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Compactification is an important step in understanding the properties of a non- 
compact complex manifold. Once a complex manifold can be compactified, the 
global properties of algebraic geometry can be applied to understand the structure 
of the non-compact one. In general, suitable conditions have to be imposed. In this 
article, we prove the following theorem, which has been around as a conjecture for 
quite a long time. 

Theorem 1 Let X be a complex manifold endowed with a complete Kfihler metric of 
finite volume, bounded Riemannian sectional curvature and negative Ricci curvature. 
Then X is biholomorphic to a Zariski-open subset of a projective-algebraic variety. 

The interest in compactification can be traced at least back to the classical 
result of Satake [Sa], Baily-Borel [BB] and Ash-Mumford-Rappoport-Tai 
[AMRT] on arithmetic quotients of bounded symmetric domains. The methods 
employed are algebraic in nature. Along another direction, Andreotti-Grauert 
[AG], Siu-Yau [SY], Nadel-Ysuji [NT] and Nadel [N] obtained interesting 
results using essentially the analytic properties of pseudoconcavity. In [M2], Mok 
initiated a new scheme of attacking the problem and results in the work of 
Mok-Zhong [MZ]. The present work can be considered as a continuation and 
completion of this scheme. The hypotheses of the theorem are satisfied by K/ihler- 
Einstein manifolds which include in particular quotients of bounded symmetric 
domains mentioned before. For dimension two, the result is proved in [Y]. 

The conditions required in the theorem are rather reasonable. The examples of 
Ballmann-Gromov-Schroeder [BGS] show that the K/ihler condition is necessary. 
Finiteness in volume is also required by considering the example of the unit disc in 
C with Poincare metric. In view of the recent examples of Anderson-Kronheimer- 
LeBrun [AKL], negativity in the Ricci curvature is reasonable. A question that one 
would like to ask is whether the boundedness in the Riemannian sectional curva- 
ture is necessary, which in general seems to be difficult to verify. We remark that it 
is possible to replace this condition by integral bounds on the sectional curvature 
over the manifold. Moreover, we succeeded in generalizing the above results of 
compactification to V-manifolds. Details will appear elsewhere. 
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Notations 

Z: compact K/ihler manifold obtained by partial embedding 
F: birational mapping from X to 2 
09: the K~ihler form on X 
o~z: the K~ihler form on 2 
d Vu: the volume form of M 
h: the coefficient of volume form associated to co in local coordinates 
ho: the coefficient of volume form associated to co~ in local coordinates 
W: the union of the branching locus and the base locus of F 
WI: an irreducible component of W 
D: divisors in 2 complementary to F(X)  
K: the canonical line bundle of X 
F~(X, KP): the space of L ~ holomorphic sections of K p 
r~ U >or (x, 
C, Cl ,  C2: s o m e  positive c o n s t a n t s  

1 Preliminaries 

1.1 

We are going to collect known results from [M2, MZ] and [Y] in this section. 

1.2 

In [MZ],  Mok and Zhong obtained the following results. 

Proposition I (Mok-Zhong) Let F : X - ~  Z be a birational embedding into a non- 
singular projective-algebraic variety defined by pluricanonical sections of class L ~ 
Let W be the set of base loc~s and the branching locus ofF. Then I2 = F(X - IV) is 
a Zariski open subset of Z. 

In particular, if X is of finite topological type, the proposition implies the result 
of our main theorem. There are essentially two steps in the proof of the above 
proposition. First they show that the field of rational functions M arised from 
taking the quotients of the pluricanonical sections of F ~ (X, K p) for p > 0 satisfies 
Siegel's Theorem. This enables them to construct a mapping into an algebraic 



Compactification of Kfihler manifolds 15 

manifold Z. The mapping is birational in the sense that M is isomorphic to the 
function field on Z. Then they show that the image of the mapping is Zariski-open 
in the manifold constructed by using Bezout's type estimates. 

We also recall the following standard result from L2-estimates. 

