition 3.2 below, so by tak ingf  = h .--~=~-- in (3.5), we have 

n - 1  

Ih[~-2dV <= n - - - 2  C I h~-2[Vh]d~ : d V "  
M 

Applying Schwarz inequality to the integral on the right, we obtain 
n - - 1  
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It yields 

n-2 
( . (  2n " ~  4 ( n _ 1 ) 2  C 2 

Ihl~-2dV} / < n 2 S IVhl2s 2dV" 
M 

Since both g and ds 2 are uniformly equivalent in M, the inequality (3.1) follows 
from the above. Note that C in (3.1) may be different from that in (3.5). 

Proposition 3.2 Let (X, ds 2) be a complete riemannian manifold of real dimension n, 
U c X be compact subset such that ( X \ U ,  ds 2) is equal to (Y• R1, p2ds2 + dp2), 
where ~" is a finite covering of a compact minimal submanifold Y in S k and p is the 
euclidean distance on R+ and ds 2 is~any riemannian metric on }'. Then there is 
a constant C depending only on U, Y, Y and ds 2 on Y such that for any smooth 
function f with compact support, we have 

n--1  

I f l~ -~dg  < C I IVfl~s2dg. (3.5) 
M 

The rest of this section is devoted to the proof of this section. Without losing 
generality, we may assume that ~ is the pull-back metric of the standard one on 
S k under the covering m a p ~ :  Y ~  Y c  S k. The map ~ extends to a map, still 
denoted by ~, from the cone Y x R onto the minimal cone Y x R + in R k § i such that 
~I?•247 is a finite covering. Moreover, by the previous choice of ds~, we have 

p2ds~ + d p  2 = lr*(ds2e ) (3.6) 

where ds 2 is the euclidean metric on R k+ 1. Thus, the following lemma is essentially 
due to L. Simon, etc. (cf. [Si]). 

Lemma 3.2 There is a constant C1 = CI (n, m) depending only on the dimension n and 
the degree m = deg(z 0, such that for any smooth function f on Y x  R+ with compact 
support in Y • R +, we have 

n--1  

[ f l ~ - t d g  <-_ C1 [Vf[dV (3.7) 
+ ~• 

where dV, V are the volume form and the gradient of the metric p2ds 2 + dp 2. 

Proof. We may assume that f i s  nonnegative. Define 7~, fon Yx R+ by 

7r,f(x) = ~ f ( y ) .  (3.8) 
y e n -  tfx) 

Then ~ , f i s  a smooth function on Y• R+. Since Y• R+ is a minimal cone in R k+ 1, 
we have, by [Si], the following 

n--1 

Irc*fl~-~r~*( d g  < I I V f l ~ , d g  (3.9) 
y + Y x R +  

where C' is a constant depending only on n. Now (3.7) follows from (3.8) with 
C 1 = mC'. 
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It  is now well known (cf. [Y2, Si], etc.) that the Sobolev inequality in Proposi- 
tion 3.2 is equivalent to the following Isoperimetric inequality: for any compact 
smooth hypersurface 8f2 in X bounding a domain f2, 

n - 1  

(Volns2(f2))-~- < C Volas2(Of2) (3.10) 

where the constant C is the same as that in (3.5). 
Lemma 3.2 says that if f2 c X\U,  then (3.10) holds for C = Cxindependent of 

f2. Let B, be the domain bounded by the compact hypersurface Yx {r} c Yx R1 
for r > 2. Then U c c B2. By the choice of ds 2, the function p is a convex on in 
XkU. The boundary 8Br is defined by P = F, so is convex for r > 2. Put 

a =  max {Vola~2(Br)}, b = max {Vola~2(SB,)}. (3.11) 
2 - - < r ~ 3  2__<r__<3 

By Sard's theorem, for almost all r > 2, the intersection f2 c~ 8B, is a union of 
smooth connected domains. In particular, 8(f2 n 8Br) is homologous to zero in 8Br. 
Let r be any one of those values. Then there exists an area minimizing two-sided 
hypersurface S~ in Br with boundary 8(~2 n 8B~) (cf. [-Fed]). Note that the convexity 
of 8B~ gives a barrier such that 2~ lies inside B~. This Sr may not be smooth 
everywhere if n __> 7, but Sing(St) has Hausdorff  codimension __> 6. By area- 
minimality of 2~,, we have 

Volas2(Z,) < Vola~2(S12 n Br) �9 (3.12) 

Now we can finish the proof  of Proposition 3.2. First we assume that 
n 

Volant(t2) > 3a + (3Clb) ,~L where Ca is given in Lemma 3.2. Choose r between 
2 and 3 such that f2 n B, is smooth. Let f21 be the domain enclosed by f2 n OB, and 
8f2 n (XkB,). Then f21 c c XkU, and 

2 
Volas~ (12~) > ~ Vol(f2) 

Volas2(t~O1) =< Volant(Of2) + b . 