Lemma 1 Let x ~ X. There exists a positive integer m such that the pluricanonical 
map defined by F~ K m) provides an embedding of  neighbourhood of  x to its image. 

In this article, the sections from the previous lemma are always composed with 
Segre's mapping from P" • pb to p,b+,+b given by 

([X/]o~i~, [Yj]I <=j <=b ) ~ [x~yj]o z i <=.,O Zj ~_ b . 

1.3 

We need the following definition. 

Definition 1 Suppose we fix a birational embedding F satisfying the conditions of 
Proposition 1. Let W =  Ui~iWi be the decomposition of W into irreducible 
components of a subvariety W of X, here I is an index set. Then a family of curves 
{c~, i e I } is said to satisfied condition C with respect to W if the image of Ci by F in 
Z is a branch of a set defined by polynomials of bounded degree, and the curves Ci 
intersect Wi only at isolated points of Wi - Uj ,~wJ .  

As remarked in [Y], following essentially the argument of [M1, pp. 249-352], 
we obtain the following result. 

Proposition 2 Suppose there exists a family of  irreducible analytic curves Ci, i ~ K 
satisfying condition C with respect to Pl g= Ui~i wi of  Proposition 1. Then we can 
adjoin a finite number of  sections in F~ K m) to F to embed IV. 

1.4 

The image of the birational mapping F is 2 - V. We have the following estimates 
of asymptotic volume form from [Y]. 

Proposition 3 ([Y], Proposition 2.3) The coefficient of  the volume form on Z -  V 
induced from o9 on X by F can be expressed as 

h = ~ Ilsill-2~i'e~'ho 
i 

where 
(a) cq=< 1, i - -  1 . . . . .  N; 

~o(y) = o (b) ~o is bounded from above and xf  - 188~o > - c~o~; (c) lira infy_~ log It sffy)It 

as y tends to a generic point x ~ ~ .  
Moreover, i f x  ~ ~ and ~i = 1, we have limr_~xrp(x ) = - Go. 
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2 Scheme of proof 

2.1 

In this subsection, we are going to lay out the scheme of proof of our main theorem. 

S.K. Yeung 

2.2 

As mentioned in w we obtain a birational mapping F = (f~ . . . . .  f~+ 1, g) from 
[MZ]. If we can remove the bad set W which consists of the branching locus and 
base locus by attaching a finite number of sections, the theorem will be proved. Let 
f0 = f i  + cofj, 1 < i < j < n + 1, where cij are going to be specified later. Instead of 
considering the set of sections $1 = {f~, i = 1 . . . . .  n + I), we are going to consider 
the set $2 = {J~,Jjk, 1 < i < n + 1, 1 < j  < k < n + 1} with suitable constants c~. 
The main theorem is reduced to the following proposition, keeping in mind the 
results of w 

Proposition 4 We can find g ~ . . . . .  g,  + 1 from the s e t  S 2 such that for the birational 
mapping G obtained from g and gl, i = 1 . . . . .  n + 1, we can find a family of  curves 
{ci, i ~ I } which satisfied condition C with respect to the set of base locus and 
branching locus of  G. 

Notice that for F, the set W of the union of branching locus and base locus has 
only countably many irreducible components. Hence we can choose the numbers 
cij, 1 < i,j < n + 1 such that any n + 1 sections ga, �9 �9 �9 , g , + l  among $2 would 
have the same rank as fl . . . . .  f~+ 1 on any of the irreducible component  of W. 
There are I different choices of n + 1 sections from $2, corresponding to different 
choices of birational embeddings Gi, 1 ~ l, where 

l = ( � 8 9  + l)(n + 2 ) )  
n + l  

2.3 

We would try to express Condition C in w to a form that can be handled more 
easily. First of all, we try to understand the geometry of the situation. We recall the 
following observation from [Y]. For  details, please refer to w of l-Y]. 