By Lemma 3.2, we have 

r t - -1  2 _ _  n - - 1  

< C~ Vola,~(Of2) + C~b (3.13) 

1 r t - - 1  

_-_% G Vol~,2(~o) + ~ V o l ~ ( o ) .  

Hence Proposit ion 3.2 is proved under the assumption Vola,2(f2)> 

3a + (3C1 b)~-~i. From now on, we assume the reverse inequality. By scaling, we 

assume also 3a+(3C~b)~-l= 1. Choose r~ > 0  with Vold,2(B,~)~ 1. Fix 
a ro > rl > 0, which will be determined later. The hypersurface 8B, o cuts f2 into two 
domains f2~ and 02 where we still denote f2 n B~ o by f2~. The distance function p on 
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R + is also defined on X and has the proper ty  I Vp[ = 1 with respect to the metric 
ds 2. By the Co-area formula (cf. [Si, Fed]) ,  there is an r between ro and ro + 2 such 
that t3B, n f2 is a smooth domain  and 

Volas~(OB, n 12) < V o l a s z ( Q 2 )  . (3.14) 

Let f2~ be the domain  bounded  by B, n 8f2 and 8B, c~ f2, then ~ 2  C2 ~r~. Let C 2 be 
the isoperimetric constant  for domains which are subsets of B,o+ 2 (note that Cz 
depends on to). Then by (3.14) 

n - 1  n - 1  

Vola,~ (f21 ) ~ VOids 2 (~r'~ 1 )-'Y- ~ (VOId+2 (f2~))~-- < C2 Vola~ (Og2~) 

<= C2 Volas2(OE2) + C2 VOlds2(E22) �9 (3.15) 

i 
If Volas2(Q2) < 

= 2 + 3C 2 
- - V o l a s : ( O ) , t h e n  

n-1  
(Vold,~(f~))~- =< 4C2 Vola+2(Sf2). (3.16) 

1 
Thus we may assume that V o l d s 2 ( Q 2 ) > - - V o l a + ~ ( O )  and Vold~(Sf2)< 

= 2 + 3C2 
n--i 

Volas:(E2)T < 1. 
Let  f2' be the domain  enclosed by 2~, and t3f2 n (X\B, ) .  

Lemma 3.3 27, c~ Bro]~ = 95 if ro is sufficiently large. 

Proof By (3.12) and the fact that  Volant(St2) < 1, Vola~2(S,) < 1. If 27, c~ Bro , 4: qS, 
then there is an Xo ~ 27, n 8Broil. Let Bt(xo, ds 2) be the geodesic ball with center at 
Xo and radius ~ > 0, assume E ~ to. Note  that  the curvature tensor of ds 2 is 

bounded by C3 r--~- in Be(xo, ds2). Then by the same arguments as in those for 

monotonic i ty  formula [Si], one can prove the Monotonic i ty  formula, 

e~t,o)e2 Vola~(Z', n Bt(xo, ds2)) > e~o)E,~ Vola~2(S, c~ Be(xo, ds2)) 
i.-i = (r (3.17) 

for Y' < f ,  where limro++ ~,(ro) = 0. In particular, by taking E' to be zero, we get 

Vola~(27r m Br ds2)) ~ C4e-~('~ f "- 1 (3.18) 

where C4 is a constant  depending only on the dimension n. Choose d and r0 such 
that ro >> d and C4e-"t'~ " -  2 => 2. Then  we get a contradict ion if Xo e Z, n 0Bro]~ 
exists. The  lemma is proved. 

Now we choose ro such that  ro > 2rl and B,ol 2 n 27, = 95. If f2' c~ B,, 4: 95, then 
by Lemma 3.3, B,, c f2', so Volas2(f2') >= 1. It follows from (3.13) that  

n - 1  n - 1  

Volas2(f2)~- -< 1 < Volas~(t2')-~- = 3C1 Vola~(c~O') 

< 3C1 Volas2(c3f2) . (3.19) 
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Therefore, we may assume that f2' n B, 1 = ~b, i.e., f2' c c X\U.  By Lemma 3.2, we 
have 

n - 1  n--1 n - 1  

Volds2(O)~- < (2 + 3C2)~-Vol~s2(C2' ) n 

n - 1  

< C1(2 + 3C2)~-VOlds2(Cg~) . 

n - 1  

Put C = max{3Cl ,  4C2, C1(2 -t- 3C2) ~ -  -F 1}, then the above discussions imply 
that (3.10) holds for any compact domain t2 in X. Proposition 3.2 is proved. 