5 1 �84 ) 

X 
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Let W1 be any irreducible component of W. Using Lemma 1 of w we can 
embed a generic point of Wt into an algebraic manifold Z1 by adjoining sections 
ha, � 9  hs for some s to F. By Hironaka's resolution of singularity (cf. I-U]), we can 
obtain an algebraic manifold I 7 such that the mapping tr is obtained from a se- 
quence of blow-down's and z a morphism. If W1 that we are considering is 
a component of the branching locus, we just leave it like that. But if W1 is a base 
locus, we blow up the subvariety and still call the resulting manifold Y. In all cases, 
W1 corresponds to a divisor E on Y. Moreover, E is mapped into the divisor D in 
Z by construction. In the following discussion, actually we would only consider the 
component E~ of E obtained from generic points of W1 by tr-1. 

Let y be a point on E1 which is the inverse image of tr from a generic point of 
Wx. Let x be its image by z in Z. Let w~, z~, i --- 1 . . . . .  n be local coordinate 
functions on Y and Z respectively such that E is defined by wl = 0. Then the 
mapping ~ can be represented by 

z~ = w ~  

z .  = wl~"~..  

Here ~, i = 1 . . . . .  n are analytic functions which are not divisible by wl. At least 
one of the integers p~'s is greater than or equal to one. We recall the following 
results from [Y]. 

Proposition 5 (Proposition 5.1, [Y]) Suppose all the exponents Pl can be bounded 
uniformly by a positive constant independent of the element W1 ~ W. Then there 
exists a family of curves Ci satisfying condition C with respect to W = U i~1 Wi. 

The proof of the proposition follows basically from I-Y], where we constructed 
a curve on each Y which cuts E1 at isolated points and the image of the curve in 
Z has degree bounded by a uniform constant. The only modification that we have 
to add is to observe that the mapping tr obtained above has degree bounded by 
n - 1 for a generic point of W1 so that when we project the curve by cr to Zx, the 
image would cut W~ at isolated points. 

2.4 

From the previous argument, it follows that Proposition 4 would be proved 
provided that we can bound p~ uniformly. By taking different projections, it is clear 
that we can reduce the proposition to the following statement. 

Proposition 6 For each subvariety Wi ~ W and each birational mapping G s, 
j = 1 . . . . .  l considered above, at least one of Pk for the corresponding z, which 
depends on both Wi and G ~, is bounded uniformly. 

We can also deduce the reduction of the proof in the following way. For  
notational simplicity, let us just take F as an example. Suppose for z which 
corresponds to (F, g), Pt is bounded by a uniform constant. If all the p~'s are equal, 
we are done. Hence we may assume that P2 > Pl- Consider the birational mapping 
obtained from (F', g), where F ' =  {fl , f l  + c12f2,f3 . . . . .  f,}. The corresponding 
morphism z' would have the corresponding p'~ = ph = Pl in local coordinates as in 
w The reason is that 

w~'~l + c12w~2G = w~1(~1 + c12wP12-PIG). 
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2.5 

It follows immediately from the previous subsection that we only have to consider 
the situation that the image of z(E) are isolated points. Our strategy is to prove that 
Proposition 6 is true for all subvarieties W~ of Wexcept for some components in the 
base locus in w This allows us to construct a new birational mapping without 
branching locus outside the base locus. The remaining components are dealt with 
by applying the argument to the new birational mapping again. This is done in ~4 
and allows us to conclude the proof of our main theorem. 

3 Estimates of degree 

3.1 

In this section, we are going to generalize the results of [Y] to handle the situation 
that the image by z of the irreducible component El ,  which consists of the inverse 
image of a generic point of W~ from a-1, is a single point. 