4 Existence of complete Kiihler metrics with prescribed Ricci curvature 

In this section, we prove the part  of existence of complete Ricci-flat K/ihler metrics 
in our  main theorem stated in section one. Let M be a K/ihler orbifold of complex 
dimension n, D be a neat, almost ample and admissible divisor on M, and 
M -- .~ \D.  Let g be the complete K/ihler metric on M constructed in Proposition 
2.1. Then there is a smooth function of satisfying 

Ric(g) -- ~ = ~ 88f 2n 
(4.1) 

f =  O(1[$112~+2~), sup IVkflo < 
1 N k N 2  

(4.2) 

[3 -1  
where t2 is a (1.1)-form in C I ( - K ~  - [1LD) with [1 > 1, ct - , and S is the 

n 

defining section of D in M, LD is the line bundle induced by D and [1"11 is 
a hermitian metric on Lb. 

Proposition 4.1 With 2~1, D, M, C2, g, etc. as above. Then there is a unique solution 
q) of the following complex Monge-Ampdre equation 

/1 

co o + ~ 8~(p > 0 

(4.3) 

such that (p(x) converges uniformly to zero as x goes to infinity and cog + ~ 8-8(p is 

bounded from below by a positive constant multiple of ~o. In particular, it follows that 
/ .  

there is a complete Kdhler metric with Kdhler form ~o o + ~ 1  8-Otp and its Ricci 

curvature form being t?. 
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We will prove this proposition in the rest of this section. First we note that for 
any c5 > 0, the following perturbed equation is always solvable. 

((4.4)~) 

( ~ - - ) -  ] 600+ , 0 3 0 / > 0  on M 

(cf. [CY2], or Lemma 3.2 in [TY1]). Here we have already used the boundedness of 
the curvature tensor R(g) and covariant derivatives of the scalar curvature of g. Let 
~0~ be the unique solution of (4.4)~. We want to prove that (p~ converge to the 
required solution cp of (4.3) as 6 goes to zero. 

Lemma 4.1 For any constants c5 > O, p >= n, we have 

j I~o~lPcog < oo (4.5) 
M 

where p(x) is the distance function from some f ixed point xo in M with respect to the 
metric g. 

Proof. Let t/ be a cut-off function defined o n  R 1, / ' / ( t)  = 1 for t =< 1; t/(t) - 0 for 
t > 2 ,  - l < t / ' ( t ) < 0 f o r a l l t .  

/ x 

t /2 /P)  (1 + p)q'qo~iq~0iv-2 to (4.4)~ and then integrating, we obtain Multiplying 

= j (e I+a*' _ 1)t/2(1 + p)gcp~lcp~lv-2co;. 
M 

Before we proceed further, we remark that the solution ~o~ is bounded and the 
/ . 

metric co o + @ O3~oe is equivalent to cos on M. The bound and equivalence may 

depend on c~. Now we derive by integration by parts. 

j (e I + ~  _ 1)t/2(1 + p)~o~l~o,l~-2co; 
M 

M 

�9 ^ (co;-, +. .  �9 + (coo + "-1) 

< C~,p,~" J (1 + p)i-alO~lPcog, 
M 
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where C~,~,~ denotes a constant depending only on 6, p, ~. 
On the other hand, it is easy to check that 

-Osuplq~l (e ~'~, - 1 )q~  > ~ e Iq~l 2 o n M ;  

therefore, 

6 e -5supl~%[ + inff [" S ( ef+~*" - 1)q2( 1 + P)~~176176 > 5 ,~ a "2(1 + P)~l'pal~mg 
M M 

_ j" le f - 11.2(1 + p ) ~ r / E l ( p . l P - ' o ~ # .  
M 

2~ 

Since f +  O ( p - : - ~ - )  and p > n, we have 
2e 

r l Z l e  f - -  11(1 + p)qr/2[fpalP- lo)g ~ C ~ t/2(1 -F p)q'-2-Tlfp~lP- lf-o ~ 
M M 

=< C //2(1 + p)q'-Tl~oo]Pcog + ~ r/2(1 + p)q-~-2pr  �9 
M 

Lemma 2.3 states that the volume growth of (M, 9) is like that of R 2n, therefore, for 
p > n, t7 < O, we have 

q2(1 + p)~l~ool~; < C~,~,~- (1 + p)ff-~-I(0~lP~o~ + 1 
M 

where C~,p,; is still a constant depending only on 6, p, ~, but may be different from 
the previous one. Let j go to infinity, we obtain for p > n, ~ < 0, 

f (1 + p)~l~oal'~o 3 < Ca,p,ff (1 + p)~-~-lq~sl'~og + 1 . 
M 

Since q~o is bounded, by Lemma 2.3, the integral ~M (1 + p)~[ q~[Pm~ will be finite if 
q is sufficiently negative. Then our lemma follows from an iteration of using the 
above inequality. 