3.2 

The idea of the proof involves estimates on the union of the branching locus and 
the base locus. We first try to take care of the set of base locus in this section. Notice 
that for an irreducible component in the base locus, the corresponding z(E1) is 
contained in the divisor D on Z. From the results of w we know that the set of all 
W1 with dim(z(E1)) > 0 can be removed by adjoining a finite number of plu- 
ricanonical sections in F~ ~) for some m. Hence we may assume that 
dim(T(E1)) = 0. In such a case, the mapping F can obviously be extended continu- 
ously across I"111. Riemann's Extension Theorem implies that F can be holomorphi- 
cally extended over W~. In this case, W~ behaves as if it is contained in an 
irreducible component of the branching locus. If d im(E0 = n - 1, Proposition 7 of 
w can be applied to deal with the situation. The other cases would be taken care 
of in w 

3.3 

From this point on, we assume that W1 is an irreducible component of the 
branching locus with the property that T(E1) is a single point on D. Then 
dim(W~) = n - 1 since it corresponds to the vanishing of the Jacobian of our 
birational mapping. We recall that the divisor D in Z can be written as ~ =  1Di, 
where Di are divisors in normal crossing. We would show in this subsection the 
following result. 

Lemma 2 I f  the image z(E1) does not lie in the intersection point of n components Di, 
at least one of the exponents Pi is bounded uniformly. 

Proof Let z be a generic point of z(E1) and U a small neighbourhood of y. We 
choose a holomorphic coordinate system in U such that locally z(E1) lies in the 



Compactification of K/ihler manifolds 19 

intersection of i divisors, i < n, and the divisors are given by zj = 0, j  = 1 . . . . .  i. 
From Proposition 3, w we can write the volume on Z - D induced from ~o locally 
on U as 

i 
dVz = 1-I [zJl 2~j'lq[ 2~ ^ dz2 A " ' "  A d z n l  2 

j = l  

for some holomorphic nonvanishing function ~/. It  follows that the volume form on 
obtained from ~o on X by F1 and tr can be expressed in the following way in 

a local coordinates chosen as in w 

dV?= IWl[ 2 ~ = l p j ( 1 - c t j ) + 2 E 7  . . . .  PJ- 2"l~12"ldw 1 A d w  2 A ' ' '  A d w n [  2 . 

Here ( is a holomorphic function in the neighbourhood. On the other hand, we 
know that d V? at a generic point of E1 is non-degenerate as the same thing happens 
for Wa. It  follows that each pj for j > i is bounded from above by 1. We can then 
apply the arguments in w to obtain our result. 

Remark. It is quite clear that the proof of the lemma implies that p~ would be 
bounded if ct~ < 1. Hence in particular, we assume that ~ = 1 in what follows. 

3.4 

Let E1 be an irreducible component  of E. From the previous subsection, it is clear 
that we only have to consider the case that the image ~(E~) is given by 
(0, 0 , . . . ,  0)~ ~7= 1Di. First of all, we make the following observation. 

Lemma 3 There are only a finite number of irreducible components W1 of W which 
would give rise to E~ having empty intersection with other component of  E. 

Proof. In such case, E~ obtained from such component  would be equal to one of 
the connected component  of r -  1 (D), But D has only a finite number of  connected 
components. By using the fact that F -  ~ is biholomorphic to its image on Z - D, it 
is quite clear that there would only be a finite number of such W1. 

3.5 

From this point on, we assume that E1 has non-empty intersection with some other 
component  E2 of E. Moreover, we may assume that E1 and E2 are in normal 
crossing at the very beginning by Hironaka's  resolution of singularities. Let _y ~ E1 
and V be a coordinate neighbourhood of y in Y which is mapped into U in Z by z. 
Recall that we can express ~ as follows in suitable coordinates. 

From this we have 

z .  = w ~ ( .  

zfJ  _ ~fJ l <=i , j<n.  z~ ~;' 
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As the left hand side is a well-defined meromorphic function in a neighbourhood of 
E~ in Y, so is the right hand side. We call such a function 0 w In particular, they are 
well-defined on E~. 

Lemma 4 0jl has at  least  a z e ro  and  a pole  on E1 f o r  each  j > 2. M o r e o v e r ,  in 
a coord ina te  p a t c h  w i t h  W1 given as wx = O, 

d w l  ^ dO21 A " ' "  A dO,1 

is non -degenera t e  at a gener ic  po in t  o f  W1 .  

Proof .  We prove this by contradiction. Suppose on the contrary that 0.1 does not 
have a zero or pole when restricted to El.  Then we can write 

Onl (Wl ,  W") = Cnl -]- wlfnl(Wl, W') 

for some constant e.1 ~ 0, here we represent (w2 . . . . .  w,) by w'. On the other 
hand, from 

z 'J 
p-S" = Oij , 

z j  

we have for 2 _< i < n, 

dzi  dz1 do l l  
Pl  - -  = P i - -  + - -  

Zi Z1 Oil 

We are going to apply the result ofw Notice that we may assume that all the ~i in 
Proposition 3 of w are equal to 1, as observed in w Restricting to a smaller 
neighbourhood if necessary, we have on V, 

d V r  = e ~~ . . . . . . . . .  ) f l  [ z i l - Z ' l d z l  ^ dz2 ^ " ' "  ^ d z ,  I z 
i=1 

= c ' e  ~( . . . . . . . . .  )lza1-2 f i  [Oia l -2" Idz l  ^ d021 ^ " ' ^  dO.112 
i=2 

= e~tW~'r . . . . . .  wt'C.)lw~ I-2p, I~/I 2 " l ( w f ' d ( x  + p ~ w f ' -  1 ( l d w l )  

^ d02~ ^ " ' "  ^ d O t . - a ~  ^ ( f . ~dw~  + w~df .x) l  2 

= e~(W~'r . . . . . .  w ~ " ( . ) [ w l l - 2 ( p ' - l + l - P ~ ) l ( 1 2 1 d w  1 A " ' "  A dWn[ 2 

= e~O(w~'r . . . . . .  w~"r ^ . . .  ^ d w ,  I 2 . 

Here q and ( are holomorphic functions in such a neighbourhood. The factor e ~' 
would be zero in such case at a generic point of E1 and hence at the preimage of 
a generic point of W1 by a, from Proposition 3 in w This implies that the volume 
form obtained from co is degenerate on W1, which is absurd. By the same reason, 
0jl has a zero or pole for other values ofj. The other statement of the lemma follows 
from the same argument. 

R e m a r k .  The above lemma allows us to use wl, 0zl . . . . .  0,1 as local coordinate 
functions at a generic point of Wa. 
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3.6 

We are now in a position to generalize the results of [Y] to bound  the smallest 
exponents p~ in the definition of ~. We recall that  the Lelong number  of a curve C on 
Z is defined to be 

Vc = lim inf 
=~o,=~c log 

As a notation,  we define for 0~ e [0, 2~), 
a curve 

C(p ...... i,.) ~" 2 zp' 
(02 . . . . .  On) : ~ Z  ~ U ~ - - ~  

~o(z) 
( ~ : 1  Izil2) " 

i = 2  . . . . .  n and p . i e R ,  j =  1 . . . . .  n 

= e~/~-l~ i = 2 . . . . .  n }  

for generic ~i, i = 2 . . . . .  n. We fix such a set of values e from this point onward. 
Lemma 4 allows us to obtain such family of  curves whose preimage by z cuts W1 at 
isolated points for all 0i e [0, 2n) for suitable choice of e~, i = 1 . . . . .  n. Moreover ,  

,,(P . . . . . .  ~) The induced volume we write the Lelon_g number  of such a curve as v(o . . . . . .  0,). 
form we have on Y can be written as 

d V ?  = Iwa l -Ze  ~~162 . . . . . . .  t'C.). Idwx ^ " ' "  /x dw,,I 2 . 

Hence we have, 

log(Iwl[ 2) + cl < r (1 . . . . .  w~( , )  < log(lwll  2) + c2 �9 

F r o m  this, we deduce that  

v ( p l ,  - �9 . , Pn)  = v ( p l ,  �9 �9 �9 , PrO 
(02 . . . .  0 . )  - ( 0  . . . . .  0) 

~o(z) 
= lim n =~o, =~c l ~  1 [ziL 2) 

Notice that we have replaced the inferior limit by strict limit. 
Let p~ and p, be the largest and the smallest numbers  among  Pa . . . .  , P, 

respectively. The following lemma is the generalization of  Lemma 4.4 in [Y]. 