By the definition (2.19) or (2.20) of the metric g, we see that the distance function 
2e 

p is equivalent to [I S []-=. Thus by (4.2), f =  O(p - z -T ) .  Also one can prove that 

Vol0(BR(xo) ) < CsR z" (4.6) 

where C5 is a constant independent of R, BR(xo) is the geodesic ball with center at 
Xo. Choose a Po > n such that 

P ~  > 2 ' n  +Po (4.7) 

2e 
Then by (4.6) and f =  O(p-2-~-) ,  we have 

n+po 
(M ~ n(po + 1) /] Xln(Po + 1 ) 

C6 = le I - 11 ,--~w~ ~,~1 < + oo . 
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Let r/ be a cut-off function on R 1, r/(t)-- 1 for t < 1, r/(t)_= 0 for t ~ 2 and 
Ir/'(t)[ < 1. Rewrite (4.4)~ as 

+ + (1 - eS+~o~)mg ((4.8)~) 

Multiplyingq2(~)q),withp>=po to both sides of the Eq. (4.8)a and integrating 
\ - -  / 

by parts, we obtain 

I IV r/ q~2 / coa < Up I~oalPle f - llcog + I r/Zl~~176 e~' - 1)efcoa 
M M 

l 1 ~ ao ^ ~p 
+ R S ~  [r/'lz [~~ 2re 

((4.9)~) 

By Lemma 4.1, the last term in the above inequality tends to zero as R -+ + az. 
,~-l- 

(Note that co + ~ ~ 0 ~  is equivalent to co with the constants depending on 6). 

Applying Sobolev inequality (3.1) to the right-handed side of (4.9)a and then letting 
R ~ m,  we have 

n--1 

I~oal~V+a"r~-~co --5_ C~ ~ I~oalPle s - l l c o ~ .  ((4.10)a) 
u 

Note that ~oa(e a~, - 1) > 0 on M and C always denotes a constant independent of 6. 
In particular, by H61der inequality, it follows from (4.8)a that 

[q~al~~ = < C . ((4.11)~) 

P u t  Pk+ l = (Pk -'k 1)---- - 
n - - 1  

(4.10)n 
1 1 

( ( ~  I q~l p~§ ' + t co0!'~m+' + 1 /  + 1 ) < (Cpk)~ T-fl ((SM ](p 6 [P~ + 1 COn)/~+lg 

1 for k __> 0. Then it follows from the inequalities in 

Letting k go to infinity, we conclude from (4.11)~ and (4.12)~, 

sup I~ool < C ,  
M 

- - + 1 ) .  

((4.12)~) 

((4.13)~) 
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i.e., ~po are uniformly bounded. Note that C in (4.13)~ may be different from previous 
ones. 

Lemma 4.2 (cf. [Y2, TY3]) Let q~o be the solution of(4.4)~. Then 

(i) there are constants C7, C8 independent of  6 such that 

0 < n + Aoq9 ~ < C7 ec"t~`- infM~%) ((4.14)6) 

(ii) 
where Ag denotes the laplacian of  the metric 9. 
There is an a priori estimate of the derivatives V3cp~(x) in terms of  (M, 9) and 
supM {1~%], [A0q~a[} and supn,~x,o){f, IV/I, IVEf[, IV3f[}. 

By (4.13)~ and Lemma 4.2 (i), (ii) and the standard elliptic theory (cf. [GT]), 
there is a subsequence {61 } of {6} such that ~o~, converge to a solution ~o of (4.3) in 

2 1 C '2-norms. Moreover, by (4.11)~, (4.13)~ and (4.14)~, we have 
n 

I(o[~+ 1)"---~co~ < C < o0 (4.15) 
M 

sup[q~l < C (4.16) 
M 

0 < n + Aoq~ < C .  (4.17) 

Lemma 4.3 Let (p be as above. Then r converges uniformly to zero as x goes to 
infinity. 

Proof Since Sobolev inequality holds for smooth functions on M with compact 
support, one can use the standard iteration (cf. [GT, Chap. 8]) to Eq. (4.17) and 
conclude the mean value inequality 

1 n - 1  

I~o(x)l _-< C 9  (P~ 1)n-~con~ " (4.18) 
+1 

B x) 

where Cq is a uniform constant independent of x. Then the lemma follows from 
(4.15) and (4.18). 

Therefore, the solution q~ we constructed above is what we want in Proposition 
4.1. The uniqueness of such a ~o follows directly from maximum principle. 

f - - - z -  

Now let 9~ be the K/ihler metric with K/ihler form cog + - - ~  ~3~q~, then by the 

second order estimate in (4.17), go is equivalent to g and so it is complete. By Eq. 
(4.3) and the definition off, we have 

Ric(g~) = f 2 .  

The proposition is proved. 

5 Completion of the proof of main theorem 

f l - 1  
We still adopt the notations used in Sects. 2 and 4. Given fl > 1, ~ - with 

n 

n = d imcM and a (1.t)-form f2 in the cohomology class C I ( - K ~ -  flLo), we 
constructed in Proposition 4.1 a complete K~ihler metric with f2 as its Ricci form. 
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The goal of this section is to study the asymptot ic  behavior  of  this constructed 
metric, and then the p roof  of Theorem 1. I is finished. Wi thout  losing generality, we 
assume that  fl < n + 1, i.e., a < 1. 

Denote  by go and coo the K~ihler metric constructed in Proposi t ion 4.1 and its 
K~hler  form, respectively. Then 

co~ = coo + ~ (~0q~ on M (5.1) 

where q~ is a smooth  function which converges uniformly to zero as x tends to 
infinity D of M = _M\D. We may  assume that  coE vanishes in a ne ighborhood of 
D (cf. the p roof  of Theorem 5.1 in [TY1]).  Therefore, by shrinking V3 if necessary, 
we have, by (2.27), 

coo -- co3 + c~0~( - I I  s I1') 1~ on V3\D (5.2) 

where for m > 3, co,, are the Kfihler metrics on the t runcated ne ighborhood  Vm\D 
constructed in Propos i t ion  2.1, S is the defining section of D and I[ " I1' is a hermit ian 
metric on Lo. By the definition of co,, and the assumpt ion  ~ < 1, one can easily see 
that  for m > 3, 

COrn : CO3 + ~ O ~ m  on V,,\D c V3\D (5.3) 

with ~,.(x) converging uniformly to zero as x goes to D. F rom (5.1), (5.2) and (5.3), 
we can write the K/ihler form coo in the t runcated ne ighborhood Vm\D as follows, 

co~ = co., + ~ t30tp,, (5.4) 

where q~m is a smooth  function on Vm\D and ~Om(X) converges uniformly to zero as 
x goes to D. On the other  hand, if fro is the smooth  function given in (2.28), then 
IVkfml,,, = O(llSIl~ +~+~k) and by (2.24), (4.1), (5.4), we have 

(~m at- r162 ~n : ef~con on Vm\D ((5.5)m) 
2~ / 

where II �9 is the hermit ian metric  on Lo in defining co,.. Recall that  

co,,, = ~ - 1  ~([iS[[,:2~,) " (5.6) 
2~ 

L e m m a  5.1 Define a function Pm on Vm\D by pro(x) = II S I[~,'(x). Then for 5 > O, we 
have 

(i) 

(mr,, + ~--~- l o~(Kp~,Z~))" = ( 1 -  (n - 

2 
1 -- 6)KOp~ 2(~+1) -- K6(6 + 1)p~ 2~-2-~- 

IISIl~ + ~ IIO,.SIl~ 

+ (n - 1)(n - 26 - 2) K262p~4a_ 4 
2 

+ O(p~  4" +a)-~ co~,. (5.7) 
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1 
(ii) for  c~ < -,  

n 

(O~rn+~lC3~(Kp~n2n+2(--logp")~)) n 

= (1 -- (n -- 1)K6pm2"(-- logp2)O-x(1 + o(1))o9",,) (5.8) 

where K is a constant, and D,, is the covariant derivative o f  q] " I[". 

Proof  (i) By (2.4), we have 

c~nx/~_lP, ,S_A_D"S~ 
co~, = ~"[[511,~2~"o5~ -1 ^ aS,. -1- 21r Ial 2 ] 

= ~"115112,2~"-2(11s112 + alIOmallm)C~ , 2  ~n 

where 05 is the curvature form of the hermitian metric It " I1,. on Lo.  Because of the 
logarithmic terms in the definition of II �9 It,., the (1, 1)-form 05~ may not be defined 
on D. However,  [ID~SII,. is well-defined on D and nonvanishing there. In fact, 
II D,.S I1" coincides with II DS II along D. 

O n  the other  hand, we compute  

(use) (2.3) 

~" II S II~ 2~n I(1 - g 6  II S II 2~(x + ~))eS,. 