Lemma 5 There ex is t  a posit ive constant  c~ dependin9 on p:s  such that 

v(Pl  . . . . .  p . )  (1 . . . . .  1) > C l  
V(Oz ..... 0.) = (02 ..... 0.) 

Suppose W'~ is another  irreducible component  of W such that  the correspond- 
ing E'I in Yis mapped to (0 . . . . .  0) which is the image of  Ex in the above lemma. 
We can express the corresponding z' as 

= p~ t zi Ul'(i, i = l , . . . , n ,  

where W'~ is given u~ = 0 locally. Then we have the following generalization of  
Lemma 4.5 in [Y]. 

Lemma 6 There ex i s t s  a posit ive constant  c2 dependin9 on p:s  such that 

(02 . . . . .  On) = t ~ 2 " ( 0 2  . . . . .  0 . )  " 

The proof  of the above two lemmas will be given in the next subsection. 
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3.7 

P r o o f  o f  L e m m a  5 F r o m  the previous argument ,  we m a y  assume that  0~ = 0 for 
i =  2 . . . . .  n wi thout  loss of generality. Let Zo = (z ~ . . . . .  z ~ be a point on  
C~PI . . . . .  P") Consider  the Sa-family of curves given by  Co~ = Cr . . . . .  o) for ( o  . . . . .  o)  �9 

02 r [0, 2r0. The picture is as follows, where z' = (z~, z3 . . . . .  z.). 

Z 2 

. .  

Fig. 1 

As ~o is subharmonic  on  the disc {z ][ z2l ~ [ ~ 2  [, Zi = zO,  i :~= 2}, We have  

q~(z ~  ~  ~ . . . . .  z ~  sup q~(z ~ 1 7 6 1 7 6  ~ 
O2e[0,  2~)  

---- <v(P  (o . . . . . .  . . . . .  o) P") l~ ~ ' z ~  + c  i=1 

=< vCPr . . . . .  . . . . .  b~"~l~ [z.I 2) + c 

co . . . . .  b~ l o g ( n ) +  log(lzl  12 

here we m a y  assume that  Iz~l < Izjl for i < j  by taking a sufficiently small  neigh- 
bou rhood  of  (0, ,0). Hence  we have for  the curve C = c~pl, pl, p3 . . . . .  ~) . . . .  (0 . . . . .  0) 

v~P~'PI'P . . . . . .  P") - lim q~(z) 
co . . . . .  o) - z~C l~ z) 

"(0  . . . . .  O) 
Pl 

I t  is clear that  the same argument  gives 

v ~ p i  , t , , ,  p3 . . . . .  ~) > ~,tp~ , p~, . "o; p") p-s  
(02 . . . . .  0,1) ~ " ( 0 2  . . . . . .  

Pl 
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By applying this argument inductively, we have 

v ( P l ,  P 2 ,  �9 Pn) < P l  v ( p l  ' P l ,  P3 . . . . .  Pn) 
(o . . . . . .  ~ ;  = p .  - ( o ~  . . . . .  o.) 

(pi~ ( . -  i) 
I ~ ( P l , P l , P l  . . . . .  P l )  

\ p . /  "(o . . . . . .  o.) 