- D , . S  /x D , . S I "  

= ~.  IIS112,2~.-21-(1 _ gOllSll2~"+o).) l lSl l  2 

+ ~(1 + K 6  ~ II S [12~a +~)(1 - K6Z IISIIUI+~)) ~-1- 110,.5112] .05~, 

(1 - g ~  = II S II 2~" +~)).- x (11S I1~(! - g ~  II S 112 ~1 + ~ ) +  ~(1 + g~i 2 II S II 2 ~a +~))II O,.S  112) 
Il S ]12 + c~ ll OmS ll 2 

= { 1  - (n - 1 --  6 ) K 6  IlSll 2~"§ - 
K6(6 + 1)llSl[~ =~l+a)+z 

[ISl[ 2 + ~llDmSl[ 2 
+ 

+ (n - 1 ) ( n  - 2 6  - 2 )  K 2 6 2  il S I[~ "~l +~) + O (  II S [IU x +~) +2)~ (3) n 
2 ) 

g 
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Now (5.7) follows from the above equation and P,  = II S t1~ ~. 

(ii) It suffices to compute 

( ,F-1 ),' 
om+ ~ o~(g tl S lip (". 1)(-log II s 112) ~ 

+ K ( e 2 ( n -  1) 2 

6 a 

log ~SII2) o~. + 

2 6 ~ ( n -  1) . 62 "~ 
l~g ]] ~ + (log ItSll2) 2 ) 

• tl S I[ 2~(n- 1)(log II S 112) 0 DinS ~D.S-~ ~ 
Isl 2 J 

IISII2+~tlO.SIl~ ( 1 - g  ( n - l )  ~logilS{l~ IISII2~"(l~ " 

6 

- + , ,   ,og 
2 6 ( n -  1)'] 

+ ~lID.sl l  ~ + K ~ ( n -  1) = l~gilSLl~J 

( '  /} x II s II~"(log I[ s I1~) a II o . s  Ha. + o (log II s I1~) 2 

--{1 K(n-1)6, , ,S l ,2 . . (_logl lSl ,~)o_~(l  + o(1))}~o~.  

Then (5.8) follows. 

Lemma 5.2 Let m > 2n + 2, n = d i m c  M. Then 

1 
(i) for fl > 2, i.e., ~ > -,  there is a constant C(m), depending on m, such that 

n 

C(m) 
I~o.(x)l < (1 + p2(x))"-l' x~ V . \D .  (5.9) 

1 
(ii) for fl < 2, i.e., ct < -,  and any 6 > O, there are constants C(m) and Ca, where Ca 

n 

may depend on 6, such that 

-C~(1 + p2(x))-"+ l ( - l ogpm)a(x )  < r < C(m)(1 + pE(x))-"+ l x e  V , \ D  . 

(5.1o) 
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Proof. Fix m > 6n. It  suffices to prove (5.9), (5.10) in a ne ighborhood  of D. First we 
assume that  fl > 2. Then by L e m m a  5.1 (i) with 6 = n - 1, we have 

2 

)( ) C0m + g~(Kp,~ 2"+2) = 1 K n ( n -  1)p,~2~-:(1 + 0(1)) 
- iSIl~ + ~IIDS[I~ ~o~, on Vm\D. 

(5.11) 

On the other  hand,  

2m+l x 
eI"o~, = 1 + O ( p ~ - ~ - ) ) e ~  on V~\D. (5.12) 

Since m > 2n + 1, 2m + 1 1 K '  = > 2 n +  . N o t e t h a t a <  1. L e t e > 0 ,  K = - - , w h e r e  

[K'I = supvm\o(l~0,,[ + 1), then Iglp~2t~-~)(x) > I~0r,(X)l for p~,2n+2(x) = e. By 
taking e sufficiently small, it follows f rom (5.11) and (5.12) that  on 
{xe  V\DIp~,2"+Z(x) < e}, 

( @ )"{ =<ez'o~' ifK>O (5.13) 
~0 m -I- 63~(Kpm2n+2) > e-r"co~ if K < 0 . 

Tha t  is, Kp~n 2n+2 c a n  serve as upper  or  lower barriers  of the complex Monge-  
Amp6re Eq. (5.5)m according to K > 0 or  K < 0. Then (5.9) follows f rom the fact 
tha t  (pro(x) converges uniformly to zero as x ~ D and m a x i m u m  principle with 
barriers  Kp~, 2,-2 .  The est imate (5.10) can be similarly proved by  using L e m m a  5.1 
(i), (ii). 

Remark. On the euclidean space R 2n, the positive minimal  Green  function decays 
at the order  r -t2"-2), where r is the euclidean distance on R 2n. In  our case here, the 
function p,, is equivalent  to the distance function on Vm\D from 8 V,. Therefore,  for 
13 > 2, the est imate (5.9) is optimal.  Fo r  fl < 2, we don' t  know whether  the 
logar i thmic term in (5.10) is necessary. 

F r o m  now on, we fix a m > 2n + 2. The second order  est imate in [Y2] implies 

0 < corn + @ d~Om < Co~,, on Vr,\D (5.14) 

where C is a constant  independent  of m and x ~ Vm\D. 

Proposition 5.1 Let ~Pm be the solution of  (5.5)m with decay as in either (5.9) or (5.10). 
Then for �89 > (5 > O, there are constants C~,R, depending only on 6, such that 

Vm\D ~..,6, kPra~.,~! X ~-. g (5.15) 

Proof. Fix 6 > 0 and m > 4n. F o r  simplicity, we will always use C to denote  
a cons tant  depending only on 6, m. We remark  (cf. (2.21) in L e m m a  2.5) that  for 
k -> 0 ,  

]VkR(gm)lg,.(x) = O(p,,,(x)-k-2), XG Vr,,\D , (5.16) 



Complete Kfihler manifolds with zero Ricci curvature II 57 

where R(g,,) denotes the curvature tensor of the metric gin. Define a new Kfihler 
metric ~ = R-ag. ,  on Ba(x, g,,) with 2R = p,,(x). Then Bl(x,  9) = BR(X, gin) and 
one reads from (5.16), 

sup {[VkR(0)[~'[0 N k -< 4m} __< C .  (5.17) 
B~ (x, ~) 

Put ~ = R-2~o,,, then (5.5)m is equal to 

e ~ +  ~0~ = eI"c~}on B~(x, 9) (5.18) 

and for any 6 > 0, there is a C6 > 0 such that 

sup (1~1) =< C6 R-z"+~ (5.19) 

2 m + l  

IV*f.,19~(y) = O(R - ~ )  f o r  On the other hand, by Proposition 2.1, 
y~BR(X, gin), SO 

2 m +  1 

sup (IVkf,,lff) < CR ~ (5.20) 
Bl(x,~) 

Since ]Vkq~,.[o~(x) = R-k+2]Vk0]~, it suffices to prove 

IV~l~(x) < R-2,+6 (5.21) 

to complete the proof of this proposition. 
First we consider the case k = 1. Note that by (5.14), 

0 < o9~, + ~ O~O < Cco~ on Bl(x,  9) �9 (5.22) 

Multiplying q20 to both sides of (5.18) with proper cut-off function r/and integrat- 
ing by parts, we can get 

S I " 2 , C,5R-,*,+2,~ Vq~ I~co~ = . (5.23) 
B~(x, ~) 

Here we need to use m > 4n. 
Taking the derivative on (5.18) with respect to z~(1 < ( < n) and using (5.22), we 

have on Bl (x, 9) 

~ ~ f ,~ (o "~ . ~ ".~ 
~Oz~)i 7 (ef~ 1 ) 0 u ~  + c~f~ y ~ e ~ + O(V20) (5.24) 

where O(V2~) denotes a function bounded by 1V2~5 [~.. Now using Moser's iteration 

to (5.24) with ~ for 1 _< E _< n, we can prove 

I v0  I~(x) _-< C p , . ( x ) -  ~" + a ,  (5.25) 

Since x is an arbitrary point in V,.\D, the estimate (5.25) holds on V,,\D. On the 
ar 

other hand, by multiplying q ~ to both sides of (5.24) with proper cut-off function, 
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integrating by parts and summing over f, we obtain 

I~eo~ < C~R 
B~(x, ~) 

Inductively, suppose that we have proved 

IWOl~(x) 5 C~p,,(x) -2"+~, 

f o r j < k - 1  <rn, and 
m - k  

I IVk(o[}(x) < Ca R-4"+2~ + C R - ~ ; - - " + ' .  
B~(x, ~) 

(5.26) 

x ~ V.,kD (5.27) 

(5.28) 

~k(p2 
with ~z'~,... ~,;~ 

By taking derivatives on (5.24), we have equations for 

~ ' =  1 (is + L) = k as follows, 

~ij( Ok(} ) OkJ., eI~ O(R-Z,+a) 
g ~z~ 1 - - -  O~i, " , y -  Oz~ 1 - - -  ~5~" + (5.29) 

on Bc,(x, 0). Then an iteration implies 

Irk0 I~(x) < c0 p . (x) -  2. + ~. (5.30) 

Moreover, we can deduce from (5.29) the integral estimate (5.28) with k replaced by 
k + 1. Therefore, by induction, we have proved the estimate (5.30) and the proposi- 
tion follows. 