As ,,(P"P . . . . . .  P') ,,(1 . . . . .  1) this implies that  
- (02 . . . . .  0 . )  = - (02 . . . . .  O . ) ,  

. , ( i  . . . . .  I )  > V(p~ . . . . .  p.) 
v(02 . . . . .  0 . )  = \ P l ]  (02 . . . . .  0 . )  " 

P r o o f  o f  L e m m a  6 We just  rewind the proof  of the last lemma. Let 
Zo = (z ~ . . . . .  z ~ be a point on C((~); . . . . .  o~ ;). Here we assume in contrast  to the 

�9 t ~ t �9 �9 __  
choice  ofpi  t h a t  Pi = Ps for t > j  so tha t ' l z i l  > Izs[ for  i < j  for  a sufficiently smal l  
neighbourhood of 0 on Z. Using the properties of the plurisubharmonic function 
again, we have 

q~(z ~ ~ 1 7 6  ~  sup q~(z ~  a~ ~ . . . .  , z  ~ 
0 2 e [ 0 ,  2 r 0  

- -  - ( 0  . . . . .  O) -'1- C 

i = 1  

< "(P; . . . . .  ~;) log(nlzx 12) + c 
= - ( 0  . . . . .  0 )  

= vlg'.'...,b~')[log(n, + log(i=~ 1 I z i l 2 ) ]  + c "  

Hence 

Inductively, we get 

The picture is as follows. 

v ( P ;  , P~ . . . . .  P,;) > v(P~, P; , v~ . . . .  v;,) 
(02 . . . . .  On) = " ( 0 2  . . . . .  On) 

V ( 1  . . . . .  1) < v(v~ . . . . .  vr 
(02 . . . . .  0 . )  : " (02  . . . . .  0 . )  " 

Z 2 

Z d 

F i g .  2 
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Remark. In the proof of the above two lemmas, we use the fact that a subharmonic 
function takes smaller values in the interior of a unit disk B1 than the superior of 
its value on the unit circle 0Bt. In general, we only have uniform estimates on 
~o(z) along Clg,~:i:: :~I for generic 0,. However, by using Poisson's formula, we 
can still bound the value of ~0 in a smaller disk B1/4 by its integral over 0B1 up to 
a uniform positive constant c. Then the argument still works with probably 
another constant c. 

3.8 

The previous two lemmas implies that if we fix an irreducible component Wa of W. 
Then for any other component W'~, we can find a curve cutting the corresponding 
E'~ at isolated points with Lelong number bounded uniformly from below by 

1 
,,tvl, ~ . . . . .  ~ In particular, it follows essentially from definition that 

C 1 C 2  " (02  . . . . .  On) " 

min {p~} ~v; . . . . .  ~) 1 F(02 . . . . .  0 . )  ~ ' 
l < . i ~ n  

which implies that minx ~i_<, { P'i} is uniformly bounded from above. As the number 
of points in Z which are the complete intersection of n divisors Di on Z is finite, we 
have 

Proposition 7 For any irreducible component of  the branching locus, the minimum of 
the exponent Pl in the corresponding mapping z is uniformly bounded from above. 

4 Conclusion of proof 

4.1 

We are going to complete the proof of the Main Theorem in this section. Let B1 be 
the subset of the irreducible components of the base locus whose image in Z by the 
corresponding z are not corner points. Let B2 be the complement of B1 in the set of 
base locus. Let B be the union of B1 and the set of branching locus. Then from 
Proposition 7 and Proposition 5, we conclude that we can find a family of curves 
cutting these components at isolated points whose image in Z are curves of 
bounded degree. The argument in the proof of Proposition 2 allows us to find 
a birational mapping F'  from X to another algebraic manifold Z'. The new 
mapping isbiholomorp_hic outside of the set B2. We can now apply the argument 
for F and Z to F '  and Z'. The only trouble happens when a component Wa of B2 is 
mapped into a corner point in Z'. In this case F' can be extended across W'~ as in 
w so that if W1 is a divisor, then Proposition 7 holds for W1 for the mapping F'. 
But if dim(W~) ~ n - 2, then W~ is contained in a branching locus ofF ' ,  which is of 
codimension 1. This is impossible as F' is biholomorphic to its image outside of 
U n W'~ for a neighbourhood U of a generic point on 141. Hence by attaching 
a finite number of sections to F', we get a biholomorphic mapping of X into 
a quasi-projective variety. 
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