By Lemma 2.4 and the remark after its proof, one can easily derive the following 
from the above proposition. 

Proposition 5.2 Let M = ffl \ D , f2 ~ C1( -K;~  - fl L o ) be given as in Proposition 4.1, 
go be the complete Kiihler metric with Ricci curvature f2 constructed in Proposition 
4.1. We denote by p the distance function on M from some fixed point. Then the 
curvature tensor R(ga) decays at the order of at least p -  3 if D is biholomorphic to 

CP"-  1 and the induced line bundle Lo by D restricts to the l--hyperplane line bundle 
Ot 

on D ~- CP ~- 1; if either of these two conditions falls, then R(ga) decays at the order 
of exactly p-2 .  Moreover, the covariant derivatives VkR(g~) decay at the order 

- k - 2  
P 

Now our main theorem (Theorem 1.1) follows from Proposition 4.1 and 
Proposition 5.2. 

6 The proof of Theorem 1.2 

In this section, let AI be a projective normal orbifold and D be a neat, admissible, 
and almost ample divisor. As in Theorem 1.2, we further assume that 
C I ( - - K ~  - Lo) admits a semi-positive (1.1) from O. Then it implies the following 
simple lemma. 

Lemma 6.1 With ATI, D as given above. Then there is a semi-positive (1,1)-form in 
Ct(M) which is actually positive near D. 
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Proof Since D is almost ample, by Definition 1.1, (ii), there is a semi-positive 
(1,1)-form coo representing CI(LD). Moreover, this coo is positive near D. The 
required (1,1)-form is just f2 + coD. 

As usual, we call a projective orbifold _M algebraically simply-connected if 
.M does not admit any finitely unramified covering. 

Lemma 6.2 The orbifold iQl is algebraically simply-connected. 

Proof It follows from the Kodaira-Nakano vanishing theorem and an argument 
due to J. Serre (cf. [Ko]). In fact, if .M admits a finite covering M, then 

X(5,1, (9~) = dz()~3, C~) (6.1) 

_ " ( where d is the degree of the covering and Z03, (9~) = ~i=o - 1)ih~ ~t, (9~) is the 
euler genus of structure sheaf C~ on M. On the other hand, by Lemma 6.1, there is 
a semi-positive (1,1)-form in CI(M) which is positive in an open subset. Thus the 
Kodaira-Nakano vanishing theorem (cf. Theorem 2.37 in [Sh]) implies that 

hi(~Q, (9~) = h"-i(53, K~) = 0 for i >_ 1 (6.2) 

h~()~, C~) = h"-~(M, K~) = 0 for i > 1 . (6.3) 

Note that the vanishing Theorem 2.37 was originally stated for smooth manifolds 
in [Sh]. However, there is no additional difficulty to generalize it to normal 
orbifolds. Now h~ (9~) = h~ (gfi) = 0. It follows d = 1 and the Lemma is 
proved. 

Lemma 6.3 T_he fundamental group re1 ()VI) of M is almost nilpotent, that is, a sub- 
group in rq(M) of  finite index is nilpotent. 

Proof Since D is almost ample in ~t, the anticanonical line bundle - Ko is ample, 
so D is simply connected (Kobayashi [Ko] proved such a manifold to be algebraic- 
ally simply connected and the second author in [Y2] proved simple connectivity by 
constructing a metric with positive Ricci curvature). Thus by Van-Kampe theorem, 
the group rq(M) is a quotient of rcl(M\D ) by a normal subgroup. By the 
assumptions on M, D, there is a complete K~ihler metric on )~__\D with nonnegative 
Ricci curvature (cf. [TYI]). In particular, it implies that rtl (M\D) is of polynomial 
growth. Then a result of Gromov in [Gr] implies the almost nilpotency of 
~ ( M \ D ) .  This implies that 7h(~t ) is almost nilpotent. 

In case there is a nonnegative form in Cx(- -K~ - flLo) for some fl > 1, ,M\D 
admits a complete K/ihler metric 9 with nonnegative Ricci curvature and euclidean 
volume growth. Then the well known Volume Comparison Theorem implies that 
any unramified covering of (M \D, 9) hasits volume growth less than that of R 2,. In 
particular, the fundamental group rq(M\D), so rq(M), is finite. So Lemma 6.2 
implies that rq (~t) = {0}. In general, we only need to remark that any nilpotent 
group admits a subgroup of finite index. So Theorem 1.2 follows from Lemma 6.2. 
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